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Abstract

This paper surveys and compares some recent approaches to stochastic
infinite-dimensional geometry on the space I of configurations (i.e. locally finite
subsets) of a Riemannian manifold M under Poisson measures. In particular,
different approaches to Bochner-Weitzenbock formulas are considered. A uni-
tary transform is also introduced by mapping functions of n configuration points
to their multiple stochastic integral.
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1 Weitzenbock formula under a measure

Let M be a Riemannian manifold with volume measure dz, covariant derivative V,
and exterior derivative d. Let V}, and d;, denote the adjoints of V and d under a
measure g on M of the form p(dr) = e?@dx. The classical Weitzenbock formula

under the measure p states that
d,d+dd;, = V,V + R — Hess ¢,

where R denotes the Ricci tensor on M. In terms of the de Rham Laplacian Hgr =

d;d + dd; and of the Bochner Laplacian Hg = d;d + dd; we have
Hgp = Hg + R — Hess ¢.

In particular the term Hess ¢ plays the role of a curvature under the measure u.
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2 Probability: Poisson space

In this section we recall some facts on random functionals on Poisson space. The
Poisson probability measure on N can be introduced by considering N independent
{0, 1}-valued Bernoulli random variables Xi,..., Xy, with parameter A/N, A > 0.
Then X; 4+ --- 4+ Xx has a binomial law, and

o onen=()(3) (03)”

converges to )‘—Ife*)‘ as N goes to infinity. This defines a probability measure 7, on N
g A g y
as \
o
m™({k}) = Ee .

Let X be a metric space with a o-finite Borel measure o. The measure 7, has the
convolution property my % 7, = mx4,, which allows to construct the Poisson measure

T, with intensity o on

k=n
k=1

by letting
Ak A,)kn
To({y €T; (A1) =ki,.o. ,v(An) = kn}) = O(kl,) e oA .. O(k ,) e oUn)
1: n!
where Aj, ..., A, are disjoint compact subsets of X. This measure is characterized

by its Fourier transform

/eifx f(w)d’y(w)d,ﬂ_(,y) = exp </ (eif(w) _ 1)d0-(;1;)) .
N X

If v € T is finite with cardinal |y| = n we write

Given A a compact subset we consider F' : I' — R such that F(y) = F(yNA), and

written as
F(y)=F(ynA) = o7/ Z 1{|70A|:n}n!fn($1, N I Z In(fr)
n=0 n=0



where f, is a symmetric function with support in A”, with

Jn(fn)(")/) = Jn(fn) (’Y N A) = n!1{|mA|:n}e"(A)/2fn(a:1, ... ,a:n), n > 1.

The multiple Poisson stochastic integral of f,, is defined as

In(fa) = fa(@y, ooy mn) (v = 0)(dan) - - (v = o) (dan),

/{(ml,... n)EXM; xiF;, 1#5)-

and extends to f, € L2(X)°" via the well-known isometry
/In(fn)jm(gm)dﬂ- = n!l{n:m}<fnagm>L§(X)°”v fn € Lz(X)Onv 9m € Lg(X)om'
r

We introduce a combinatorial transform K which has some similarities with the K-
transform, cf. [6] and references therein. The transform K identifies the functional
Jn(fn), which makes sense only in finite volume, to I,(f,) which is defined for all

square-integrable f,,.
Proposition 2.1 The operator K defined by
KJo(fa) = L(fn),  fa symmetric in C.(A"), n € N,

is unitary on L2_(T'). Moreover, K satisfies

KF(V):ZZ(_;!) /Xk FnU{ys, ... ub)oldyr) - - - o(dyk).

Proof. We have

/ Jn(fn)Jm(gm)dw = n!21{n:m}e"(A) / 1{‘70A‘:n}fn(x1’ .. ,xn)gn(xl, cen ,xn)dw(fy)
T T

n!?
- o(A)"ea(A)%(W N Al = n){fn, gn)r2(x)0n

= n!l{n:m} <fna gn>L§(X)®n’

which shows the first statement. On the other hand we have

KJ,(fa) ()

x !
= ) Z(_l)k%/X1{77U{y1,---,yk}|—n}fn(77u{yla--- Jye})o(dys) - - o (dy)

nCyNA k=0
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k=0 nCyNA
\nl n—k
k=n n
- Y0 () X [ e s o) oldn)
k=0 Z1,.. kEFyﬂA
nirsy, A
= L(fa)(7),
the last relation follows from e.g. Prop. 4.1 of [9]. O

If A is compact and F(y) = F(yN A) we have

/FF() va/ /fn T1s. . an)o(day) - o(day).

