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Abstract

The non-commutative Malliavin calculus on the Heisenberg-Weyl algebra is
extended to the affine algebra. A differential calculus and a non-commutative
integration by parts are established. As an application we obtain sufficient
conditions for the smoothness of Wigner type laws of non-commutative random
variables with gamma or continuous binomial marginals.
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1 Introduction

Wigner densities [13] have various applications in time-frequency analysis, quan-

tum optics and other fields, see e.g. [4] and the references given in [2]. In [7] a

non-commutative Malliavin calculus has been introduced on the Heisenberg-Weyl

algebra {p,q, I}, with [p,q] = 2iI, generalizing the Gaussian Malliavin calculus to

Wigner densities, and allowing to prove the smoothness of Wigner laws with Gaus-

sian marginals. In this paper we aim to treat other probability laws in a more general

framework, in particular we will consider non-commutative couples of random vari-

ables with gamma and continuous binomial marginals. It is well known that gamma

and continuous binomial non-commutative random variables can be constructed us-

ing representations of sl2, or simply on the affine algebra viewed as a sub-algebra of

sl2. We will develop a functional calculus on the affine algebra, based on the general

framework of [2], [3].
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Before proceeding further, let us examine a situation where the gamma and

continuous binomial laws appear naturally in a non-commutative framework related

to integration by parts with respect to the gamma law. Let

ã−τ = τ∂τ ,

i.e. ã−τ f(τ) = τf ′(τ), f ∈ C∞b (R). The adjoint ã+τ of ã−τ with respect to the gamma

density γβ(τ) = 1{τ≥0}
τβ−1

Γ(β)
e−τ on R, β > 0, satisfies∫ ∞

0

g(τ)ã−τ f(τ)γβ(τ)dτ =

∫ ∞

0

f(τ)ã+τ g(τ)γβ(τ)dτ, f, g ∈ C∞b (R), (1.1)

and is given by

ã+τ = (τ − β)− ã−τ ,

i.e. ã+τ f(τ) = (τ −β)f(τ)−τ∂f(τ) = (τ −β)f(τ)− ã−τ f(τ). The operator ã◦τ defined
as

ã◦τ = ã+τ ∂τ = −(β − τ)∂ − τ∂2

has the Laguerre polynomials Lβn with parameter β as eigenfunctions:

ã◦τL
β
n(τ) = nLβn(τ), n ∈ N.

The multiplication operator ã−τ + ã+τ = τ − β has a compensated gamma law in the

vacuum state 1R+ in L2
C(R+, γβ(τ)dτ). In the Heisenberg-Weyl case, q = a− + a+

and its conjugate p = i(a− − a+) both have Gaussian laws and can be constructed

from the Boson annihilation and creation operators a−, a+. In [11], [12] it has been

noticed that when β = 1, i(ã−τ − ã+τ ) has a continuous binomial law (or spectral

measure) in the vacuum state, with hyperbolic cosine density (2 coshπξ/2)−1, in

relation to a representation of the subgroup of sl2 made of upper-triangular matrices.

This construction extends to half-integer values of β, nevertheless this type of law

can in fact be studied for every value of β > 0 in the more general framework of [1],

starting from a representation {M,B−, B+} of sl2:

[B−, B+] =M, [M,B−] = −2B−, [M,B+] = 2B+,

which can be constructed as

M = β + 2ã◦τ , B− = ã−τ − ã◦τ , B+ = ã+τ − ã◦τ .
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Letting

Q = B− +B+ = ã−τ + ã+τ − 2ã◦τ = (τ − β) + 2(β − τ)∂ + 2τ∂2

and

P = i(B− −B+) = i(ã−τ − ã+τ ) = 2iτ∂ − i(τ − β),

we have

[P,Q] = 2iM, [P,M ] = 2iQ, [Q,M ] = −2iP.

Now, Q+M is a multiplication operator:

Q+M = τ,

hence Q+M has the gamma law with parameter β in the vacuum state Ω = 1R+ in

L2
C(R+, γβ(τ)dτ). The law (or spectral measure) of αM +Q has been determined in

[1], depending on the value of α ∈ R. When α = ±1,M+Q andM−Q have gamma

laws. For |α| < 1, Q + αM has an absolutely continuous law and in particular for

α = 0, Q and P have continuous binomial laws. When |α| > 1, Q + αM has a

geometric distribution.

The Malliavin calculus on the Heisenberg-Weyl algebra {p,q, I} of [6], [7]

relies mainly on a functional calculus which allows to define the composition of a

function with a couple of non-commutative random variables, and on a covariance

identity which plays the role of integration by parts formula. In particular, a con-

tinuous map O from Lp(R2), p ≥ 2, into the space of bounded operators on H is

defined via

O(f) =

∫
R2

(Ff)(x, y)eixp+iyqdxdy,

where F denotes the Fourier transform, with the bound

∥O(f)∥ ≤ Cp∥f∥Lp(R2),

and the relation

O(eiux+ivy) = eiup+ivq, u, v ∈ R.

In order to extend this construction to other probability laws we adopt the formalism

of [2] which provides a functional calculus on more general Lie algebras. In particular,

note that

X1 = −
i

2
P and X2 = i(Q+M),
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form a representation of the affine algebra:

[X1, X2] = X2.

Let B2(H) denote the space of Hilbert-Schmidt operators on H. Using results of [2]

we show that a continuous map O : L2
C(R2, dξ1dξ2/|ξ2|) −→ B2(H) can be defined as

O(f) =

∫
R2

(Ff)(x1, x2)e−
i
2
x1P+ivx2(Q+M)dx1dx2,

with the bound

∥O(f)∥B2(H) ≤ ∥f∥L2
C(R2,

dξ1dξ2
2π|ξ2|

)
,

and the property

O(e−iuξ1−ivξ2) = e−
i
2
uP+iv(Q+M).

This allows to define a Wigner density W̃|ϕ⟩⟨ψ|(ξ1, ξ2) which is the joint density of

(−1
2
P,Q+M), with continuous binomial and gamma laws as marginals, such that

⟨ψ|ei
u
2
P−iv(Q+M)ϕ⟩H =

∫
R2

eiuξ1+ivξ2W̃|ϕ⟩⟨ψ|(ξ1, ξ2)dξ1dξ2, ϕ, ψ ∈ H.

