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Abstract

The aim of this work is to construct the stochastic calculus of variations on
Poisson space and some of its applications via the stochastic analysis on Wiener
space. We define a new gradient operator on Wiener space, whose adjoint
extends the Poisson stochastic integral. This yields a new decomposition of
the Ornstein-Uhlenbeck operator and a substructure of the standard Dirichlet
structure on Wiener space, with applications to stochastic analysis on Poisson
space and infinite-dimensional analysis for the exponential density.

1 Introduction

The stochastic calculus of variations on the Wiener space, cf. [9], [11], makes use of

the following ingredients: a gradient operator, its adjoint the divergence operator,

and the Ornstein-Uhlenbeck operator which is obtained as the composition of the

divergence with the gradient. The Ornstein-Uhlenbeck operator is a number operator

on the Wiener chaotic decomposition and it allows to define Sobolev spaces and

distributions on the Wiener space, cf. [19]. On the other hand, the connection with

the Itô calculus is obtained via the divergence operator which extends the Itô integral,

cf. [6]. An important tool in this analysis is the Meyer inequalities, cf. [10] which give

an equivalence between the norms defined with the gradient and the norms defined

on Sobolev spaces with the Ornstein-Uhlenbeck operator. The question whether

an analogous formalism exists on Poisson space has been investigated in e.g. [2],

[12], [13]. In [12], a Fock space isomorphism using the Poisson and Wiener multiple

stochastic integral is considered. This leads to a gradient defined by finite differences,

which is not a derivation operator, and whose adjoint coincides with the compensated

1Soumis au “Journal of Functional Analysis”.
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Poisson stochastic integral on square-integrable predictable processes. However, this

isomorphism is not an isometry for the Lp norm, except for p = 2, and apparently

it does not allow to transpose to the Poisson space case the analysis constructed on

the Wiener space, in particular for p 6= 2. Another approach, initiated in [2] is to

define a gradient by shifting the jump times of a standard Poisson process on the

positive real line. The adjoint of this operator also extends the compensated Poisson

stochastic integral. It has been shown in [1], [13] that there is a discrete chaotic

decomposition on Poisson space on which the composition of this gradient with its

adjoint acts as a number operator noted L. In this approach, the trajectories of the

Poisson process are considered as sequences of independent identically distributed

exponential interjump times.

In this work, we consider the Lp space of Poisson functionals as a subspace

of the Lp space of Wiener functionals, and show that the above gradient can be

extended to Wiener functionals. It turns out that the composition of this gradient

with its adjoint gives a new decomposition for the Ornstein-Uhlenbeck operator on

the Wiener space. From the point of view of Dirichlet forms, this yields a substructure

of the standard Dirichlet structure on the Wiener space. As a consequence we obtain

several results in stochastic analysis for Poisson functionals that can be interpreted

in infinite dimensional analysis for the exponential density. The connection with

the Poisson process is made through the fact that the adjoint of this new gradient

coincides under certain conditions with the compensated Poisson stochastic integral.

We proceed in the following way. In Sect. 2, we consider the σ-algebra F
generated by a countable collection of independent identically distributed exponential

random variables on the Wiener space, and call a Poisson functional any Wiener

functional which is measurable with respect to F . The Ornstein-Uhlenbeck operator

on the Wiener space appears to be an extension of the number operator L defined in

[13] for Poisson functionals. We deduce results in infinite dimensional analysis for the

exponential density, such as the hypercontractivity of the semigroup associated to

L, the construction of distributions, and an algebra of test functions on the Poisson

space. We introduce in Sect. 3 a random unitary operator χ of the Cameron-Martin

space which allows to define a new gradient on Wiener space by composition with

the Gross-Sobolev derivative. This gradient is related to the conditional gradient

given F on the Wiener space and to the derivative obtained by shifting the Poisson

process jump times, and its adjoint extends the compensated Poisson stochastic
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integral. In Sect. 4, several results in Malliavin calculus concerning the existence

and smoothness of densities of Poisson functionals, as well as the Meyer inequalities,

are derived on the Poisson space using the operators that are defined above. Sect. 5

is devoted to the extension to higher orders of differentiation of the equivalence of

norms obtained in Sect. 4. We obtain in this way the continuity of the gradient

and divergence operators on Sobolev spaces of Poisson functionals. In the sixth

section, we deal with the independence of Poisson functionals. From the existing

criterion on Wiener space, cf. [18], we deduce necessary and sufficient conditions for

the independence of discrete multiple Poisson stochastic integrals. Those integrals

are defined with the Laguerre polynomials as stochastic integrals of deterministic

discrete time kernels, and the conditions for independence are expressed in terms of

the supports of those kernels. In the last section, we study the infinite-dimensional

diffusion process associated to the operator L and show that it gives another example

of a process whose hitting probabilities can be estimated in terms of capacities.

