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Abstract This paper reviews the variance-gamma asset price model as well as its
symmetric and non-symmetric extensions based on generalized gamma convolu-
tions (GGC). In particular we compute the basic characteristics and decomposition
of the variance-GGC model, and we consider its sensitivity analysis based on the
approach of [8].
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1 Introduction

Lévy processes play an important role in the modeling of risky asset prices with
jumps. In addition to the Black-Scholes model based on geometric Brownian mo-
tion, pure jump and jump-diffusion processes have been used by Cox and Ross [5]
and Merton [13] for the modeling of asset prices. More recently, Brownian motions
time-changed by non-decreasing Lévy processes (i.e. subordinators) have become
popular, in particular the Normal Inverse Gaussian (NIG) model [1]), the variance-
gamma (VG) model [12] and [11], and the CGMY/KoBol models [4], [3].

The normal inverse Gaussian (NIG) process [1] can constructed as a Brown-
ian motion time-changed by a Lévy process with the inverse Gaussian distribution,
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whose marginal at time t is identical in law to the first hitting time of the positive
level t by a drifted Brownian motion.

The variance-gamma process [12], [11] is built on the time change of a Brownian
motion by a gamma process, and has been successful in modeling asset prices with
jumps and in addressing the issue of slowly decreasing probability tails found in
real market data.

The CGMY/KoBol models [4], [3] are extensions of the variance-gamma model
by a more flexible choice of Lévy measures. However, this extension loses some
nice properties of variance-gamma model, for example variance-gamma processes
can be decomposed into the difference of two gamma processes, whereas this prop-
erty does not hold in general in the CGMY/KoBol models.

In [6] the variance-gamma model has been extended into a symmetric variance-
GGC model, based on generalized gamma convolutions (GGCs), see [2] for details
and a driftless Brownian motion. In this paper we review this model and propose an
extension to non-symmetric case using a drifted Brownian motion.

GGC random variables can be constructed by limits in distribution of sums of
independent gamma random variables with varying shape parameters. As a re-
sult, the variance-GGC model allows for more flexibility than standard variance-
gamma models, while retaining some of their properties. The skewness and kurtosis
of variance-GGC processes can be computed in closed form, including the rela-
tions between skewness and kurtosis of the GGC process and of the corresponding
variance-GGC process. In addition, variance-GGC processes can be represented as
the difference of two GGC processes.

On the other hand, the sensitivity analysis of stochastic models is an important
topic in financial engineering applications. The sensitivity analysis of time-changed
Brownian motion processes has been developed and the Greek formulas have been
obtained by following the approach in [8]. In addition, the sentivity analysis of the
variance-gamma, stable and tempered stable processes has been performed in [9]
and [10] respectively. As an extension of the variance-gamma process, we study the
corresponding sensitivity analysis of the variance-GGC model along the lines of [9].

In the remaining of this section we review some facts on generalized gamma con-
volutions, (GGCs) including their variance, skewness and kurtosis . We also discuss
an asset price model based on GGCs and its sensitivity analysis.

Wiener-gamma integrals

Consider a gamma process (γt)t∈R+ , i.e. (γt)t∈R+ is a process with independent and
stationary increments such that γt at time t > 0 has a gamma distribution with shape
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parameter t and probability density function e−xxt−1/Γ (t), x > 0. We denote by∫
∞

0
g(t)dγt , (1)

the Wiener-gamma stochastic integral of a deterministic function

g : R+ −→ R+

with respect to the standard gamma process (γt)t∈R+ , provided g satisfies the condi-
tion ∫

∞

0
log(1+g(t))dt < ∞, (2)

which ensures the finiteness of (1), cf. § 1.2 , page 350 of [7] for details. In particular,
there is a one-to-one correspondence between GGC random variables and Wiener-
gamma integrals, Proposition 1.1, page 352 of [7].

Generalized gamma convolutions

A random variable Z is a generalized gamma convolution if its Laplace transform
admits the representation

E[e−uZ ] = exp
(
−t
∫

∞

0
log
(

1+
u
s

)
µ(ds)

)
, u≥ 0

where µ(ds) is called the Thorin measure and should satisfy the conditions∫
(0,1]
| logs|µ(ds)< ∞ and

∫
(1,∞)

s−1
µ(ds)< ∞.

Generalized gamma convolutions (GGC) can be defined as the limits of independent
sums of gamma random variables with various shape parameters, cf. [2] for details.

In particular, the density of the Lévy measure of a GGC random variable is a
completely monotone function. From the Laplace transform of Z we find

E[Z] =
∫

∞

0
t−1

µ(dt),

and the first central moments of Z can be computed as
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E[(Z−E[Z])2] =
∫

∞

0
t−2

µ(dt),

E[(Z−E[Z])3] = 2
∫

∞

0
t−3

µ(dt),

E[(Z−E[Z])4] = 3(Var [Z])2 +6
∫

∞

0
t−4

µ(dt).

(3)

As a consequence we can compute the

Skewness[Z] =
E[(Z−E[Z])3]

(Var [Z])3/2 =
2
∫

∞

0 t−3µ(dt)
(Var [Z])3/2 ,

and

Kurtosis[Z] =
E[(Z−E[Z])4]

(Var [Z])2 = 3+6
∫

∞

0 t−4µ(dt)
(Var [Z])2

of Z. We refer the reader to Proposition 1.1 of [7] for the relation between the in-
tegrand in a Wiener-gamma representation and the cumulative distribution function
of the associated generalized gamma convolution.