Using a non-commutative integration by parts formula, we are able to prove the

smoothness of the joint density of (P,Q+M).

We proceed as follows. In Sect. 2 we recall the main results of [2] on functional

calculus on general Lie algebras, and give proofs not explicitly given in [2] of some

particular results needed in our approach. In Sect. 3 we study in detail the particular

case of the affine algebra and obtain a smoothness property for the joint density of

(P,Q+M). In Sect. 4 we state a non-commutative integration by parts formula on

the affine algebra, which generalizes the classical integration by parts with respect

to the gamma density. Finally in Sect. 5 we conclude with some remarks on the

relation of our construction to the commutative case.

2 Functional calculus on Lie algebras

In this section we recall the main tools of functional calculus on general Lie algebras

[2], and include some results and proofs not explicitly stated in [2]. Let G be a Lie

group with Lie algebra G and let U be a unitary representation of G on some Hilbert
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space H with inner product ⟨·|·⟩H. Let ⟨·, ·⟩G∗,G denote the pairing between the Lie

algebra G and its dual G∗. We assume that U is irreducible, and square integrable

i.e. there exists a non zero vector ψ ∈ H such that∫
G

|⟨U(g)ψ|ψ⟩H|2dµ(g) <∞,

where µ denotes the left Haar measure on G. From [5] there exists a positive self-

adjoint operator C on H such that∫
G

⟨U(g)ψ1, ϕ1⟩H⟨U(g)ψ2|ϕ2⟩Hdµ(g) = ⟨Cψ2|Cψ1⟩H⟨ϕ1|ϕ2⟩H. (2.1)

Moreover C is the identity if and only if G is unimodular, and Dom C−1 is dense

in H. We assume the existence of an open subset N0 of G, symmetric around the

origin, whose image exp(N0) by exp : G → G is dense in G with µ(G \ exp(N0)) = 0.

The image measure of µ on N0 by exp−1 : exp(N0)→ N0 is called the Haar measure

on G, and we denote by m(x) its density with respect to the Lebesgue measure dx

on G. Let σ(ξ) denote the density in the decomposition of the Lebesgue measure dξ

on G∗:
dξ = dk(λ)σ(ξ)dΩλ(ξ),

where dk(λ) is a measure on the parameter space of the co-adjoint orbits in G∗ and

dΩλ(ξ) is the invariant measure on the orbit O∗
λ. Let B2(H) denote the space of

Hilbert-Schmidt operators equipped with the scalar product

⟨ρ1|ρ2⟩B = Tr [ρ∗1ρ2], ρ1, ρ2 ∈ B2(H).

Let (X1, . . . , Xn), resp. (X
∗
1 , . . . , X

∗
n), denote a basis of G, resp. G∗.

Definition 2.1 ([2]) Given (ϕ, ψ) ∈ H × Dom C−1 the Wigner function W|ϕ⟩⟨ψ| is

defined on G∗ as:

W|ϕ⟩⟨ψ|(ξ) =

√
σ(ξ)

(2π)n/2

∫
N0

e−i⟨ξ,x⟩G∗,G⟨U(ex1X1+···+xnXn)C−1ψ|ϕ⟩H
√
m(x)dx.

The following proposition extends the definition of Wρ in L
2
C(G∗;

dξ
σ(ξ)

) to ρ ∈ B2(H).

Proposition 2.2 ([2]) The mapping

H×Dom C−1 −→ L2
C(G∗;

dξ
σ(ξ)

)

ρ 7−→ Wρ
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extends to an isometry on B2(H):

⟨Wρ1 |Wρ2⟩L2
C(G∗; dξ

σ(ξ)
) = ⟨ρ1|ρ2⟩B2(H), ρ1, ρ2 ∈ B2(H).

Proof. By a density argument it suffices to consider

ρ1 = |ϕ1⟩⟨ψ1| and ρ2 = |ϕ2⟩⟨ψ2|,

with (ϕ1, ψ1), (ϕ2, ψ2) ∈ H ×Dom C−1. From the identity (2.1) and since

1

(2π)n

∫
Rn

ei⟨ξ,x−x
′⟩G∗,Gdξdx′ = δx(dx

′), (2.2)

we have:

⟨Wρ1|Wρ2⟩L2
C(G∗; dξ

σ(ξ)
)

=
1

(2π)n

∫
G∗

(∫
N0

e−i⟨ξ,x⟩G∗,GTr [U(e−(x1X1+···+xnXn))ρ1C−1]
√
m(x)dx

×
∫
N0

e−i⟨ξ,x
′⟩G∗,GTr [U(e−(x′1X1+···+x′nXn))ρ2C

−1]
√
m(x′)dx′

)
dξ

=

∫
N0

Tr [U(e−(x1X1+···+xnXn))ρ1C−1]Tr [U(e−(x1X1+···+xnXn))ρ2C
−1]m(x)dx

=

∫
N0

⟨U(ex1X1+···+xnXn)C−1ψ1|ϕ1⟩H⟨U(ex1X1+···+xnXn)C−1ψ2|ϕ2⟩Hm(x)dx

=

∫
G

⟨U(g)C−1ψ1|ϕ1⟩H⟨U(g)C−1ψ2|ϕ2⟩Hdµ(g)

= ⟨ψ2|ψ1⟩H⟨ϕ1|ϕ2⟩H

= ⟨ρ2|ρ1⟩B2(H),

where we used the relation

Tr (U(g)∗ρC−1) = Tr (U(g)∗|ϕ⟩⟨ψ|C−1) = Tr (C−1U(g)∗|ϕ⟩⟨ψ|)

= ⟨ψ,C−1U(g)∗ϕ⟩H = ⟨U(g)C−1ψ, ϕ⟩H.

□

As a result, the definition of Wρ(ξ) extends to ρ ∈ B2(H) as:

Wρ(ξ) =

√
σ(ξ)

(2π)n/2

∫
N0

e−i⟨ξ,x⟩G∗,GTr [U(e−(x1X1+···+xnXn))ρC−1]
√
m(x)dx.

