Weitzenböck formulas on Poisson probability spaces

Nicolas Privault*

Grupo de Física Matemática, Universidade de Lisboa Av. Gama Pinto 2, 1649-003 Lisboa, Portugal nprivaul@univ-lr.fr October 6, 2001

Abstract

This paper surveys and compares some recent approaches to stochastic infinite-dimensional geometry on the space Γ of configurations (i.e. locally finite subsets) of a Riemannian manifold M under Poisson measures. In particular, different approaches to Bochner-Weitzenböck formulas are considered. A unitary transform is also introduced by mapping functions of n configuration points to their multiple stochastic integral.

Key words: Poisson probability measure, Bochner-Weitzenböck formulas, stochastic analysis.

Classification: 60H07, 60J65, 58J65, 58A10

1 Weitzenböck formula under a measure

Let M be a Riemannian manifold with volume measure dx, covariant derivative ∇ , and exterior derivative d. Let ∇^*_{μ} and d^*_{μ} denote the adjoints of ∇ and d under a measure μ on M of the form $\mu(dx) = e^{\phi(x)}dx$. The classical Weitzenböck formula under the measure μ states that

$$d_{\mu}^* d + dd_{\mu}^* = \nabla_{\mu}^* \nabla + R - \text{Hess } \phi,$$

where R denotes the Ricci tensor on M. In terms of the de Rham Laplacian $H_R = d^*_{\mu}d + dd^*_{\mu}$ and of the Bochner Laplacian $H_B = d^*_{\mu}d + dd^*_{\mu}$ we have

$$H_R = H_B + R - \text{Hess } \phi.$$

In particular the term Hess ϕ plays the role of a curvature under the measure μ .

^{*}Permanent address: Université de La Rochelle, 17042 La Rochelle, France.

2 Probability: Poisson space

In this section we recall some facts on random functionals on Poisson space. The Poisson probability measure on \mathbb{N} can be introduced by considering N independent $\{0,1\}$ -valued Bernoulli random variables X_1,\ldots,X_N , with parameter λ/N , $\lambda>0$. Then $X_1+\cdots+X_N$ has a binomial law, and

$$P(X_1 + \dots + X_N = k) = {N \choose k} \left(\frac{\lambda}{N}\right)^k \left(1 - \frac{\lambda}{N}\right)^{N-k}$$

converges to $\frac{\lambda^k}{k!} \mathrm{e}^{-\lambda}$ as N goes to infinity. This defines a probability measure π_{λ} on \mathbb{N} as

$$\pi_{\lambda}(\{k\}) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

Let X be a metric space with a σ -finite Borel measure σ . The measure π_{λ} has the convolution property $\pi_{\lambda} \star \pi_{\mu} = \pi_{\lambda + \mu}$, which allows to construct the Poisson measure π_{σ} with intensity σ on

$$\Gamma = \left\{ \gamma = \sum_{k=1}^{k=n} \delta_{x_k}; \quad x_1, \dots, x_n \in X, \ n \in \mathbb{N} \cup \{\infty\} \right\}$$

by letting

$$\pi_{\sigma}(\{\gamma \in \Gamma; \quad \gamma(A_1) = k_1, \dots, \gamma(A_n) = k_n\}) = \frac{\sigma(A_1)^{k_1}}{k_1!} e^{-\sigma(A_1)} \cdots \frac{\sigma(A_n)^{k_n}}{k_n!} e^{-\sigma(A_n)},$$

where A_1, \ldots, A_n are disjoint compact subsets of X. This measure is characterized by its Fourier transform

$$\int_{\Gamma} e^{i \int_{X} f(x) d\gamma(x)} d\pi(\gamma) = \exp\left(\int_{X} (e^{if(x)} - 1) d\sigma(x)\right).$$

If $\gamma \in \Gamma$ is finite with cardinal $|\gamma| = n$ we write

$$\gamma = \sum_{i=1}^{i=n} \delta_{x_i}.$$

Given Λ a compact subset we consider $F:\Gamma\to\mathbb{R}$ such that $F(\gamma)=F(\gamma\cap\Lambda)$, and written as

$$F(\gamma) = F(\gamma \cap \Lambda) = e^{\sigma(\Lambda)/2} \sum_{n=0}^{\infty} 1_{\{|\gamma \cap \Lambda| = n\}} n! f_n(x_1, \dots, x_n) = \sum_{n=0}^{\infty} J_n(f_n)$$

where f_n is a symmetric function with support in Λ^n , with

$$J_n(f_n)(\gamma) = J_n(f_n)(\gamma \cap \Lambda) = n! 1_{\{|\gamma \cap \Lambda| = n\}} e^{\sigma(\Lambda)/2} f_n(x_1, \dots, x_n), \quad n \ge 1.$$

