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Abstract—In this paper, we consider wireless caching helper
networks (WCHNs) consisting of cache-enabled device-to-device
(D2D) transmitters and caching helpers (CHs), which deliver
data by exploiting cached contents. We consider two types of
modes at a typical user, namely D2D and CH modes. In the D2D
and CH modes, after requesting a content, the user receives the
content from a D2D transmitter and a CH caching the content,
respectively. In practical scenarios, to mitigate interference, the
CHs may not be placed close to each other, and thus there
exists a form of repulsion among the CHs’ locations. In this
context, we model the spatial distribution of the CHs as a β-
Ginibre point processe, which reflects the repulsive behavior and
contains the Poisson point process as a special case. Then, we
provide analytical expressions for the coverage probabilities in
the WCHNs.

Index Terms—Wireless caching helper networks, edge caching,
device-to-device communications, repulsive point process, Ginibre
point process, stochastic geometry.

I. INTRODUCTION

It was reported in [1] that an exponential growth of mobile
data traffic is mainly driven by on-demand video streaming.
Delivering large volume of data from content providers to
end users incurs traffic congestion in backhaul links, which
results in slow transmission rate and high latency. As a means
to alleviate the congestion, caching popular contents at the
edge of the networks has generated significant interest [2].
The authors in [3] studied the content placement problem in
a wireless network consisting of caching helpers and wireless
users. In [4], both deterministic caching and random caching
strategies for a wireless device-to-device (D2D) caching net-
work were proposed.

The performance of caching wireless networks was investi-
gated in [5]–[9]. The work in [5] and [6] analyzed the outage
probability of cache-enabled small-cell networks with/without
underlying macro cellular network, respectively, when the lo-
cations of nodes in the networks are assumed to be distributed
as Poisson point processes (PPPs). Additionally, the coverage
probability of cache-enabled D2D networks was characterized
by modeling the spatial distribution of the devices as a PPP [7].
The authors in [8] and [9] investigated the performance of
wireless caching helper networks (WCHNs) consisting of a
number of caching helpers whose locations are modeled by a
PPP.

In practical networks, in order to alleviate interference or
increase coverage area, transmitters in wireless networks may
not be placed close to each other, and hence there exists
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repulsion among the locations of the transmitters [10]. In
this context, Ginibre point processes (GPPs) [11] which take
the repulsive nature into account, have been successfully
adopted as the models for various wireless networks [12]–
[15]. The α-GPP (−1 ≤ α < 0) is a superposition of
−1/α independent GPPs [16]. With the α-GPP model, the
authors in [12] and [13] provided analytical expressions for
the performance of wireless sensor networks with/without
a fractional channel inversion power control, respectively.
Another kind of parameterization of the GPP is the so-called
β-GPP (0 < β ≤ 1) which is a thinned and re-scaled GPP,
generated by retaining each point of the GPP independently
with probability β [17]. Exploiting the specificities of the
β-GPP, the coverage probabilities in single-tier and hetero-
geneous cellular networks were analyzed in [14] and [15],
respectively.

It should be remarked that the previous works on WCHNs
in [8] and [9] assumed that the locations of CHs follow a
PPP due to its analytical simplicity. Despite the fact that CHs
in practical WCHNs may experience a repulsive nature, the
performance of the WCHNs, which takes the repulsion into
account has not been studied yet.

In this paper, we analyze the coverage probability of the
WCHNs consisting of cache-enabled D2D transmitters and
CHs by modeling the spatial distributions of the CHs and the
D2D transmitters as a β-GPP and a PPP, respectively.

Two types of user access modes are considered when a
typical user requests a content, namely D2D and CH modes. In
the D2D (respectively CH) mode, the typical user is associated
with the closest D2D transmitter (respectively CH) which
caches the requested content and is within a certain distance.
Unlike what happens in the PPP setting, when the locations of
the CHs follow a β-GPP, the interferences from the CHs are
correlated. We obtain analytical expressions for the coverage
probabilities in the D2D and the CHs modes by accounting for
the correlation. For the β-GPP, the parameter β presents the
degree of the repulsion, and the β-GPP weakly converges to
the PPP as β → 0. Motivated by this fact, we derive analytical
results in the PPP by letting β → 0 in our general results.