6



Definition 2.3 Let O : L2
C(G∗;

dξ
σ(ξ)

)→ B2(H) denote the dual of ρ 7→ Wρ, i.e.

⟨ρ|O(f)⟩B2(H) =

∫
G∗
W ρ(ξ)f(ξ)

dξ

σ(ξ)
, f ∈ L2

C

(
G∗; dξ

σ(ξ)

)
, ρ ∈ B2(H).

Note that for ρ = |ϕ⟩⟨ψ|,

⟨ρ|O(f)⟩B2(H) = Tr |ϕ⟩⟨ψ|∗O(f)

= ⟨ϕ|O(f)ψ⟩H

= ⟨W|ϕ⟩⟨ψ||f⟩L2
C(G∗; dξ

σ(ξ)
)

=

∫
G∗
W |ϕ⟩⟨ψ|(ξ)f(ξ)

dξ

σ(ξ)
.

The Fourier transform F and its inverse F−1 are defined as

(Ff)(x) = 1

(2π)n/2

∫
Rn

ei⟨ξ,x⟩G∗,Gf(ξ)dξ, x ∈ Rn,

and

(F−1f)(ξ) =
1

(2π)n/2

∫
Rn

e−i⟨ξ,x⟩G∗,Gf(x)dx, ξ ∈ Rn.

The next proposition allows to extend O as a bounded operator from L2
C(G∗;

dξ
σ(ξ)

) to

B2(H).

Proposition 2.4 We have the bound

∥O(f)∥B2(H) ≤ ∥f∥L2
C(G∗; dξ

σ(ξ)
), f ∈ L2

C

(
G∗; dξ

σ(ξ)

)
,

and the expression

O(f) =

∫
N0

√
m(x)F

(
f√
σ

)
(x)U(ex1X1+···+xnXn)C−1dx.

Proof. We have

|⟨O(f)|ρ⟩B2(H)| = |⟨f |Wρ⟩L2
C(G∗; dξ

σ(ξ)
)|

≤ ∥f∥L2
C(G∗; dξ

σ(ξ)
)∥Wρ∥L2

C(G∗; dξ
σ(ξ)

)

≤ ∥f∥L2
C(G∗; dξ

σ(ξ)
)∥ρ∥B2(H),

and

⟨ϕ|O(f)ψ⟩H = Tr |ϕ⟩⟨ψ|∗O(f) =
∫
G∗
W |ϕ⟩⟨ψ|(ξ)f(ξ)

dξ

σ(ξ)
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=
1

(2π)n/2

∫
G∗

∫
N0

ei⟨ξ,x⟩G∗,GTrU(e−(x1X1+···+xnXn))|ϕ⟩⟨ψ|C−1

√
m(x)

σ(ξ)
dxf(ξ)dξ

=

∫
N0

F
(
f√
σ

)
(x)⟨ϕ|U(ex1X1+···+xnXn)C−1ψ⟩H

√
m(x)dx

=

〈
ϕ
∣∣∣ ∫

N0

F
(
f√
σ

)
(x)U(ex1X1+···+xnXn)C−1

√
m(x)dxψ

〉
H
.

□

In other terms we have

O(e−i⟨·,x⟩G∗,G
√
σ(·)) = (2π)n/2

√
m(x)U(ex1X1+···+xnXn)C−1 (2.3)

and

O(f
√
σ) =

1

(2π)n/2

∫
N0

(Ff)(x)O(e−i⟨·,x⟩G∗,G
√
σ)dx, f ∈ L2

C(G∗; dξ).

Let Ad♯gξ, ξ ∈ G∗, denote the co-adjoint action:

⟨Ad♯gξ, x⟩G∗,G = ⟨ξ,Adg−1x⟩G∗,G, x ∈ G.

Let Ãdg, g ∈ G, be defined for f : G∗ → C as

Ãdgf = f ◦ Ad♯g−1 ,

and let ãdx be the differential of g 7→ Ãdg. The following proposition, called covari-

ance property, will provide an analog of integration by parts formula.

Proposition 2.5 We have for x = (x1, . . . , xn) ∈ G:

[x1U(X1) + · · ·+ xnU(Xn), O(f)] = O(ãd(x)f).

Proof. Using the relation

U(g)∗C−1U(g) =
C−1√
∆(g−1)

and (34), (44), (56) in [2] we have

WU(g)ρU(g)∗(ξ)

=

√
σ(ξ)

(2π)n/2

∫
N0

√
m(x)e−i⟨ξ,x⟩G∗,GTr [U(e−(x1X1+···+xnXn))U(g)ρU(g)∗C−1]dx
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=

√
σ(ξ)

(2π)n/2

∫
N0

e−i⟨ξ,x⟩G∗,GTrU(g−1)U(e−(x1X1+···+xnXn))U(g)ρC−1

√
m(x)

∆(g−1)
dx

=

√
σ(ξ)

(2π)n/2

∫
N0

e−i⟨ξ,x⟩G∗,GTr e−Adg−1xρC−1
√
m(x)∆(g)dx

=

√
σ(ξ)

(2π)n/2

∫
N0

e−i⟨ξ,Adgx⟩G∗,GTrU(e−(x1X1+···+xnXn))ρC−1 det(Adg)
√
m(Adgx)∆(g)dx

=

√
σ(Ad♯g−1ξ)

(2π)n/2

∫
N0

e
−i⟨Ad♯

g−1ξ,x⟩G∗,GTrU(e−(x1X1+···+xnXn))ρC−1
√
m(x)dx

= Wρ(Ad
♯
g−1ξ).

We proved the covariance property

WU(g)ρU(g)∗(ξ) = Wρ(Ad
♯
g−1ξ).