Notation. The following definitions can be found in [19]. Let (W,L2(IR+), µ) be the

classical Wiener space, and let (hk)k≥0 be an orthonormal basis of L2(IR+), which will

remain fixed throughout this work. We note respectively D̂ and δ̂ the Gross-Sobolev

derivative and its adjoint on the Wiener space. Recall that (δ̂(hk))k∈IN is a system

of independent gaussian normal random variables, and for F = f(δ̂(h0), . . . , δ̂(hn)),

f ∈ C∞c (IRn+1), D̂F ∈ L2(W )⊗ L2(IR+) is defined as

D̂F =
k=n∑
k=0

∂kf(δ̂(h0), . . . , δ̂(hn))hk.

The Ornstein-Uhlenbeck operator on the Wiener space is denoted by −L̂/2. It is self-

adjoint with respect to µ and satisfies to L̂ = δ̂D̂. Let În(gn) represent the Wiener

multiple stochastic integral of a symmetric function in the completed symmetric

tensor product L2(IR+)◦n. We have L̂În(gn) = nÎn(gn) n ∈ IN, and any square-

integrable functional F on (W,µ) can be decomposed as a series

F =
∞∑
n=0

În(gn) gk ∈ L2(IR+)◦k, k ∈ IN.

Let P denote the algebra of polynomials in (δ̂(hk))k≥0, which is dense in L2(W,µ).

For k ∈ IN and p > 1, let IDp,k be the completion of P under the norm ‖ F ‖p,k=‖
(I + L̂)k/2F ‖Lp(W,µ), and let IDp,−k be the dual space of IDp,k. Let ID∞ =

⋂
p,k IDp,k.

The dual of ID∞ is ID−∞ =
⋃
p,k IDp,k.
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To end this introduction, we shortly describe the method that will be used

in the next sections. Let us write down the usual integration by parts formula on

Wiener space:

E[F δ̂(u)] = E[(D̂F, u)L2(IR+)],

for u ∈ Dom(δ̂) and F ∈ Dom(D̂). Consider also a random operator

χ : L2(IR+)→ L2(IR+)

such that χ is unitary, µ-a.s. This operator can be viewed as an isometry from

L2(W )⊗ L2(IR+) to L2(W )⊗ L2(IR+). Let us apply the above integration by parts

to F and χu, with F ∈ Dom(D̂) and u ∈ L2(W )⊗L2(IR+) such that χu ∈ Dom(δ̂).

We have from the properties of χ:

E[F δ̂ ◦ χ(u)] = E[(D̂F, χu)L2(IR+)]

= E[(χ∗ ◦ D̂F, u)L2(IR+)],

χ∗ being the adjoint of χ. We will show that it is possible to choose χ such that

δ̂ ◦ χ extends the stochastic integral with respect to a compensated Poisson process

defined on the Wiener space. It will appear that χ∗◦D̂ is closely related to a gradient

defined on Poisson space by shifts of the Poisson process jump times, cf. [2], [13].

Moreover, we have (
δ̂ ◦ χ

)
◦
(
χ∗ ◦ D̂

)
= δ̂D̂ = L̂,

and

‖ χ∗ ◦ D̂F ‖L2(IR+)=‖ D̂F ‖L2(IR+) µ− a.s.

from the fact that χ is a.s. unitary. As a consequence, any result in Malliavin calculus

that involves the norm of the gradient D̂ or the Ornstein-Uhlenbeck operator L̂ will

be valid on Poisson space and interpreted in terms of the stochastic calculus of

variations for the Poisson process, using the compensated Poisson stochastic integral

and the derivation with respect to shifts of the jump times.

2 The Poisson space as a subspace of the Wiener

space

A characterization of the standard Poisson process on the positive real line is that it

is a jump process with jumps of fixed size 1 and independent identically distributed
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exponential interjump times. We intend here to construct a Poisson process, or equiv-

alently a countable collection of exponential random variables on the Wiener space.

We will make use of the fact that the half sum of two independant normal random

variables has a χ2 law with 2 degrees of freedom, i.e. an exponential distribution.

Let

τk =
δ̂(h2k)

2 + δ̂(h2k+1)
2

2
k ≥ 0,

then (τk)k≥0 is a family of independent exponentially distributed random variables,

hence it represents a Poisson process (Nt)t≥0. This does not require the system

(hk)k≥0 to be complete in L2(IR+). Let Tk =
∑i=k−1

i=0 τi, k ≥ 0, represent the k-th

jump time of (Nt)t≥0. We have

Nt =
∞∑
k=1

1[Tk,∞[(t), t ∈ IR+.