Throughout the paper, we use the following notations.
P(A) and E[X] represent the probability of an event A and
the expectation of a random variable X , respectively. The
notations ‖x‖, |x| and x∗ stand for the Euclidean 2-norm
of x, Euclidean norm and conjugate of a complex scalar x,
respectively. Lastly, Φ ∼ PPP (λ) and Φ ∼ GPP (λ, β) mean
that a point process Φ follows a PPP with intensity λ and a β-
GPP with intensity λ and repulsion parameter β, respectively.

II. SYSTEM MODEL AND PRELIMINARIES

A. Network model
In this paper, we investigate WCHNs comprising of cache-

enabled D2D transmitters and CHs, which are equipped with



2

caching storage units. As explained previously, we consider
two types of user access modes for a typical user requesting
a content c, namely D2D and CH modes. In the D2D (or CH)
mode, the user is connected to the nearest D2D transmitter (or
CH) which stores the content c and is within the distance rD
(or rH ). Here, rD and rH represent the maximum distances
in the D2D and the CH modes, respectively.

In order to take into account the repulsive nature in practical
networks [10], we model the spatial distribution of the CHs
by a β-GPP ΦH with repulsion parameter βH and intensity
λH . Also, the locations of the D2D transmitters are assumed
to follow a PPP with intensity λD, as the locations of the D2D
users are typically independent.

B. Caching
Let us define a finite content category C = {c1, c2, . . . , cM}

where cm is the m-th most popular content for m = 1, . . . ,M .
It is assumed that all contents have the same size, which is
normalized to one [5]. We assume that each D2D transmitter
and each CH has a cache storage of sizes sD and sH ,
respectively. Let us denote by ηDm and ηHm the probabilities
that a content cm ∈ C is cached at a D2D transmitter and a
CH, respectively.

We consider two types of pre-fetching strategies called
random caching strategy (RCS) and popularity-based caching
strategy (PCS). For the RCS, each node randomly caches
files regardless of their popularity, and thus ηDm = sD/M
and ηHm = sH/M . For the PCS, each D2D transmitter and
each CH proactively store the sD and sH most popular files,
respectively. Hence, we have ηDm = 1 if m ≤ sD and
ηDm = 0 otherwise. Also, ηHm = 1 if m ≤ sH and ηHm = 1
otherwise.

Since each D2D transmitter caches contents independently
from other D2D transmitters, for a given content cm, the D2D
transmitters can be divided into two groups, namely the D2D
transmitters which cache cm (ΦDm ) and the D2D transmitters
which do not (Φ̃Dm ) where ΦDm ∪ Φ̃Dm = ΦD. In a similar
fashion, the spatial distribution of the CHs which have cm,
and the locations of the CHs which do not, are respectively
defined as ΦHm and Φ̃Hm where ΦHm∪Φ̃Hm = ΦH . Then, the
intensities of ΦDm , Φ̃Dm , ΦHm and Φ̃Hm are equal to ηDmλD,
(1− ηDm)λD, ηHmλH and (1− ηHm)λH , respectively.

It is assumed that the content popularity follows the Zipf
distribution [18], and therefore the probability that the m-th
most popular content cm is requested is given by

ξm =
1

mδ

( M∑
j=1

1

jδ

)−1

. (1)

Note that the lower indexed content has a higher popularity,
i.e., ξi > ξj if i < j. Here, δ(≥ 0) models the skewness of
the popularity profile.

C. Signal-to-interference ratio (SIR)
Thanks to the stationarity of the β-GPP [17], without loss

of generality, we assume that the typical user is located at
the origin o. First, let us focus on the D2D mode. When the
user requests the content cm and the user is connected to the
nearest D2D transmitter in ΦDm , we express the SIR γDm as

γDm =
PDhDm,o‖xDm,o‖−α

IDm + IH
, (2)

where

Dm,o = arg min
i∈N s.t. xi∈ΦDm

‖xi‖,

IH =
∑

k∈N s.t. xk∈ΦH

PHgk‖xk‖−α, (3)

IDm = ÎDm + ĨDm , (4)

ÎDm ,
∑

k∈N\{Dm,o} s.t. xk∈ΦDm

PDhk‖xk‖−α,

ĨDm ,
∑

k∈N s.t. xk∈Φ̃Dm

PDhk‖xk‖−α,

where PD and PH represent the transmit powers at the D2D
transmitters and the CHs, respectively. Here, α and hk denote
the path loss exponent and the gain of the small-scale fading
channel between the user and the D2D transmitter located at
xk, and gk indicates the gain of the small-scale fading channel
between the user and the CH located at xk.