Market model and sensitivity analysis

As an extension of the model of [9] to GGC random variables we consider an asset
price process ST defined by the exponent

ST = S0 exp
(

θ

∫
∞

0
g(s)dγs + τ

√
TΘ +ZT + c(θ ,τ)T

)
,

of a variance-GGC process, i.e.
∫

∞

0 g(s)dγs is a GGC random variable represented as
a Wiener-gamma integral, Θ is an independent Gaussian random variable, (Zt)t∈R+

is another GGC-Lévy process, and θ ∈ R, τ ≥ 0, T > 0.

In section 3 the sensitivity
∂

∂S0
E[Φ(ST )] of an option with payoff Φ with respect

to the initial value S0 in a variance-GGC model is shown to satisfy

∂

∂S0
E[Φ(ST )] =

1
S0

E[Φ(ST )LT ],

where

LT :=
2θ
∫

∞

0 g(s) f 2(s)dγs

(θ
∫

∞

0 g(s) f (s)dγs + τ
√

T η)2
+

∫
∞

0 f (s)dγs−T
∫

∞

0 f (s)ds+ηΘ

θ
∫

∞

0 g(s) f (s)dγs + τ
√

T η
.
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for any positive function f : R+→ (0,a) and η > 0. In Theorem 1 we will compute
this sensitivity as well as orther Greeks based on the model parameters θ and τ .

The remaining of this paper is organized as follows. In section 2 we introduce
a model for Brownian motion time-changed by a GGC subordinator. The variance,
skewness and kurtosis of variance-GGC processes are calculated in relation with the
corresponding parameters of GGC processes, and several example of variance-GGC
models are considered. A Girsanov transform of GGC processes is also stated. The
sensitivity analysis with respect to S0, θ and τ is conducted in section 3.

2 Variance-GGC processes

Given (Wt)t∈R+ a standard Brownian motion and θ ∈R, σ > 0, consider the drifted
Brownian motion

Bθ ,σ
t := θ t +σWt , t ∈ R+.

Next, consider a generalized gamma convolution (GGC) Lévy process (Gt)t∈R+

such that G1 is a GGC random variable with Thorin measure µ(ds) on R+. We
define the variance-GGC process (Y σ ,θ

t )t∈R+ as the time-changed Brownian motion

Y σ ,θ
t := Bθ ,σ

Gt
, t ∈ R+.

The probability density function of Y σ ,θ
t is given by

fY σ ,θ
t

(x) =
1

σ
√

2π

∫
∞

0
exp
(
−|x−θy|2

2σ2y

)
ht(y)

dy
√

y
, x ∈ R,

where ht(y) is the probability density function of Gt , cf. Relation (6) in [11].

The Laplace transform of Y σ ,θ
t is

E
[
exp
(
−uY σ ,θ

t

)]
=
∫

∞

0
e−uy fYt (y)dy (4)

= ΨGt

(
θu− σ2

2
u2
)

= exp
(
−t
∫

∞

0
log
(

1+
θu−σ2u2/2

s

)
µ(ds)

)
,

where ΨGt is the Laplace transform of Gt .

This construction extends the symmetric variance-GGC model constructed in
Section 4.4, page 124-126 of [6]. In particular, the next proposition extends to
variance-GGC processes Relation (8) in [11], [12], which decomposes the variance-
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gamma process into the difference of two gamma processes. Here, we are writing Yt
as the difference of two independent GGC processes, i.e. Yt becomes an Extended
Generalized Gamma Convolution (EGGC) in the sense of Chapter 7 of [2], cf. also
§ 3 of [14].

Proposition 1. The time-changed process Yt can be decomposed as

Yt =Ut −Wt ,

where Ut and Wt are two independent GGC processes with Thorin measures µA and
µB which are the image measures of µ(dt) on R+ respectively, by the mappings

s 7−→ B(s) :=
θ

σ2 +
1
σ

√
θ 2

σ2 +2s, s ∈ R+,

and

s 7−→ A(s) =− θ

σ2 +
1
σ

√
θ 2

σ2 +2s, s ∈ R+.

Proof. From (4), the Laplace tranform of Yt can be decomposed as

E
[
exp
(
−uY σ ,θ

t

)]
= exp

(
−t
∫

∞

0
log
(

1− u
B(s)

)(
1+

u
A(s)

)
µ(ds)

)
= exp

(
−t
∫

∞

0
log
(

1+
u

A(s)

)
µ(ds)− t

∫
∞

0
log
(

1− u
B(s)

)
µ(ds)

)
= exp

(
−t
∫

∞

0
log
(

1+
u
s

)
µA(ds)− t

∫
∞

0
log
(

1− u
s

)
µB(ds)

)
= E[e−uUt ]E[euWt ].

�

The Laplace tranform of Yt can also be decomposed as

E
[
exp
(
−uY σ ,θ

t

)]
= exp

(
−t
∫

∞

0
log
(

1+
u
s

)
µA(ds)− t

∫
∞

0
log
(

1− u
s

)
µB(ds)

)
= exp

(
−t
∫ 0

−∞

log
(

1+
u
s

)
µ−B(ds)− t

∫
∞

0
log
(

1+
u
s

)
µA(ds)

)
, (5)

where µ−B is the image measure of µB by s 7→ −s, and in particular, Yt is an ex-
tended GGC (EGGC) with Thorin measure µA + µ−B in the sense of Chapter 7 of
[2].

In the next proposition we compute the variance, skewness and kurtosis of
variance-GGC processes.