Note that this construction does not preserve the filtrations generated by the Poisson

and Wiener processes, i.e. the filtrations generated by (Nt)t≥0 and the Brownian

motion (Bt)t≥0 on (W,µ) are not comparable. We define an application Ξ : W → IRIN

by

Ξ(ω) = (τk)k∈IN µ− a.s. (1)

Denote by B the range of Ξ, endowed with the largest σ-algebra that makes Ξ

measurable, and let P be the image measure of µ by Ξ:

P = Ξ∗µ,

and define an operator Θ : Lp(B,P )→ Lp(W,µ) by

ΘF = F ◦ Ξ,

where F is a polynomial functional on B, i.e. F ((xk)k∈IN) = f(x0, . . . , xn), n ∈ IN,

f polynomial. The operator Θ can be extended as an isometry from Lp(B,P ) to

Lp(W,µ), p > 1. The dual of Θ : L2(B,P )→ L2(W,µ) is Θ∗ : L2(W,µ)→ L2(B,P ),

given by

Θ∗F = Θ−1E[F | F ], F ∈ L2(W,µ).

We call F the σ-algebra on W generated by Ξ. In the sequel, Lp(W,F , µ|F) will be

identified with Lp(B) for p ≥ 1.
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Definition 1 (Poisson space). The space (W,F , µ|F) is called the Poisson space.

We call a Poisson functional any random variable on (W,F , µ|F). Let

PF = {f(τ0, . . . , τn) : f polynomial, n ∈ IN}

denote the set of polynomial Poisson functionals.

We recall, cf. [13] that PF is dense in L2(W,F , µ|F) and that there exists a discrete

chaotic decomposition of the space L2(W,F , µ|F) of square-integrable Poisson func-

tionals. This decomposition uses discrete multiple stochastic integrals defined with

the Laguerre polynomials

Lk(x) =
i=k∑
i=0

(
k
i

)
(−x)i

i!
x ∈ IR+, k ∈ IN,

which are orthonormal with respect to the exponential density. Let H = l2(IN) be the

Hilbert space of square-summable sequences, and let (ek)k∈IN denote the canonical

basis of H. For n ≥ 1, we define the discrete multiple stochastic integral of a

symmetric function fn on INn as a linear mapping In : H◦n → L2(W,F , µ|F), first on

elementary functions:

In(e◦n1
k1
◦ · · · ◦ e◦nd

kd
) = n1! · · ·nd!Ln1(τk1) · · ·Lnd

(τkd
)

where n1 + · · · + nd = n, k1 6= · · · 6= kd ∈ IN. The mapping In is extended to

any element of the completed symmetric tensor product H◦n by density, since the

linear functional In satisfies to an isometry formula, cf. [13]. Moreover, integrals

of different orders are orthogonal. As a result, any F in L2(W,F , µ|F) has the

orthogonal decomposition

F =
∞∑
n=0

In(fn) fk ∈ H◦k, k ∈ IN

with the conventions H0 = IR and I0 = IIR. The following proposition says that the

Poisson random variable In(fn) is a multiple Wiener integral of order 2n, and gives

its expression in the Wiener chaotic decomposition. For simplicity, the development

is only written for fn = e◦nk . Let Ck
n = n!/(k!(n− k)!), 0 ≤ k ≤ n, n ∈ IN.

Proposition 1 The Wiener chaos expansion of In(e◦nk ) is given by

In(e◦nk ) =
(−1)n

2n

i=n∑
i=0

Î2n

(
h◦2i2k ◦ h

◦(2n−2i)
2k+1

)
Ci
n/(C

2i
2n)1/2.
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Proof. The proof relies on the following relation between the Hermite and Laguerre

polynomials, cf. [4], p. 195:

n!Ln(
x2 + y2

2
) =

(−1)n

2n

k=n∑
k=0

Ck
nH2k(x)H2n−2k(y)

√
(2k)!(2n− 2k)!

and on the definition of the multiple Wiener integral with the Hermite polynomials,

cf. [6]. Here, Hk(x) is the k-th normalized Hermite polynomial, defined by the

generating series

∞∑
n=0

γn
Hn(x)√

n!
= exp(γx− γ2/2) γ, x ∈ IR.

2

Denote by L the number operator on the discrete chaotic decomposition, that is L
is a linear operator with

LIn(gn) = nIn(gn) gn ∈ H◦n, n ∈ IN,

so that the domain of L is made the following Poisson functionals:

Dom(L) =

{
∞∑
n=0

In(fn) :
∞∑
n=0

n2 ‖ In(fn) ‖22<∞

}
,

and L leaves invariant the space PF of polynomial Poisson functionals. The operator

L is the infinite dimensional generalization of the operator x∂2
x+(1−x)∂x on C∞(IR),

whose eigenvectors are the Laguerre polynomials.