The multiple Poisson stochastic integral of f_n is defined as

$$I_n(f_n) = \int_{\{(x_1,\ldots,x_n)\in X^n; x_i\neq x_j, i\neq j\}.} f_n(x_1,\ldots,x_n)(\gamma-\sigma)(dx_1)\cdots(\gamma-\sigma)(dx_n),$$

and extends to $f_n \in L^2_{\sigma}(X)^{\circ n}$ via the well-known isometry

$$\int_{\Gamma} I_n(f_n) I_m(g_m) d\pi = n! 1_{\{n=m\}} \langle f_n, g_m \rangle_{L^2_{\sigma}(X)^{\circ n}}, \quad f_n \in L^2_{\sigma}(X)^{\circ n}, \ g_m \in L^2_{\sigma}(X)^{\circ m}.$$

We introduce a combinatorial transform \tilde{K} which has some similarities with the K-transform, cf. [6] and references therein. The transform \tilde{K} identifies the functional $J_n(f_n)$, which makes sense only in finite volume, to $I_n(f_n)$ which is defined for all square-integrable f_n .

Proposition 2.1 The operator \tilde{K} defined by

$$\tilde{K}J_n(f_n) = I_n(f_n), \quad f_n \text{ symmetric in } \mathcal{C}_c(\Lambda^n), \ n \in \mathbb{N},$$

is unitary on $L^2_{\pi_{\sigma}}(\Gamma)$. Moreover, \tilde{K} satisfies

$$\tilde{K}F(\gamma) = \sum_{\eta \subset \gamma} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \int_{X^k} F(\eta \cup \{y_1, \dots, y_k\}) \sigma(dy_1) \cdots \sigma(dy_k).$$

Proof. We have

$$\int_{\Gamma} J_{n}(f_{n}) J_{m}(g_{m}) d\pi = n!^{2} 1_{\{n=m\}} e^{\sigma(\Lambda)} \int_{\Gamma} 1_{\{|\gamma \cap \Lambda| = n\}} f_{n}(x_{1}, \dots, x_{n}) g_{n}(x_{1}, \dots, x_{n}) d\pi(\gamma)$$

$$= \frac{n!^{2}}{\sigma(\Lambda)^{n}} e^{\sigma(\Lambda)} \pi_{\sigma}(|\gamma \cap \Lambda| = n) \langle f_{n}, g_{n} \rangle_{L_{\sigma}^{2}(X)^{\otimes n}}$$

$$= n! 1_{\{n=m\}} \langle f_{n}, g_{n} \rangle_{L_{\sigma}^{2}(X)^{\otimes n}},$$

which shows the first statement. On the other hand we have

$$\tilde{K}J_{n}(f_{n})(\gamma) = \sum_{n \in \gamma \cap \Lambda} \sum_{k=0}^{\infty} (-1)^{k} \frac{n!}{k!} \int_{X} 1_{\{|\eta \cup \{y_{1}, \dots, y_{k}\}| = n\}} f_{n}(\eta \cup \{y_{1}, \dots, y_{k}\}) \sigma(dy_{1}) \cdots \sigma(dy_{k})$$

$$= \sum_{k=0}^{k=n} (-1)^k \frac{n!}{k!} \sum_{\substack{\eta \subset \gamma \cap \Lambda \\ |\eta| = n-k}} \int_X f_n(\eta \cup \{y_1, \dots, y_k\}) \sigma(dy_1) \cdots \sigma(dy_k)$$

$$= \sum_{k=0}^{k=n} (-1)^k \binom{n}{k} \sum_{\substack{x_1, \dots, x_{n-k} \in \gamma \cap \Lambda \\ x_i \neq x_j, \ i \neq j}} \int_X f_n(\{x_1, \dots, x_{n-k}, y_1, \dots, y_k\}) \sigma(dy_1) \cdots \sigma(dy_k)$$

$$= I_n(f_n)(\gamma),$$

the last relation follows from e.g. Prop. 4.1 of [9].

If Λ is compact and $F(\gamma) = F(\gamma \cap \Lambda)$ we have

$$\int_{\Gamma} F(\gamma) d\pi(\gamma) = e^{-\sigma(\Lambda)} \sum_{n=0}^{\infty} \frac{1}{n!} \int_{X} \cdots \int_{X} f_{n}(x_{1}, \dots, x_{n}) \sigma(dx_{1}) \cdots \sigma(dx_{n}).$$

In the particular case $X = \mathbb{R}_+$ with σ the Lebesgue measure, the standard Poisson process is defined as

$$N_t(\gamma) = \gamma([0, t]) = \sum_{k=1}^{\infty} 1_{[T_k, \infty[}(t), \quad t > 0,$$

i.e. every configuration $\gamma \in \Gamma$ can be viewed as the ordered sequence $\gamma = (T_k)_{k \geq 1}$ of jump times of $(N_t)_{t \in \mathbb{R}_+}$ on \mathbb{R}_+ . Let $f_n \in \mathcal{C}_c([0,\lambda]^n)$ be symmetric. Then

$$\int_{\Gamma} f_n(T_1, \dots, T_n) d\pi(\gamma) = e^{-\lambda} \sum_{k=n}^{\infty} \frac{1}{k!} \int_0^{\lambda} \dots \int_0^{\lambda} f_n(t_1, \dots, t_n) \sigma(dt_1) \dots \sigma(dt_k).$$