Proposition 2. We have

(i) Var [Y1] = θ
2Var [G1]+σ

2E[G1],
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(ii) Skewness[Y1] =−
E[(G1−E[G1])

3]+2(σ/θ)2Var [G1]

2(Var [G1]+ (σ/θ)2E[G1])3/2

= −θ 3

2
Skewness[G1]

(Var [G1])
3/2

(Var [Y1])3/2 −
θσ2Var [G1]

(Var [Y1])3/2 , (6)

(iii) Kurtosis[Y1] = 3+3θ
4E[(G1−E[G1])

4]−3(Var [G1])
2

8(θ 2Var [G1]+σ2E[G1])2

+3
3θ 2σ2E[(G1−E[G1])

3]/4+σ4Var [G1]

(θ 2Var [G1]+σ2E[G1])2 (7)

= 3+θ
4 (Kurtosis[G1]−3)(Var [G1])

2

16(Var [Y1])2

+9σ
2
θ

2 Skewness[G1](Var [G1])
3/2

4(Var [Y1])2 +3
σ4Var [G1]

(Var [Y1])2 .

Proof. Using the Thorin measure µA +µ−B of Yt and (3) we have

Var [Y1] =
∫

∞

0
t−2

µA(dt)+
∫ 0

−∞

t−2
µ−B(dt)

=
∫

∞

0

1
A2(t)

µ(dt)+
∫

∞

0

1
B2(t)

µ(dt)

=
∫

∞

0

θ 2 + tσ2

t2 µ(dt)

= θ
2Var [G1]+σ

2E[G1],

and

E[(Y1−E[Y1])
3] = 2

∫
∞

0
t−3

µA(dt)+2
∫ 0

−∞

t−3
µ−B(dt)

=
1
2

∫
∞

0

θ 3 +θσ2
(
θ 2/σ2 +2t

)
t3 µ(dt)

=
θ 3

2
E[(G1−E[G1])

3]+θσ
2Var [G1],

and

E[(Y1−E[Y1])
4] = 6

∫ 0

−∞

t−4
µA(dt)+6

∫
∞

0
t−4

µ−B(dt)

+3
(∫ 0

−∞

t−2
µ
−(dt)+

∫
∞

0
t−2

µ
+(dt)

)2

=
3
4

∫
∞

0

θ 4 +(θσ)2(
√

4θ 2/σ2 +8t/2)2 +σ4(
√

4θ 2/σ2 +8t)4/2
t4 µ(dt)
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+3
(∫

∞

0

θ 2 + tσ2

t2 µ(dt)
)2

=
3
4

∫
∞

0

3θ 4 +6σ2θ 2t +4σ4t2

t4 µ(dt)+3
(∫

∞

0

θ 2 + tσ2

t2 µ(dt)
)2

=
3
8

θ
4(E[(G1−E[G1])

4]−3(Var [G1])
2)

+
9
4

θ
2
σ

2E[(G1−E[G1])
3]+3σ

4Var [G1]+3(θ 2Var [G1]+σ
2E[G1])

2,

and this yields (6) and (7). �

Girsanov theorem

Consider the probability measure Qλ defined by the Radon-Nikodym density

dQλ

dP
:=

eλYT

E[eλYT ]
= (1−λ )aT eλYT = eλYT+aT log(1−λ ), λ < 1, (8)

cf. e.g. Lemma 2.1 of [9], where YT is a gamma random variable with shape and
scale parameters (aT,1) under P. Then, under Qλ , the random variable Yt has a
gamma distribution with parameter (aT,1/(1−λ ), i.e. the distribution of Yt/(1−λ )
under P.

In the next proposition we extend this Girsanov transformation to GGC random
variables.

Proposition 3. Consider the probability measure Pf defined by its Radon-Nikodym
derivative

dPf

dP
=

e
∫

∞
0 f (s)dγs

E[e
∫

∞
0 f (s)dγs ]

= e
∫

∞
0 f (s)dγs+

∫
∞
0 log(1− f (s))ds,

where f : R+→ (0,1) satisfies∫
∞

0
log
(

1+ f (t)
1− f (t)

)
dt < ∞. (9)

Assume that g : R+→ R+ satisfies (2), and∫
∞

0
log(1+ug(s)− f (s))ds >−∞, u > 0.

Then, under Pf , the law of
∫

∞

0 g(s)dγs is the GGC distribution of the Wiener-gamma
integral ∫

∞

0

g(s)
1− f (s)

dγs
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under P.

Proof. For all u > 0, we have

EPf

[
exp
(
−u
∫

∞

0
g(s)dγs

)]
= E

[
exp
(
−u
∫

∞

0
g(s)dγs +

∫
∞

0
f (s)dγs +

∫
∞

0
log(1− f (s))ds

)]
= E

[
exp
(∫

∞

0
f (s)−ug(s)dγs

)]
exp
(∫

∞

0
log(1− f (s))ds

)
= exp

(
−
∫

∞

0
log(1+ug(s)− f (s))ds

)
exp
(∫

∞

0
log(1− f (s))ds

)
= exp

(
−
∫

∞

0
log
(

1+
ug(s)

1− f (s)

)
ds
)

= E
[

exp
(
−u
∫

∞

0

g(s)
1− f (s)

dγs

)]
.

