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Abstract

We derive normal approximation bounds in the Wasserstein distance for sums of
generalized U-statistics, based on a general distance bound for functionals of inde-
pendent random variables of arbitrary distributions. Those bounds are applied to
normal approximation for the combined weights of subgraphs in the Erd6s-Rényi ran-
dom graph, extending the graph counting results of [1] to the setting of weighted
graphs. Our approach relies on a general stochastic analytic framework for functionals
of independent random sequences.
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1 Introduction

The Malliavin calculus has been applied to the derivation of approximation bounds by the
Stein and Chen-Stein methods on the Wiener space [11], on the Poisson space [13], [14], as
well as in the case of discrete Bernoulli sequences [12], [18], [9], [10], [8]. Recently, a different
Malliavin framework for Stein approximation has been introduced in [16], with application
to normal approximation in the Wasserstein distance for weighted U-statistics of the form
Z b, b, iy -+ L,

1,k €No

kiky if i#]
where Ny = {0,1,2,...}, (Zg)k>1 is an i.i.d. sequence of random variables, and (by)g> is

a sequence of real coefficients, based on stochastic analysis for functionals of a countable
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number of uniformly distributed random variables, see [15]. This completes the bounds for
the Kolmogorov distance obtained in e.g. Theorem 3.1 of [2] for nonweighted U-statistics,

see also [6] in the quadratic case.

Our goal in the present paper is two-fold. First, we extend in Theorem 3.2 the Stein
approximation bounds of [16] from multiple stochastic integrals to finite sums of multiple
stochastic integrals, which can be viewed as polynomial functionals in independent random
variables with arbitrary distributions, or as generalized U-statistics, see Proposition 3.1. Fur-
thermore, in Proposition 2.4 we obtain a general Wasserstein distance bound for functionals

of independent random variables as a consequence of Proposition 3.3 in [16].

Second, we show that those results can be applied to the central limit theorem for the
convergence of renormalized weight counts in large random graphs. For this, we consider
the Erd6s-Rényi random graph G(n, p), introduced by Gilbert [5] in 1959 and popularized in
[3], which is constructed by independently retaining any edge in the complete graph K, on
n vertices with probability p € (0,1). Denote by N¢ the random variable counting number
of subgraphs (not necessarily induced ones) of G(n, p,) that are isomorphic to a fixed graph
G. Necessary and sufficient conditions for the asymptotic normality of the renormalization

o ._ Vo —ENT]
" Var[N¢]

of N¢ have been obtained in [21], where it is shown that
N¢ 2y Nt npl — oo and n?(1 —p,) — oo, (1.1)

as n tends to infinity, where N' ~ A(0,1) is a standard Gaussian random variable, § =
B(G) == max{eg /vy : H C G} and ey, vy respectively denote the numbers of edges and
vertices in the graph H. Such results have been improved via explicit convergence rates
obtained in [1] as
—1/2
dw (NS .N) < C ((1 — Pn) %Cfgi n”%fﬁ) 7 (1.2)

where C' > 0 is a constant depending on G, and dy, is the Wasserstein distance

dw(X,Y) == sup [E[A(X)] - E[A(Y)]],

heLip(1)

between the laws of random variables X, Y, where Lip(1) denotes the class of real-valued

Lipschitz functions with Lipschitz constant less than or equal to 1. Kolmogorov distance



bounds have also been obtained for triangle counting, see § 3.2.1 of [20], and [10], using
the Malliavin approach to the Stein method for discrete Bernoulli sequences. Those rates
have been improved in [19], and extensions to the counting of arbitrary subgraphs that yield
the bound (1.2) for the Kolmogorov distance have recently been obtained in [17], based on

distance bounds for sums of discrete multiple integrals and weighted U-statistics, as well as

in [4], [24].

Here, our stochastic analytic framework allows us to assign an independent sample of
a random nonnegative weight X to every edge in G(n,p,), and to consider the combined
weights of subgraphs instead of counting them. Precisely, we define a weight of a graph as
a sum of weights of its edges. Next, by W¢ we denote the combined weight of subgraphs in

G(n, p,) that are isomorphic to a fixed graph G and its renormalization

W6 . W —E[WS]

T N ve] (13)

In Theorem 4.3 we show, as an application of Corollary 3.2, that when G is a graph without

isolated vertices, we have

o (79, ) < ¢ VEIX —EXDT + (1~ pi) (E[X)? (

—1/2
VarlX] + (- p)®X (0P B nﬁHpZH) 0

HCG
eg>1

where C' > 0 is a constant depending only on eg, which recovers (1.2) in the case of a
deterministic weight given by X := 1/eg. When X is a fixed random variable this also

yields the sufficient condition
(np? — 0o and n?(1 — p,) — o00) = NS 2N,

for the convergence of Wf to the standard normal distribution (cf. (1.1)), which follows
from the equivalence
(npg — o0 and n*(1 —p,) — oo) <= (1 — p,) min n""pH — oo.

HCG
eg>1

To derive the bound (1.4) we apply Proposition 2.4 to combined subgraph weights W¢
represented as finite sums of multiple stochastic integrals, see Lemma 4.2. Our results are
then specialized to a class of graphs satisfying a certain balance condition, which includes

triangles, complete graphs and trees as particular cases.



We note that other types of random functionals on graphs, such as graph weights defined
as products of edge weights, or the number of vertices of a given degree, admit representations

as sums of multiple integrals or generalized U-statistics, and can be treated by this approach.

This paper is organized as follows. In Section 2 we recall the framework of [15] for the
construction of random functionals of uniform random variables, together with the construc-
tion of derivation operators. In Section 3 we derive normal Stein approximation bounds for
general functionals and for sums of multiple stochastic integrals. In Section 4 we show that
combined graph weights can be represented as sums of multiple stochastic integrals, and de-
rive distance bounds for the renormalized weights of graphs in G(n, p,) that are isomorphic

to a fixed graph G. The Appendix Section 5 contains some technical results exploited in the

paper.