By duality we have

⟨U(g)O(f)U(g)∗|ρ⟩B2(H) = Tr [(U(g)O(f)U(g)∗)∗ρ]

= Tr [U(g)O(f)∗U(g)∗ρ]

= Tr [O(f)∗U(g)∗ρU(g)]

= ⟨O(f)|U(g)∗ρU(g)⟩B2(H)

= ⟨f |WU(g)∗ρU(g)⟩B2(H)

= ⟨f |Wρ ◦ Ad♯g⟩L2
C(G∗; dξ

σ(ξ)
)

= ⟨f ◦ Ad♯g−1|Wρ⟩L2
C(G∗; dξ

σ(ξ)
)

= ⟨O(f ◦ Ad♯g−1)|ρ⟩B2(H),

which implies

U(g)O(f)U(g)∗ = O(Ãdgf),

The conclusion follows by differentiation. □

In [7] a quantum Malliavin calculus has been constructed on the Heisenberg-Weyl

algebra {p,q, I} with [p,q] = 2iI, generalizing to Wigner densities the Malliavin

calculus with respect to a single Gaussian random variable. In this case the repre-

sentation U is given on H = L2(R, dx) by

U(x, y)ϕ(t) = e2iyt+ixyϕ(t+ x), ϕ ∈ H.
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Equivalently we can take pϕ(t) = 2
i
ϕ′(t) and qϕ(t) = tϕ(t), ϕ ∈ S(R). The group is

unimodular, hence C is the identity, and σ = m = 1. We have

W|ϕ⟩⟨ψ|(ξ1, ξ2) =
1

(2π)n/2

∫
R2

e−iyξ2−ixξ1⟨e−iyq+ixpψ|ϕ⟩Hdxdy

=
1

(2π)n/2

∫
R
e−itξ1ψ(ξ2 − t)ϕ(ξ2 + t)dt.

The marginals are given by∫
R
W|ϕ⟩⟨ψ|(ξ1, ξ2)dξ2 = ϕ(ξ1)ψ̄(ξ1), ξ1 ∈ R,

and ∫
R
W|ϕ⟩⟨ψ|(ξ1, ξ2)dξ1 = (Fϕ)(ξ2)(Fψ)(ξ2) ξ2 ∈ R.

The operator O(f) is defined by

O(f) =

∫
R2

(Ff)(x, y)eixp+iyqdxdy,

with

O(e−iux−ivy) = eiup+ivq, u, v ∈ R,

and the bound

∥O(f)∥B2(H) ≤ Cp∥f∥Lp(R2).

Hence

⟨ψ, eiup+ivqϕ⟩H =

∫
R2

eiuξ1+ivξ2W|ϕ⟩⟨ψ|(ξ1, ξ2)dξ1dξ2, u, v ∈ R,

i.e. W|ϕ⟩⟨ψ|(ξ1, ξ2) represents the Wigner density of (p,q) in the state |ϕ⟩⟨ψ|. In this

case, the statement of Prop. 2.5 reads

i

2
[uq− vp, O(f)] = O (u∂1f + v∂2f) .

3 Malliavin calculus on the affine algebra

The affine algebra is generated by

X1 =

(
1 0
0 0

)
, X2 =

(
0 1
0 0

)
,

10



with [X1, X2] = X2, and the affine group can be constructed as the group of 2 × 2

matrices of the form

g =

(
a b
0 1

)
=

(
ex1 x2e

x1
2 sinch x1

2

0 1

)
= ex1X1+x2X2 , a > 0, b ∈ R, (3.1)

where

sinchx =
sinhx

x
, x ∈ R.

Consider the classical representation of the affine group on L2(R) given by

(U(g)ϕ)(t) = a−1/2ϕ

(
t− b
a

)
, ϕ ∈ L2(R), g =

(
a b
0 1

)
, a > 0, b ∈ R,

and the modified representation on H = L2
C(R, γβ(|τ |)dτ) defined by

(Û(g)ϕ)(τ) = ϕ(aτ)eibτe−(a−1)|τ |/2aβ/2, ϕ ∈ L2
C(R, γβ(|τ |)dτ), g =

(
a b
0 1

)
,

obtained by Fourier transformation and a change of measure. We have

Û(X1)ϕ(τ) =
d

dt

∣∣∣∣
t=0

Û(eitX1)ϕ(τ) =
1

2
(β − |τ |)ϕ(τ) + τϕ′(τ) = − i

2
Pϕ(τ),

Û(X2)ϕ(τ) =
d

dt

∣∣∣∣
t=0

Û(eitX2)ϕ(τ) = iτϕ(τ) = i(Q+M)ϕ(τ), τ ∈ R,

i.e.

Û(X1) = −
i

2
P and Û(X2) = i(Q+M),

hence

Û(ex1X1+x2X2) = e−
i
2
x1P+ix2(Q+M).

Here N0 = G is identified to R2 and

m(x1, x2) = e−
x1
2 sinch

x1
2
, x1, x2 ∈ R,

moreover from (92) in [2],

dΩ±(ξ1, ξ2) =
1

2π|ξ2|
dξ1dξ2,

hence

σ(ξ1, ξ2) = 2π|ξ2|, ξ1, ξ2 ∈ R, (3.2)
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and the operator C is given by

Cf(τ) =

√
2π

|τ |
f(τ), τ ∈ R.

Writing ξ = ξ1X
∗
1 + ξ2X

∗
2 ∈ G∗, we have

Wρ(ξ) =
|ξ2|1/2√

2π

∫
R2

e−iξ1x1−iξ2x2Tr [e−x1X1−x2X2ρC−1]

√
e−

x1
2 sinch

x1
2
dx1dx2,

and for ρ = |ϕ⟩⟨ψ|,

W|ϕ⟩⟨ψ|(ξ) =
|ξ2|1/2√

2π

∫
R2

e−iξ1x1−iξ2x2⟨Û(ex1X1+x2X2)C−1ψ|ϕ⟩H
√
e−

x1
2 sinch

x1
2
dx1dx2

=
1

2π

∫
R3

e−iξ1x1−iξ2x2ϕ(e−x1τ)ψ(τ)e−iτx2e
−x1

2 sinch
x1
2

×e−(e−x1−1)|τ |e−βx1/2|τ |β−1/2

√
e−

x1
2 sinch

x1
2

dτ

Γ(β)
dx1dx2

=

∫
R
ϕ

(
ξ2e

−x
2

sinch x
2

)
|ξ2|e−ixξ1
sinch x

2

ψ

(
ξ2e

x
2

sinch x
2

)
e
−|ξ2|

cosh x
2

sinch x
2

(
|ξ2|

sinch x
2

)β−1
dx

Γ(β)
,

as in (102) of [2]. Note that Wρ takes real values when ρ is self-adjoint. As a

consequence of Prop. 2.4 we have the bound

∥O(f)∥B2(H) ≤ ∥f∥L2
C(G∗;

dξ1dξ2
2π|ξ2|

)
.