$$= \sum_{k=n}^{\infty} e^{-\lambda} \int_0^{\lambda} \int_0^{t_k} \dots \int_0^{t_1} f_n(t_1, \dots, t_n) \sigma(dt_1) \dots \sigma(dt_k).$$

$$= \sum_{k=n}^{\infty} e^{-\lambda} \int_0^{\lambda} \frac{(\lambda - t_n)^{k-n}}{(k-n)!} \int_0^{t_n} \dots \int_0^{t_1} f_n(t_1, \dots, t_n) \sigma(dt_1) \dots \sigma(dt_n).$$

$$= \int_0^{\infty} e^{-t_n} \int_0^{t_n} \dots \int_0^{t_2} f_n(t_1, \dots, t_n) dt_1 \dots dt_n.$$

This formula extends to f bounded and measurable.

3 Geometry

We recall the construction of [1], [2] in the case of 1-forms, see also [3] for the case of n-forms. We assume that X is a Riemannian manifold. The tangent space at $\gamma \in \Gamma$

is taken to be

$$L^2(X; TX, \gamma) = \bigoplus_{x \in \gamma} T_x X.$$

A differential form of order n maps $\gamma \in \Gamma$ into the antisymmetric tensor product

$$\wedge^n(T_{\gamma}\Gamma) = \wedge^n(\bigoplus_{x \in \gamma} T_x X).$$

Bochner and de Rham Laplacians on differential forms over configuration spaces are then constructed from their counterparts at the level of the manifold X. Let d_x^X be the exterior differential on X, let ∇_x^X , Δ_x^X be the natural covariant derivative and Bochner Laplacian on the bundle $T_{\gamma \setminus \{x\} \cup \{y\}} \Gamma \to y \in \mathcal{O}_{\gamma,x}$, where $\mathcal{O}_{\gamma,x}$ is an open set in X such that $\bar{\mathcal{O}}_{\gamma,x} \cap (\gamma \setminus \{x\}) = \emptyset$. The covariant derivative of the smooth differential 1-form W is defined as

$$(\nabla_x W_x(\gamma, x))_{x \in \gamma} \in T_\gamma \Gamma \otimes T_\gamma \Gamma,$$

where $W_x(\gamma, y) = W((\gamma \setminus \{x\}) \cup \{y\})$, $x, y \in X$. The Bochner Laplacian H^B on Γ is defined as

$$H^{B}W(\gamma) = -\sum_{x \in \gamma} \Delta_{x}^{X} W_{x}(\gamma, x).$$

The exterior derivative d^{Γ} is defined as

$$d^{\Gamma}W = \sum_{x \in \gamma} \sum_{y \in \gamma} d_x^X W_x(\gamma, x)_y,$$

where $W_x(\gamma, x)_y$ is the component of $W_x(\gamma, x)$ of index $y \in \gamma$, with adjoint

$$d^{\Gamma*}W = \sum_{x \in \gamma} \sum_{y \in \gamma} d_x^{X*} W_x(\gamma, x)_{x,y},$$

where $W_x(\gamma, x)_{x,y}$ is the component of $W_x(\gamma, x)$ of index (x, y) and d_x^{X*} is the adjoint of d_x^X under the volume element σ on X. A Weitzenböck formula is stated in [1], [3] as

$$H^R = H^B + R, (3.1)$$

where H^R is the de Rham Laplacian $H^R=d^\Gamma d^{\Gamma *}+d^{\Gamma *}d^\Gamma$ and the curvature term

$$R(\gamma) = \sum_{x \in \gamma} R(\gamma, x)$$

has the explicit expression

$$R(\gamma, x)(V(\gamma)_y) = 1_{\{x=y\}} \sum_{i,j=1}^d \operatorname{Ric}_{ij}(x) e_i \langle V(\gamma)_x, e_j \rangle_x,$$

where $(e_j)_{j=1}^{j=d}$ is an orthonormal basis of T_xX . Formula (3.1) can be viewed as the lifting to Γ of the Weitzenböck formula on X.

Note that in the above construction the curvature term in (3.1) is essentially due to the curvature of X, in particular it vanishes if $X = \mathbb{R}^d$ and no curvature term is induced from the Poisson measure itself.

In this paper we present a different geometry on the infinite-dimensional space Γ , in which the Ricci curvature tensor under the Poisson measure appears to be the identity operator when $X = \mathbb{R}_+$, see [8] when X is a more general Riemannian manifold.

Lifting of differential structure

Let \mathcal{S} denote the space of cylindrical functionals of the form

$$F(\gamma) = f(T_1, \dots, T_n), \quad f \in \mathcal{C}_b^{\infty}(\mathbb{R}^n). \tag{3.2}$$

Let \mathcal{U} denote the space of smooth processes of the form

$$u(\gamma, x) = \sum_{i=1}^{i=n} F_i(\gamma) h_i(x), \quad (\gamma, x) \in \Gamma \times \mathbb{R}_+, \quad h_i \in \mathcal{C}_c^{\infty}(\mathbb{R}_+), \quad F_i \in \mathcal{S}, \quad i = 1, \dots, n.$$
(3.3)

The differential geometric objects to be introduced below have finite dimensional counterparts, and each of them has a stochastic interpretation. The following table describes the correspondence between geometry and probability.