2 Functionals of uniform random sequences
Stochastic integrals

Given (Uy)gen an i.i.d. sequence of [—1, 1]-valued uniform random variables on a probability

space (2, F, P) = ([-1, 1], F, P) let the jump process (Y;);er, be defined as

Y, = Z Lokt1+03,00) (1), teR,.
k=0
Denoting by (F):cr, the filtration generated by (Y;)cr, , and letting
Fi=Fop,  2k<t<2%k+2  keN,
the compensated stochastic integral

[ wawi -2

with respect to the compensated point process (Y; — t/2)icr, can be defined for square-

integrable (]?t) teR+-adapted processes (u)icr, by the isometry relation
E l / wd(Y, — t/2) / wd(Y; — t/Q)] (2.1)
0 0

) 1 o 2k-+2 dt
/ O > Lkania (1) / vedr | o1
0 P 2%

=K




see [15], where (u;)ier, and (v;)ier, are square-integrable (j-:t) t€R+—adapted processes. This

(/Omuth—t/z))z <38 [ [ lupar].

where (u;)cr, is square-integrable and (]?t) t€R+—adapted.

also implies the bound

E

Multiple stochastic integrals

Let LP (R%) denote the space of symmetric functions that are p-integrable on R”, p > 1, and
vanish outside of
Api= | [2k1,2k1 +2] x - x [2Ky, 2k, + 2],

0<k;#k;
1<ij<n
equipped with the norm
1 ~
1fallzo @y = M fallr@y @ermen) = gopl fallr@y @mem,  fo € LPRE).

Given f, € L'(R?) N L2(R?), n > 1, we define the multiple stochastic integral I,,(f,) as

n

L(fa) =) (_2,11)_71 (:) (2.2)

r=0

> / /fn2k1+1+Uk1,.. 2%y + 1+ Us, Yt Ynr)dys - - Y,

kl ----- kreNO
ki#£k; if i#j

= [T [ bt 02) i, ),

where Ny = {0,1,2,...}. The multiple stochastic integrals (I,(f,))n>1 form a family of

mutually orthogonal centred random variables with the bound

E[(L(Fu)?] <0 [l ey 72 1. (2.3)

cf. (2.1) above and Propositions 4 and 6 of [15], which allows one to extend the definition
of I(f,) to all f, € L*(R™). If in addition we have

2k+2
/ falt,)dt =0, ke N, (2.4)
2k

then I,(f,) satisfies the isometry and orthogonality relation
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see [15], page 589, in other words the function f,, is canonical [23]. Moreover, every F' € L*(Q)

admits the chaos decomposition
F=E[F]+) L(f.). (2:6)
n=1

for some sequence (f,),>1 of functions in EQ(RZ), n > 1, see Proposition 7 of [15]. Note
that under the condition (2.4) the sequence (f,),>1 is unique in E%R’}L) due to the isometry

relation (2.5).

In the sequel, sequences (X7, ..., X)) of independent random variables with distribution
functions (Fx,, ..., Fx,) will be frequently represented as
U +1 U,+1
Fl L FSH R
(s (55, e ()
where (F)}ll7 e F)}j) are the generalized inverses of (Fl,,...,Fx,). As a consequence

we have the following remarks, that can be analogously applied to higher order integrals,

particularly under the additional assumption (2.4).

Remark 2.1 For f, € L*([0,2n]), the stochastic integral

I S (faks1vv)- L 7 fwd
(=3 (neks v -5 [ o)

represents a sum of independent centred random variables

n

L(f) =Y (X — B[X,))

k=1

by taking fi(x) = F)Ekl(x/2 —k), x € 2k —2,2k), 1 <k <n.

Remark 2.2 In terms of U-statistics, (2.4) says that L,(f,) is degenerate, and in that sense
the expansion (2.6) might be identified as a Hoeffding decomposition. To see this, assuming
that X4,...,X, are independent identically distributed with common distribution function

Fx, we extend the construction of Remark 2.1 to n = 2 by letting

o) i= ot (0 (P52 ) o (F52)), ) e im0 x i -2.2i)

1 <14, <n, for a given function h : R> — R. Under Condition (2.4) we have
E[h(X1,2)] =E[h(z, X7)] =0 a.s., (2.7)

6



and therefore I5(f2) can be written as the classical U-statistic

1
_ E hMX;, X;),
n(n —1) 1<ij<n ’
it

L(f) £

which is degenerate by (2.7). Note that if h may depend on i,j € {1,...,n}, then I5(f3) is

called a degenerate generalized U -statistic.

Finite difference operator

Consider the finite difference operator V defined on multiple stochastic integrals F' = I,(f,)
as
2t/2]+2
VtF::FOCDt——/ Foduds, te Ry,
2(t/2)

where ®; :  — () is defined by
Py (w) = (U1(w), ..., Uppaj—1(w), t = 2[t/2] — 1,Upjaja(w),...), weQ, teR,.
Example 2.3 Letn > 1, and consider

F=15(f)= ) UU,
1<i,5<n
i#j

where
Then we have

ViF = Y UUj+2t-2[t/2) 1) Y U
1<i,j<n, i#£j 1<i<n
1,57 [t/2]+1 i#[t/2)+1

1 r2le2l+2
_5/ S nU s -20s2) -1 Y U |ds

2(t/2] 1<i,j<n, i#j 1<i<n
i,j7#[s/2]+1 i#|s/2]+1
= > UU+2t-20t/2]-1) > U
1<4,5<n, i#j 1<i<n
ij£(t/2)+1 i#[t/2]+1
| Uin+/ w3 T,
1<i,j<n, i#j - 1<i<n
i,j#[t/2]+1 i#[t/2]+1



=2(t-2[t/2|-1) > U, teRy,
1<i<n
i#[t/2]+1

where we used the relation |s/2| = [t/2] for s € [2|t/2], |t/2] + 2).
The operator V admits an adjoint operator V* given by

A (In(gn-l—l)) = n+1(1An+1§n+1)7

where §,,41 is the symmetrization of g, € E2(R1) ®L?(R,) in n+1 variables. The operator

