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1 Introduction

Variable annuity benefits offered by insurance companies are usually protected via
different mechanisms such as Guaranteed Minimum Maturity Benefits (GMMBs) or
Guaranteed Minimum Death Benefits (GMDBs). The computation of the correspond-
ing risk measures such as value at risk and conditional tail expectation is an important

issue for the practitioners in risk management.

We work in the standard model in which the underlying equity value (S;)er, is

modeled as a geometric Brownian motion
S, = SperttoBr teRy, (1.1)

with constant drift and volatility parameters p and o respectively, where (By)er, is

a standard Brownian motion.

Given an insurer continuously charging annualized mortality and expense fees at the
rate m from the account of variable annuities, the fund value F; of the variable annuity

is defined as
St
F, .= Fpe ™=
t 0€ So

= Fyelr—mittoBe e R,

and the margin offset income M} is given by
M? :=m,F, = my, Fyelr—mt+oBe teR,, (1.2)

where m, is replaced by m, in the GMMB model, and by my in the GMDB model.

The GMMB and GMDB riders provide minimum guarantees to protect the invest-
ment account of the policyholder. Namely, denoting by 7, the future lifetime of a

policyholder at the age x, the future payment made by the insurer is
(G = Fr)" lir>m
at maturity 7" for GMMBs, and
(™G — F,) e
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at the time of death of the insured for GMDBs, where G is the guarantee level ex-
pressed as a fraction of the initial fund value Fj, d is a roll-up rate according to which

the guarantee increases up to the payment time.

Variable Annuities with embedded guarantees can be priced by the Monte-Carlo
method or PDE discretization, however those methods are generally computation-
ally demanding and a precise estimation of risk measures is difficult with classical
Monte Carlo simulation or grid approximation, cf. e.g. [BKROS§] for a general frame-
work. In addition, a high level of precision up the 4th of 5th significant digit can
be commonly required. On the other hand, faster computational methods based on
analytical expressions have recently been introduced in [FV12], [FV14] for the com-

putation of risk measures of GMDBs and GMMBs.

In this framework, the evaluation of quantile risk measures and conditional tail ex-

pectations of the net liabilities
TNATx
Lo = e (G — Fr) 1gpomy / e T MEds (1.3)
0

of GMMBs relies on the knowledge of the probability density function of the time in-
TNTx
tegral / e "*MZds of the geometric Brownian motion (1.2). The joint probability
0

density function of ( fOT Sidt, By + uT'/ a) has been computed in [Yor92] as

T MT
P (/ et Bsds € dy, By +—— € dz) (1.4)
0 20
oz oz/2 2
= geNZ/O'_MQT/Q exp _21 +e 0 4e / , g T @dzj
2 o2y o’y ' 4 Y

y >0, z € R, where (v, 7) denotes the function defined as
,Ueﬂz/(QT)

V2m3T Jo

The marginal probability density of fOT Sydt, called the Hartman-Watson distribution,

O(v,7) = e €/ emveoshE Ginh (&) sin (€ /7) dE, v, T > 0.

has been used in [F'V12] for the evaluation of the risk measures of the net liabilities

(1.3) by analytic methods. This approach results into double integral expressions



for the cumulative distribution function of the time integral fOT Sydt using Hartman-
Watson densities and spectral expansions on the one hand, and on numerical Laplace
transform inversion in relation with Asian option pricing, cf. [CS04], [Yor92]. It also

allowed the authors to deal with the risk measures of the net liabilities
T N7y
Ly=e ("G — F, ) 1inery — / e " Mlds
0
of GMDBEs, also written in discrete time as

) s ()
Lé") = " (e

T

n T/\Iic(cn)
—rs s d
G — FH;n)) 1{n<”)<T} - /0 e MS dS,

when n is large enough, where £ := L[n7,] and [a] is the integer ceiling of a > 0.

More computationally efficient expressions for those risk measures have been presented

in [FV14] based on identities in law for the geometric Brownian motion with affine
drift
t St
St+a/ _dS, t€R+,
o s

where a > 0. This approach allowed the authors to replace double integrals by sin-
gle integrals of Whittaker functions, which significantly reduces computation times.
These expressions are also subject to approximations by series instead of integrals,
cf. Proposition 3.3 in [FV14], and they can be simplified to closed-form solutions us-

ing Green’s functions, cf. Proposition 3.4 therein, further reducing computation times.

In this paper we propose to use moment matching for the computation of the risk
measures of GMMBs and GMDBs. This allows us to derive single integral approxi-
mations which are significantly faster than the double integral expressions of [FV12],
while approaching the performance of the single integral and series approximations
of [FV14]. Moreover, we show that conditional moment matching can be applied to
compute the risk measures of the GMDB and GMMB riders with Additional Earnings
(AE), which cannot be treated via the approach of [FV14].

Moment matching in option pricing has been introduced for Asian options in [Lev92],

[TW92] based on the lognormal approximation, and conditional moment matching
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has been used in [Cur94], [DLV04], [DDV10] for Asian and basket options. Here we
apply the stratified approximation method of [PY16] to GMDBs and GMMBs, which
also allows us to take into account additional earning features as it is based on con-

ditioning with respect to the terminal value of geometric Brownian motion.

We proceed as follows. After recalling the considered model and the relevant risk
measures in Sections 2 and 3, we present the conditional moment matching technique
in Section 4. This technique is used for the approximations of value at risk and con-
ditional tail expectation presented in Section 7 which presents numerical simulations
that illustrate the improvement in speed of the proposed method, and an application
to GMMBs and GMDBs with additional earnings. Section 6 is devoted to the compu-
tation of sensitivities of the value at risk and conditional tail expectation of GMMBs
and GMDBs. The appendices Sections A and B contain the proofs of Propositions 5.1,

5.2 and 5.3, and additional computations for the sensitivities of Section 6.