Next, for the CH mode, when the user accesses the content
cm and receives the content from the closest CH in ΦHm , the
SIR γHm is written as

γHm =
PHgHm,o‖xHm,o‖−α

ID + IHm
, (5)

where

Hm,o = arg min
i∈N s.t. xi∈ΦHm

‖xi‖,

ID =
∑

k∈N s.t. xk∈ΦD

PDhk‖xk‖−α, (6)

IHm = ÎHm + ĨHm , (7)

ÎHm ,
∑

k∈N\{Hm,o} s.t. xk∈ΦHm

PHgk‖xk‖−α,

ĨHm ,
∑

k∈N s.t. xk∈Φ̃Hm

PHgk‖xk‖−α.

D. Coverage Probability
We define the coverage probability as the probability that

the SIR is larger than a pre-defined SIR threshold γth. Then,
the coverage probabilities for the two modes are respectively
equal to

PDm , P
(
γDm ≥ γth, ‖xDm,o‖ ≤ rD

)
, (8)

PHm , P
(
γHm ≥ γth, ‖xHm,o‖ ≤ rH

)
. (9)

When the typical user operates in the D2D mode or the CH
mode, the average coverage probabilities PD,cov and PH,cov
are respectively given by

PD,cov =

M∑
m=1

ξmPDm , (10)

PH,cov =

M∑
m=1

ξmPHm . (11)

E. Preliminaries
Let us consider the β-GPP Φ = {xk}k∈N with intensity

λ and repulsion parameter β. Then, the set {‖xk‖2}k∈N has
the same distribution as the set χ constructed from an i.i.d.
sequence {Bi}i∈N by deleting each Bi independently and
with probability 1− β where Bi ∼ G (i, β/(πλ)) and G(a, b)
denotes a gamma random variable with shape parameter a and
scale parameter b [17].

In this model, the received signal at the user from the
CH at xk becomes PHgk‖xk‖−α = PHgkB

−α/2
H,k where
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BH,k ∼ G (k, βH/(πλH)). In addition, the sum of the
received signals at the user from the CHs is expressed
as
∑

xk∈ΦH
PHgk‖xk‖−α =

∑∞
k=1 PHgkB

−α/2
H,k ΞH,k where

{ΞH,k} indicates a set of independent discrete random vari-
ables with E [ΞH,k] = βH and ΞH,k ∈ {0, 1}. Here, the
probability density function (PDF) of BH,k is given by

fBH,k(x) =
xk−1(

βH
πλH

)k
Γ (k)

exp

(
−πλH
βH

x

)
. (12)

Before analyzing the coverage probability, let us derive the
Laplace transforms which are utilized in Section III. We denote
the Laplace transform of a random variable X by LX(s) ,
E [exp (−sX)]. Then, the Laplace transforms of IH and ID
in (3) and (6) are respectively derived as [19]

LIH (s) = E

[
∞∏
k=1

exp
(
−sPHgkB−α/2H,k ΞH,k

)]
(13)

= E

[
∞∏
k=1

1

1 + sPHB
−α/2
H,k ΞH,k

]

= E

[
∞∏
k=1

(
βH

1 + sPHB
−α/2
H,k

+ 1− βH

)]

=

∞∏
k=1

(∫ ∞
0

βH
1 + sPHx−α/2

fBH,k (x) dx+ 1− βH
)
,

LID (s) = exp

(
− 2π2λD

α sin
(

2π
α

) (sPD)2/α

)
. (14)

Now, we introduce the distributions of the contact distances
‖xHm,o‖ and ‖xDm,o‖. The cumulative distribution functions
(CDFs) of ‖xHm,o‖ and ‖xDm,o‖ are identified as

F‖xHm,o‖(x) = P
(
‖xHm,o‖ ≤ x

)
(15)

= 1− P (∀xi ∈ ΦHm , ‖xi‖ > x)