V is closable with domain
Dom(V) = {F € L(Q) : E[|VF|[}aqs,.] < o).
and we have the duality relation (integration by parts)
E[(VF, “>Z2(R+)] = E[FV*(u)], F € Dom(V), (2.8)

for w in the domain Dom(V*) of V*, see Proposition 8 of [15]. Although the operator V
does not satisfy the chain rule of derivation, it can be easily applied to multiple stochastic
integrals, as for any f, € EQ(RCLF) we have

2|t/2]+2

Vil (fn) =nl1(fnlt,-)) — n/w/2J L1 (fn(s,-))ds, te Ry, (2.9)

see Proposition 2.1 in [16]. In particular, under the condition (2.4) we have the equality
Vilo(fn) = nln (fult, ), teRy,
see Proposition 10 of [15]. The Ornstein-Uhlenbeck operator L := —V*V satisfies
LI(fa) = =V'VIn(fa) = =nl(fa),  fo € D(RY),

where f,, satisfies (2.4). By (2.6) the operator L is well defined, invertible on centred random

variables F' € L*(Q), and its inverse operator L™! is given by

L_lln(fn) = _%[n(fn)a n > 1a

where, due to Proposition 5.3 below, f,, does not have to satisfy (2.4). Note that (—L) is a

positive operator and its square root (—L)_l/ 2 takes the form

(_L)1/2[n(fn) = \/ﬁjn(fn)a n > 1.

8



Stein approximation bound

The next result is a consequence of Proposition 3.3 in [16]. As above, N' ~ N(0, 1) denotes

a standard Gaussian random variable.

Proposition 2.4 Let X € Dom(V) be such that E[X] =0. We have

dw(X,N) < |1-E[X7|+ \/Var [(vx, —VL*U()ZWMJ (2.10)
+2\/E[|<—L>—1/2X|2] | BV g
< |1 —EX)| + y/Var [(VX, VLX) 1a(e, )] (2.11)

+ 2\/IE[X2] /OOO E[|V,X |1 %.

Proof. The inequality (2.11) follows from (2.10) by Proposition 5.2 with F' = L™'X | so it
is enough to prove (2.10). Proposition 3.3 in [16] states that

dw (X,N) <E Hl - %WX, —VL—1X>H

1 > 1
+5E U \VtLlXHVtX]th] +4E
0

9] 2(t/2]+2
/ V. L7 'X| |V X |2dsdt| .
0 2|t/2]

We will estimate each of the three terms on the left-hand side. First, taking F' = X and
uw=VL1'X in (2.8), we get

E Hl — %(VX, —VLlX)H

<E H1 — %E [(VX,-VL'X)] H +E H (VX,—VL'X) — %E [(VX,-VL'X)] H

1
2

<1 -E[X?|+ \/Var [(vx, —VL*1X>ZQ(R+)}.
Next, for = L7'X in (5.4), we obtain
E V yvtLIXth] =2E [|(-L) 72X
0

Consequently, the Cauchy-Schwarz inequality gives us

EV |VtL1XHVtX|2dt}§\/IE{/ |vtL—1X\2dz]EV ]VtX\‘*dt]
0 0 0




<o\ [!(—L)1/2X\2]\/E [,

0o 2(t/2]+2 2k+2 2k+2
/ V. L7 'X| |V X |2dsdt ZE {/ |VtL1X|dt/ \VSX|2d8}
0 2k

2(t/2)

and

E

2 2

o 2k+2 oo 2k+2
Z(/ |VtL—1X|dt> E Z(/ |V5X|2) ds
k=0 2k k=0 2k
[e%¢) 0 2k+2
2 ]EV |VtL—1X|2dt]E Z/ |V5X|4ds]
0 0 2k

< 4/E [|<—L>—1/2X|21\/E [Cwaxng].

and we conclude (2.10). O

IN

Example 2.5 Let us apply Proposition 2.4 to (Var[I;(f1)]) "' (f1) for fi as in Remark 2.1.
Since LY (f1) = Li(f1) for any f1 € El(RJr) N 22(R+) and

t—2\t/2
thl(fl) FXth/2j+1 (TL/J> — E [XLt/2J+1] 5 t S R+,

we observe that VI1(f1) is not random, and hence

Var [(VX, —=VL ' X) 2z ] =0

as well as
[Elvaxr & - Z /. D (m (R e [Xk]f%
- :1 /01 (Fx! (u) — E[X4])" du = kzn;ﬂ-z (X, —E[X:])"].
Thus, we get 7 7
" (zg X ) Jzk  E (X5 — E[X,)']
> 1Var[Xk] Y ore 1Var[X] ’

which provides a quantitative bound with explicit constant in the Wasserstein distance for

the L* Lyapunov Central Limit Theorem.

10



3 Normal approximation for generalized U-statistics

In this section we consider generalized U-statistics of order n > 1 of the form

Z fn(2k1+1+Uk1a72kn+1+Ukn)a

k1,..., kn€Np
ki#k; if i#j

where Ny = {0,1,2,...}. The next proposition gives the multiple stochastic integral expan-

sion of such extended generalized U-statistics.

Proposition 3.1 Given f, € ZZ(R?F) we have

n

S kA LUk, 2k 1 U = Y L ()

k1,..., kn€Ng r=0

where

1 [n
fwg,r) = (I’l, v ,.ZUk) = < ) fn(Ih sy Ty Y1y e 7yn—T)dy1 o 'dyn—ra
]RifT

r=0,1,...,n.