2 GMMBs with additional earnings

In order to reduce incentives to lapse and reenter of the variable annuities, an Ad-
ditional Earnings (AE) feature has been added to the basic riders, by increasing the
benefit payout by a share p of the policyholder’s variable annuities earnings, capped
by the maximum additional payout C, cf. e.g. [MZ16] for details. Taking p = 0
recovers the plain GMMB and GMDB riders.

For a GMMB rider with AE feature, an extra payment
min (C, p(Fr — G)¥)

will be paid to the GMMB policyholder in addition to the guaranteed benefit, thus
the net liability (1.3) of the GMMB rider with AE feature becomes

TATy
Lo:= (e7(G = Fr)t + e min (C, p(Fr — G)")) Liry>1y — / e " MJds.
0

Risk measures on the net liability L can still be expressed in terms of Hartmann-

Watson distributions and double integral expressions as in [FV12], using the joint
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distribution of (Sr, fOT Sids), cf. [Yor92]. However, the closed form expressions of
[FV14] do not apply to this setting as they rely on the particular distributional prop-
erties of geometric Brownian motion with affine drift. For this reason, we propose
to use conditional moment matching in order to deal with additional earnings while
significantly improving computation speed in comparison with double integral expres-

sions.

The conditional moment matching method applies more generally to the computation
of risk measures for variable annuities whose guarantees depend on the fund value at

maturity or at the time of death of the insured, i.e. with liabilities of the form

Lo :== f(F,) —/ e " Mds,
0

where 7 is the maturity time or the death time of the insured, whichever comes first,
and F; is the stochastic resource of the guarantee benefit function f(-). Such exam-
ples include the guaranteed minimum income benefits (GMIB) besides the GMMB
and GMDB discussed in this paper. However, they do not include guaranteed mini-
mum withdrawal benefits (GMWBs) whose guaranteed benefit functionals depend on

the fund values until maturity.

As negative liabilities will not be considered in this paper, we restrict the risk tolerance
level a to be greater than the probability &, of non-positive liability, which is defined
for GMMBs as

bm =P(Lo<0)=1—7p,P(Lo> 0|7, >T)=1—-1p,P,(T,G,0),

where 7p, is the probability that a policyholder at age x will survive T" units of time,

x,T > 0, and for w > 0, the key quantity P,(7, G, w) is defined as

T
P,(T,G,w):=P <e_rT(G — Fr)* + e min (C, p(Fr — G)") — / e "Mids > w) .
0
(2.1)

In the absence of additional earnings we will use
T
Py(T,G,w):=P <erT(G — Fr)t — / e " Mids > w) :
0

cf. Proposition 3.3 of [FV12].



Value at Risk for GMMBs

The Value at Risk (VaR)
Va(Lo) :==inf {y : P(Ly <y) > o}

with risk tolerance level a > &, for the net liability Ly of GMMB is determined

implicitly from the relation
l—a= TpxPp<T> G, Va<LO))' (22)

Conditional Tail Expectation for GMMBs

The Conditional Tail Expectation (CTE)
CTEQ<L0) = E[LO | Lo > Va(Lo)]

at the level of risk tolerance level a > &, for the net liability L of the GMMB with
AE feature is given by

CTE.(Lo) = 1”’1 Z(T, G, Va(Lo)). (2.3)

—

where

T

Z,(T,G,w) :=E {(e_TT(G — Fr)* 4+ e min(C, p(Fr — G)*) — /

e_rsMSedS) :H-AT(w,G):| ,
0

(2.4)

w,T >0, and 14, () is the indicator function of the event
T
Ar(w,G) = {e_TT(G — Fpr)" +e ™ min(C, p(Fr — G)T) — / e ""Mids > w} .
0
In the absence of additional earnings we will use

T
Zo(T,G,w) =E [(eTT(G — FT)+ — / e”Mfds) ﬂ{e—TT(GFT)"'fOTe—’“SMgds>w}:| )
0

cf. Proposition 3.4 of [FV12].



3 GMDBs with additional earnings

In the case of GMDBs the extra payment is
min (C, p(F,, — Ge’™)")
and the net liability of the GMDB rider with AE feature becomes
, n TNATe
Ly:=¢e"™ ((e‘mG — F.)" +min (C, p(F,, — Ge‘m)J“)) Lir, <1y — / e " Mds.
0

If the benefits of GMDBs with AE feature are payable on a discrete-time basis, their
net liability is

n (™ (m) + . RONa
L((] ) o= e ® (<65 G — Fn(z”)> -+ min (p(FK;n) — Geé z > ,C)) ﬂ{n;")gT}

T/\f{ém
— / e " M2ds.
0

The probability of non-positive liability for GMDB riders with AE feature is given by

& = P(LY” <0)
[nT]
= 1- Z P(/ﬁi") = /{;/n)IF’(Lé") >0 | KW = k/n)
k=1

[T

= 1- Z (k1) /nPz 1/nGet (k1) Po(k/n, /"G 0),
)

where P,(k/n, %M@ w) is defined in (2.1), and 1/na+(k—1)/n is the probability that
a policyholder at age of x 4+ (k — 1)/n will die in 1/n periods.

Value at Risk for GMDBs

The value at risk V,, (L{") with @ > & for the net liability of the GMDB is similarly

given implicitly from the relation

[T
l—a= Z (k—1)/nPzx 1/nq93+(k—1)/npp(k/n, RAERTA (L(()"))), (3.1)
k=1

cf. e.g. Proposition 3.9 of [FV12] when p = 0.
The computation of P,(7,G,w) for any 7" > 0 and w € R is essential in order to
estimate the risk measures V,,(Lg) and V, (L(()")).
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Conditional Tail Expectation for GMDBs

The conditional tail expectation
CTE,(Ly") == E [L§" | LY > Vi (L§")]

with risk tolerance level a > &; for the net liability L(()") of the GMDB with AE feature

is given by
| T
CTE, (L") = — > Z,(k/n, G Vo (L§)) (s = k/n),  (3.2)
k=1

where Zp(k/n,ek‘s/”G, VQ(L(()"))) is defined by (2.4) for any k,n > 0.