	$\operatorname{Geometry}$	Probability
$\overline{\gamma}$	element of Γ	point measure on \mathbb{R}_+
$\mathcal{C}_c^\infty(\mathbb{R}_+$) tangent vectors to Γ	test functions on \mathbb{R}_+
σ	Riemannian metric on Γ	Lebesgue measure
d	gradient on Γ	stochastic gradient
\mathcal{U}	vector fields on Γ	stochastic processes
$\mathrm{d}u$	exterior derivative of $u \in \mathcal{U}$	two-parameter process
$\{\cdot,\cdot\}$	bracket of vector fields on Γ	bracket on $\mathcal{U} \times \mathcal{U}$
Ω	curvature tensor on Γ	trilinear mapping on $\mathcal U$
d^*	divergence on Γ	stochastic integral operator

Divergence operator

The definition of the following gradient operator goes back to [4].

Definition 3.1 Given $F \in \mathcal{S}$, $F = f(T_1, \dots, T_d)$, let

$$d_t F(\gamma) = -\sum_{k=1}^{k=d} 1_{[0,T_k]}(t) \partial_k f(T_1, \dots, T_d), \quad t \ge 0.$$

The following is a finite-dimensional integration by parts formula for d.

Lemma 3.1 We have for $F = f(T_1, ..., T_d)$ and $h \in \mathcal{C}_c(\mathbb{R}_+)$:

$$\int_{\Gamma} \langle \mathrm{d}F, h \rangle_{L^{2}(\mathbb{R}_{+})} d\pi(\gamma) = \int_{\Gamma} F(\gamma) \left(\sum_{k=1}^{k=d} h(T_{k}) - \int_{0}^{T_{d}} h(t) dt \right) d\pi(\gamma).$$

Proof. All C^{∞} functions on $\Delta_d = \{(t_1, \ldots, t_d); 0 \leq t_1 < \cdots < t_d\}$ are extended by continuity to the closure of Δ_d . We have

$$\int_{\Gamma} \langle dF(\gamma), h \rangle_{L^{2}(\mathbb{R}_{+})} d\pi(\gamma) = -\sum_{k=1}^{k=d} \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} \cdots \int_{0}^{t_{2}} \int_{0}^{t_{k}} h(s) ds \partial_{k} f(t_{1}, \dots, t_{d}) dt_{1} \cdots dt_{d}$$

$$= \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} \cdots \int_{0}^{t_{2}} h(t_{1}) f(t_{1}, \dots, t_{d}) dt_{1} \cdots dt_{d}$$

$$- \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} \cdots \int_{0}^{t_{3}} \int_{0}^{t_{2}} h(s) ds f(t_{2}, t_{2}, \dots, t_{d}) dt_{2} \cdots dt_{d}$$

$$+ \sum_{k=2}^{k=d} \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} \cdots \int_{0}^{t_{2}} h(t_{k}) f(t_{1}, \dots, t_{d}) dt_{1} \cdots dt_{d}$$

$$- \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} h(s) ds \int_{0}^{t_{d}} \cdots \int_{0}^{t_{2}} f(t_{1}, \dots, t_{d}) dt_{1} \cdots dt_{d}$$

$$- \sum_{k=2}^{k=d-1} \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} \cdots \int_{0}^{t_{k+1}} \int_{0}^{t_{k+1}} \cdots \int_{0}^{t_{2}}$$

$$\int_{0}^{t_{k+1}} h(s) ds f(t_{1}, \dots, t_{k-1}, t_{k+1}, t_{k+1}, \dots, t_{d}) dt_{1} \cdots dt_{k+1} dt_{k-1} \cdots dt_{d}$$

$$+ \sum_{k=2}^{k=d} \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} \cdots \int_{0}^{t_{k}} \int_{0}^{t_{k-2}} \cdots \int_{0}^{t_{2}} \int_{0}^{t_{k}} h(s) ds f(t_{1}, \dots, t_{k-2}, t_{k}, t_{k}, \dots, t_{d}) dt_{1} \cdots dt_{d}$$

$$= \sum_{k=1}^{k=d} \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} \cdots \int_{0}^{t_{d}} h(t_{k}) f(t_{1}, \dots, t_{d}) dt_{1} \cdots dt_{d}$$

$$- \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} h(s) ds \int_{0}^{t_{d}} \cdots \int_{0}^{t_{2}} f(t_{1}, \dots, t_{d}) dt_{1} \cdots dt_{d}$$

$$= \int_{\Gamma} F(\gamma) \left(\sum_{k=1}^{k=d} h(T_{k}) - \int_{0}^{T_{d}} h(t) dt \right) d\pi(\gamma).$$

The following definition of the divergence coincides with the compensated Poisson stochastic integral with respect to $(N_t - t)_{t \in \mathbb{R}_+}$ on the adapted square-integrable processes.