Proof. Formula (2.2) gives us for 1 <m <n

m t = (—2)"I,, (/m Fo (ot Yo s - ..dyn_m) — i(_mr(:'f) b,

r=0

=2 ) / / Faky+ 14Uy 2k + 14+ Ui Yty s Y )iy - - Aty
k1,....kr€Ng Y0 0
kikj if i#j

Hence, by binomial inversion, we have b,, = Z;n:l(—l)’”(f) ar, 1 <m < n. In particular,

> kA 14Uy, 2k + 14 Uy,

k1, kn€Np
Kithy if ij

-n _o—n - _1\r n
= 27", =2 ;( 1) (r)ar
:i my_L Fa oyt Yns) dygr -+ dy
— r 2n_,,, T — n 9 )y dJn—r n—r
=2 L),
r=0

as required. O

11



In particular, under the condition (2.4) the multiple stochastic integral I,,( f,,) coincides with

the generalized degenerate U-statistic of order n, and we have

Lif)= Y fu@k+1+0U1,... 2k, +1+0,). (3.1)

k1,...,kn€Ng

kik; if i
In the next corollary we obtain a Wasserstein distance bound for sums of multiple stochastic
integrals by combining Propositions 5.1 and 2.4 with the multiplication formula (5.1). First,
let us introduce the following x-notation: for 0 <[ < k < n A m we define the contraction

foxh gm of fr € EQ(Rﬁ) and g,, € E%RT) as

fn*gg 9m<371;-~7$k—layla---7yn—k,217---;2m—k) (32>
::E/l folwy, . w, T, T Y1y - Ynek)
R+

X gm(w17 ey W X1y ey Ty By - -,Zm_k)dUJ1 T 'dU)[,

and we let f, %.g,, denote the symmetrization
k9 Y

fn :;ﬁc gm('rla <. ;xn+mfk7l)
1Am+n—k—l (xh s ;l‘n-l—m—k—l) 1
n* mxa 7""’Z'Um n—kK— )
(m+n—Fk—1) Do Jurkom(@oq) (mtn—k-1))
TESmtn—k—1
where S,,, n > 1, denotes the set of all permutations of the set {1,...,n}.

Theorem 3.2 For any X € L*(Q) written as a sum X = >} _, I1(fi) of multiple stochastic
integrals where fy € ZQ(Ri) satisfies (2.4), k=1,...,n, we have

dw (X, N) < |1 - E[X?]]

Z ”fi*éfiH;(Rf;l)"'" Z (Hfi*ﬁfi||i2(1&?ﬁ*”)+”fl*%fiHiZ(Rf;l))’

0<i<i<n 1<I<i<n

for some C,, > 0.

Proof. Given that

n—1 n—1
ViX =) (k+ DI (fin(t,), and ViL7'X =3 L (fin(t ),
k=0 k=0

the multiplication formula (5.1) shows that

(V. X)? Z chmkllz—m ht (fira (2, );ﬁcfj—i-l(t?')) (3.3)

0<i<j<n k=0 1=0

12



and -
VXV L'X = Z Z Z di jealivj—r1(fisr(t, ") ;;igfj—i-l(tp ), (3.4)
0<i<j<n k=0 1=0

for some ¢; j k1, dijry > 0. Next, by (2.3) and (3.3) we get

0 dt L. [ N
/0 E [|[V.X]"] §§C Z ZZ/O ||fi+1<t7')*;fj-i-l(t?')HQE2(R1+J‘*]€*Z)dt

0<i<j<n k=0 [=0

J k
<C Z Z Z [ *fk+1fj+1HiQ(Ri+j_k_l+1)

0<i<j<n k=0 1=0
i k—1

<C N SNk Fill i, (3.5)

1<i<j<n k=1 1=0

where C' > 0 is a constant depending on n. Furthermore, from (3.4) it follows that

(VX,-VL'X) -E[(VX,-VL'X)]
i k
1 [ §
) / D0 DD dijurlpmimienye Lo ona (i (6 )7 fra (8, ) dt,
0 o<i<j<n k=0 1=0

thus we get

Var [(VX, -VL'X)]

i k
<C YY) ey

0<i<j<n k=0 =0

% k
=C" Y 2D Y=k

0<i<j<n k=0 [=0

7 k
=C" D> DD Limmheny

1<i<j<n k=1 I=1

2

/0 fisr () 5 fiaa(t,-)dt

LQ(R$+j7k71>)

I+1 2
fi+1 *]H_l fj+1 HLz(RiJrj*k*l)

2
f’i *éﬂ fjHLQ(Riﬂfkfl) ) (36)

for some constants C’, C” > 0 depending only n. Applying (3.5) and (3.6) to (2.11), we get

7 k
dw(X,N) < JU=EX+C" | >0 D> Limjmppye

1<i<j<n k=1 1=0

2
!
Ji%y, fj”m(uxff*’“*l)’

for some C" > 0 depending on n. Next, by the inequality (5.2), all the components where
0 <l <k <u,j, are dominated by those where 0 < [ < k = ¢ = j, and also, by the inequality
(5.3), the ones where 1 < k = [ < min{i,j — 1}, are dominated by the components where
1 <l =k <i=j. Finally, the components for 1 < k = [ = ¢ < j remain unchanged.
O
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4 Application to weighted random graphs

In this section we present an application of results from the previous section to the Erdés-
Rényi random graph G(n,p) and to the renormalization Wf of the combined weight W& of
subgraphs of the random graph that are isomorphic to a fixed graph G, see (1.3).

In order to simplify the notation we write a,, < b, for two sequences a,, and b, whenever
there exist a constant C' depending only on G such that a,, < Cb,, for all n € N. Furthermore,
if a, < b, and b, < a, then we write a, = b,. Finally, by writing H ~ K we mean that
the two graphs H and K are isomorphic. In Proposition 4.1 we provide estimates of the

variance of W&, which is crucial when dealing with the renormalization.

Proposition 4.1 The variance of W< admits the asymptotic form

Gl ~ . 2 2ug—vg ,2eq— eH
Var[IVE] = (Vo] (L ) (BIXTF) e (11)
eH>

Proof. We follow the lines of the proof of Lemma 3.5 in [7] by extending the argument to
nonnegative random weights distributed as X. We note that
= Z Scr,
G'~G
where the sum is over all graphs G’ C K,, which are isomorphic to G, and S¢ is the sum
of the weights of edges in G’ if G’ belongs to G(n,p,), and zero otherwise, i.e. denoting by
X1, ..., X, the random weights of edges of G', we have

€G

SG/ = 1{G’EG(n,pn)} ZXl

=1

Then, we get

Var[WE] = Z Cov(Ser, Sar)
GGG

— Y (ElSwSe] - EISo|EISo))

GGl ~G
with a common edge

> Y. (E[SeSer] — E[Se|E[Ser]).