4 Conditional moment matching

In this section we propose a conditional moment matching approximation for the es-
timation of the key quantities P,(7, G, w) and Z,(T, G, w) by approaching the prob-

ability density function of the time integral

T 5 1 T
A ::/ S,dt = /e_”M’”dt
T o t Fomx o t

where S, := elw—m=n)ttoBe ¢ ¢ R, , using a gamma or lognormal distribution, condi-

tionally to the terminal value Sy = 2, as in [PY16].

The basic idea of the lognormal approximation is that, since A7 is the time integral
of lognormal random variables, it is natural to try approximating it using a lognor-
mal distribution. The gamma approximation provides a possible alternative to the
lognormal approximation which is motivated by the similarities between the gamma

and lognormal densities.

Conditional gamma approximation

Under the gamma approximation we have

Fagigr=2 (3300, v7) = e 2>, (4.1)
(0z)r T



where
r,:= / y e vdy, v >0,
0

is the gamma function, and 07, 17 are estimated respectively as

z z

g 2 (b ) e OF
T= 2\ gz z ar, T g
T

by matching the first and second conditional moments of Ay given Sy = z to those of
a gamma distribution, where

1 log 2z 1 log 2 1
AL ) —Vao?T | - — —Vo?T
o= g (* (e 277) -+ (G~ 2¥77))

1 log 2 log 2
bz = ) +VU2T)—CI>( — 02T>),
T 245 ( (\/02T Vao?T

and

Po = b o (07T /2+l0g 2)%/(20°T) G = 1 o~ (02T +log 2)?/(20°T)
T V2n0lT ’ T V2n0lT ’
cf. Proposition 3.1 of [PY16].

Conditional lognormal approximation

Here we approximate the conditional probability density of A given Sr = z by the
lognormal density function with parameters (—p4(0%)?T/2, (02)?T) as
1
z Z\2
Sr=z €T3 » \O ~N
fAT|ST_ ( U ( T) ) ZL‘U%W
where 15 and o7 are also derived by conditional moment matching by taking

. 1 2 (b . 2 .
(02)? = T log ( (—Z —-1- z)) and p7:=1-— 02T log a7,

247
o°ap T

e~ (i (07)*T/2+log2)?/(2(07)°T) (4.2)

cf. Proposition 3.2 of [PY16].

The next Figure 1, plotted with the parameters Sy = 4%, u — m —r = 0, and
o = 30%, compares the gamma and lognormal density approximations (4.1) and
(4.2) to the integral density expression (1.4) of Ap. It shows in particular that the
lognormal conditional approximation tends to provide a better match of density than
the gamma approximation, which can naturally be expected as S; itself is lognormally

distributed.
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Figure 1: Lognormal vs gamma density approximations.

5 Conditional approximations of VaR and CTE
Conditional gamma approximation

Using the gamma approximation (4.1) we will evaluate the key quantities P,(T', G, w)
in (2.2) and Z,(7T,G,w) in (2.3) by single numerical integrations in Propositions 5.1
and 5.2, which will significantly reduce the computation time of the VaR and CTE of
GMMBs and GMDBs with and without AE features.

Proposition 5.1 Under the conditional gamma approximation, the key quantity P,(T, G, w)
in the calculation (2.2) of VaR can be estimated by the single integrals

e TG w

oL e TG —w — 2F,
VT Fo(%m%

P,(T,G,w) %/

0

) 1o o o

5 (pG+C) Fy— T G — o0 —T’TC_
+/) o L. (pz o—e"p w) ng(z)derL T, (u) fa,(2)dz,

1%
TG4 T F ezm —rT F ezm
e oFo w 0 T T T, (pG—‘rC) 0 T T

where
L (c(u=m—r)T+og2)?/(20°T)

Tt = o ’

is the lognormal probability density function of Sy, and

x>0,

1

y
Ty(y) :== F_/ t*te7tdt, y >0,
v Jo

18 the normalized lower incomplete gamma function.

11



Proposition 5.1 is proved in the Appendix Section A. Without additional earnings,

we replace (5.1) with the approximation

T w

I e_rTG—w_ZF(]
Py(T,G,w %/ F,,z( > & (2)dz
(1.Go) ~ [ () )

Proposition 5.2 Under the conditional gamma approxzimation, the key quantity Z,(T, G, w)

in the CTE formula (2.3) can be estimated by the single integrals
Z,(T,G,w) ~ (5.3)
e Tg_w T
Fo e TG e "TG-w-2 F e " TG-w-2F,
F —z |l | ——— m.07 v
0/0 (( o Z> ! ( Fob7m, ) i ( Fo T Js

e-'rT w ’V‘T w

+F 0 (z-e_TTG>r e A 07072 P-g) &

0 pe T Gtw P FO ’r (%me T VTJrl G%mx

pEo

*° e TCw v e TC-w
—i—e‘TTC'/ I': ( )f (z )dz—Fomz/ OZvil )z 1 < )
%(p@rc) RANG Y o i?Z (pG+C)T e 07m. Fo

Proposition 5.2 is proved in the Appendix Section A. In the absence of additional

T

earnings, i.e. when p = 0, we replace (5.3) with the approximation

ZO(T7 G7 'LU) ~

T w

Fo e_TTG e_TTG_w_ZFO e—rTG_w_zFO
F - Fyz -_— . xaz zFVZ ettt o) ~ d
L () () it ()

Conditional lognormal approximation

In Proposition 5.3 we use the lognormal approximation (4.2) to evaluate the key quan-

tity P,(T, G, w) used in the compuation (2.2) of VaR, by single numerical integrations.