= 1−
∞∏
k=1

(
ηHmβHP

(
BH,k > x2)+1−ηHmβH

)
= 1−

∞∏
k=1

(
1− ηHmβH

Γ(k)
γ

(
k,
πλH
βH

x2

))
,

F‖xDm,o‖(x) = 1− exp
(
−πηDmλDx

2) , (16)

where γ(a, b) =
∫ b

0
ta−1e−t dt is the lower-incomplete gamma

function.
In addition, when ΦH ∼ PPP (λH), the Laplace transform

of IHm in (7) is computed as

LIHm (s, ‖xHm,o‖) = LÎHm (s, ‖xHm,o‖)LĨHm (s), (17)

LÎHm (s, ‖xHm,o‖)

= exp

(
−2πηHmλH

∫ ∞
‖xHm,o‖

x

1 + xα/(sPH)
dx

)
,

LĨHm (s) = exp

(
−2π2 (1− ηHm)λH

α sin
(

2π
α

) (sPH)2/α

)
.

Similarly to (17), the Laplace transform of IDm in (4) becomes

LIDm (s, ‖xDm,o‖) = LÎDm (s, ‖xDm,o‖)LĨDm (s), (18)

LÎDm (s, ‖xDm,o‖)

= exp

(
−2πηDmλD

∫ ∞
‖xDm,o‖

x

1 + xα/(sPD)
dx

)
,

LĨDm (s) = exp

(
−2π2 (1− ηDm)λD

α sin
(

2π
α

) (sPD)2/α

)
.

III. PERFORMANCE ANALYSIS

In this section, we introduce expressions for the coverage
probabilities in Section II-D.

A. CH mode
When the user is connected to the closest CH located at

xHm,o , the SIR γHm in (5) is written as

γHm =
PHgHm,oB

−α/2
H,Hm,o

ID +
∑
k∈N\{Hm,o} PHgkB

−α/2
H,k ΞH,k

. (19)

We derive an expression for the coverage probability PHm in
the following theorem.

Theorem 1. When the typical user requesting the content cm
operates in the CH mode, the coverage probability PHm in (9)
is written as

PHm = 2πηHmλH

∫ rH

0

LID
(
γthz

α

PH

)
exp

(
−πλHz

2

βH

)
×ΥHm

(
πλHz

2

βH

)
∆Hm

(
πλHz

2

βH

)
z dz, (20)

where LID (s) is defined in (14) and for any x > 0 we set

ΥHm(x) =

∞∑
i=1

xi−1

Γ (i)

(
AηHm ,βH,i(x, γthx

α/2)
)−1

, (21)

∆Hm(x) =

∞∏
k=1

AηHm ,βH,k (x, γthx
α/2), (22)

An,b,k(x, τ) = 1− b+

∫ ∞
x

nbνk−1 exp(−ν)

Γ(k) (1 + τν−α/2)
dν (23)

+

∫ ∞
0

(1− n)bνk−1 exp(−ν)

Γ(k) (1 + τν−α/2)
dν.

Proof. See Appendix A.

When ΦH ∼ PPP (λH), we obtain an expression for the
coverage probability PHm by letting βH → 0, as presented in
the following theorem.

Theorem 2. When ΦH ∼ PPP (λH), the coverage probabil-
ity PHm in (9) is expressed as

PHm =

∫ rH

0

LIHm

(
γthz

α

PH
, z

)
LID

(
γthz

α

PH

)
f‖xHm,o‖(z) dz,

(24)

f‖xHm,o‖(x) = 2πηHmλHx exp
(
−πηHmλHx

2) ,
where LIHm and LID are defined in (17) and (14), respectively.

Proof. See Appendix B.

B. D2D mode
When the user requests the content cm and it is associated

with the nearest D2D transmitter which has the content cm,
we rewrite the SIR γDm in (2) as

γDm =
PDhDm,oB

−α/2
D,Dm,o∑

k∈N\{Dm,o} PDhkB
−α/2
D,k ΞD,k + IH

. (25)
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TABLE I
SYSTEM PARAMETERS

Symbol rD rH βH PD PH M α
Value 15 m 100 m 1 3 dBm 23 dBm 100 4
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PCS (δ = 0), Simulation
RCS, Simulation

λD = 5× 10−3

λD = 10−3

Fig. 1. Average coverage probability for the D2D mode PD,cov as a function
of sD .

The expression for the coverage probability PDm in (8) is
identified in the following theorem.