�

Note that (8) is recovered by taking g(s) = 1[0,aT ](s) and f (s) = λ1[0,aT ](s) for
λ ∈ (0,1), i.e. GT =

∫
∞

0 g(s)dγs is a gamma random variable with shape parameter
aT and we have

EPf [e
−uGT ] =

(
1+

u
1−λ

)−aT

= E
[

exp
(
− u

1−λ
GT

)]
,

u > 0, λ < 1. Next we consider several examples and particular cases.

Gamma case

In case the Thorin measure µ is given by

µ(dt) = γδc(dt),

where δc is the Dirac measure at c > 0 we find the variance-gamma model of [12].
Here, Gt , t > 0, has the gamma probability density

φt(x) = cγt xγt−1e−cx

Γ (γt)
, x ∈ R+,

with mean and variance γt/c and γt/c2, and Gt becomes a gamma random variable
with parameters (γt,c). In this case, the decomposition in Proposition 1 reads

ΨYt (u) =
(

1− σ2u2

2c

)−tγ

=

(
1− σu√

2c

)−tγ (
1+

σu√
2c

)−tγ

,
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and we have
µA(dt) = µB(dt) = γδ√2c/σ

(dt),

thus (Ut)t∈R+ , (Wt)t∈R+ become independent gamma processes with parameter
(γt,
√

2c/σ). The mean and variance of U1 are

E[U1] =
∫

∞

0
t−1

µA(dt) =
σγ√

2c

and

Var [U1] = E[(U1−E[U1])
2] =

∫
∞

0
t−2

µA(dt) =
γσ2

2c
.

Symmetric case

When θ = 0 we recover the symmetric variance-GGC process

Yt := Bσ (Gt), t ∈ R+,

defined in Section 4.4, page 124-126 of [6], i.e. the time-changed Brownian motion
is a symmetric variance-GGC process. Here, Yt is a centered Gaussian random vari-
able with variance σ2Gt given Gt , where Bσ

t is a standard Brownian motion with
variance σ2.

The Laplace transform of Yt in Proposition 1 shows that Yt decomposes into two
independent processes with same GGC increments since µA and µB are the same
image measures of µ(dt) on R+, by s 7→

√
2s/σ .

Variance-stable processes

Let (Gt)t∈R+ be a Lévy stable process with index parameter α ∈ (0,1) and moment
generating function h(s) = e−sα

. In this section we consider a non-symmetric ex-
tension of the symmetric variance stable process considered in Section 4.5, pages
126-127 of [6]. The Thorin measure of the stable distribution is given by

µ(dt) = ϕ(t)dt =
α

π
sin(απ)tα−1dt,

cf. page 35 of [2]. By Proposition 1, Yt can be decomposed as

Yt =Ut −Wt ,

where Ut and Wt are processes with independent stable increments and Thorin mea-
sures
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µA(dt) = ϕA(t)dt =
α

π
sin(απ)(σ2t +θ)

(
1
2
(σt−θ/σ)2− θ 2

2σ2

)α−1

dt,

and

µB(dt) = ϕB(t)dt =
α

π
sin(απ)(σ2t−θ)

(
1
2
(σt−θ/σ)2− θ 2

2σ2

)α−1

dt.

In the symmetric case θ = 0 we find

µA(dt)=ϕA(t)dt = µB(dt)=ϕB(t)dt =σ
2tϕ
(

σ2t2

2

)
dt =

α sin(απ)

2α−1π
σ

2α t2α−1dt,

i.e.
√

2Ut/σ and
√

2Wt/σ are stable processes of index 2α . Note that the skew-
ness and kurtosis of Gt and Yt are undefined. Figure 1 presents a simulation of the
variance-stable process.

0 10 20 30 40 50 60 70 80 90 100
−600

−400

−200

0

200

400

600

Fig. 1 Sample paths of variance-stable process with α = 0.99.

Variance product of stable processes

Here we take G1 = Z1/α Xα where Z is a Γ (γ,1) random variable and Xα is a stable
random variable with index α < 1. The MGF of G1 is h(s) = (1+ sα)γ , cf. page 38
of [2], i.e. G1 is a GGC with Thorin measure

µ(dt) = ϕ(t)dt =
1
π

γαtα−1 sin(απ)

1+ t2α +2tα cos(απ)
dt,



12 Nicolas Privault and Dichuan Yang

and Yt decomposes as
Yt =Ut −Wt ,

where Ut and Wt are processes of independent product of stable increment and
Thorin measures

µA(dt) = ϕA(t)dt

=
1
π

γα((σt +θ/σ)2/2−θ 2/(2σ2))α−1 sin(απ)(σ2t +θ)

1+((σt +θ/σ)2/2−θ 2/(2σ2))2α +2((σt +θ/σ)2/2−θ 2/(2σ2))α cos(απ)
dt,

and

µB(dt) = ϕB(t)dt

=
1
π

γα((σt−θ/σ)2/2−θ 2/(2σ2))α−1 sin(απ)(σ2t−θ)

1+((σt−θ/σ)2/2−θ 2/(2σ2))2α +2((σt−θ/σ)2/2−θ 2/2σ2)α cos(απ)
dt.

In the symmetric case

µA(dt) = ϕA(t)dt = µB(dt) = ϕB(t)dt

= σ
2tϕ
(

σ2t2

2

)
dt =

γασ2α t2α−1 sin(απ)

π(2α−1 +2−α−1σ4α t4α +σ2α t2α cos(απ))
dt.

The skewness and kurtosis of Gt and Yt are undefined. Figure 2 presents the corre-
sponding simulation.