From (2.3) and (3.2) we have

e−
i
2
uP+iv(Q+M) =

1√
2π

(
e−

u
2 sinch

u

2

)−1/2

O(e−iuξ1−ivξ2
√
|ξ2|)C,

i.e. from Relation (2.3):

O(e−i⟨·,x⟩G∗,G
√
σ(·)) = (2π)n/2

√
m(x)U(ex1X1+···+xnXn)C−1

The next proposition shows that these relations can be simplified, and that the

Wigner function is directly related to the density of the couple (P,Q+M).

Proposition 3.1 We have

O(eiuξ1+ivξ2) = e
i
2
uP−iv(Q+M), u, v ∈ R. (3.3)

12



Proof. We have for all ϕ, ψ ∈ H:

⟨ϕ|e−
i
2
uP+iv(Q+M)ψ⟩H =

1√
2π

(
e−

u
2 sinch

u

2

)−1/2

⟨ϕ,O(e−iuξ1−ivξ2
√
|ξ2|)Cψ⟩H

=
1√
2π

(
e−

u
2 sinch

u

2

)−1/2

⟨W|ϕ⟩⟨Cψ|(ξ1, ξ2)|e−iuξ1−ivξ2
√
|ξ2|⟩L2

C(G∗;
dξ1dξ2
2π|ξ2|

)

=
1

2π

∫
R3

e−iuξ1−ivξ2ϕ

(
e−

x
2

sinch x
2

)
eixξ1

sinch x
2

√
e−

x
2 sinch x

2

e−
u
2 sinch u

2

×ψ
(
ξ2e

−x
2

sinch x
2

)
e
−|ξ2|

cosh x
2

sinch x
2

(
|ξ2|

sinch x
2

)β−1
dx

Γ(β)
dξ1dξ2

=
1

2π

∫
R3

e−iuξ1−ivξ2ϕ

(
ξ2e

x
2

sinch x
2

)
eixξ1

sinch x
2

ψ

(
ξ2e

x
2

sinch x
2

)
×e−|ξ2|

cosh x
2

sinch x
2

(
|ξ2|

sinch x
2

)β−1
dx

Γ(β)
dξ1dξ2

= ⟨W|ϕ⟩⟨ψ||e−iuξ1−ivξ2⟩L2
C(G∗;

dξ1dξ2
2π|ξ2|

)

= ⟨ϕ|O(e−iuξ1−ivξ2)ψ⟩H.

□

As a consequence of (3.3), the operator O(f) has the natural expression

O(f) = O

(∫
R2

(Ff)(x1, x2)e−ix1ξ1−ix2ξ2dx1dx2
)

=

∫
R2

(Ff)(x1, x2)O(e−ix1ξ1−ix2ξ2)dx1dx2

=

∫
R2

(Ff)(x1, x2)e−
i
2
x1P+ix2(Q+M)dx1dx2.

We also have the relations

⟨ψ|O(f)ϕ⟩H =

∫
G∗
W |ψ⟩⟨ϕ|(ξ1, ξ2)f(ξ1, ξ2)

dξ1dξ2
2π|ξ2|

=

∫
G∗
W|ϕ⟩⟨ψ|(ξ1, ξ2)f(ξ1, ξ2)

dξ1dξ2
2π|ξ2|

,

and

⟨ψ|e
i
2
uP−iv(Q+M)ϕ⟩H =

∫
G∗
eiuξ1+ivξ2W|ϕ⟩⟨ψ|(ξ1, ξ2)

dξ1dξ2
2π|ξ2|

,

which show that the density W̃|ϕ⟩⟨ψ| of (
1
2
P,−(Q +M)) in the state |ϕ⟩⟨ψ| has the

expression

W̃|ϕ⟩⟨ψ|(ξ1, ξ2) =
1

2π|ξ2|
W|ϕ⟩⟨ψ|(ξ1, ξ2)
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=
1

2π

∫
R
ϕ

(
ξ2e

−x
2

sinch x
2

)
e−ixξ1

sinch x
2

ψ

(
ξ2e

x
2

sinch x
2

)
e
−|ξ2|

cosh x
2

sinch x
2

(
|ξ2|

sinch x
2

)β−1
dx

Γ(β)
. (3.4)

Note that W̃|ϕ⟩⟨ψ| has the correct marginals since integrating in dξ1 in (3.4) we have

using (2.2)
1

2π|ξ2|

∫
R
W|ϕ⟩⟨ψ|(ξ1, ξ2)dξ1 = γβ(|ξ2|)ϕ(ξ2)ψ(ξ2),

and

1

2π

∫
R
W|ϕ⟩⟨ψ|(ξ1, ξ2)

dξ2
|ξ2|

=
1

2π

∫
R2

e−iξ1xϕ(ωex/2)ψ(ωe−x/2)e−|ω| cosh x
2
|ω|β−1

Γ(β)
dxdω.

In the vacuum state, i.e. for ϕ = ψ = Ω = 1R+ , we have

1

2π

∫
R
W|Ω⟩⟨Ω|(ξ1, ξ2)

dξ2
ξ2

=
1

2π

∫
R

∫ ∞

0

e−iξ1x
τβ−1

Γ(β)
e−τ cosh

x
2 dτdx

=
1

2π

∫
R
e−iξ1x

1

(cosh x
2
)β
dx

= c

∣∣∣∣Γ(
β

2
+
i

2
ξ1

)∣∣∣∣2 ,
where c is a normalization constant and Γ is the Gamma function. When β = 1 we

have c = 1/π and P has the hyperbolic cosine density in the vacuum state Ω = 1R+ :

ξ1 7→
1

2 coshπξ1/2
.

Proposition 3.2 The characteristic function of (P,Q +M) in the state |ϕ⟩⟨ψ| is
given by

⟨ψ|eiuP+iv(Q+M)ϕ⟩H =

∫
R
eivωsinch uψ(ωeu)ϕ(ωe−u)e−|ω| coshu |ω|β−1

Γ(β)
dω.