Theorem 3. The coverage probability PDm in (8) is given by

PDm =

∫ rD

0

LIH
(
γthz

α

PD

)
LIDm

(
γthz

α

PD
, z

)
f‖xDm,o‖(z) dz,

(26)

f‖xDm,o‖(x) = 2πηDmλDx exp
(
−πηDmλDx

2) ,
where LIH and LIDm are defined in (13) and (18), respectively.
When ΦH ∼ PPP (λH), the Laplace transform becomes
LIH (s) = exp

(
− 2π2λH

α sin( 2π
α )

(sPH)2/α
)

.

We skip the proof as (26) is obtained by proceeding pre-
cisely as in the proof of Theorem 2.

IV. SIMULATION RESULTS

In this section, we illustrate numerical simulation results
to validate our analysis. In Figs. 1-3, the lines and symbols
are used to indicate the analytical and simulated results,
respectively. Unless otherwise stated, we use the network
parameters listed in Table I.

The average coverage probability PD,cov in (10) is ex-
amined in Fig. 1 when γth = −5 dB, λH = 5 × 10−4

and ΦH ∼ GPP (λH , 1). Since the intensity of the D2D
transmitters having the accessed content grows as λD and sD
become bigger, PD,cov decreases as λD and sD get smaller.
Also, an increase in δ leads to a growth of {ηDm}, and
therefore PD,cov is an increasing function of δ. Moreover,
by comparing the cases “PCS (δ = 0)" and “RCS", we can
infer that a higher PD,cov can be achieved by employing the
PCS even when the content popularity follows the uniform
distribution.

Figs. 2 and 3 present the coverage probability for the CH
mode when λD = 10−3 and γth = −5 dB. In Fig. 2,
we plot the coverage probability PHm in (20) for various
values of ηHm . As λH and ηHm grow, the probability that
there exist CHs caching the requested content becomes larger
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λH ×10
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Fig. 2. Coverage probability for the CH mode PHm as a function of λH .
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Fig. 3. Average coverage probability for the CH mode PH,cov as a function
of δ.

and the contact distance decreases, and hence PHm is an
increasing function of λH and ηHm . We remark that the
interference from the CHs gets bigger as λH increases. From
the observation that PHm increases with λH , we deduce that
the impact of the contact distance is more pronounced than
that of the interference. In addition, since the contact distance
gets smaller if there exists repulsion among the locations of
the CHs, PHm is larger when ΦH follows a β-GPP than that
when ΦH follows a PPP.

Fig. 3 evaluates the average coverage probability for the CH
mode PH,cov in (11) for the networks where λH = 10−4 and
the PCS strategy is employed. Since increases in sH and δ
lead to a growth of the intensity of ΦHm , PH,cov decays as
sH and δ become lower. As expected, PH,cov increases as βH
goes to one. It is shown that PH,cov is sensitive to δ when
sH is small. Also, the coverage probabilities with different
values of sH converge as δ increases since a small number of
contents are frequently requested by users when δ is large.

V. CONCLUSION

In this paper, we have studied WCHNs where the locations
of D2D transmitters and CHs are modeled by a PPP and a
β-GPP, respectively. We have considered two types of access
modes, namely D2D and CH modes and analyzed the coverage
probabilities for the two modes. Numerical simulations have
verified the accuracy of our analytical results.
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APPENDIX A
PROOF OF THEOREM 1

We begin by defining a sequence of discrete random vari-
ables {εH,i}i∈N which are independent marks of ΦH such that
εH,i ∈ {0, 1} and P(εH,i = 1) = ηHm . Here, {εH,i = 1} and
{εH,i = 0} are the events wherein the CH at xi has the content
cm and does not have it, respectively. For any i ∈ N, we set

Ii :=
⋂

k∈N\{i}

{
BH,k ≥ BH,i or εH,k = 0 or ΞH,k = 0

}
,

as well as Ji := Ii ∩ {εH,i = 1} ∩ {ΞH,i = 1}, and it
is easy to check that the events {Ji}i∈N are disjoint almost
surely. Additionally, on the event Ji we have ‖xHm,o‖2 =
BH,i. Consequently, we have