HCG &'nG'"~H
eg>1 G'\.G'"~G

Q

For a fixed G’ ~ G we clearly have

el

E[Scr] = P(G' € G(n,pa)) Y E[Xi] = eqp®E[X].

i=1

14



In order to calculate E[S¢ Sgr| for G', G” ~ G and G'NG” ~ H, let us denote by X, ..., X,
the weights of edges of G'NG” and by X7,..., X! and X7, ... X/ weights of edges

eg—eHy €G—€H

of G'\G" and G"\G', respectively. Then, we have
eg—eHy €G—€H
(ZX + Z X) <ZX + Z X”)]

=P(G'NG" € G(n,p,)) | E (Z Xi) + (2en(ec — em) + (e — en)?) (E[X])?

E[SG/SGH] = (G/ G" e G n pn

=p, " (enE [X7] + (e — en) E[X])?)
= ¢ (enVar[X] + eg(E[X])?).
Hence we get
E[SeSar] — E[Se/E[Ser] = pp ™ (e Var[X] + eg(E[X])?) — pyeq(E[X])?
= pn ¢ (e Var[X] + eg(1 — pi)(E[X])?)
A pp T (Var[X] + (1= pa) (E[X])?),

and consequently

Var[W = Y Y peeen(Var[X] + (1 — pa)(E[X])?)

HCG G'nG"~H
eg>1 G'.G'"~G

~ (Var[X] + (1 — p,)(E[X])?) Z n2vG—vH plecen

HC@
eg>1
~ _ 2 2ug—vyg, 2eqc—en
~ (Var[X] + (1 = pa) (E[X])*) max n P,
eg>1
as required. O

Next, we show in Lemma 4.2 that the combined weights W< of subgraphs can be written as a
sum of multiple stochastic integrals using Proposition 3.1. This allows us to apply Theorem
3.2 to obtain normal approximation in Wasserstein distance for Wf , which is presented in
Theorem 4.3. In the sequel we number, in a fixed but arbitrary way, all possible edges of the
complete graph K, from 1 to n(n — 1)/2, and we denote by Eg C N° the set of sequences
of edges that create a graph isomorphic to G, i.e. a sequence (e, ..., ekec) belongs to Eg
if and only if the graph created by edges ey, . .., €, s isomorphic to G. Before stating the
lemma, let us define the operator Uy,

1 2(ti/2]+2
\Iltif(tla'-wtn) = f(t1,7tn)—§/2|_ ) f(tl,...,ti_l,S,ti+1,...,tn)dS, (42)
t;
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which arises naturally when representing any multiple stochastic integral I,,(f,) as I,,(f,)

with f, satisfying (2.4), see Proposition 5.3.

Lemma 4.2 We have the identity in distribution

Wwé L i[k (hy) , (4.3)
where
hi(ty, ... t) (4.4)
=Wy Wy gr (B — 2[0/2], ..t — 2| t/2]) Z 1g, (a, [t1/2],..., |t:/2]),

and the function gy, : (0,2)* — R is given by

eqa—k k '
gk(tla e ,tk) = %1(07%”)1@ (tl, Ce ,tk) <(€G — k’)E[X] —|— Z F);l (22;)) , (45)

where Fy!' is the generalized inverse of the distribution function Fx of X.

Proof. First, we note that

d
WTLG = —' Z 1EG<k17 .. ~7kec)]—(0,2pn)eG (Ukl + 17 - -7UkeG + 1)

1
G kel Fhe >0
(e () e (550))

2pn, 2pp
1 D he(@hi+ 14Uk, 2k, + 1+ Us,,),

eq!
G byt b 20

where

heo(ti, ... teg) = 1EG(Lt1/2J,---,LteG/QJ)l(oapn)EG(tl—QLtl/QJ,---,teG—QLteG/QJ)
([t —2[t/2) e [(teg — 2[teq/2]
- (FX ( 2pn )+ Ty ( 2pn ))

and by Proposition 3.1, the relation (4.3) holds with

Bty oo t) =g (b= 2061/2], ot —20/2)) Y Ly (a, [t2/2], - [ta/2)

a€NeG—k

where g, : (0,2)¥ — R is given by (4.5). Finally, in case the functions hj, may not satisfy
the condition (2.4), we can use Proposition 5.3 to obtain (4.3) with

hi(t1, .., tr)

16



=Wy, Uy | g (b —2[61/2], ...tk — 2[t6/2]) Z 1g, (a,[t1/2],. .., [te/2])

acNeG—k

=Wy Uy gk (00— 2[t1/2], ..t — 2[tk/2]) Z 1g, (a,[t1/2],..., [te/2]),

aeNeG—k
where the last equality follows from the fact that the sum appearing above is constant for
(t1, ... tg) € (2my,2my +2) X ... X (2mg, 2mg+2), mq, ..., my € N. The proof is complete.
O

We can now pass to the main result in this section.