Definition 3.2 We define d_{π}^* on \mathcal{U} by

$$d_{\pi}^*(hG) = \int_0^{\infty} h(t)(\gamma(dt) - dt) - \langle h, dG \rangle_{L^2(\mathbb{R}_+)}, \quad G \in \mathcal{S}, \ h \in L^2(\mathbb{R}_+).$$

Using this definition, an integration by parts formula can be obtained independently of the dimension.

Proposition 3.1 The divergence operator $d_{\pi}^*: L^2(\Gamma \times \mathbb{R}_+) \longrightarrow L^2(\Gamma)$ is the closable adjoint of d, i.e.

$$\int_{\Gamma} F d_{\pi}^* u \ d\pi(\gamma) = \int_{\Gamma} \langle dF, u \rangle_{L^2(\mathbb{R}_+)} d\pi(\gamma), \quad F \in \mathcal{S}, \quad u \in \mathcal{U}.$$
 (3.4)

Proof. Given Lemma 3.1 it suffices to notice that if k > d,

$$\int_{\Gamma} F(\gamma)h(T_{k})d\pi(\gamma) = \int_{0}^{\infty} e^{-t_{k}}h(t_{k}) \int_{0}^{t_{k}} \cdots \int_{0}^{t_{d}} \cdots \int_{0}^{t_{2}} f(t_{1}, \dots, t_{d})dt_{1} \cdots dt_{k}$$

$$= \int_{0}^{\infty} e^{-t_{k}} \int_{0}^{t_{k}} h(s)ds \int_{0}^{t_{k}} \cdots \int_{0}^{t_{d}} \cdots \int_{0}^{t_{2}} f(t_{1}, \dots, t_{d})dt_{1} \cdots dt_{k}$$

$$- \int_{0}^{\infty} e^{-t_{k-1}} \int_{0}^{t_{k-1}} h(s)ds \int_{0}^{t_{k-1}} \cdots \int_{0}^{t_{d}} \cdots \int_{0}^{t_{2}} f(t_{1}, \dots, t_{d})dt_{1} \cdots dt_{k-1}$$

$$= \int_{\Gamma} F(\gamma) \int_{x_{k-1}}^{T_{k}} h(t)dt d\pi(\gamma),$$

in other terms the discrete-time process

$$\left(\sum_{k=1}^{k=n} h(T_k) - \int_0^{T_k} h(t)dt\right)_{k>1} = \left(\int_0^{T_k} h(t)d(N_t - t)\right)_{k \ge 1}$$

is a martingale. Hence Relation (3.4) also implies that for $F, G \in \mathcal{S}$,

$$\int_{\Gamma} \langle dF, hG \rangle_{L^{2}(\mathbb{R}_{+})} d\pi(\gamma) = \int_{\Gamma} \langle d(FG), h \rangle_{L^{2}(\mathbb{R}_{+})} - F \langle dG, h \rangle_{L^{2}(\mathbb{R}_{+})} d\pi(\gamma) \qquad (3.5)$$

$$= \int_{\Gamma} F \left(G \int_{0}^{\infty} h(t) (\gamma(dt) - dt) - \langle h, dG \rangle_{L^{2}(\mathbb{R}_{+})} \right) d\pi(\gamma)$$

$$= \int_{\Gamma} F d_{\pi}^{*}(hG) d\pi(\gamma). \qquad (3.6)$$

Covariant derivative

Given $u \in \mathcal{U}$ we define the covariant derivative $\nabla_u v$ in the direction $u \in L^2(\mathbb{R}_+)$ of the vector field $v = \sum_{i=1}^{i=n} F_i h_i \in \mathcal{U}$ as

$$\nabla_u v(t) = \sum_{i=1}^{i=n} h_i(t) \mathrm{d}_u F_i - F_i \dot{h}_i(t) \int_0^t u(s) ds, \qquad t \in \mathbb{R}_+,$$
 (3.7)

where

$$d_u F = \langle dF, u \rangle_{L^2(\mathbb{R}_+)}, \quad F \in \mathcal{S}.$$

We have

$$\nabla_{uF}(vG) = Fvd_uG + FG\nabla_u v, \quad u, v \in \mathcal{C}_c^{\infty}(\mathbb{R}_+), \quad F, G \in \mathcal{S}.$$
 (3.8)

We also let

$$\nabla_s v(t) = \sum_{i=1}^{i=n} h_i(t) d_s F_i - F_i \dot{h}_i(t) 1_{[0,t]}(s), \quad s, t \in \mathbb{R}_+,$$

in order to write

$$\nabla_u v(t) = \int_0^\infty u(s) \nabla_s v(t) ds, \quad t \in \mathbb{R}_+, \quad u, v \in \mathcal{U}.$$

Lie-Poisson bracket

Definition 3.3 The Lie bracket $\{u,v\}$ of $u,v \in \mathcal{C}_c^{\infty}(\mathbb{R}_+)$, is defined to be the unique element of $\mathcal{C}_c^{\infty}(\mathbb{R}_+)$ satisfying $(d_u d_v - d_v d_u)F = d_w F$, $F \in \mathcal{S}$.