Proposition 5.3 Under the conditional lognormal approximation the key quantity

P,(T,G,w) in the calculation (2.2) of VaR can be estimated by the single integrals

e "G _w z (O'T) T

P(T.G,w) w/ Y i
0

+ log & go_“’_ZFO
Tz & (2)dz 5.4
e for (2 (54
pzFy—e~ T pG—w

T oz 2
+/pFO(pG+C) ﬂ%( T2) - + log Fomg
P

)
e T G+w U%ﬁ

230)

f3.(2)dz (5.5)
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z()

—l—l TT(pG-{—C)(I) UT\/T f3,(2)dz. (5.6)

Proposition 5.3 is proved in the Appendix Section A. Without additional earnings we

will use the approximation

" Taw 2 (0%)°T e "TG—w—zF
4 O | g e TCowz Ry
Py(T, G, w) ~ / oo 2 S fm ) g (2)dz
0 U%\/T

Similarly, applying (A.10) and the approximation

" logn  _ wh(e7)2T/24y)%
~ 2(c2)2T
/ Y apgr—Wdy = ——— / e “7) dy
0 oxNV 21T Jo

(oF )
_ o(1-Hi)E7)T 2 ((M - 2) + logn) 7 0> 0.

to (A.7), (A.8) and (A.9), we get the following approximation result of the key quantity
Z,(T,G,w) appearing in the CTE expression (2.3).

Proposition 5.4 Under the conditional lognormal approximation, the key quantity

Z,(T,G,w) in the CTE formula (2.3) can be estimated by the single integrals

ZP(T7 G7 U))

e_TTwa 2 ( z)2

o7)°T e TG—w—2zF
F L - 4 og S—=2—wW=ED
~ / ’ (e7TG — Fyz) @ fr & Fom, f3,(2)dz
0 oV T

e Ta—w 2 (0% ) TG —w—2F
-9 T 1 0
! UTﬁ

—rT
< (pG+C) 2 (0% pZFo e T pG—w
23] _ M Nz
+p/ Foz—e @) @ : fa (2)dz
Rt ( ) oiVT !
—rT
e (bG+0) z (UT) T pzFo—e""TpG—w
_Fomx/ ot o(1=13)(03)°T/2 g (7 = 2) *log Mo Fo fa (2)dz
7@7;?(;% oV T o
0
(07)*T e "TC—w
o0 7 —2)~L— +log
+eTC / i) i =2)7 mef | fo (2)dz
T (pG+O) orVT
w z _ (UT)2 —TC—w
- (pG+C) UTﬁ :
0

13



Proposition 5.4 is proved in the Appendix Section A. In the absence of additional
earnings we will use the approximation
ciTTG—w (O'Z 2

z )°T e "TG—w—2zFy
o B pr—5— + log gt

Zo(T, G, w %/ TG — Fyz) @ 0 5 (2)dz

o ) ; ( 02) T f3,.(2)

T

G ow (07)°T e "TG—w—2F

z o) | o e TGw—zRy
_ F(]mm/ o e(l_#%)(g%)QT/Z(I) <MT ) 2 +log Foma ng (Z)dZ
0 U%\/T

6 Calculation of sensitivities

In this section we show that the lognormal and gamma approximations can be used for
the approximation of sensitivities with respect to the parameters i, o, m,, and r. Such

formulas provide more stable alternatives to the use of finite difference approximations.

Sensitivity analysis for GMMBs

The sensitivity of the VaR of GMMBs with respect to u can then be estimated by

differentiating equation (2.2) as

0 0P, 0
= Vallo) = — —P,(T, G, w)}u= : 6.1
Svalto) = - (52 SR G (01
As for the sensitivity of the CTE of GMMBs with respect to pu, it can be similarly

@vam)l

estimated as

@CTEQ(LO) <8u o (T, G, W) jw=v,(Lo) + 8_(T G,V, (LO))&LV (Lo)>
TPz a
— 11— aalu (T G ’U))|w Va(Lo)
ps 0Z, oP, -1 5
1T_ - ——2(T, G, Vo (Ly)) (a (T,G,V, (Lo))> a—MPp@,(;,w)m:Va(Lo)_ (6.2)

Sensitivity analysis for GMDBs

The sensitivity of the VaR of GMDBs can be estimated by differentiating the equation
(3.1), as

-1

@VQ(L(()”)) = - Z (k=1)/nPz 1/nGz+(k—1)/n (k/n AR A ( ))
k=1
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[T

0 n
XY (k1) /b 1/nqx+<k—1)/na—upp(’f/n’G‘W G, w)|w:va(Lé">)’
k=1

and the sensitivity of their CTEs can be derived from (3.2) as

[nT]
a n
%CTE ( “1_a Z k/n Gelo/m, )|w Va (L("))P( = k/n)
+— ; =2 (k/n, Ge V(LY ))@VQ(LO YP(( = k/n).

In order to estimate %Pp(T, G,w) and %Zp(T, G, w), it suffices to replace the log-
normal density fz () in Propositions 5.1, 5.2, 5.3 and 5.4 with its derivative with

respect to u, i.e.
1
xo3V 2T

We refer to the Appendix Section B for the estimation of —(T G,w) and (T G,w)

(—(u —m — r)T + log ) e~ (- (w=m=r)T+log2)?/(20*T) z>0. (6.3

under the conditional gamma approximation in Propositions 5.1 and 5.2.

The sensitivities with respect to ¢ and r can be similarly computed as the sensitivity
with respect to u, while the sensitivity with respect to m, requires to differentiate
the incomplete Gamma function or the Gaussian cumulative distribution function. In
the absence of additional earnings, by differentiating (5.1) we find, in the conditional

gamma approximation,
0

omy
e Ta-

/ oo e TG —w—2Fy (e TG —w— 26\ _TTG w— zF, fo (2)d
- ex 2)dz
0 FV%FOH%mi Foe%mz P Foe%mx St ’

and, under the conditional lognormal approximation,
0
om.,

PO(T’ G7 w) ~

PO(Ta G7 ’U)) ~

2

—rT z)\2
G—w o T
e ( )

1 [ =+ 1ng

1
——/ exp | —= Foma f5.(2)dz
mgoz2rT Jo 2 oiNT ’

The derivatives %PP(T, G,w) and %ZP(T, G, w) with respect to m, can be simi-

larly computed in the case of additional earnings from Propositions 5.1, 5.2 5.3 and