Theorem 4.3 Let G be a graph without isolated vertices. The renormalized weight Wna of
graphs in G(n,p,) that are isomorphic to G satisfies

_ VE[X —E[X])Y] + (1 — p,)(E[X])?
dw (W7 N) 3 Var[X] + (1 — p,)(E[X])2 <

~1/2
(1= pn) min n””pff’) . (4.6)
eg>1

Proof. Without loss of generality we take p, = p in the proof. By Corollary 3.2 we have

__ 1 o o
dw(Wf,N)§W< > Hhk*gfthi?(Ri’l)—i_Z th*ﬁhk||ia(m4)

0<I<k<Leq 1<l<k<eg

1/2

X P )
1<i<k<eg

VST + Sy + 53
— 4.
Var[Wo] (4.7)

where h; has been defined in (4.4). We note that by the equivalence (4.1) of Proposition 4.1

it suffices to show that

E[(X —E[X])? 1—p)2(E[X])*
S1 + SQ -+ 53 ,S [( [ D ] + ( p) ( [ ]) max n4vG*3UHp46G736H, (48)
1—0p gqcﬁ

which follows from (4.9), (4.10) and (4.11) below. Indeed, applying (4.1) and (4.8) to (4.7)
shows that

eg>1

v 1- p(E[X2] - p(E[X])Q) maxgca nQUG—va%G—eH )

eg>1

WE (X2~ E[X])'] + (1~ p)2(E[X]) max g nivo-3unplec—sen

and after factoring out n**¢p*°¢ in front of the maxima, we conclude that

eg>1

V1— p(E[Xz] — p(E[X])Q) maxpgcgn-VHp eH

eg>1

dw (WE.N) < (VeI BT+ (0 - pEX)E) (masacgrmr)
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E[X2] — p(E[X])? HeG

EHZI

< B 9 —1/2
_ VEX —EX]T + (1 - p)(E[X]) <<1_p>minanpeH> |

i) Estimation of S;. For 0 <1 < k < n we have

= = 112 1
ol = 50 [, (.

1
=57 Lo | 22| X tee(ablmna/2) s ln2)
+ beN! \ aeNeG—*

2 2
/ l(\Ifxl"'\Ikagk(aﬁ,...,l'l,l‘l_;,_l—2|_£L‘H_1/2J,...,2L‘k—2L$k/2j)> dQTleL‘l)
(0,2)

dxyyy -+ - dwy,

2
(l_m(m, . ,xk))2 dry - dxl> dx; - - dwy,

2

l
+

2\ 2

= DI DM IR

ceNk—L \beN! \ ageNeG—F

N 2
></ (/ (Wzl---\lfmkgk (xl,...,xk)) dxl---dxl> dr; 1 ---dxy.
(0,2)k=t (0,2)!

Combining the equivalence
2\ 2

E 5 E ]-EG (aa b7 C) ~ HlaXG n4vci2vH7vK?
KCHC

ceNk—I beN! aeNeG_k ex=k—I, eg=k

see the proof of Theorem 4.2 in [17], with (5.7) in Lemma 5.4, we get

SE[X -EX]DT]+ 1 -p)*E[X]))

dvg—2vyg—vi ,deg—2eg—eK 2eg—exg—2
n D (1-p)

7o BkHQH(RFp’)
X max

KCHCG
ex=k—l, eg=k

Y

and consequently

Si= 3 e el e

0<I<k<n
< . 4 )2 4 4vg—2vy —vK deg—2eg—e _ o\2eg—ex—2
S (EX-EX])]+ (1 —p)’EX])) max niersomrveplecmioare(] — pyrres
BKZI
E[(X —E[XDY + (1 — p)2(E[X])4
< [( (X)) + (1 = p)*(E[X]) i -3 ylea—den (4.9)
1—p HCG
CH =

as in the proof of Theorem 4.2 in [17].
i1) Estimation of Sy. Similarly, for 1 <1 < k < n we have

= 0T 2 1
e = 0 [, ([

2
Bl<x17 . 7$l)flk($1; s xg)dry - 'dl’z> dxi1q - - dwy,

!
+

18



:%/Rkl (Z Z 1g, (a,b) Z 1p. (a0, |x41/2], ..., |2k/2])

beN! aENeGil a/ENecfkr

X

/ \Ijxl-.-\Ifxlgl(xl,...,xl)qlxl...\Ijxk

(0,2)¢

2
X gk (2, 241 — 2| 2041/2], .. 2 — 2|2 /2]) dy - - - dIl) dxiq - dwy,

23 (2 S e ¥ wwo))

ceNk—I1 b eN! acNeG—! a’eNeG—F

2
X/ (/ \11:,31~~-\If$lgl(x1,...,xl)\11$1---\I/gckgk(xl,...,xk)dxl---dxl>
(0,2)F~t (0,2)!

da:l—&-l s dlL’k.

By the Cauchy-Schwarz inequality and the formula (5.6) in Lemma 5.4, we get

2
/ / ‘11171"’\Ijmlgl(x17"'7xl)\ljzl"'qukgk (xh“'axk)d'rl”'dxl dxl-i—l”’dxk
(0,2)+=1 (0,2)!

S/ ‘Ifxl-“‘I’xlg?(ﬁcl-~~’vz)d~’v1~-dﬂcz/ Wy, o gi (g1 - -~ ) dag - - - day
(02) 02"

SpeT (1L - p) P E[XC - E X)) + (1 - p)(E[X]))
ST (EB[(X —E[X])] + (1 - p)2(E[X])).

Furthermore, we have

2
Z (Z Z g, (a,b) Z 1z, (d',b,¢) > < max P AvG =20 —vic

cENk—1 a’eN! \ o/ eN¢G—1 o' eNeG —F ex=k—l, eyr=l

see the proof of Theorem 4.2 in [17], thus

i sy S 0= 07 (B0 = B + (1= @ (X))

% max n4’UG—2’UH/—UKp46G—2€H/—€K’

KCH'CG
ex=k—l, egr=k

from which it follows by that
E[(X —E[X])'] + (1 - p)*(E[X])*

— — 2 —_ —
Sy = Z th *; thLQ(Rifl) < 1= I}?g)G( nive 3va4ec 36H,
1<I<k<n eg>1
(4.10)
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as in the proof of Theorem 4.2 in [17].
i11) Estimation of S3. For 1 <[ < k < n we have

Hﬁk x| BkHi?(Ri(’“*”)

2
1 — _
:ﬁ/ / / hi(x, . xp)he(T1, o g, 210,y 2p—g)day - - - dy
RE-LJRETE\ JRY

dxl—&-l cee dmkdzl s de_l

:%/M—L/Rk—z (Z Z 1g, (a,b, Lxl;1J7""L%J)1EG (a’,b, Lz_21J7”.’szc27zJ)

beN! q,a'eN°G—F

/(‘02)1 \I/xl \ka.gk (:Ualerl - 2L$l;1J’,.-,$k — QL%J)

2
\I]ml .o .\lel\Ilzl e \I[Zk,lgk (Iwrl—l-l — 2Lxl;1J, N ) 2|;Zk27lj) dl’)

d$l+1 tee dxkdzl tee de_l.
Then, applying the Cauchy-Schwarz inequality to the inner integral, we get

[

2y (2 £ mesa) [ £ )

C,CleNkfl bENl CLGNEG?k (Z,GNeGik

2
X(/ <\Ijx1qjxkgk(xl>axk)) dxldxk)
(0,2)*

Since k > 1, the formula (5.6) in Lemma 5.4 gives us

) 2
(/(02)k (\Ifxl---llkagk (:El,...,xk)) da:l---d:vk)

< plee (1 - p)*2(E] (X2 - E[X])*] + (1 - p)(E[X])?)