The bracket $\{u, v\}$ is defined for $u, v \in \mathcal{U}$ with

$$\{Fu, Gv\}(x) = FG\{u, v\}(x) + v(x)Fd_uG - u(x)Gd_vF, \quad x \in \mathbb{R}_+,$$

$$u, v \in \mathcal{C}_c^{\infty}(\mathbb{R}_+), F, G \in \mathcal{S}.$$

Vanishing of torsion

Proposition 3.2 The Lie bracket $\{u, v\}$ of $u, v \in \mathcal{U}$ satisfies

$$\{u, v\} = \nabla_u v - \nabla_v u,$$

i.e. the connection defined by ∇ has a vanishing torsion.

Proof. We have $F(\gamma) = T_n$. If $u, v \in \mathcal{C}_c^{\infty}(\mathbb{R}_+)$ we have

$$(\mathbf{d}_{u}\mathbf{d}_{v} - \mathbf{d}_{v}\mathbf{d}_{u})T_{n} = -\mathbf{d}_{u}\int_{0}^{T_{n}} v(s)ds + \mathbf{d}_{v}\int_{0}^{T_{n}} u(s)ds$$

$$= v(T_{n})\int_{0}^{T_{n}} u(s)ds - u(T_{n})\int_{0}^{T_{n}} v(s)ds$$

$$= \int_{0}^{T_{n}} \left(\dot{v}(t)\int_{0}^{t} u(s)ds - \dot{u}(t)\int_{0}^{t} v(s)ds\right)dt$$

$$= \mathbf{d}_{\nabla_{u}v - \nabla_{v}u}T_{n}.$$

Since d is a derivation, this shows that

$$d_u d_v - d_v d_u = d_{\nabla_u v - \nabla_v u}, \quad u, v \in \mathcal{U}.$$

The extension to $u, v \in \mathcal{U}$ follows from (3.8).

Vanishing of curvature

Proposition 3.3 The curvature tensor Ω of ∇ vanishes on \mathcal{U} , i.e.

$$\Omega(u, v)h := [\nabla_u, \nabla_v]h - \nabla_{\{u, v\}}h = 0, \quad u, v, h \in \mathcal{U},$$

and \mathcal{U} is a Lie algebra under the bracket $\{\cdot,\cdot\}$.

Proof. We have, letting $\tilde{u}(t) = -\int_0^t u(s)ds$:

$$[\nabla_u, \nabla_v]h = \widetilde{u} \overset{\cdot}{\nabla_v h} - \widetilde{v} \overset{\cdot}{\nabla_u h} = \widetilde{u} \overset{\cdot}{\widetilde{v} h} - \widetilde{v} \overset{\cdot}{\widetilde{u} h} = -\widetilde{u} v \dot{h} + \widetilde{v} u \dot{h},$$

and

$$\nabla_{\{u,v\}} h = \nabla_{\tilde{u}\dot{v} - \tilde{v}\dot{u}} h = (\widetilde{u}\dot{v} - \tilde{v}\dot{u})\dot{h} = (u\tilde{v} - v\tilde{u})\dot{h},$$

hence $\Omega(u,v)h = 0$, $h, u, v \in \mathcal{C}_c^{\infty}(\mathbb{R}_+)$. The extension of the result to \mathcal{U} follows again from (3.8). The Lie algebra property follows from the vanishing of Ω .

Exterior derivative

The exterior derivative du of a smooth vector field $u \in \mathcal{U}$ is defined from

$$\langle \mathrm{d}u, h_1 \wedge h_2 \rangle_{L^2(\mathbb{R}_+) \wedge L^2(\mathbb{R}_+)} = \langle \nabla_{h_1} u, h_2 \rangle_{L^2(\mathbb{R}_+)} - \langle \nabla_{h_2} u, h_1 \rangle_{L^2(\mathbb{R}_+)},$$

 $h_1, h_2 \in \mathcal{U}$. We have

$$\|du\|_{L^{2}(\mathbb{R}_{+})\wedge L^{2}(\mathbb{R}_{+})}^{2} = 2\int_{0}^{\infty} \int_{0}^{\infty} (du(s,t))^{2} ds dt,$$
 (3.9)

where

$$du(s,t) = \frac{1}{2}(\nabla_s u(t) - \nabla_t u(s)), \quad s, t \in \mathbb{R}_+, \quad u \in \mathcal{U}.$$

Isometry formula

Lemma 3.2 We have for $u \in \mathcal{U}$:

$$\int_{\Gamma} (d_{\pi}^* u)^2 d\pi(\gamma) = \int_{\Gamma} ||u||_{L^2(\mathbb{R}_+)}^2 d\pi(\gamma) + \int_{\Gamma} \int_0^{\infty} \int_0^{\infty} \nabla_s u(t) \nabla_t u(s) ds dt d\pi(\gamma).$$
(3.10)