In the vacuum state Ω = 1R+ we have

⟨Ω|eiuP+iv(Q+M)Ω⟩H =
1

(coshu− ivsinch u)β
, u, v ∈ R.

Proof. We have

⟨ψ|e−
i
2
uP+iv(Q+M)ϕ⟩H =

〈
ψ, Û

(
eu, ve

u
2 sinch

u

2

)
ϕ
〉
H

=

∫
R
ψ(τ)ϕ (τeu) eivτe

u
2 sinch u

2 e−(eu−1)|τ |/2eβ
u
2
|τ |β−1

Γ(β)
e−|τ |dτ

=

∫
R
eivωsinch

u
2ψ

(
ωe−

u
2

)
ϕ
(
ωe

u
2

)
e−|ω| cosh u

2
|ω|β−1

Γ(β)
dω.
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In the vacuum state |Ω⟩⟨Ω| we have

⟨Ω, e−
i
2
uP+iv(Q+M)Ω⟩H =

∫ ∞

0

eiωsinch
u
2
−|ω| cosh u

2
|ω|β−1

Γ(β)
dω =

1

(cosh u
2
− ivsinch u

2
)β
.

□

In particular we have

⟨ψ|eiv(Q+M)ϕ⟩H =

∫
R
eivωψ(ω)ϕ(ω)e−|ω| |ω|β−1

Γ(β)
dω

hence as expected, Q+M has density ψ(ω)ϕ(ω)γβ(|ω|), in particular a Gamma law

in the vacuum state. On the other hand we have

⟨ψ|eiuPϕ⟩H =

∫
R
ψ(ωeu)ϕ(ωe−u)e−|ω| coshu |ω|β−1

Γ(β)
dω,

which recovers the density of P :

ξ1 7→
1

2π

∫
R2

e−iξ1xψ(ωex)ϕ(ωe−x)e−|ω| coshx |ω|β−1

Γ(β)
dxdω.

In the vacuum state we have

⟨Ω|eiuPΩ⟩H =
1

(coshu)β
.

Next we define a gradient operator which will be useful in showing the smoothness

of Wigner densities. Let SH denote the algebra of operators on H that leave the

Schwartz space S(R) invariant.

Definition 3.3 Fix κ ∈ R. The gradient operator D is defined as

DxF = − i
2
x1[P, F ] +

i

2
x2[Q+ κM,F ], F ∈ SH,

with x = (x1, x2) ∈ R2.

Proposition 3.4 Let x = (x1, x2) ∈ R2. The operator Dx is closable for the weak

topology on the space B(H) of bounded operators on H.

Proof. Let ϕ, ψ ∈ S(R). Let (Bn)n∈N be a sequence of operators in SH ∩B(H) such
that DxBn → B ∈ B(H) in the weak topology. We have

⟨ψ|Bϕ⟩H = lim
n→∞
⟨ψ|DxBnϕ⟩H
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= lim
n→∞
⟨ψ| − i

2
x1(PBnϕ−BnPϕ) +

i

2
x2((Q+ κM)Bnϕ−Bn(Q+ κM)ϕ)⟩H

= lim
n→∞

− i
2
x1(⟨Pψ|PBnϕ⟩H − ⟨ψ|BnPϕ⟩H)

+ lim
n→∞

− i
2
x2(⟨(Q+ κM)ψ|Bnϕ⟩H − ⟨ψ|Bn(Q+ κM)ϕ⟩H) = 0,

hence B = 0. □

The following is the analog of the integration by parts (1.1).

Proposition 3.5 Let x = (x1, x2) ∈ R2. We have

[x1U(X1) + x2U(X2), O(f)] = O(x1ξ2∂1f(ξ1, ξ2)− x2ξ2∂2f(ξ1, ξ2)).

Proof. This is a consequence of the covariance property since from (3.1), the

co-adjoint action is represented by the matrix(
1 ba−1

0 a−1

)
,

i.e.

Ãdgf(ξ1, ξ2) = f ◦ Ad♯g−1(ξ1, ξ2) = f(ξ1 + ba−1ξ2, a
−1ξ2).

Hence

ãdxf(ξ1, ξ2) = x1ξ2∂1f(ξ1, ξ2)− x2ξ2∂2f(ξ1, ξ2).

□

For κ = 1, the integration by parts formula can also be written as

D(x1,2x2)O(f) = O(x1ξ2∂1f − x2ξ2∂2f).

The Wigner density W̃|ϕ⟩⟨ψ|(ξ1, ξ2) =
1

2π|ξ2|W |ϕ⟩⟨ψ|(ξ1, ξ2) exists and we turn to proving

its smoothness, more precisely we consider the smoothness of the Wigner function

W|ϕ⟩⟨ψ|. Let H
σ
1,2(R× (0,∞)) denote the Sobolev space with respect to the norm

∥f∥2Hσ
1,2(R×(0,∞)) (3.5)

=

∫ ∞

0

1

ξ2

∫
R
|f(ξ1, ξ2)|2dξ1dξ2 +

∫ ∞

0

ξ2

∫
R
(|∂1f(ξ1, ξ2)|2 + |∂2f(ξ1, ξ2)|2)dξ1dξ2.

Note that if ϕ, ψ have supports in R+, then W|ϕ⟩⟨ψ| has support in R× (0,∞), and

the conclusion of Th. 3.6 below reads W|ϕ⟩⟨ψ| ∈ Hσ
1,2(R× (0,∞)).
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Theorem 3.6 Let ϕ, ψ ∈ Dom X1 ∩Dom X2. Then

1R×(0,∞)W|ϕ⟩⟨ψ| ∈ Hσ
1,2(R× (0,∞)).