5.4 as above.
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7 Numerical examples

In this section we illustrate the efficiency of the stratified approximation method in-
troduced in the previous sections. In order to compare the accuracy and computation
time of the stratified approximation with that of the existing methods, we use the
same model and products as in [FV12]. For GMMBs, the underlying asset of the
variable annuities is assumed to follow (1.1) with r = 4%, u = 9%, and o = 30%.
The variable annuities with GMMB and GMDB riders are designed for policyholders
of age 65 with the product parameters T = 10, m = 1%, and m, = 0.35%. The
future life time table is the published by US Social Security Administration (Bell and
Miller, 2005) in 2005, cf. Table 1 in [FV12]. The initial account value is set to be
Fy = 100, the guarantee level G and the risk measures VaR and CTE are represented

in percentages of initial account value.

| G/Fy=7% | [FVi2]! [FV14]F lognormal gamma
Vo / Fo 0* 0* 0* 0*
Voo / Fo 0* 0* 0* 0*
Vosu/ Fo 12.177731 | 12177734 | 12177230 | 12.177232
CTEgyy/Fo 6.911066* | 6.911064* | 6.911050* | 6.911062*
CTEgyy/ Fo 13.822132*% | 13.822127* | 13.822099* | 13.822124*
CTEgs59/Fo 23.283511 | 23.283517 | 23.283757 | 23.283801
| G/Fy =100% | [FV12]! [FV14]* lognormal gamma
Vaors/ Fo 0 0" 0" 0*
Voo / Fo 12.550369 | 12.550367 | 12.550349 | 12.550352
Vosa/ Fo 28.935733 | 28.935735 | 28.935231 | 28.935233
CTEgyy/Fo 16.208562* | 16.429038* | 16.429031* | 16.429049*
CTEgyy/ Fo 30.296490 | 30.296486 | 30.296445 | 30.296471
CTEgsy/ Fo 40.041515 | 40.041519 | 40.041758 | 40.041802
| G/Fy=120% | [FV12]! [FV14]F lognormal gamma
Vaorr/ Fo 0* 0* 0* 0*
Voo / Fo 25.956765 | 25.956768 | 25.956747 | 25.956752
Vs / Fo 42.342135 | 42.342136 | 42.341631 | 42.341633
CTEggy/Fo || 27.545146* | 27.333610* | 27.333606* | 27.333617*
CTEgyy/ Fo 43.702883 | 43.702887 | 43.702841 | 43.702872
CTEgsy/ Fo 53.447918 | 53.447919 | 53.448157 | 53.448202

Table 1: Risk measure estimates in % for the GMMB rider with different levels of risk
tolerance «.
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Table 1 presents the computation of VaR and CTE for the GMMB rider with different
of risk tolerance levels «, by the conditional lognormal and gamma approximations of
Propositions 5.1 and 5.3. We note that the stratified lognormal and gamma approxi-

mations yield the same results up to 4 decimal places, and that they agree with the

results of [FV12] and [FV14].

The algorithms are implemented in C++ with the PNL Library for special functions
and numerical integration routines, while the original implementations of [FV12] and
[FV14] for the inverse Laplace and Green function methods are using Maple. We
applied the Newton-Raphson method with precision of 5 decimal places for the root
search procedure to solve equations (2.2) and (3.1) for the computation of VaR for
GMMBs and GMDBs. The conditional tail expectations of net liabilities CTE, (L)
for GMMBs and CTE,(L™) for GMDBs are computed from

CTEQ(LO) — IE[LOIL{L0>O}] _ (1 _ gm) IE[LOE{LON)}] _ (1 - {m)CTEgm(LO)

l—« l1—« 11—«

as in [F'V12].

In Table 2 we compare the computation times of the stratified approximations for
the GMMB rider with the double integral approach of [FV12] and with the Green
function method in [FV14]. The method of [F'V14] is the fastest known analytical

method, however it does not cover the case of additional earnings considered in this

paper.

| Method | [FVI2]' | [FV14]* | lognormal | gamma |

Voo / Fo 2.6226s | 0.0023s 0.0119s | 0.0336s
CTEgo%/Fo || 0.1282s | 0.00016s | 0.0082s | 0.0064s

Table 2: Time comparison in seconds between the different methods using C.

The computation times are based on an implementation in C' on an Intel Corel i5
CPU (1.7GHz) and 4GB of RAM.

fInverse Laplace method (implemented in C).
tGreen function method (implemented in C).
*This value has been computed using L := max(Lg,0) when Ly yields a negative risk measure.
fInverse Laplace method (implemented in C).
*Green function method (implemented in C).
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The computation of risk measures for the GMDB rider is presented in Table 3. The
parameters of the products and the underlying asset (1.1) are the same as for GMMBs
except that here r = 7%, and the roll-up rate per annum is 6 = 6%. We take n = 1,
but one can also take n > 2 and apply the fractional age assumption in order to

consider payments more frequent than yearly payments.

[FV12]T

| G/Fy=7% | [FV14]F lognormal gamma
Vaors/ Fo 0" 0" 0" 0*
Voo / Fo 0* 0" 0" 0"
Vs / Fo 8.198224 8.198239 8.198215 8.194312
CTEgqy/Fo 7.018565* | 7.018559* | 7.018555* | 7.118478*
CTEqggy,/ Fo 14.037130* | 14.037118* | 14.037111* | 14.236956*
CTEgs9/Fo 26.965800 | 26.965792 | 26.965780 | 27.261278*
| G/Fy =100% || [FV12]T [FV14]F lognormal gamma
Vaore/ Fo 0* 0* 0* 0*
Voo / Fo 2.135087 2.135188 2.135182 2.069297
Vs / Fo 31.825680 | 31.825697 | 31.825660 | 31.821012
CTEgyy/Fo 16.871263" | 16.871439* | 16.871434* | 17.048815*
CTEgqy/ Fo 33.706317 | 33.706297 | 33.706289 | 34.048215
CTEgs59,/Fo 50.390319 | 50.3903583 | 50.390345 | 50.687882
| G/Fy=120% || [FV12] [FV14]F lognormal gamma
Vaors/ Fo 0* 0* 0* 0*
Voo / Fo 21.144542 | 21.144667 | 21.144658 | 21.076596
Vs / Fo 00.732692 | 50.732711 | 50.732661 | 50.727330
CTEgyy,/Fo 27.981319* | 27.978583* | 27.981355" | 28.216016*
CTEgyy,/ Fo 52.568651 | 52.568633 | 52.568625 | 52.909990
CTEgsy/Fo 69.140613 | 69.140653 | 69.140640 | 69.439727

Table 3: Risk measure estimates in % for the GMDB rider with different levels of risk
tolerance «.