We now define Sobolev spaces of Poisson functionals. We call IDFp,k the completion

of the algebra PF of polynomial Poisson functionals under the norm

‖ F ‖IDFp,k

=‖ (I + L)k/2F ‖Lp(B) F ∈ PF ,

p > 1, k ∈ ZZ, and let

IDF∞ =
⋂
p,k

IDFp,k, IDF−∞ =
⋃
p,k

IDFp,k.

The next proposition says that the σ-algebra F generated by the Poisson functionals

is L̂−1-stable. We refer to [17] for the notion of L̂−1-stable σ-algebra.

Proposition 2 The operators L and L̂/2 commute with the conditional expectation

with respect to F :

E[L̂F | F ] = 2LE[F | F ] F ∈ Dom(L̂), p > 1, k ∈ ZZ,
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hence L̂/2 is an extension of L. The norms ‖ · ‖IDp,k
and ‖ · ‖IDFp,k

are equivalent

on PF , and IDF∞ is an algebra. Moreover,

E[ · | F ] : IDp,k → IDFp,k p ≥ 1, k ∈ ZZ,

is continuous.

Proof. Prop. 1 gives

E[Hi(δ̂(h2k))Hj(δ̂(h2k+1)) | F ] =

{
(−1/2)(i+j) (i!j!)1/2

(i/2)!(j/2)!
L(i+j)/2(τk) i and j even,

0 otherwise.

Hence

E[L̂Îi+j(h◦i2k ◦ h
◦j
2k+1) | τk]

=
√

(i+ j)!E[L̂(Hi(δ̂(h2k))Hj(δ̂(h2k+1))) | τk]

= (i+ j)
√

(i+ j)!E[Hi(δ̂(h2k))Hj(δ̂(h2k+1)) | τk]

= 2
√

(i+ j)!LE[Hi(δ̂(h2k))Hj(δ̂(h2k+1)) | τk]

= 2LE[Îi+j(h
◦i
2k ◦ h

◦j
2k+1) | τk]

for any i, j, k ∈ IN. It follows that if i1, . . . , id, j1, . . . , jd ∈ IN, k1 6= · · · 6= kd and

F =
∏l=d

l=1 Îil+jl(h
◦il
2kl
◦ h◦jl2kl+1),

E
[
L̂F | F

]
=

p=d∑
p=1

E

[∏
l 6=p

Îil+jl(h
◦il
2kl
◦ h◦jl2kl+1)E

[
L̂Îip+jp(h

◦ip
2kp
◦ h◦jp2kp+1) | τp

]
| F

]

= 2

p=d∑
p=1

∏
l 6=p

E
[
Îil+jl(h

◦il
2kl
◦ h◦jl2kl+1) | τl

]
LE

[
Îip+jp(h

◦ip
2kp
◦ h◦jp2kp+1) | τp

]
= 2LE [F | F ] ,

hence

E[L̂În(gn) | F ] = 2LE[În(gn) | F ], gn ∈ L2(IR+)◦n.

This implies that 2LIn(fn) = L̂In(fn), fn ∈ H◦n. The equivalence of norms follows

from the Lp-multiplier theorem, with the fact that IDF∞ is an algebra, since for

p, q, r > 1 such that 1/r = 1/p + 1/q and k ∈ ZZ, there exists a constant Cp,q,k such

that

‖ (I + L̂/2)k/2(FG) ‖Lr(W )

≤ Cp,q,k ‖ (I + L̂/2)k/2F ‖Lp(W )‖ (I + L̂/2)k/2G ‖Lq(W ) F,G ∈ PF ,
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cf. [19]. The continuity of E[ · | F ] can be established as follows. For p > 1 and

k ∈ ZZ, there exists a constant Cp,k such that

‖ E[F | F ] ‖IDFp,k

≤ Cp,k ‖ E[F | F ] ‖IDp,k

= Cp,k ‖ (I + L̂)k/2E[F | F ] ‖Lp(W )

= Cp,k ‖ E[(I + L̂)k/2F | F ] ‖Lp(W )

≤ Cp,k ‖ F ‖IDp,k
F ∈ P .

2

Another consequence of this proposition is that L is self-adjoint with respect to

µ|F . Being the restriction of L̂/2 to Poisson functionals, L shares several properties

with L̂. The theorem below can be interpreted as a result in infinite-dimensional

analysis for the exponential density, since L is the infinite dimensional generalization

of the operator whose eigenvectors are the Laguerre polynomials, which form an

orthonormal sequence for the measure e−x1{x>0}dx.

Theorem 1 (Hypercontractivity). Let p > 1 and t > 0. There exists q > p such

that

‖ exp(−tL)F ‖Lq(B)≤‖ F ‖Lp(B) F ∈ Lq(B).

Proof. Since exp(−tL) = exp(−tL̂/2) on L2(W,F , µF), we can apply to Poisson

functionals the existing hypercontractivity theorem on Wiener space, which says that

for any t > 0 there is q > p such that

‖ exp(−tL̂/2)F ‖Lq(W )≤‖ F ‖Lp(W ) F ∈ Lq(W ).