Proof. We have, for f ∈ C∞c (R× (0,∞)):∣∣∣∣∫
R2

f(ξ1, ξ2)W |ϕ⟩⟨ψ|(ξ1, ξ2)dξ1dξ2

∣∣∣∣ = 2π |⟨ϕ|O(ξ2f(ξ1, ξ2))ψ⟩H|

≤ 2π∥ϕ∥H∥ψ∥H∥O(ξ2f(ξ1, ξ2))∥B2(H)

≤
√
2π∥ϕ∥H∥ψ∥H∥ξ2f(ξ1, ξ2)∥L2

C(G∗;
dξ1dξ2
|ξ2|

)

≤
√
2π∥ϕ∥H∥ψ∥H∥f∥L2

C(G∗;ξ2dξ1dξ2),

and for x1, x2 ∈ R:∣∣∣∣∫
R2

(x1∂1f(ξ1, ξ2) + x2∂2f(ξ1, ξ2))W |ϕ⟩⟨ψ|(ξ1, ξ2)dξ1dξ2

∣∣∣∣
= 2π |⟨ϕ|O(x1ξ2∂1f(ξ1, ξ2)− x2ξ2∂2f(ξ1, ξ2))ψ⟩H|

= 2π |⟨ϕ|[x1U(X1) + x2U(X2), O(f)]ψ⟩H|

≤
√
2π∥ϕ∥H∥(x1U(X1) + x2U(X2))ψ∥∥f∥L2

C(G∗;
dξ1dξ2
|ξ2|

)
.

□

Under the same hypothesis we can show that 1R×(−∞,0)W|ϕ⟩⟨ψ| belongs to the Sobolev

space Hσ
1,2(R × (−∞, 0)) which is defined in a way similar to (3.5). Note that the

above result and the presence of σ(ξ1, ξ2) = 2π|ξ2| are consistent with the integrability

properties of the gamma law, i.e. if f(ξ1, ξ2) = |ξ2|g(ξ1)γβ(ξ2), x1 ∈ R, ξ2 > 0, g ̸= 0,

then f ∈ Hσ
1,2(R× (0,∞)) if and only if β > 0.

4 Skorohod stochastic integration

The integration by parts formulas given in this section generalize the classical inte-

gration by parts formula (1.1) on R. We define the expectation of X as

E[X] = ⟨Ω|XΩ⟩H,

where Ω = 1R+ is the vacuum state in H. The results of this section are in fact

valid for any representation {M,B−, B+} of sl2 and any vector Ω ∈ H such that

iPΩ = QΩ and MΩ = βΩ.
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Lemma 4.1 Let x = (x1, x2) ∈ R2. We have

E[DxF ] =
1

2
E [x1 {Q,F}+ x2 {P, F}] , F ∈ SH.

Proof. We use the relation iPΩ = QΩ:

−E[[iP, F ]] = ⟨Ω,−iPFΩ⟩H − ⟨Ω,−iFPΩ⟩H

= ⟨iPΩ, FΩ⟩H + ⟨Ω, FQΩ⟩H

= ⟨QΩ, FΩ⟩H + ⟨ΩFQΩ⟩H

= ⟨QΩ, FΩ⟩H + ⟨Ω, FQΩ⟩H

= E [{Q,F}] ,

E[[iQ, F ]] = ⟨Ω, iQFΩ⟩H − ⟨Ω, iFQΩ⟩H

= −⟨iQΩ, FΩ⟩H + ⟨Ω, FPΩ⟩H

= ⟨PΩ, FΩ⟩H + ⟨Ω, FPΩ⟩H

= E [{P, F}] ,

and note that E[[M,F ]] = 0. □

Definition 4.2 Fix α ∈ R and let

δ(F ⊗ x) = x1
2
{Q+ α(M − β), F}+ x2

2
{P, F} −DxF, F ∈ SH,

with x = (x1, x2) ∈ R2.

Note also that

δ(F ⊗ x) =
(
x1
Q+ iP + α(M − β)

2
+ x2

P − i(Q+ κM)

2

)
F

+F

(
x1
Q− iP + α(M − β)

2
+ x2

P + i(Q+ κM)

2

)
= x1(B

+F + FB−)− ix2(B+F + FB−) + α
x1
2
{M − β, F} − i

2
x2κ[M,F ]

= (x1 − ix2)(B+F + FB−) + α
x1
2
{M − β, F} − i

2
x2κ[M,F ].

The following Lemma shows that the divergence operator has expectation zero.
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Lemma 4.3 Let x = (x1, x2) ∈ R2. We have

E [δ(F ⊗ x)] = 0, F ∈ SH.

Proof. It suffices to apply Lemma 4.1 and to note that ⟨Ω,MΩ⟩H = β. □

Let for F,U, V ∈ SH and x = (x1, x2) ∈ R2:

U
←−
DF
x = (DxU)F = − i

2
x1[P,U ]F +

i

2
x2[Q+ κM,U ]F,

−→
DF
x V = FDxV = − i

2
x1F [P, V ] +

i

2
x2F [Q+ κM, V ],

and define a two-sided gradient as

U
←→
D F

x V = U
←−
DF
x V + U

−→
DF
x V

= − i
2
x1[P,U ]FV −

i

2
x1UF [P, V ] +

i

2
x2[Q+ κM,U ]FV +

i

2
x2UF [Q+ κM, V ].

Proposition 4.4 Let x = (x1, x2) ∈ R2 and U, V ∈ SH. Assume that x1(Q+αM)+

x2P commutes with U and with V . We have

E[U
←→
D F

x V ] = E[Uδ(F ⊗ x)V ], F ∈ SH.

Proof. From Lemma 4.3 we have

E[Uδ(F ⊗ x)V ]

=
1

2
E [U ({x1(Q+ α(M − β)) + x2P, F}+ ix1[P, F ]− ix2[Q+ κM,F ])V ]

=
1

2
E[{x1(Q+ α(M − β)) + x2P,UFV }+ ix1U [P, F ]V − ix2U [Q+ κM,F ]V ]

=
1

2
E[{x1(Q+ α(M − β)) + x2P,UFV }+ ix1[P,UFV ]

−ix1[P,U ]FV ] + E[−ix1UF [P, V ]− ix2[Q+ κM,UFV ]

+ix2[Q+ κM,U ]FV + ix2UF [Q+ κM, V ]]

= E[δ(UFV ⊗ x)] + 1

2
E[−ix1[P,U ]FV − ix1UF [P, V ]

+ix2[Q+ κM,U ]FV + ix2UF [Q+ κM, V ]]

= E[U
←→
D F

x V ].

□
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The closability of δ can be proved using the same argument as in Prop. 3.4. Next is

a commutation relation between D and δ.