Proof. (cf. [8], [7] and the proof of [5] for path spaces over Lie groups). Given $u = \sum_{i=1}^{n} h_i F_i \in \mathcal{U}$ we have

$$\begin{split} &\int_{\Gamma} \mathrm{d}_{\pi}^{*}(h_{i}F_{i}) \mathrm{d}_{\pi}^{*}(h_{j}F_{j}) d\pi(\gamma) = \int_{\Gamma} F_{i} \mathrm{d}_{h_{i}} \mathrm{d}_{\pi}^{*}(h_{j}F_{j}) d\pi(\gamma) \\ &= \int_{\Gamma} F_{i} \mathrm{d}_{h_{i}}(F_{j} \mathrm{d}_{\pi}^{*}(h_{j}) - \mathrm{d}_{h_{j}}F_{j}) d\pi(\gamma) \\ &= \int_{\Gamma} (F_{i}F_{j} \mathrm{d}_{h_{i}} \mathrm{d}_{\pi}^{*}h_{j} + F_{i} \mathrm{d}_{\pi}^{*}(h_{j}) \mathrm{d}_{h_{i}}F_{j} - F_{i} \mathrm{d}_{h_{i}} \mathrm{d}_{h_{j}}F_{j}) d\pi(\gamma) \\ &= \int_{\Gamma} (F_{i}F_{j}\langle h_{i}, h_{j}\rangle_{L^{2}(\mathbb{R}_{+})} + F_{i}F_{j} \mathrm{d}_{\pi}^{*}(\nabla_{h_{i}}h_{j}) + F_{i} \mathrm{d}_{\pi}^{*}(h_{j}) \mathrm{d}_{h_{i}}F_{j} - F_{i} \mathrm{d}_{h_{i}} \mathrm{d}_{h_{j}}F_{j}) d\pi(\gamma) \\ &= \int_{\Gamma} (F_{i}F_{j}\langle h_{i}, h_{j}\rangle_{L^{2}(\mathbb{R}_{+})} + \mathrm{d}_{\nabla_{h_{i}}h_{j}}(F_{i}F_{j}) + \mathrm{d}_{h_{j}}(F_{i}\mathrm{d}_{h_{i}}F_{j}) - F_{i}\mathrm{d}_{h_{i}}\mathrm{d}_{h_{j}}F_{j}) d\pi(\gamma) \\ &= \int_{\Gamma} (F_{i}F_{j}\langle h_{i}, h_{j}\rangle_{L^{2}(\mathbb{R}_{+})} + \mathrm{d}_{\nabla_{h_{i}}h_{j}}(F_{i}F_{j}) + \mathrm{d}_{h_{j}}F_{i}\mathrm{d}_{h_{i}}F_{j} + F_{i}(\mathrm{d}_{h_{j}}\mathrm{d}_{h_{i}}F_{j} - \mathrm{d}_{h_{i}}\mathrm{d}_{h_{j}}F_{j}) d\pi(\gamma) \\ &= \int_{\Gamma} (F_{i}F_{j}\langle h_{i}, h_{j}\rangle_{L^{2}(\mathbb{R}_{+})} + \mathrm{d}_{\nabla_{h_{i}}h_{j}}(F_{i}F_{j}) + \mathrm{d}_{h_{j}}F_{i}\mathrm{d}_{h_{i}}F_{j} + F_{i}\mathrm{d}_{\nabla_{h_{j}}h_{i}}F_{j} + G_{h_{i}}F_{j}) d\pi(\gamma) \\ &= \int_{\Gamma} \left(F_{i}F_{j}\langle h_{i}, h_{j}\rangle_{L^{2}(\mathbb{R}_{+})} + F_{j}\mathrm{d}_{\nabla_{h_{i}}h_{j}}F_{i} + F_{i}\mathrm{d}_{\nabla_{h_{j}}h_{i}}F_{j} + \mathrm{d}_{h_{j}}F_{i}\mathrm{d}_{h_{i}}F_{j} \right) d\pi(\gamma) \\ &= \int_{\Gamma} \left(F_{i}F_{j}\langle h_{i}, h_{j}\rangle_{L^{2}(\mathbb{R}_{+})} + F_{j}\mathrm{d}_{\nabla_{h_{i}}h_{j}}F_{i} + F_{i}\mathrm{d}_{\nabla_{h_{j}}h_{i}}F_{j} + \mathrm{d}_{h_{j}}F_{i}\mathrm{d}_{h_{i}}F_{j} \right) d\pi(\gamma) \\ &= \int_{\Gamma} \left(F_{i}F_{j}\langle h_{i}, h_{j}\rangle_{L^{2}(\mathbb{R}_{+})} + F_{j}\mathrm{d}_{\nabla_{h_{i}}h_{j}}F_{i} + F_{i}\mathrm{d}_{\nabla_{h_{j}}h_{i}}F_{j} + \mathrm{d}_{h_{j}}F_{i}\mathrm{d}_{h_{i}}F_{j} \right) d\pi(\gamma) \\ &= \int_{\Gamma} \left(F_{i}F_{j}\langle h_{i}, h_{j}\rangle_{L^{2}(\mathbb{R}_{+})} + F_{j}\mathrm{d}_{\nabla_{h_{i}}h_{j}}F_{i} + F_{i}\mathrm{d}_{\nabla_{h_{j}}h_{i}}F_{j} + \mathrm{d}_{h_{j}}F_{i}\mathrm{d}_{h_{i}}F_{j} \right) d\pi(\gamma) \\ &= \int_{\Gamma} \left(F_{i}F_{j}\langle h_{i}, h_{j}\rangle_{L^{2}(\mathbb{R}_{+})} + F_{j}\mathrm{d}_{\nabla_{h_{i}}h_{j}}F_{i} + F_{i}\mathrm{d}_{\nabla_{h_{j}}h_{i}}F_{j} + F_{i}\mathrm{d}_{h_{j}}F_{i}\mathrm{d}_{h_{j}}F_{j} \right) d\pi(\gamma) \\ &= \int_{\Gamma} \left(F_{i}F_{j}\langle h_{i}, h_{j}\rangle_{L^{2}(\mathbb{R}_{+})} + F_{j}\mathrm{d}$$