2

Example of a generalized Wiener functionals which is a Poisson functional.

From [1], Prop. VI.1.2.2, we have the following Wiener chaos expansion for the

distribution

T = 2πδ

(∫ ∞
0

h0(t)dBt,

∫ ∞
0

h1(s)dBs

)
∈ ID2,−r, r > 1,

where δ is the Dirac distribution at 0 in IR2:

T =
∑
n≥0

1

2n!
Î2n

((
−1

2

)n
(2n)!

k=n∑
k=0

1

k!(n− k!)
h◦2k0 ◦ h◦2n−2k

1

)
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Hence from Prop. 1, T is the limit in IDF2,−r, r > 1, of a sequence of polynomial

Poisson functionals.

We end this section with two definitions. In [13], a gradient operator has been defined

for Poisson functionals as a directional derivative in the directions of H = l2(IN), or

equivalently by shifts of the Poisson process jump times. We recall this definition

with a different interpretation.

Definition 2 We define D : L2(W,µ)→ L2(W,F , µ|F)⊗H by

(DF, h)H = − lim
ε→0

[Θ−1F ](Ξ + εh)− F
ε

h ∈ H, F ∈ PF .

If F ∈ PF with F = f(τ0, . . . , τn), then

DF = −
k=n∑
k=0

∂kf(τ0, . . . , τn)1{k}.

The operator D : L2(W,F , µ|F) −→ L2(W,F , µ|F)⊗H is closable and its expression

in the discrete chaotic decomposition is written as follows, cf. [13]:

DjIn(fn) =
k=n−1∑
k=0

n!

k!
Ik(fn(∗, j, . . . , j)) j ∈ IN, fn ∈ l2(IN)◦n.

Finally, we define for later use an operator i that turns a discrete-time process into

a continuous-time process, using the Poisson process itself.

Definition 3 If f : INd −→ IRn is a function of discrete variable, we define a d-

parameter process i(f) by

i(f)(t1, . . . , td) = f(Nt−1
, . . . , Nt−d

) t1, . . . , td ∈ IR+.

The operator i is easily extended to stochastic processes of discrete d-dimensional

parameter. If n = d = 1, let j : L2(W )⊗ L2(IR+)→ L2(W )⊗ l2(IN) denote the dual

of i : L2(W )⊗ l2(IN)→ L2(W )⊗ L2(IR+), i.e. j is a random operator such that

(i(u), v)L2(IR+) = (u, j(v))l2(IN) µ− a.s.

for u ∈ L2(W )⊗ l2(IN), v ∈ L2(W )⊗ L2(IR+). We have explicitely

j(v) =
∑
k≥0

1{k}

∫ Tk+1

Tk

v(s)ds.
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3 A new gradient operator on Wiener space

In this section, we define an extension to Wiener functionals of the above gradient

operator D, taking into account the conditional gradient given F , cf. [1] for this no-

tion. This new gradient has the following properties: its adjoint coincides with the

compensated Poisson stochastic integral under certain conditions, and by composi-

tion with its adjoint it yields the Ornstein-Uhlenbeck operator on the Wiener space.

It is expressed by composition of the Gross-Sobolev derivative D̂ on the Wiener space

with a random unitary operator which is defined below. The n-th jump time of the

Poisson process (Nt)t∈IR+ defined on (W,µ) is denoted by Tn =
∑k=n−1

k=0 τk, n ≥ 0 .

Definition 4 For µ-a.s. ω, we define an operator χ : L2(IR+, IR
2) −→ L2(IR+) by

χu = − 1√
2

∑
k≥0

δ̂(h2k)h2k + δ̂(h2k+1)h2k+1

τk

∫ Tk+1

Tk

u(1)(s)ds

+
δ̂(h2k)h2k+1 − δ̂(h2k+1)h2k

τk

∫ Tk+1

Tk

u(2)(s)ds u = (u(1), u(2)) ∈ C∞c (IR+, IR
2).

We are going to show that µ-a.s., χ is unitary from a certain random subspace H̃ of

L2(IR+, IR
2) into L2(IR+).

Definition 5 For µ-a.s. ω ∈ W , we define H̃ to be the random subspace of L2(IR+, IR
2)

of the form

H̃ =
{
i((f, g)) : (f, g) ∈ l2(IN, IR2)

}
.

The operator i was introduced in Def. 3.

Proposition 3 The operator χ is unitary from H̃ into L2(IR+):

χ∗χ = IH̃ and χχ∗ = IL2(IR+) µ− a.s.

and its adjoint is χ∗ : L2(IR+) −→ L2(IR+, IR
2), given by

χ∗v = − 1√
2

∞∑
k≥0

1

τk
1[Tk,Tk+1[((v, h2k)L2(IR+)δ̂(h2k) + (v, h2k+1)L2(IR+)δ̂(h2k+1),

(v, h2k+1)L2(IR+)δ̂(h2k)− (v, h2k)L2(IR+)δ̂(h2k+1)) µ− a.s.