The lognormal approximation appears the most precise and consistent when compared

with other methods, while the gamma approximation is not as accurate.

Table 4 presents the computation of VaR and CTE of net liabilities for GMMBs with

fInverse Laplace method (implemented in C).
tGreen function method (implemented in C).
*This value has been computed using Lé")* 1= max (Lé"’),()) when Lé") yields a negative risk

measure.
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AE feature. The VaR V(L) is computed from (2.2) given P,(T, G, V,(Ly)) approx-
imated by (5.1) under the gamma approximation, and by (5.4) under the lognormal
approximation. The CTE is similarly computed from (2.3) given Z,(T,G,w) eval-
uated as in Propositions 5.2 and 5.4. We take the risk tolerance level a = 90%,
G/Fy, = 100%, and C/Fy = 100%, 200%, 250% as in [MZ16], the other model and

product parameters being the same as above. The computation time for VaR and

CTE by stratified approximation is around 0.01 and 0.004 seconds respectively.

p=0.1 p=0.2 p=03
C/Fy =100% || lognormal gamma | lognormal gamma | lognormal gamma
Voo / Fo 36.1990 | 36.2035 | 53.5788 | 53.5398 | 58.1323 | 58.0785
CTEgo%/ Fo 46.9541 | 46.9517 | 57.5319 | 57.5290 | 60.1738 | 60.1956
p=0.1 p=0.2 p=0.3
C/Fy =200% || lognormal gamma | lognormal gamma | lognormal gamma
Voo / Fo 36.4298 | 36.4299 | 64.1508 | 64.1511 99.9247 | 99.9373
CTEgo%/ Fo 57.7870 | 57.7875 | 97.6804 | 97.6804 | 118.4403 | 119.8467
p=0.1 p=0.2 p=03
C/Fy =250% || lognormal gamma | lognormal gamma | lognormal gamma
Voo / Fo 36.4301 | 36.4302 | 64.1603 | 64.1604 | 100.4536 | 100.4544
CTEgo%/ Fo 59.4663 | 59.4668 | 106.9436 | 106.9436 | 138.5511 | 138.5772

Table 4: Risk measure estimates in % for the GMMB rider with AE feature and level of

risk tolerance oo = 90%.

The VaR VQ(L(()H)) and CTE of the net liabilities can be similarly calculated implicitly

from (3.1) for GMDBs.
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p=0.1 p=0.2 p=0.3
C/Fy =100% || lognormal  gamma | lognormal gamma | lognormal gamma
Voo / Fo 14.732510 | 14.718029 | 22.554267 | 22.546765 | 28.058254 | 28.054762
CTEgqy/Fo || 37.527729 | 37.786991 | 42.585388 | 42.792351 | 46.538218 | 46.708692
p=0.1 p=0.2 p=0.3
C/Fy =200% || lognormal  gamma | lognormal  gamma | lognormal  gamma
Voo / Fo 14.735675 | 14.721054 | 22.566120 | 22.558268 | 28.094065 | 28.089785
CTEgo%/Fo || 38.180667 | 38.439814 | 45.741347 | 45.948158 | 53.113941 | 53.284557
p=0.1 p =102 p=0.3
C/Fy = 250% || lognormal ~ gamma | lognormal  gamma | lognormal  gamma
Voo / Fo 14.735688 | 14.721067 | 22.566146 | 22.558296 | 28.094109 | 28.089834
CTEgo%/Fo || 38.268264 | 38.527405 | 46.325110 | 46.532120 | 54.554886 | 54.725914

Table 5: Risk measure estimates in % for the GMDB rider with AE feature and level of
risk tolerance oo = 90%.

In Table 6 we present the numerical computation of the sensitivity of VaR based on the
estimates of Section 6 with G/F, = 100%, the other model and product parameters
being the same as in Table 1, with p = 0.1 and C/Fy = 100% in the case of AEs.

G/ Fy = 100% without AE feature with AE feature
lognormal gamma FDf lognormal gamma FDf
OVoow /O -5.296026 -5.296026 -5.296029 | 1.072569 1.073818 1.072572
Vs /O -3.673600 -3.673600 -3.673601 | 1.177017 1.160743 1.177016

Table 6: Sensitivities of VaR with respect to p for the GMMB rider with different levels of
risk tolerance a.

We note that sensitivities are negative without AEs, due to the negativity of (6.3)
in the integral representations of %PP(T, G, W)jw=v,(L,) Used in (6.1). On the other
hand, with AE we have p > 0 and the additional terms (5.2) and (5.5)-(5.6) result

into positive sensitivities.

8 Conclusion

We have derived single integral approximations for the computation of the risk mea-
sures of GMMBs and GMDBs under Black-Scholes framework using conditional mo-

ment matching. The implementation of these expressions is significantly faster than

TFinite Difference Method.
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the double integral and inverse Laplace transform algorithms [FV12], and they also
match the results obtained in [FV14] by single integral and series approximations
using Green functions. In general the lognormal approximation yields the most pre-
cise and consistent results, in agreement with the intuition given by Figure 1, while
the gamma approximation is less precise in the case of GMDBs. Our approxima-
tions also apply to guaranteed benefits with additional earnings which have not been
treated via other methods. The pricing of variable annuities has been extended to
Guaranteed Minimum Withdrawal Benefits (GMWBs) with stochastic interest rate,
stochastic volatility and stochastic mortality via Monte Carlo and PDE arguments
in e.g. [DYL15], [GMZ16] and references therein. An extensions of our method to
such settings would basically require the computation of conditional moments in multi

factor models and would involve additional analytical difficulties.