In the particular case X = R, with o the Lebesgue measure, the standard Poisson

process is defined as
k=1

i.e. every configuration v € I' can be viewed as the ordered sequence v = (T} );>1 of

jump times of (IVy)ier, on Ry. Let f, € Cc([0,A]") be symmetric. Then

/an(Tl,..., —Azk,/ /fn fry- . ta)o(dt) - o(dty).

_ Ze_)‘// / Fults, - ta)o(dt) -~ o(dty).
_ Z —A/ / / Foltns- . t)oldty) - -~ o(dty).
:/ /t" antl,...,tn)dtl---dtn

This formula extends to f bounded and measurable.

3 Geometry

We recall the construction of [1], [2] in the case of 1-forms, see also [3] for the case of

n-forms. We assume that X is a Riemannian manifold. The tangent space at v € I’
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is taken to be
LZ(X; TX,7y) = ®gerTuX.

A differential form of order n maps v € I" into the antisymmetric tensor product
N (T, T) = A" (@Bger 5 X).

Bochner and de Rham Laplacians on differential forms over configuration spaces are
then constructed from their counterparts at the level of the manifold X. Let dX be
the exterior differential on X, let VX, AX be the natural covariant derivative and
Bochner Laplacian on the bundle T\ zjuiyI' — v € O, 5, where O, ; is an open set
in X such that O, ;N (y\{z}) = 0. The covariant derivative of the smooth differential
1-form W is defined as

(VwWw(fYa x))SCGV € T’YF ® T’YF’

where W, (v,y) = W((v\ {z}) U{y}), =,y € X. The Bochner Laplacian HZ on T is
defined as

HBW(/Y) = - Z Aow(77 .Z')

TEY

The exterior derivative d' is defined as
d'W = Z Z dfww(% )y,
z€Y yeYy
where Wy(7, ), is the component of W, (7, z) of index y € vy, with adjoint
W = Z Z da)c(*Ww(% x)w,y’
TEY YEY
where W,(7, )4,y is the component of W, (v, z) of index (z,y) and dX* is the adjoint

of dX under the volume element o on X. A Weitzenbock formula is stated in [1], [3]

as
H® = H® + R, (3.1)
where H? is the de Rham Laplacian H® = d"d"™ + d'*d" and the curvature term

R(y) =) R(v,2)

rey
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has the explicit expression

d
R(7,2)(V(7)y) = Lig=yy Y Ricij(@)es(V (V) €))as

ij=1
where (ej);j is an orthonormal basis of 7, X. Formula (3.1) can be viewed as the
lifting to ' of the Weitzenbock formula on X.
Note that in the above construction the curvature term in (3.1) is essentially due to
the curvature of X, in particular it vanishes if X = R? and no curvature term is
induced from the Poisson measure itself.
In this paper we present a different geometry on the infinite-dimensional space I, in
which the Ricci curvature tensor under the Poisson measure appears to be the identity

operator when X = Ry, see [8] when X is a more general Riemannian manifold. .

Lifting of differential structure

Let S denote the space of cylindrical functionals of the form

Let U denote the space of smooth processes of the form

i=n

u(y,z) = Y Fi(Phi(z), (1,2) ET xRy, h€CPRy), FES, i=1,...,n
i=1

(3.3)

The differential geometric objects to be introduced below have finite dimensional

counterparts, and each of them has a stochastic interpretation. The following table

describes the correspondence between geometry and probability.



Geometry Probability

y element of I' point measure on R,

C*(R;) tangent vectors to I test functions on R,
Riemannian metric on I’ Lebesgue measure

d gradient on I' stochastic gradient
vector fields on I stochastic processes

du exterior derivative of u € Y  two-parameter process

{-} bracket of vector fields on I' bracket on U x U
curvature tensor on I trilinear mapping on U

d* divergence on I' stochastic integral operator

Divergence operator

The definition of the following gradient operator goes back to [4].