Proof. We have if u = (u(1), u(2)) ∈ C∞c (IR+, IR
2) and v ∈ C∞c (IR+):

(χu, v)L2(IR+)
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=
1√
2

∑
k≥0

∫ Tk+1

Tk

u(1)(s)ds
δ̂(h2k)(h2k, v)L2(IR+) + δ̂(h2k+1)(h2k+1, v)L2(IR+)

τk

+

∫ Tk+1

Tk

u(2)(s)ds
δ̂(h2k+1)(h2k+1, v)L2(IR+) − δ̂(h2k+1)(h2k, v)L2(IR+)

τk

= (u, χ∗v)L2(IR+,IR
2) µ− a.s.

Hence χ and χ∗ are adjoint µ − a.s. It is easy to check that χ∗χ = IH̃ and χχ∗ =

IL2(IR+) µ− a.s., and the fact that χ : H̃ → L2(IR+) is unitary follows.

2

Again, χ is easily extended to two dimensional stochastic processes as an isometry

χ : L2(W )⊗ L2(IR+, IR
2)→ L2(W )⊗ L2(IR+), with the properties that

χχ∗ = IL2(W )⊗L2(IR+) and (χu, v)L2(IR+) = (u, χ∗v)L2(IR+,IR
2) µ− a.s.,

u ∈ L2(W ) ⊗ L2(IR+, IR
2), v ∈ L2(W ) ⊗ L2(IR+). We now define a gradient D̃ by

composition of D̂ with χ∗.

Definition 6 We define an operator D̃ : L2(W ) −→ L2(W )⊗ L2(IR+, IR
2) by

D̃F =
1√
2
χ∗ ◦ D̂F F ∈ P .

Then D̂F =
√

2χ ◦ D̃F , F ∈ P . According to this definition, D̃ is a derivation

operator on the Wiener space.

Proposition 4 As a direct consequence of the fact that χ is unitary, we have:

• The operators D̃ and D̂ can be extended to the same domains. More precisely,

2 ‖ D̃F ‖2L2(IR+,IR
2)=‖ D̂F ‖

2
L2(IR+) F ∈ ID2,1, µ− a.s.,

hence the operator D̃ is closable and local.

• Let −L̂/2 denote the Ornstein-Uhlenbeck operator on the Wiener space. We

have the following decomposition of L̂:

L̂/2 = δ̃D̃.

Note that the usual decomposition of the Ornstein-Uhlenbeck operator is given by

L̂ = δ̂D̂.
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We now show that for F ∈ Dom(D̂), the second component D̃(2)F of D̃F is

related to the conditional gradient of F given F , cf. [1], whereas its first component

D̃(1)F is expressed with the operator D defined in Def. 2 by shifts of the Poisson

process jump times. Denote by H the orthogonal subspace in L2(W ) ⊗ L2(IR+) of

the set {
ZD̂U : U ∈ IDF2,1, Z ∈ L∞(W,µ)

}
.

Let PH be the orthogonal projection on H in L2(W ) ⊗ L2(IR+). Recall that the

conditional gradient given F of F ∈ ID2,1 is defined as D̂FF = PHD̂F , F ∈ ID2,1,

cf. [1], V.5.2.3.

Proposition 5 The conditional gradient D̂FF of F ∈ ID2,1 given F is

D̂FF =
√

2χ(0, D̃(2)F ) µ− a.s.

Let F ∈ PF be a polynomial Poisson functional. We have

D̃F = i((DF, 0)) µ− a.s.

Proof. Let F = f(δ̂(h0), . . . , δ̂(hn)) with f ∈ C∞c (IRn+1). We have

D̂F −
√

2χ(0, D̃(2)F ) =
√

2χ(D̃(1)F, 0),

hence D̂F −
√

2χ(0, D̃(2)F ) ∈
{
ZD̂U : U ∈ IDF2,1, Z ∈ L∞(W,µ)

}
. We also have

E[Z(χ(0, D̃(2)F ), D̂U)L2(IR+)] = 0 U ∈ PF , Z ∈ L∞(W,µ),

hence
√

2χ(0, D̃(2)F ) = PHD̂F . The result is obtained by density. For the second

part, we notice that the conditional gradient of a Poisson functional given F is 0 and

that a simple calculation yields χ∗D̂U =
√

2i(DU, 0), U ∈ PF .