A Appendix

Proof of Proposition 5.1. We have P,(T,G,w) = P(Ar(w, G)), where Ar(w,G) is

partitioned into

Ar(w,G) N {Fr < G} = {ST FmaAp < (TG — w)/FO} ,

F A —rT _ —rT
Ar(w,G) N {G < Pr < (G+CJp)} = { melAr ¥ wipe TG g (pG+C)},
pEo pEo
and
e—rTO —w _ e—rT
Ap(w,G)N{Fr =2 (G+C/p)t = ¢maAp < —————, Sr 2 (hG+C) ¢,
Fo pEo
which yields the decomposition
P,D(T7 G7 'LU) = Q0<T7 G7 w) + QI(T7 G7 w) + QQ(Tu G? U)), (Al)
where
~ e TG —w
QO(Tv G,UJ) = P (ST + mmAT < T) (A2)
0
(7 G—w)/Fo e TG —w—2F))| -
— /O P <AT < Fom. ‘ST = Z) f3,(2)dz
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(e="TG—w)/Fy (e="TG—w—2Fp)/(Fomz)
-/ / Fastsos () s, (2)d
0

F A —rT B —rT
Qu(T, G w) — IP( omeAr Fwpe TG g (pG+C’)) (A.3)
pLo pFo

% (pG+C)  p(pzFo—e T pG—w)/(Fomz)
B /pTcw /0 Fagisr=:()dy f5, (2)dz
rFy

and

e TC —w g s e T
FO ) T = pF(]

e~ T

QQ(T, G,’LU) = IP’(mxAT <

o
/;—T‘T
pFo

Finally we use the estimate

(pG + C)) (A.4)

)/O Foma fAT|§T:z(y)dnyT(z)dZ

n ]_ ,r] z — Z/Z z
/0 fAT|§T:Z(y)dy ~ (HZ)VTZ"F /0 e_y/GTy - Tdy - PV%(”/9T>> n > 07 (A5)
T v

which is based on the conditional gamma approximation (4.1). O

Proof of Proposition 5.2. Expressing Z,(T, G, w) in term of Sr and Ar, we have

_ T
Z,(T,G,w) = (e‘rT(G — Fr)" + e min (C, p(Fr — G)") — / e_”MﬁdS) ILAT(w):|
L 0

(A.6)
=B |(c7"G = FySr — FomzAr) 1{§T+mzAT<(e—’“TG7w)/Fo}i|

S T _
+E (p(FoST e G) FOmxAT)ﬂ{FOmmAT-:;JO—Q—pCTTG e QP;OT (pG+C)}]

—rT
+E (e C — FomxAT)]l{mIATd"’T% Srer (pG+C)}}

= ¢ TGQ(T, G,w) ~ BW(T, G,w) - pe T GQU(T, G,w) + BIWA(T, G, w)
+e7TCQy(T, G, w) — FyWa(T, G, w),

where

WO (T7 G; w) = ]E |:<I§T + ma:AT) ]].{S',T+mIAT<efr’1};G,w }:| (A?)
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Sy = z} f3,.(2)dz

(e="TG—w)/Fy B
= A ]E |:<ST + mxAT) I]_{ST+mzAT<67TTI;OG,w}

(e7"TG—w)/Fy (e G—w—2Fp)/(Fomy)
= / z/ fAT|§T:Z(a:)dxng(z)dz
0 0

(e7"TG~w)/Fo  ple”™TG—w—2Fy)/(Foma)
+mx/ / waT\gTiz(x)dfoT (Z)dZ,
0 0

(A.8)

rFy rFy

W1 (T, G, w) = IE [(pST - mxAT) ]]-{ FomgAp+wtpe—rTq <§T<e_’”T (pG+C)}]

e~ T

SFy (pG+C) 5 5
= /e_rTc_w E <pST - mJ;AT> L Tt mymag o <5 ‘ST = 2| f3,.(2)dz
pT pFg IOT
T pFOz—pefTTG—w

W(PG'FC) ma Ty
= /, /0 (pz — mgcx)fAT'gT:Z(x)dxng(z)dz,

e—"TG—w
F
and
WQ(T, G, w) = E |:m$AT]l{mIAT<e_MI;OC“’, §T>CPFTOT(pG+C)}:| (Ag)
= E |m,Arl T 1S :Z} fa (2)dz
L;P%T(pcw) { T {matr < e } 2T 5(2)
efrTC—w
w mg FQ
= my, /_TT / :pfAT|§T:Z(x)dxng(z)dz.
T ,ar0) Jo

rFo

We conclude by the approximation

! 1 ! z z \VA z .,z z
/ Z/fAT|§T:z(y>dy ~ / e /% (y/07)"7dy = 07071z 11 (n/07), n > 0.
0

To: Jo
]
Proof of Propositions 5.3 and 5.4. We replace (A.5) with the approximation
n 1 n z AY 2 z\2 dy
dy ~ / o4 (07)27 /2108 w)? (2(07)21) 1Y
/(; fAT‘Ssz(y) Yy U%\/m 0 y
z z 2T 2 1
_ o (Falon)T/2 +logn | 0> 0, (A.10)
U%\/T

that follows from (4.2), and apply it to the estimation of (A.2), (A.3) and (A.4).
U
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B Appendix