where we used the commutation relation satisfied by the gradient d:

$$d_u d_\pi^* v = d_\pi^* \nabla_u v + \langle u, v \rangle_{L^2(\mathbb{R}_+)}, \quad u, v \in \mathcal{C}_c^{\infty}(\mathbb{R}_+),$$
(3.11)

which can be proved as follows:

$$d_u d_\pi^* v = -\sum_{k=1}^\infty \dot{v}(T_k) \int_0^{T_k} u(s) ds = -d_\pi^* \left(v(\cdot) \int_0^{\cdot} u(s) ds \right) - \int_0^\infty \dot{v}(t) \int_0^t u(s) ds dt$$
$$= d_\pi^* (\nabla_u v) + \langle u, v \rangle_{L^2(\mathbb{R}_+)}.$$

Finally we state a Weitzenböck type identity on configuration space, that can be read as

$$dd_{\pi}^* + d^*d = \nabla^* \nabla + \mathrm{Id}_{L^2(\mathbb{R}_+)},$$

i.e. the Ricci tensor under the Poisson measure is the identity $\mathrm{Id}_{L^2(\mathbb{R}_+)}$ on $L^2(\mathbb{R}_+)$.

Theorem 3.1 We have for $u \in \mathcal{U}$:

$$\int_{\Gamma} (d_{\pi}^{*}u)^{2} d\pi(\gamma) + \int_{\Gamma} \|du\|_{L^{2}(\mathbb{R}_{+}) \wedge L^{2}(\mathbb{R}_{+})}^{2} d\pi(\gamma)
= \int_{\Gamma} \|u\|_{L^{2}(\mathbb{R}_{+})}^{2} d\pi(\gamma) + \int_{\Gamma} \|\nabla u\|_{L^{2}(\mathbb{R}_{+}) \otimes L^{2}(\mathbb{R}_{+})}^{2} d\pi(\gamma).$$
(3.12)

Proof. Relation (3.12) for $u = \sum_{i=1}^{n} h_i F_i \in \mathcal{U}$ follows from (3.9) and Lemma 3.2.

References

- [1] S. Albeverio, A. Daletskii, and E. Lytvynov, Laplace operators and diffusions in tangent bundles over Poisson spaces, In: Infinite dimensional stochastic analysis, R. Neth. Acad. Arts Sci., Amsterdam, 2000, pp 1–24.
- [2] S. Albeverio, A. Daletskii, and E. Lytvynov, De Rham cohomology of configuration spaces with Poisson measure, J. Funct. Anal., 185 (2001) 240–273.
- [3] S. Albeverio, A. Daletskii, and E. Lytvynov, Laplace operators on differential forms over configuration spaces, J. Geom. Phys., 37 (2001) 15–46.
- [4] E. Carlen and E. Pardoux, Differential calculus and integration by parts on Poisson space, In: Stochastics, Algebra and Analysis in Classical and Quantum Dynamics, S. Albeverio, Ph. Blanchard, and D. Testard (Eds), Kluwer Acad. Publ., Dordrecht, 1990, pp. 63–73.
- [5] S. Fang and J. Franchi, Platitude de la structure riemannienne sur le groupe des chemins et identité d'énergie pour les intégrales stochastiques [Flatness of Riemannian structure over the path group and energy identity for stochastic integrals], C. R. Acad. Sci. Paris Sér. I Math., 321 (1995) 1371–1376.
- [6] Y. Kondratiev and T. Kuna, *Harmonic analysis on configuration space I. general theory*, SFB 256 Preprint No 626, Bonn University, 1999.
- [7] N. Privault, Connection, parallel transport, curvature and energy identities on spaces of configurations, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000) 899–904.
- [8] N. Privault, Connections and curvature in the Riemannian geometry of configuration spaces, J. Funct. Anal., 185 (2001) 367–403.
- [9] D. Surgailis, On multiple Poisson stochastic integrals and associated Markov semi-groups, Probab. Math. Statist., 3 (1984) 217–239.