Y

2

2

SJP

Furthermore, we have

Z Z Z 1rg (a,b,c) Z 1z, ((Ll, b, Cl)

C,C/GNk_l beN! aeNeG—k a/ENeG_k

2

dvg—vK —VH—VL,
S max n
K,HLCG

ex=k—I, eg=Il, ep=k

Y
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see the proof of Theorem 4.2 in [17], from which it follows

Sg = Hﬁk *i BkHiz R2(E=D
®RE)

1<I<k<eq
E[(X —E[X])*] + (1 - p)*(E[X])*
1—p HCG
eg>1
as in the proof of Theorem 4.2 in [17], which concludes the proof by (4.1) and (4.7). O

We note that the bound (4.6) implies

~1/2
= EX])?* :
G < ( _ VH nC€H
dW (Wn 7'/\/) ~ (Var[X] + Kx (1 pn) ?CL%TL pn )
where E[X]/y/Var[X] is the standardized first moment of X and
o E(X —E[X]
T (Var[X])?

is the kurtosis of X.

In the next corollary we note that Theorem 4.3 simplifies if we narrow our attention to

pn depending of the complete graph size n and close to 0 or to 1.

Corollary 4.4 Let G be a graph without separated vertices. Forp, < c <1, n > 1, we have

—1/2

T ELXY ——

dw (W', N) S EXT ((1 — Pa) Win 72 pr) -
6H21

On the other hand, for p, >c¢ >0, n > 1, it holds

- BX
(W N) S = S

Furthermore, it turns out that the minimum appearing in Theorem 4.3 and above for a wide
class of graphs satisfying a certain balance condition. Precisely, let us consider the class B
of all graphs with at least three vertices, and such that

GH—l_eg—l

max = ,
HCGuvg —2 wvg—2
’UHZ3

as introduced in [17]. It has been shown there that a graph with at least three vertices and

at least one edge belongs to B if and only if for any p € (0,1) and n > vg we have

: VH €H : 2 VG AEC
minn--p = mimn\n-p,n-p .
HCG {n'p, }
eg>1

An application of this fact to Corollary 4.4 yields the following result.
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Proposition 4.5 For G € B without isolated vertices and ¢ € (0,1) we have
( E[X4]
ny/1 — p,Var[X]

(6, N) < | VX

n ~ n pn [XQ]

if 0<c¢<py,

if n~(ws=2)/(ec=1) ~ < c,

E[X1]

; —(vg=2)/(ec—1)
L nvc/QpZG/Q]E[XQ] if 0 <pn<ne o

The following Corollaries 4.6-4.8 of Proposition 4.5 can be proved similarly to their coun-
terparts Corollaries 4.8-4.10 in [17]. The next Corollary 4.6 deals with cycle graphs with r

vertices, r > 3, and in particular with triangles when r = 3.

Corollary 4.6 Let G be a cycle graph with r vertices, r > 3, and ¢ € (0,1). We have

( E[X]
ny/1 — p,Var[X]

— E[XT
A2 e

if 0<c<py,

if o2/ o<

E[X?]

_VERT o < /D),
| .y Exy T 0P

The next corollary deals with complete graphs, which also covers the case of triangles.

Corollary 4.7 Let G be a complete graph with r vertices, r > 3, and ¢ € (0,1). We have

( ElXY f c<p, <1
ny/1 — p,Var[X] eSS
— E[X4]
G . —2/(r+1
dw (W7 N) < Y E[X7] if n70 <p, <o
E[X*
T(T_E)/Zl] Zf 0 <pn S n—2/(7’+1).
L nr/2pn E[XQ]

Finally, the last corollary deals with the important class of graphs which have a tree structure.
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Corollary 4.8 Let G be any tree (a connected graph without cycles) with r edges, and ¢ €
(0,1). We have

( E[X*]
ny/1 — p, Var[X]

57G E[X4]
SR Ve

if ¢c<p,<l,

1
Zf _<pn§07
n

n

E[X* 1
[ n+0/2p7/ E[X?] n

5 Appendix

In this section we gather a number of technical results, starting with the following multi-
plication formula for multiple stochastic integrals, which involves the x-notation introduced
n (3.2). For f, € /L\Q(R’}r) and g, € EQ(RT) satisfying (2.4) the following multiplication
formula holds:
mAn k
L) = 1 (7)(}) > (5 fncscs (£ ). (5.1)

k=0 i=

whenever f,, x& g, € L2(RT+"_k_i) for every 0 <i < k < m A n, see Proposition 5.1 of [16].
The next proposition allows us to bound the L? norm of f,, *g,, by some simpler expressions,

which is used in the proof of Theorem 3.2.

Proposition 5.1 Let f, € L*(R") and g,, € L*(R7) be symmetric functions. For 0 <1 <

k< nAm we have

an *]q gmHLQ(Rvan k— l) 22” 2k=1 < an l+n kanLz Rk l +22m 2kl Hgm l+m kgm”iQ(Rifl)a

(5.2)

and for 0 < k <n Am we have

[fo %k gmH;(RT*”*Z’“) <20 funi Tk Sl ey T2 [ gm A ]EgmHm(Ri’“)‘ (5-3)

Proof. Let x € R,, y € ]R , U € ]R?r_k and z € RT"“ . Holder’s inequality applied twice

gives us
an *i; Gm H;(R;ﬁ"*k*l)
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where we used the inequality vab < (a + b)/2, a,b > 0, which proves the first assertion.