2

The following definition gives the adjoint of D̃. Let V be the class of processes defined

by

V = {u ∈ L2(W )⊗ L2(IR+, IR
2) :

u =
(
f(·, δ̂(h0), . . . , δ̂(hn)), g(·, δ̂(h0), . . . , δ̂(hn))

)
, f, g ∈ C∞c (IRn+1

+ ), n ∈ IN}.

Definition 7 We define the operator δ̃ : L2(W )⊗ L2(IR+, IR
2) −→ L2(W ) by

δ̃(v) =
1√
2
δ̂ ◦ χ(v), v ∈ V .

13



We have the following commutative diagram:

L2(W ) - L2(W )⊗ L2(IR+)

6

?

L2(W ) -

?

L2(W )⊗ L2(IR+, IR
2)

√
2D̂

D̃

χ∗

L2(W )⊗ L2(IR+) - L2(W )

6

L2(W )⊗ L2(IR+, IR
2) -

6

?

L2(W ).

√
2δ̂

δ̃

χ

Proposition 6 The operator δ̃ is closable, adjoint of D̃ and satisfies to

δ̃(u) =

∫ ∞
0

u(1)(s)d(Ns − s)− trace(D̃u), u ∈ V ,

where trace(D̃u) =
∫∞

0
D̃

(1)
s u(1)(s)ds+

∫∞
0
D̃

(2)
s u(2)(s)ds.

Let Dom(δ̃) denote the domain of the closed extension of δ̃.

Proof. Recall that by definition, cf. [6], [19], if v =
∑i=n

i=0 hifi(δ̂(h0), . . . , δ̂(hn)) with

fi ∈ C∞c (IRn+1), i = 0, . . . , n, then

δ̂(v) =
i=n∑
i=0

δ̂(hi)fi(δ̂(h0), . . . , δ̂(hn))− ∂ifi(δ̂(h0), . . . , δ̂(hn)).

Applying the above formula to χu, u ∈ V , we obtain:

δ̃(u) = δ̂(χu)

=
∑
k≥0

u(1)(Tk+1)
δ̂(h2k)

2 + δ̂(h2k+1)
2

2τk
+ u(2)(Tk+1)

δ̂(h2k)δ̂(h2k+1)− δ̂(h2k+1)δ̂(h2k)

2τk

+
1

2τk

∫ Tk+1

Tk

(
(D̂u(1)(s), h2k)δ̂(h2k) + (D̂u(2)(s), h2k+1)δ̂(h2k+1)

)
ds

+
1

2τk

∫ Tk+1

Tk

(
(D̂u(2)(s), h2k+1)δ̂(h2k+1)− (D̂u(2)(s), h2k)δ̂(h2k)

)
ds

+
1

τk

∫ Tk+1

Tk

u(1)(s)ds−
∫ Tk+1

Tk

u(1)(s)
δ̂(h2k)

2 + δ̂(h2k+1)
2

2τ 2
k

−
∫ Tk+1

Tk

u(1)(s)ds

=

∫ ∞
0

u(1)(s)d(Ns − s)−
∫ ∞

0

D̃
(1)
2 u(1)(s)ds−

∫ ∞
0

D̃(2)
s u(2)(s)ds.

The operator δ̃ is adjoint of D̃ and closable since χ and χ∗ are adjoint and the domain

of D̃ is dense in L2(W ).

2
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Let (Ft)t≥0 be the filtration generated by (Nt)t≥0 on (W,µ).

Corollary 1 If u = (u(1), u(2)) ∈ L2(W )⊗L2(IR+, IR
2) is (Ft)-predictable, then δ̃(u)

coincides with the compensated Poisson stochastic integral of u(1):

δ̃(u) =

∫ ∞
0

u(1)(s)d(Ns − s),

and any Poisson stochastic integral has a representation as an anticipative Wiener-

Skorohod integral: ∫ ∞
0

u(1)(s)d(Ns − s) = δ̂(χ(u(1), 0))/
√

2.

Proof. The conditional gradient given F of a Poisson functional is 0, cf. Prop. 5,

hence from Prop. 6 the first part of this statement is identical to the Poisson space

result that can be found in [1], [2], [13]. The representation property comes from the

relation δ̃ = 1√
2
δ̂ ◦ χ.

2

The above coincidence can occur under weaker conditions, for instance without pre-

dictability requirements. For example, it is sufficient to have (u(1), 0) ∈ V with

u(1) ∈ L2(W,F , µ|F)⊗ L2(IR+) and

u(2)(t) = −
∑
k≥0

1]Tk,Tk+1](t) arctan

(
δ̂(h2k)

δ̂(h2k+1)

)
D̃

(1)
t u(1)(t) t ∈ IR+.

In this case, D̃(1)u(1)+D̃(2)u(2) = 0 µ⊗dt-a.e., and the trace term in (6) vanishes. The

representation property for Poisson stochastic integrals as Wiener-Skorohod integrals

also extends to anticipative integrands in Dom(δ̃). This result differs from the result

obtained via the Clark formula, cf. [3], in that the process 1√
2
χu that we obtain is

not adapted and its expression is easier to compute.