0 10 20 30 40 50 60 70 80 90 100
−150

−100

−50

0

50

100

150

200

Fig. 2 Sample paths of variance-product of stable process with α = 0.99 and γ = 0.2.
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3 Sensitivity analysis

In this section we extend approach of [8] to the sensitivity analysis of variance-GGC
models. Consider (Bt)t∈R+ a standard one-dimensional standard Brownian motion
independent of the Lévy process (Yt)t∈[0,T ] generated by

YT :=
∫

∞

0
g(s)dγs.

Let Θ be a standard Gaussian random variable independent of (Yt)t∈[0,T ]. For each
t ∈ [0,T ], we denote by Ft the filtration generated by Θ and σ(Ys : s ∈ [0, t]).

Let (Zt)t∈R+ be a real-valued stochastic process in R independent of (Yt)t∈R+

and (Bt)t∈R+ . Finally we denote by and let Cn
b(R+;R) denote the class of n-time

continuously differentiable functions with bounded derivatives, whereas Cc(R+;R)
denotes the space of continuous functions with compact support.

Given θ ∈ R and τ ∈ R+ we consider the asset price ST written as

ST = S0 exp
(

θYT + τ
√

TΘ +ZT +T c(θ ,τ)
)
,

where the function g(s) : R+→ R+ verifies (2).

Remark 1. When θ = 0 the above model reduces to the standard Black-Scholes
model, and in case θ 6= 0 we find the variance-GGC model by taking (Zt)t∈[0,T ]
to be a GGC process.

For example, we can take the Wiener-gamma integral
∫

∞

0 g(s)dγs to be a stable ran-
dom variable and set ZT to be another stable random variable, then the exponent of
St is a variance-stable process. This example will be developed in the next section.

The next theorem deals with the sensitivity analysis of the variance-GGC model
with respect to S0, θ and τ , and is the main result in this section. Define the classes
of functions

CL(R+;R) := { f ∈C(R+;R) : | f (x)| ≤C(1+ |x|) for some C > 0},

and

D(R+;R) :=
{

f : R+→ R : f =
n

∑
k=1

ck fk1Ak , n≥ 1,

ck ∈ R, fk ∈ CL(R+;R), Ak intervals of R+

}
.

Theorem 1. Let Φ ∈D(R+;R). Assume that the law of ZT is absolutely continuous
with respect to the Lebesgue measure, with
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∞

0
log
(

1+
g(s) f k(s)

(1−λ f (s))k+1

)
ds < ∞, k = 1,2,3. (10)

Then

(i) (Delta - sensitivity with respect to S0). We have

∂

∂S0
E[Φ(ST )] =

1
S0

E[Φ(ST )LT ],

where

LT =
2θ
∫

∞

0 g(s) f 2(s)dγs

(θ
∫

∞

0 g(s) f (s)dγs + τ
√

T η)2
+

∫
∞

0 f (s)dγs−T
∫

∞

0 f (s)ds+ηΘ

θ
∫

∞

0 g(s) f (s)dγs + τ
√

T η
.

(ii) (sensitivity with respect to θ ). We have

∂

∂θ
E[Φ(ST )] = E

[
Φ(ST )

(
LT

∫
∞

0
g(s)dγs−

1
HT

∫
∞

0
g(s) f (s)dγs

)]
+T S0

∂c
∂θ

(θ ,τ)
∂

∂S0
E[Φ(ST )],

where HT = θ

∫
∞

0
g(s) f (s)dγs + τ

√
T η .

(iii) (Theta - sensitivity with respect to τ). We have

∂

∂τ
E[Φ(ST )] = E

[
Φ(ST )LT

√
T
(

Θ − η

HT

)]
+T S0

∂c
∂τ

(θ ,τ)
∂

∂S0
E[Φ(ST )].

(iv) (Gamma - second derivative with respect to S0). We have

∂ 2

∂S2
0
E[Φ(ST )]

=
1
S2

0
E
[

Φ(ST )

(
(LT )

2− 1
HT

(
IT HT −2(KT )

2

(HT )3 +
NT HT −MT KT

(HT )2

))]
− 1

S0

∂

∂S0
E[Φ(ST )],

where

KT = 2θ

∫
∞

0
g(s) f 2(s)dγs, MT =

∫
∞

0
f (s)dγs−T

∫
∞

0
f (s)ds+ηΘ ,

and

IT = 6θ

∫
∞

0
g(s) f (s)3dγs, NT =

(∫
∞

0
f (s)dγs−T

∫
∞

0
f (s)ds+ηΘ

)2

.
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Next we state two lemmas which are needed for the proof of Theorem 1.

Lemma 1. Assume that E[e2γZT ]<∞ for some γ > 1. Let f :R→ (0,a) be a positive
function and λ ∈ (0,ε) for ε < 1/a such that (10) holds. Fix η > 0 and suppose that
one of the following conditions holds:

(i) The density function of YT =
∫

∞

0 g(s)dγs decays exponentially, or

(ii) E
[
e2γ(1+θδ )YT

]
< ∞ for all δ > 0.

Let also

S(λ f )
T = S0 exp

(
θ

∫
∞

0

g(s)
1−λ f (s)

dγs + τ
√

T (Θ +ηλ )+ZT + c(θ ,τ)T
)
,

and

H(λ f )
T =

∂

∂λ
logS(λ f )

T = θ

∫
∞

0

g(s) f (s)
(1−λ f (s))2 dγs + τ

√
T η , HT = H(0)

T ,

and

K(λ f )
T =

∂

∂λ
H(λ f )

T = 2θ

∫
∞

0

g(s) f 2(s)
(1−λ f (s))3 dγs, KT = K(0)

T .