PHm , P
(
γHm ≥ γth, ‖xHm,o‖ ≤ rH

)
=

∞∑
i=1

P
(
γHm≥γth, BH,i ≤ r

2
H , εH,i = 1, ΞH,i = 1, Ii

)
=

∞∑
i=1

P

(
gi ≥

γthB
α/2
H,i

PH

( ∑
k∈N\{i}

PHgkB
−α/2
H,k ΞH,k + ID

)
,

BH,i ≤ r2
H , Ii

)
P(εH,i = 1, ΞH,i = 1)

= ηHmβH

∞∑
i=1

E

[
exp

(
−
γthB

α/2
H,i

PH

×

( ∑
k∈N\{i}

PHgkB
−α/2
H,k ΞH,k + ID

))
1{

BH,i≤r2H , Ii
}]

= ηHmβH

∞∑
i=1

E

[
LID

(
γthB

α/2
H,i

PH

)

×
∏

k∈N\{i}

exp
(
−γthBα/2H,i gkB

−α/2
H,k ΞH,k

)
1{

BH,i≤r2H , Ii
}]

= ηHmβH

∞∑
i=1

E

[
LID

(
γthB

α/2
H,i

PH

)
1{

BH,i≤r2H
}

×
∏

k∈N\{i}

[
1

1 + γthB
α/2
H,i B

−α/2
H,k ΞH,k

× 1{
BH,k≥BH,i or εH,k=0 or ΞH,k=0

}]]

= ηHmβH

∞∑
i=1

E

[
LID

(
γthB

α/2
H,i

PH

)
1{

BH,i≤r2H
} ∏
k∈N\{i}

×
[
1−βH+

βH

1+γthB
α/2
H,i B

−α/2
H,k

1{
BH,k≥BH,i or εH,k=0

}]].
(27)

We remark that 1{BH,k≥BH,i or εH,i=0} = 1{εH,i=0} +
1{BH,k≥BH,i and εH,i=1}, and therefore PHm in (27) is com-
puted as

PHm = ηHmβH

∞∑
i=1

E

[
LID

(
γthB

α/2
H,i

PH

)
1{

BH,i≤r2H
}

×
∏

k∈N\{i}

[
1− βH +

ηHmβH

1 + γthB
α/2
H,i B

−α/2
H,k

1{
BH,k≥BH,i

}
+

(1− ηHm)βH

1 + γthB
α/2
H,i B

−α/2
H,k

]]

= ηHmβH

∞∑
i=1

∫ r2H

0

LID
(
γthu

α/2

PH

)
fBH,i(u)

×
∏

k∈N\{i}

(
1− βH +

∫ ∞
u

ηHmβH
1 + γthuα/2x−α/2

fBH,k (x) dx

+

∫ ∞
0

(1− ηHm)βH
1 + γthuα/2x−α/2

fBH,k (x) dx

)
du

= 2ηHmβH

∞∑
i=1

∫ rH

0

LID
(
γthz

α

PH

)
fBH,i(z

2)

×
∏

k∈N\{i}

(
1− βH +

∫ ∞
z2

ηHmβH
1 + γthzαx−α/2

fBH,k (x) dx

+

∫ ∞
0

(1− ηHm)βH
1 + γthzαx−α/2

fBH,k (x) dx

)
z dz. (28)

Here, by (12) and a change of variable, the inner integral
terms in (28) can be rewritten as∫ ∞

z2

ηHmβH
1 + γthzαx−α/2

fBH,k (x) dx (29)

=

∫ ∞
πλHz

2/βH

ηHmβHν
k−1 exp(−ν)

Γ(k)

(
1 + γth

(
πλHz

2

βH

)α/2
ν−α/2

) dν,

∫ ∞
0

(1− ηHm)βH
1 + γthzαx−α/2

fBH,k (x) dx (30)

=

∫ ∞
0

(1− ηHm)βHν
k−1 exp(−ν)

Γ(k)

(
1 + γth

(
πλHz

2

βH

)α/2
ν−α/2

) dν.

By plugging (29) and (30) into (28), we obtain the result in (20).

APPENDIX B
PROOF OF THEOREM 2

The aim of the proof is to compute the limit of (20) as βH
goes to zero. First, note that for any x > 0 we have

0 ≤
∫ ∞
x

ηHmβHν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2ν−α/2)
dν (31)

≤
∫ ∞

0

ηHmβHν
k−1 exp(−ν)

Γ(k)
dν = ηHmβH ,

and similarly

0 ≤
∫ ∞

0

(1− ηHm)βHν
i−1 exp(−ν)

Γ(i)
(
1 + γthxα/2ν−α/2

) dν ≤ (1− ηHm)βH .