Definition 3.1 Given F € S, F = f(Ty,...,Ty), let

k=d
GF() == Log®Ookf(Th, ..., Ts), t>0.
k=1

The following is a finite-dimensional integration by parts formula for d.

Lemma 3.1 We have for F = f(T1,... ,T4) and h € C.(Ry):

/F<dF’ h)re@ydn(y) = / 2; (T) — /Td ()dt> dm ().
ta);

Proof. All C* functions on Ay = {(t1,. .. 0<t <---<ty4} are extended by

continuity to the closure of A;. We have

/(dF( ), By 12 ydm (y Z/ / -/j /Otk h(s)dsOf(ty, ... ta)dty - -dtg

/ / / (t) f(te, ... tg)dty---dtg
/ / / / de tg, tg, . ,td)dtg te dtd



o td t2
+Z/ e~ / / h(ty) f(ty, - ta)dty - - - dtg
0 0 0
—/ e_td h dS/ f tl,... dtl d
0 0 0 0

k=d—1 oo N . )
_ / e td / .. / / .. /
k=2 VO 0 0 0 0
tht1
h(S)de(tl’ - Th-1, tk+1’ tk+1’ X td)dtl cee dtk—l—ldtk—l te dtd
0
k=d o0
+ / ¢ / / / / / de t1, . tk—2, tk, tk, -, )dtldtd
—92 0
k=d

_ /Oooetd/O / hte) f(tr,- .. ta)dty - - dta
/OOO /Oh ds/ /ftl,... ity - dy

k=d

:/F ( Iy / ()dt)dw().

k=1

O

The following definition of the divergence coincides with the compensated Poisson
stochastic integral with respect to (N; — t);cr, on the adapted square-integrable pro-

cesses.

Definition 3.2 We define d} on U by
46 = [ he)(o(de) = dt) = h,dGhroge,y, G ES, he P(R.),
0

Using this definition, an integration by parts formula can be obtained independently

of the dimension.

Proposition 3.1 The divergence operator d* : L*(I' x R, ) — L?(T") is the closable
adjoint of d, i.e.

/Fd;u dm (%) :/(dF, wyewydr(y), FeS, uel. (3.4)
r r



Proof. Given Lemma 3.1 it suffices to notice that if k > d,

/FF(V)h(Tk)dw(v)=/ e " h(ty) / / / Fltr o ta)dty -

/Oooe—tk/tk ds/ / /ftl,... Q)dty -+ dty

te—1 tk—1 tq t2
_/ e k- 1/ ds/ / ftl,... ,td)dt1"
0

= [Fo) [ hodran),

k-1

in other terms the discrete-time process

(kzjh(:r,c)— /0 " h(t)dt) - ( /0 " h(t)d(Nt—t)>k21

is a martingale. Hence Relation (3.4) also implies that for F,G € S,

/F<dF, hG>L2(R+)d7T(’7) = /F<d(FG) h>L2 (Ry) — <dG, h>L2(R+)d’/T(’y)

dity,

dtp—q

(3.5)

- /F F (G /0 h h(t)(y(dt) — dt) — (h, dG)L2(R+)> dm(7)

_ /F Fd* (hG)dr(y).

Covariant derivative

(3.6)

g

Given u € U we define the covariant derivative V,v in the direction u € L*(R,) of

the vector field v = sz F;h; € U as

i=n t
Vo) = 3 hi(t)d,Fs — Fih,-(t)/ u(s)ds, teR,
i=1 0
where
duF = <dF, U>L2(R+), F e S.
We have

Vur(vG@) = Fvd,G + FGV,v, u,v € CX(R;), F,G€S.

9
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We also let B
Vou(t) =Y hi(t)dF; — Fhi(t)1pg(s), steR,,
=1

in order to write

Vuu(t) = /000 u(s)Vsv(t)ds, teR,, wu,vel.

Lie-Poisson bracket

Definition 3.3 The Lie bracket {u,v} of u,v € C*(R}), is defined to be the unique
element of C°(R,.) satisfying (dyd, — d,dy,)F =d,F, F € S.