Furthermore, for x,u € Rﬁ, Yy € R’}r’k and z € RT”“ we get

an *]]z gm”ig (RT-+n=2k)

o fu(u, y)gm(u, 2)du fn z,Y)gm(z, z)drdydz
T2 R F JRTTR JRE

= 2% /Rk /Rk ( s kf" u, y) fn(z, y)dy> </R’+"k gm(u,z)gm(x,z)dz> dudzx
< [ L1 ( [t y)fn<x,y>dy>2dudx
+ /Rk /Rk (/RT—’“ Gm (1, z)gm(x,z)dz>2dud:c]

< g7kl an n— k nHLz Rzk)+22m_4k_1 ”gm *m— ]’zgmHLQ(Rik)'

0

The next proposition presents some relationships between second norms involving operators
V, L and (—L)"2.

Proposition 5.2 For F such that LF € L*(Q)) we have
o di 120\ 2 2
E (VtF) o) =E|((-L)"*F)"| <E[(LF)?]. (5.4)
0

Proof. Using the chaos decomposition (2.6), where the sequence of functions f,, in EQ(R@,
n > 1, satisfies the Condition (2.4), and by the isometry relation (2.5) we have

o[ ] - o[
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which is the first part of the assertion. This also implies

E[((~L)F)" ZnE L(f)I? <Zn2E 1(£)] < E[(LF)?,

which ends the proof. ([

Next, let us recall the definition (4.2) of the operator Uy,
1 2|t;/2]+2
\Ijtif(th Ce ,tn) = f(tl, Ce ,tn) — 5 / f(tl, Ce ,tifl, S,ti+1, ce ,tn)dS,
2|t;/2]
i=1,...,n,t1,...,t, € Ry. The following result is the analog of the Stroock formula [22]

in our framework. It shows that any multiple integral can be expressed as a degenerate

generalized U-statistic, see Remark 2.2.

Proposition 5.3 For every f, € EZ(Ri) there exists a unique f, € E2(R1) satisfying (2.4)
such that I,(f,) = I,(f,), and it is given by

fn(tlp “e . 7tn) — \Ijtl \Iltnfn(tla ey ) — —th th_[n(fn) (55)

Proof. Uniqueness of f, follows from the isometry relation (2.5). We can also check that
the condition (2.4) is satisfied by integrating (4.2) with respect to t; € R,. Furthermore,
the equality (5.5) is clear for n = 1. Assuming that it holds for some n — 1 > 1, we get

L(f) = / L (b ) d(Y — 12/2)
- / L (WU, b, ) (Y — 11/2)
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Eventually, the latter equality in (5.5) follows from (2.9). O

The following Lemma 5.4 is used to bound the kernel functions hj, appearing in Lemma 4.2.

Lemma 5.4 The functions gy defined in (4.5) satisfy the inequalities
/ (\Ifxl\Ikagk(.ilfl,,xk))Qd.iEle’k
(0,2)k
PR - ) E[(X - E[X])] + (L - p)(E[X])) (5.6)
and

/(072)k_l (/(0’2)1 (\Il:sl W gk (T, ., Tg) ) dzy--- dxl> dxyiy - - - day,
PR E BN (- pRENDY), (6)

~

0 <1 <k <mn, where the operator U, is defined in (4.2).

Proof. 'We decompose gi(z1,...,x)) as

k
el m) =Yg (@, )
i=0

where (/2)70—
p/2)°
9120)@1’ , L ) = m(eg — k)E[X]].(QQ@k (.2171, Ce ,i[)k) s
and
0 _ (p/2)7* L .
gs. (l‘l,...,xk) = ml(ogp)k (xl,...,.flTk)FX % s 1§Z§k

Next, for 1 < i < k we have

Wy, o-e \Ikag,?)(xl, cey TE)

= e (v ) e (22) =B X]) TT (Lo () =),

1<j<k
J#i



Thus we have

/ (‘I/zl"-\lkag,(j) (Il,...,mk))qu;l...dxk
(0.2)"

2kp2egfk71(1 —p)k’l

((eq — k)!k!)222ec—2k

< PR —p)MHEXY] - p(E[X])?),  1<i<Kk,

and similarly for g,(co) (x1,...,x), which gives

/( " (W oo Wy, g (21, . . 7$k))2 dxy - - - dxy,
0,2

k

S‘ Z/ (\Ijxl"-\kag,gi)(xl,...,xk))del...dxk
i=0 v (0,2)
S PO p) T EL) - p(E (X)),

as required. In order to prove (5.7), we proceed similarly and get

, 2 2
/ / (le---ﬁlxkg,iz) (xl,...,xk)> dry---dxy | drpq---
(0,2)k—1 (0,2)!

~

< p46073k’+l(1 o p)kaZ (E[X2] _ p(]E [X])Q)Q

for 1 <i </, and

. 2 2
\/(Og)k—l <\/(;) " <\I’z1 \I/;vkg](cl) (1'17...71716)) dl’ld{[‘l) d$l+1 dl’k
< pleeT (L - p PN E (X - EX])DY] + (1 - p)(E[X])Y)

for [ < i < k. Hence, by the Cauchy-Schwarz inequality we get

2
/ / (‘Ifm ""Il;tkgk(xla'-'7xk))2dx1"'dxl dxpyq - dxy,
(0,2)=1 \J(0,2)!

k

1=0

< ple (L — p) R 2R (X —E[X])'] 4 (1 - p)X(E [X])Y),

which ends the proof.
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(PE[(X — pE[X])*] + (1 - p)(PE [X])?)

2
S Z/ (/ (‘I’zl "'\I]mkglE;Z)(a:lv”ka))del"'dxl) dxigy - -
(0,2)F=F \J(0,2)!
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