(32)
Thus, taking x = πλHz

2/βH we obtain

1 ≤ exp

(
−πλHz

2

βH

)
ΥHm

(
πλHz

2

βH

)
≤ (1− βH)−1, (33)

which implies

exp

(
−πλHz

2

βH

)
ΥHm

(
πλHz

2

βH

)
−−−−→
βH→0

1. (34)

Second, let us fix ε > 0 and x > 0. By (31) and (32), for
any k ≥ 1 we have

0 ≤ βH −
∫ ∞
x/βH

ηHmβHν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβH)−α/2)
dν (35)

−
∫ ∞

0

(1− ηHm)βHν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβH)−α/2)
dν ≤ βH ,
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and additionally we note that

βH −
∫ ∞
x/βH

ηHmβHν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβH)−α/2)
dν

−
∫ ∞

0

(1− ηHm)βHν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβH)−α/2)
dν

=

∫ x/βH

0

ηHmβHν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβH)−α/2)
dν

+

∫ ∞
0

βHν
k−1 exp(−ν)

Γ(k) (1 + (νβH)α/2x−α/2/γth)
dν. (36)

For x sufficiently small, the inequalities −(1 + ε)x ≤ ln(1 −
x) ≤ −x hold, and therefore by (35) and (36), for βH
sufficiently small we have

− (1 + ε)

(∫ x/βH

0

ηHmβHν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβH)−α/2)
dν

+

∫ ∞
0

βHν
k−1 exp(−ν)

Γ(k) (1 + (νβH)α/2x−α/2/γth)
dν

)
≤ ln

(
1−βH+

∫ ∞
x/βH

ηHmβHν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβH)−α/2)
dν

+

∫ ∞
0

(1− ηHm)βHν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβH)−α/2)
dν

)
≤ −

∫ x/βH

0

ηHmβHν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβH)−α/2)
dν

−
∫ ∞

0

βHν
k−1 exp(−ν)

Γ(k) (1 + (νβH)α/2x−α/2/γth)
dν,

for all k ≥ 1. We deduce from the above inequalities that for
βH sufficiently small the following holds:

exp

(
−(1 + ε)

(∫ x/βH

0

ηHmβH dν

1 + γthxα/2(νβH)−α/2

+

∫ ∞
0

βH dν

1 + (νβH)α/2x−α/2/γth

))
≤ ∆Hm

(
x

βH

)
≤ exp

(
−
∫ x/βH

0

ηHmβH
1 + γthxα/2(νβH)−α/2

dν

−
∫ ∞

0

βH
1 + (νβH)α/2x−α/2/γth

dν

)
,

and so by change of variable,

exp

(
−(1 + ε)

(∫ x

0

ηHm dy

1 + γthxα/2y−α/2

+

∫ ∞
0

dy

1 + yα/2x−α/2/γth

))
≤ ∆Hm

(
x

βH

)
≤ exp

(
−
∫ x

0

ηHm dy

1 + γthxα/2y−α/2

−
∫ ∞

0

dy

1 + yα/2x−α/2/γth

)
. (37)

Since the above is true for all ε > 0, we obtain

∆Hm

(
x

βH

)
−−−−→
βH→0

exp

(
−
∫ x

0

ηHm dy

1 + γthxα/2y−α/2

−
∫ ∞

0

dy

1 + yα/2x−α/2/γth

)
= exp

(
−ηHmx− ηHm

∫ ∞
x

dy

1 + yα/2x−α/2/γth

−
∫ ∞

0

(1− ηHm) dy

1 + yα/2x−α/2/γth

)
.

By taking x = πλHz
2 in the above series of equations, we

get

∆Hm

(
πλHz

2

βH

)
−−−−→
βH→0

exp(−πηHmλHz
2)LIHm

(
γthz

α

PH
, z

)
.

(38)

By the bounds given in (33) and (37) and the almost sure
convergence proved in (34) and (38), one may apply the
dominated convergence theorem to prove the convergence
of (20) to (24) as βH goes to zero.
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