Then we have the L2(Ω)-limits

lim
λ→0

S(λ f )
T H(λ f )

T = ST HT and lim
λ→0

K(λ f )
T

(H(λ f )
T )2

=
KT

(HT )2 .

Proof. For any λ ∈ (0,ε), we have

sup
λ∈(0,ε)

E
[
|S(λ f )

T H(λ f )
T |2γ

]
≤C1E

[
e2γτ

√
TΘ

]
E
[
e2γZT

]
× sup

λ∈(0,ε)
E

[(
θ

∫
∞

0

g(s) f (s)
(1−λ f (s))2 dγs + τ

√
T η

)2γ

exp
(

2γ

∫
∞

0

g(s)
1−λ f (s)

dγs

)]
≤ C1E[e2γτ

√
TΘ ]E[e2γZT ]

× sup
λ∈(0,ε)

(
a

(1−λa)2

)2γ

E

[(∫
∞

0
g(s)dγs + τ

√
T η

)2γ

exp
(

2γθ

1−λa

∫
∞

0
g(s)dγs

)]
≤ C1E[e2γτ

√
TΘ ]E[e2γZT ]

×
(

a
(1− εa)2

)2γ

E

[(∫
∞

0
g(s)dγs + τ

√
T η

)2γ

exp
(

2γθ

1− εa

∫
∞

0
g(s)dγs

)]
,

where C1 is a positive constant. Under condition (i) or (ii) above we have

E
[
Y 2γ

T exp
(

2γθ

1− εa
YT

)]
≤ E

[
exp
(

2γ

(
1+

θ

1− εa

)
YT

)]
< ∞,
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and similarly we have E
[
e

2γθ

1−εaYT
]
< ∞. Finally, we have E[e2γZT ] < ∞ by assump-

tion, and it is clear that E[e2γτ
√

TΘ ] < ∞. Then |S(λ f )
T H(λ f )

T | is L2γ(Ω)-integrable,
hence (S(λ f )

T H(λ f )
T )2 is uniformly-integrable since γ > 1. Therefore, we have proved

that S(λ f )
T H(λ f )

T converges to ST HT in L2(Ω) as λ → 0.

Next, for any λ ∈ (0,ε) we have

sup
λ∈(0,ε)

E[|K(λ f )
T /(H(λ f )

T )2|2γ ]≤ sup
λ∈(0,ε)

E

[((
2θ

τ
√

T η

)∫
∞

0

g(s) f 2(s)
(1−λ f (s))3 dγs

)2γ
]

≤
(

a2

(1−λa)3

)2γ

E

[(∫
∞

0
g(s)dγs

)2γ
]

sup
λ∈(0,ε)

∣∣∣∣ 2θ

τ
√

T η

∣∣∣∣2γ

≤
(

a2

(1− εa)3

)2γ

E

[(∫
∞

0
g(s)dγs

)2γ
]∣∣∣∣ 2θ

τ
√

T η

∣∣∣∣2γ

,

since E
[
(
∫

∞

0 g(s)dγs)
2γ
]

is finite under Condition (i) or (ii) above. Therefore

(K(λ f )
T /(H(λ f )

T )2)2 is uniformly-integrable since γ > 1, and this shows that K(λ f )
T /(H(λ f )

T )2

converges to KT/(HT )
2 as λ → 0 in L2(Ω). �

Lemma 2. Assume that E[e2γZT ] < ∞ for some γ > 1 and that (10) holds. Suppose
in addition that one of the following conditions holds:

1. The density function of
∫

∞

0 g(s)dγs decays exponentially;

2. E
[∣∣∣e2γ(1+θδ )YT

∣∣∣]< ∞ for all δ > 0, where YT =
∫

∞

0 g(s)dγs;

then for Φ ∈ C 1
b (R+,R) it holds that

(i) E
[
Φ
′(ST )ST HT

]
= E

[(∫
∞

0
f (s)dγs−T

∫
∞

0
f (s)ds+ηΘ

)
Φ(ST )

]
,

(ii) E[Φ ′(ST )ST ] = E[Φ(ST )LT ],

(iii) E
[

Φ
′(ST )ST

∫
∞

0
g(s)dγs

]
=E

[
Φ(ST )

(
LT

∫
∞

0
g(s)dγs−

1
HT

∫
∞

0
g(s) f (s)dγs

)]
,

(iv) E[Φ ′(ST )ST BT ] =
√

TE
[

Φ(ST )LT

(
Θ − η

HT

)]
,

(v) If in addition Φ ∈ C 2
b (R+,R) and (10) is satisfied then we have

E[Φ ′′(ST )(ST )
2]+E[Φ ′(ST )ST ]

= E
[

Φ(ST )

(
(LT )

2− 1
HT

(
IT HT −2(KT )

2

(HT )3 +
NT HT −MT KT

(HT )2

))]
.