Proposition 4.5 We have for κ = 0 and x = (x1, x2), y = (y1, y2) ∈ R2:

Dxδ(F ⊗ y)− δ(DxF ⊗ y)

=
y1 − iy2

2
(x1{M,F}+ ix2[M,F ]) + α

y1
2
(x1{Q,F}+ x2{P, F}), F ∈ SH.

Proof. We have

Dxδ(F ⊗ y) = −
i

2
x1[P, δ(F ⊗ y)] +

i

2
x2[Q+ κM, δ(F ⊗ y)]

= − i
2
x1[P, y1(B

+F + FB−)− iy2(B+F + FB−) +
y1
2
α{M − β, F}]

+
i

2
x2[Q+ κM, y1(B

+F + FB−)− iy2(B+F + FB−) +
y1
2
α{M − β, F}]

= δ(DxF ⊗ y)−
i

2
x1(y1[P,B

+]F + y1F [P,B
−]− iy2[P,B+]F − iy2F [P,B−]

+
y1
2
α[P,M ]F +

y1
2
αF [P,M ]) +

i

2
x2(y1[Q+ κM,B+]F + y1F [Q+ κM,B−]

−iy2[Q+ κM,B+]F − iy2F [Q+ κM,B−] +
y1
2
α[Q,M ]F +

y1
2
αF [Q,M ])

= δ(DxF ⊗ y)−
i

2
x1(y1{iM, F} − iy2{iM, F}+ y1

2
α{2iQ, F})

+
i

2
x2(y1[M,F ]− iy2[M,F ] + iy1α{P, F})

= δ(DxF ⊗ y) +
1

2
x1y1{M + αQ,F}+ x2y1

i

2
[M,F ] +

1

2
x2y1α{P, F}

− i
2
x1y2{M,F}+ 1

2
x2y2[M,F ].

□

Proposition 4.6 We have for F,G ∈ SH:

δ(GF ⊗ x) = Gδ(F )−G
←−
DF −

x1
2
[Q+ αM,G]F − x2

2
[P,G]F,

and

δ(FG⊗ x) = δ(F )G−
−→
DFG−

x1
2
F [Q+ αM,G]− x2

2
F [P,G].

Proof. We have

δ(GF ⊗ x) =
x1
2
(Q+ iP + α(M − β))GF +

x1
2
GF (Q− iP + α(M − β))
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+
x2
2
(P − iQ)GF +

x2
2
GF (P + iQ)

=
x1
2
G(Q+ iP + α(M − β))F +

x1
2
GF (Q− iP + αM − α/2)

+
x2
2
G(P − iQ)F +

x2
2
GF (P + iQ)

+
i

2
x1[P,G]F −

i

2
x2[Q,G]F −

x1
2
[Q+ αM,G]F − x2

2
[P,G]F.

Similarly we have

δ(FG⊗ x) =
x1
2
(Q+ iP + α(M − β))FG+

x1
2
FG(Q− iP + α(M − β))

+
x2
2
(P − iQ)FG+

x2
2
FG(P + iQ)

=
x1
2
(Q+ iP + α(M − β))FG+

x1
2
F (Q− iP + αM − α/2)G

+
x2
2
(P − iQ)FG+

x2
2
F (P + iQ)G

+
i

2
x1F [P,G]−

i

2
x2F [Q,G]−

x1
2
F [Q+ αM,G]− x2

2
F [P,G].

□

5 Relation to the commutative case

Let q = a−x + a+x , where a
−
x = ∂

∂x
and a+x = x− ∂

∂x
, i.e. q is multiplication by x, and

p = i(a−x − a+x ), with [p,q] = 2iI. When β = 1/2, writing τ = 1
2
x2, we have the

relations

ã◦τ =
1

2
a+x a

−
x , ã−τ =

1

2
qa−x , ã+τ =

1

2
a+x q,

i.e.

ã◦τf(τ) =
1

2
a+x a

−
x f

(
x2

2

)
, ã−τ f(τ) =

1

2
qa−x f

(
x2

2

)
, ã+τ f(τ) =

1

2
a+x qf

(
x2

2

)
.

These relations have been exploited in various contexts, see e.g. [8], [9], [10]. In

[10], these relations have been used to construct a Malliavin calculus on Poisson

space directly from the Gaussian case. In [9] they are used to prove logarithmic

Sobolev inequalities for the exponential measure. From now on we take β = 1/2.

The representation {M,B−, B+} of sl2 can be constructed as

M =
1

2
+ 2ã◦τ =

a−x a
+
x + a+x a

−
x

2
=

p2 + q2

4
,
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B− = ã−τ − ã◦τ =
1

2
(a−x )

2,

B+ = ã+τ − ã◦τ =
1

2
(a+x )

2,

In fact, letting

Q = B− +B+ =
1

2
((a−x )

2 + (a+x )
2) =

p2 − q2

4
,

P = i(B− −B+) =
i

2
((a−x )

2 − (a+x )
2) =

pq+ qp

4
,

we have

[P,Q] = 2iM, [P,M ] = 2iQ, [Q,M ] = −2iP.

We also have

Q+ αM =
α + 1

2

p2

2
+
α− 1

2

q2

2
,

and

M + αQ =

(
α + 1

2

)
p2

2
+

(
1− α
2

)
q2

2
.

The commutative case is obtained with α = 1 when considering functionals of q2

2

only, and with α = −1 when considering functionals of p2

2
only. Other probability

laws can be considered for different values of α. The law of Q + αM has been

determined in [1], depending on the value of α. In particular when |α| = 1,

Q+M = B− +B+ +M =
p2

2
, Q−M = B− +B+ −M = −q2

2
,

i.e. Q +M and M − Q have gamma laws. For |α| < 1, Q + αM has an absolutely

continuous law and when |α| > 1, Q + αM has a geometric law with parameter c2

supported by

{−1/2− sgn(α)(c− 1/c)k : k ∈ N},

with c = αsgn(α) −
√
α2 − 1. In particular the analogs of the classical integration

by parts formula (1.1) are written as

E[D(1,0)F ] =
1

2
E

[{
p2

2
, F

}
− F

]
,

for α = 1, and

E[D(1,0)F ] =
1

2
E

[
F −

{
q2

2
, F

}]
,

for α = −1.
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