The bracket {u,v} is defined for u,v € U with
{Fu,Gv}(z) = FG{u,v}(z) + v(z)Fd,G — u(z)Gd, F, z€R,,
u,v €CX(Ry), F,G € S.
Vanishing of torsion
Proposition 3.2 The Lie bracket {u,v} of u,v € U satisfies
{u,v} = Vv — V,u,

i.e. the connection defined by V has a vanishing torsion.

Proof. We have F(y) =T,. If u,v € C2°(R;) we have
Ty Tn
(dydy — dpdy,)T,, = —du/ v(s)ds + dv/ u(s)ds
0 0

Th T
= v(Tn)/ u(s)ds — u(Tn)/ v(s)ds
0 0
T t t
- / (@(t) / u(s)ds — (1) / v(s)ds) dt
0 0 0
= quv—VuuTn-
Since d is a derivation, this shows that
d,d, —d,d, = quvavua u,v € U.

The extension to u,v € U follows from (3.8). O
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Vanishing of curvature

Proposition 3.3 The curvature tensor ) of V vanishes on U, 1i.e.
Qu,v)h := [Vy, Vylh = Viunh =0, u,v,h €U,

and U is a Lie algebra under the bracket {-,-}.

Proof. We have, letting @(t) = — fo

[V, Volh = @V, h — vVuh oh —© ah = —avh + tuh,

and

Viunh = Vai_gih = (@0 — 9@)h = (ud — vii)h,

hence Q(u,v)h =0, h,u,v € C°(R, ). The extension of the result to U follows again
from (3.8). The Lie algebra property follows from the vanishing of €. U

Exterior derivative

The exterior derivative du of a smooth vector field © € U is defined from
<dua hy A h2>L2(R+)/\L2(R+) = <Vh1U, h2>L2(]R+) - (thua h1>L2(R+)a
hi, he € U. We have

||du||L2(R+)/\L2 (Ry) / / (du(s, t))*dsdt, (3.9)

where

du(s, £) = %(Vsu(t) —Vu(s)), steR,, uell.

Isometry formula

Lemma 3.2 We have foru € U:

/r(d* /||u||L2(R+ dr(~y // / Vu(t)Viu(s)dsdtdn ().

(3.10)
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Proof.  (cf. [8], [7] and the proof of [5] for path spaces over Lie groups). Given
u=>" hF;, €U we have

[ &Rz tEint) = [ Fand;y5)ar()

T

_ / Fydy, (Fyd=(hy) — dy, Fy)dm(7)

T

- / (FiFydy,dih, + B (hy)dn, Fy — Fidydy, Fy)dr(7)
T

= /(FiFj<hi: hj) 2w,y + FiFyd;, (Vi hy) + Fidy (h)dp, Fy — Fidp,dp, Fy)dm(7)

r

= /(FiFj<hi: hj)r2wy) + dv,n; (FiFy) + dp; (Fidg, Fy) — Fidp,dp, Fy)dm(7)

r

- /(FF (hi hid 2wy + Ay, (FiFy) + du, Fidn, Fy + Fi(dn,da, Fy — dad, Fy))dr ()

r

= /F(EF]U'LZ, hj)LQ(R+) + dvhihj (EFJ) + dhjﬂdhiFj + F‘idvhjhi_vhithj)d’ﬂ'(’Y)

= / (EFj<hiahj>L2(R+) + F / d F / Vt dtds
T

+F, / &, F / Vohi(t)h;(s)dsdt + / hi(t)d, Fj / hj(s)dsﬂdsdt) dr (),
0 0

where we used the commutation relation satisfied by the gradient d:
dydjv = d; Vv + (u, v)2r,),  ©,v € CP(Ry), (3.11)

which can be proved as follows:

dudin = =3 i(Ty) /0 " u(s)ds = —dt (U(-) /0 | u(s)ds) _ /0 o) /0 " u(s)dsdt

g

Finally we state a Weitzenbock type identity on configuration space, that can be read
as

dd; +d*d = V'V + Ide(r,),

i.e. the Ricci tensor under the Poisson measure is the identity Id 2w,y on L*(R;).
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Theorem 3.1 We have for u € U:

J@in) + [ 1dulage, ursce, ) 312
= [ Mulfrdr) + [ 196l sormm i)

Proof. Relation (3.12) for u = > | h;F; € U follows from (3.9) and Lemma 3.2.

g
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