Proof. We have

E[(Φ(ST ))
2] ≤ 2E[(Φ(ST )−Φ(S0))

2]+2E[(Φ(S0))
2]
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≤ 2E[(Φ(S0))
2]+2

∫ 1

0
E[(Φ ′(rST +(1− r)S0))

2(ST −S0)
2]dr

< ∞,

since Φ ∈C1
b(R+;R). As for (i) we have

E
[
Φ(S(λ f )

T )
]
= E

[
dPλ f

dP
∣∣FT

Φ(ST )

]
, (11)

where we define the probability measure Pλ f via its Radon-Nikodym derivative

dPλ f

dP
∣∣FT

=
eλ
∫

∞
0 f (s)dγs

E[eλ
∫

∞
0 f (s)dγs ]

eληΘ

E[eληΘ ]
= eλ

∫
∞
0 f (s)dγs+T

∫
∞
0 log(1−λ f (s))ds+ληΘ−λ 2η2/2,

where f :R→ (0,a) and λ ∈ (0,ε). In this way the GGC random variable
∫

∞

0 g(s)dγs

and the Gaussian random variable Θ under Pλ f are transformed to
∫

∞

0
g(s)

1−λ f (s)dγs and
Θ +ηλ under P.

First we prove that
∂

∂λ
E
[
Φ(S(λ f )

T )
]

exists and equals the left hand side of (i).

For every ε ∈ (−λ ,λ ) we have

Φ(S(ε f )
T )−Φ(ST )

ε
=
∫ 1

0
Φ
′(S(rε f )

T )S(rε f )
T H(rε f )

T dr,

and by the Cauchy-Schwarz inequality we get

E
[∣∣∣∣1ε (Φ(S(ε f )

T )−Φ(ST ))−Φ
′(ST )ST HT

∣∣∣∣] (12)

≤
∫ 1

0
E[|Φ ′(S(rε f )

T )S(rε f )
T H(rε f )

T −Φ
′(ST )ST HT ]dr

≤
∫ 1

0

√
E[(Φ ′(S(rε f )

T ))2]

√
E[(S(rε f )

T H(rε f )
T −ST HT )2]dr

+
∫ 1

0

√
E[(Φ ′(S(rε f )

T )−Φ ′(ST ))2]
√
E[(ST HT )2]dr.

From the boundedness and continuity of Φ ′(S(ε f )
T ) with respect to ε in L2(Ω), we

have
E[(Φ ′(S(ε f )

T ))2]< ∞ and lim
ε→0

E[(Φ ′(S(ε f )
T )−Φ

′(ST ))
2] = 0.

By Lemma 1 we get that S(λ f )
T H(λ f )

T converges in L2(Ω). Finally, we take the limit

on both sides of (12) as ε → 0. Next we prove that
∂

∂λ
E

[
dPλ f

dP
∣∣FT

Φ(ST )

]
exists
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and equals the right hand side of (i).

For every ε ∈ (−λ ,λ ) the Cauchy-Schwarz inequality yields

E

[∣∣∣∣∣1ε
(

dPε f

dP
∣∣FT
− dP0

dP
∣∣FT

)
Φ(ST )−

(∫
∞

0
f (s)dγs−T

∫
∞

0
f (s)ds+ηΘ

)
Φ(ST )

∣∣∣∣∣
]

≤
√
E [(Φ(ST ))2]

E

√√√√√
(1

ε

(
dPε f

dP
∣∣FT
− dP0

dP
∣∣FT

)
−
(∫

∞

0
f (s)dγs−T

∫
∞

0
f (s)ds+ηΘ

))2
.

It is then straightforward to check that E[|Φ(ST )|2]< ∞ and

1
λ

(
exp
(

λ

∫
∞

0
f (s)dγs +T

∫
∞

0
log(1−λ f (s))ds+ληΘ −λ

2
η

2/2
)
−1
)

converges to ∫
∞

0
f (s)dγs−T

∫
∞

0
f (s)ds+ηΘ

in L2(Ω) as λ tends to 0 since λ−1(eλ
∫

∞
0 f (s)dγs − 1) converges to

∫
∞

0 f (s)dγs in
L2(Ω) as λ → 0. We conclude by taking the limit on both sides as λ → 0.

For (ii) we start with the identity

E

[
Φ(S(λ f )

T )

H(λ f )
T

]
= E

[
dPλ f

dP
∣∣FT

Φ(ST )

HT

]
.

First we prove that
∂

∂λ
E

[
Φ(S(λ f )

T )

H(λ f )
T

]
exists and equals the left hand side of (ii).

For every ε ∈ [−λ ,λ ] we have

1
ε

(
Φ(S(ε f )

T )

H(ε f )
T

−
Φ(S(0)T )

HT

)
=
∫ 1

0

Φ ′(S(rε f )
T )S(rε f )

T (H(rε f )
T )2−Φ(S(rε f )

T )K(rε f )
T

(H(rε f )
T )2

dr,

and by the Cauchy-Schwarz inequality we get

E

[∣∣∣∣∣1ε
(

Φ(S(ε f )
T )

H(ε f )
T

− Φ(ST )

HT

)
− Φ ′(ST )ST (HT )

2−Φ(ST )KT

(HT )2

∣∣∣∣∣
]

(13)

≤
∫ 1

0
E

[∣∣∣∣∣Φ ′(S(rε f )
T )S(rε f )

T (H(rε f )
T )2−Φ(S(rε f )

T )K(rε f )
T

(H(rε f )
T )2

−
Φ ′(ST )S

(0)
T (HT )

2−Φ(ST )KT

(HT )2

∣∣∣∣∣
]

dr
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≤
∫ 1

0

√
E[(Φ ′(S(rε f )

T ))2]

√
E[(S(rε f )

T −ST )2]dr

+
∫ 1

0

√
E[(Φ ′(S(rε f )

T )−Φ ′(ST ))2]
√
E[(ST )2]dr

+
∫ 1

0

√
E[(Φ(S(rε f )

T ))2]

√
E[(K(rε f )

T /(H(rε f )
T )2−KT/(HT )2)2]dr

+
∫ 1

0

√
E[(Φ(S(rε f )

T )−Φ(ST ))2]
√
E[(KT/(HT )2)2]dr.