Under the conditional gamma approximation in Propositions 5.1 and 5.2, %(T ,G,w)

and %(T ,G,w) can be estimated respectively as

e Ta—w
opP, Fo 0 e TG —w — 2 F
_ T G ~ _FVZ & d
GG [ g (SR (s
—rT
Sr (PGHC) g 2Fy —e T pG — w
+ / e (P b fir (2)dz
pe~"TGtw 8w FOHTm$
23]
o0 0 <e’"TC’ — w>
— — T | ———— | fo.(2)dz
/ep;oT(pGJrc) Qw T\ Fobpm, (%)
eiioc_w 1 (TG —w—2F)\"T7" oo wer
— 0 e e fe (2)dz
0 | Fo0im, Fy0im, 57
e e —— fo (2)dz
p87:’1};0G+’LU FUZ Foe%mw Foe%ml' ST
[e%} 1 e—TTC_w V’%il _efTTC—w _1
< pare) Ly \ T 0071, Fofmg, "
and
07,
—(T,G ~
aw( G w)
e_rTGf'Lu

Fy e*TTG 8FVZ /efrTG_w_ZFO 81—‘1/2 +1 ef’r‘TG_w_ZFO
Fi — T - xez z T ) d
0/0 (< Fo Z) ow \  Fobpm, ) MV 5y ( Fobzmy, )) fs(2)d=

-rT _rT -rT
i (pG+0) TN O,z L TGy w ol S TGy w
—|—F0 Fo p(z—e ) z p( F ) Fo —me%ijﬂ 7+1 p( Fo ) Fo fg (Z)dz
et TG Iy ow 07m, ow 07my T
pFo

% 9T, [eTO- w O 1 [ TC-
rore | e R B L

- z - YT z
pFZ (pG+C) ow 9meF0 pFZ; (pG+C) ow emeFo

T w

:/ o (e_TTG —z) -1 /e_TTG—w—ZF())V%I 6—7972%“::% fo (2)dz
0 FO Fl,% Gémx\ FOG%mw St

—rT

e G—w _ VZ T
o vi (e Gw-zFy T e Gueshy
+ T e forrme fs (2)dz
0

vi+1 F09§mx
e—rT( T vi—1 e Te w
e (pG+C) -rT Gy w Pz )7
B pFy p(Z—e G> 1 p(z 2 ) o o e%?w 0 1l (z)dz
Pe"“j;?G+w F() FV% ermx 0§mx St
]
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Z -rT
G+C TGy w \ T oG-
T0O0) yr [ p(SEE)- SR
pe "L G+w FV’%+1 eme

pFo

00 1 T vr—1 T .
e C-w _elcw
—e'TTC/ - ( ~ ) e “rmeto fa (2)dz
el;;: (pGJrc)FV% QmeFo GmeFO
w z -rT Vi T
VY e C_w e C-w
_|_/ T ( - > ee§sz0 ng(Z)dZ
0/;;: z HmeFO

On the other hand, under the conditional lognormal approximation in Propositions 5.3

and 5.4, aP” 2(T,G,w) and 8Zp (T, G, w) can be estimated respectively as

e Gw 2 (o T) "TG—w—zFy
0P, F 0 +lo
—2(T, G, w) z/ ’ Hr T
0

8w 821)(1) O'T\/_ fs«T(Z>dZ

N / Ty 0G0 g [ T o ezFome TpGow
P!

Fomg
o 5 d
e~ Grw ow aT\/T fST(Z) Z

20)

z (UT) T TCo—w

> 0 pp-"— + log S

+ — om = (2)dz
/ oiVvT fsT( )

e G-w T GE—w—z 2
/ ’ - (T log et f5,(2)d
= exp [ —= 5 (2)dz
0 21705 (e TG —w — 2 k) P oiNT o

—e_’"T(pG+C) 1 a§)2T log p2Fo—e—"T pG—w 2
/
P

2 F{
eXp oMy

& (2)dz
e—rTGer ’/27TT0'T([)ZF0—€ 'r’TpG w Zﬁ fST( )

Orp

2
—rT
+/ exp FO e

and

TG w 2 (02)2T e " TG—w—zF

8Zp o - 0 M T2 & F ’
—2(T,G,w) ~ TG — Fyz) —o 0Ma 5 (2)d
8w( G w) /0 (e Oz) ow Uizp\/T far(2)dz
z (o7 )2T e "TG—w—zF,
_ R o et 9 g (wp —2) 75— +log=—Fm =) d
oMz e B . fST(Z) <

0 w JT\/T

+— (pG+C) o Z(U%)QT—FIO pzFy—e " pG—w
+p/”° (Foz—e7G) —® - &

efTTG—w

mg Fo

Ow U%\/T ng(Z)dZ

—rTqg
Fo +PF0
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T —rT
o ) 7 (”T) T pzFo—e™" pG—w
_Fomx/ ot o(1=17)(07)°T/2 9 (W —2)~5— +log —
P!

- ® fo (2)dz
B S oi/T "
Z (03)°T —TCo—w
= —2)~5— +log
erTC/ 9, “ % (MT ) meo ng(Z)dZ
7 (p+0) QW aT\/T
w z _ (O’%)2T ef'rTcr_w
N Fomx/ cti-niieirrz gy i —2) 75— +log R fs,(2)dz
—rT (pG+C) ow O'%\/T T
T 2z “TG—w—2z 2
0 2nTo% (e TG —w — ZFO 2 0%\/7 St
. ) ;
Fym, [ —ellmwi) i) T/2 R f5,(2)d
B exp | — - (2)d>
V21T Jo o0& (e T G2 Fy) P oi/T Sr

(o 2Fo—e” " pG—w 2
(pG+C) —(Fpz — e~ TG) 12 T) Ty log 22L0 szO/JG b (s
"V eTe, w op(pzFoe TpGw) oiVT or

. Z - ,
- V P75 5 (2)dz
2n’T % J%(szo—e_erG—w) P13 0%\/7 St

o7 2 o7 —w
¢ —1 L[ (15 = 2) 5+ log =G f3.(2)d
exXp | —= = (2)dz
T VBT S i) 7 TC — w) 2 oin/T Sr
2
Fom,, - [* ol lor)*T /2 1 [ (55— 2)' B +10g = Con f5,(2)d
Y. z (e P75 - 5 (2)dz.
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