We have shown E[(Φ(ST ))
2]< ∞ in the proof of (i). Then

E[(Φ(S(ε f )
T ))2]≤ 2E[(Φ(S(ε f )

T )−ST )
2]+2E[(Φ(ST ))

2]

≤ 2ε
2
∫ 1

0
E[(Φ ′(S(rε f )

T )S(rε f )
T H(rε f )

T )2]dr+2E[(Φ(ST ))
2]

≤ 2ε
2 sup

x∈R
|Φ ′(x)|2 sup

|ε|≤λ

E[(S(ε f )
T H(ε f )

T )2]+2E[(Φ(ST ))
2]< ∞,

where the Cauchy-Schwarz inequality and the Fubini theorem have been used for
the second inequality. The convergence of S(ε f )

T H(ε f )
T as ε → 0 in L2(Ω) has been

proved in Lemma 1. Note that E[(Φ(S(ε f )
T ))2]< ∞ also implies

E[(Φ(S(ε f )
T )−Φ(ST ))

2]→ 0 as ε → 0.

By Lemma 1, we get K(ε f )
T /(H(ε f )

T )2 converges to KT/(HT )
2 as ε → 0 in L2(Ω).

Taking the limit on both sides of (13) as ε → 0.

Next, we prove that
∂

∂λ
E

[
dPλ f

dP
∣∣FT

Φ(ST )

HT

]
exists and is equal to the right hand

side of (ii). For all p > 0 we have

E[(H(λ f )
T )−2p] =

∫
∞

0

(
θ

∫
∞

0

g(s) f (s)
(1−λ f (s))2 dγs + τ

√
T η

)−2p

f1(y)dy< (τ
√

T η)−2p,

where f1 is the density function of
∫

∞

0
g(s) f (s)

(1−λ f (s))2 dγs. Therefore, the moment is uni-
formly bounded.

We conclude as in the second part of proof of (i). The proof of (iii)− (iv) is
similar to that of (ii). As for (iii) we have

E

[
Φ(S(λ f )

T )

H(λ f )
T

∫
∞

0

g(s)
1−λ f (s)

dγs

]
= E

[
dPλ f

dP
∣∣FT

Φ(ST )

HT

∫
∞

0
g(s)dγs

]
.

For the first part, the existence of the derivative can be obtained as
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E

[(∫
∞

0

g(s)
1−λ f (s)

dγs−
∫

∞

0
g(s)dγs

)2
]
≤ E

[(
λ

∫
∞

0
g(s)

f (s)
1−λ f (s)

dγs

)2
]

≤ E

[(
λ

a
1−λa

∫
∞

0
g(s)dγs

)2
]

≤ ∞.

Similarly,
∫

∞

0

g(s) f (s)
(1−λ f (s))2 dγs converges to

∫
∞

0 g(s) f (s)dγs in L2(Ω) as λ→ 0. The

second part is almost the same as (i) by uniform boundedness of H(λ f )
T .

For (iv) we have

(Θ +ηλ )E

[
Φ(S(λ f )

T )

H(λ f )
T

]
=ΘE

[
dPλ f

dP
∣∣FT

Φ(ST )

HT

]
.

For the first part, the existence of the derivative follows from the fact that Θ has a
Gaussian distribution. The second part is proved similarly.

Finally, for (v), define Ψ(x) = Φ ′(x)x, and by the result of (ii) we have

E[Φ ′′(ST )(ST )
2] = E[(Ψ ′(ST )−Φ

′(ST ))ST ] = E[Ψ(ST )LT ]−E[Φ ′(ST )ST ]

Hence, we obtain the desired equation by differentiating

E

[
Φ(S(λ f )

T )
L(λ f )

T

H(λ f )
T

]
= E

[
dPλ f

dP
∣∣FT

Φ(ST )
LT

HT

]

at λ = 0. �

Now we can prove Theorem 1.

Proof. The proof of Theorem 1 uses the same argument as in the proof of Corol-
lary 3.6 of [9]. The only difference is that ST is a variance-gamma process in the
proof of Corollary 3.6 of [9], while ST is a variance-GGC process in this proof.

When Φ ∈ C 2
b (R+,R), all four formulas in Theorem 1 are direct consequences

of (ii)− (v) in lemma 2, and we now extend this result to the class D(R+;R). In
general, in order to obtain an extension to Φ in a class ℜ1 of functions based on
an approximating sequence (Φn)n∈N in a class ℜ2 ⊂ℜ1, it suffices to show that for
each compact set K ⊂ R we have

sup
S0∈K
|E[Φn(ST )]−E[Φ(ST )]| → 0 as n→ ∞, (14)

and
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lim
n→∞

sup
S0∈K

∣∣∣∣ ∂

∂S0
E[Φn(ST )]−

1
S0

E[Φ(ST )LT ]

∣∣∣∣= 0. (15)

The extension is then based on the above steps, first from C 2
b (R+,R) to Cc(R+,R),

then to Cb(R+,R) and to the class of finite linear combinations of indicator func-
tions on an interval of R. Finally the result is extended to the class of functions Φ of
the form Φ =Ψ ×1A where Ψ ∈ CL(R+,R) and A is an interval of R+. This shows
that (14) and (15) are satisfied, and the details of each step are the same as in the
proof of Corollary 3.6 of [9]. �
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