4 Meyer inequalities on Poisson space and appli-

cations

The first consequence of the above propositions is that the Meyer inequalities on

Poisson space hold for the operators D̃ and L, given that they are verified for D̂

and L̂. The spaces Lp(B,P ) and Lp(W,F , µ|F) are identified via the operator Θ for

p ≥ 1.
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Theorem 2 For any p > 1, there exist Ap, Bp > 0 such that for any Poisson poly-

nomial functional F ∈ PF ,

Ap ‖ D̃F ‖Lp(B,L2(IR+))

≤ ‖ (I + L)1/2F ‖Lp(B)≤ Bp(‖ D̃F ‖Lp(B,L2(IR+)) + ‖ F ‖Lp(B)).

Proof. We write the Meyer inequalities, cf. [10], on the Wiener space and make use

of the facts that χ is unitary from H̃ to L2(IR+), µ − a.s. and L̂ is an extension of

2L.

2

The difference between this result and the Meyer inequalities on the Wiener space

comes from the fact that on Poisson functionals, D̃ is defined by shifting the jump

times of the Poisson process, and its adjoint extends the compensated Poisson

stochastic integral, whereas D̂ is defined by shifts of the Wiener process trajectories

and its adjoint extends the Itô-Wiener stochastic integral.

We can also define the composition of a Schwartz distribution with a Poisson

functional as a distribution in IDF−∞. Let S2k, k ∈ ZZ, be the completion of the

Schwartz space S(IRd) under the norm ‖ φ ‖S2k
=‖ (1+ | x |2 +∆)kφ ‖∞.

Theorem 3 Let F1, . . . , Fd ∈ IDF∞ such that det(((D̃Fi, D̃Fj)L2(IR+,IR
2))1≤i,j≤d)

−1 ∈⋂
p>1 L

p(B,P ). Then for k ∈ ZZ and p > 1, there exists Cp,k > 0 such that

‖ φ ◦ F ‖p,2k≤ Cp,k ‖ φ ‖S2k
φ ∈ S(IRd).

This implies that if T ∈ S2k, T ◦ F is well defined in IDp,k, p > 1, k ∈ ZZ.

The proof relies again on the fact that χ is unitary and IDF∞ ⊂ ID∞, given the Wiener

space result in [19]. In the same way, we obtain:

Theorem 4 Under the hypothesis of the preceding theorem, the Poisson functional

F = (F1, . . . , Fd) has a C∞ density on IRd.

The hypothesis is expressed by perturbations of the Poisson process trajectories. The

following exponential integrability criterion comes from [5] and [16] for the gaussian

case. It is proved in the same way as Th. 2 and 3.

Theorem 5 If F ∈ IDFp,1, p > 1, is such that ‖ D̃F ‖L∞(W,L2(IR+,IR
2))<∞, then there

exists λ > 0 such that

E[exp(λF 2)] <∞.
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Denote by (W,µ, ID2,1, ε) the standard Dirichlet structure on Wiener space, cf. [1].

The Dirichlet form ε is defined as ε(F,G) = −1
2
E[F L̂G], F,G ∈ Dom(D̂). It ad-

mits a carré du champ operator Γ defined by Γ(F,G) = (D̂F, D̂G)L2(IR+). Prop. 4

shows that this structure admits
√

2D̃ as well as D̂ as a gradient, i.e. Γ(F,G) =

2(D̃F, D̃G)L2(IR+). Moreover, (W,F , µ|F , IDF2,1, ε | IDF2,1) is the Dirichlet substructure

generated by (τk)k∈IN, cf. [1], V.5.1.1. As a substructure, (W,F , µ|F , IDF2,1, ε | IDF2,1)
is local, admits a carré du champ operator, and satisfies the energy image density

property:

Theorem 6 If F1, . . . , Fd ∈ IDF2,1 with det(((D̃Fi, D̃Fj)L2(IR+,IR
2))1≤i,j≤d) > 0 µ-a.s.,

then the law of F = (F1, . . . , Fd) is absolutely continuous with respect to the Lebesgue

measure on IRd.

We obtained a criterion for the law of a Poisson functional to have a density, which

directly involves the stochastic calculus of variations by perturbations of the Poisson

process trajectories.

5 Extensions

In this section, we give a version of the Meyer inequalities for higher orders of differ-

entiation, and extend the operators j ◦ i ◦D and δ̃ ◦ i to Sobolev spaces of H-valued

functionals. Let P∗F denote the set of functions u : IN → P such that u has a finite

support in IN. This set is dense in L2(B)⊗ l2(IN).

Lemma 1 Define the operator P
(1)
t : L2(B) ⊗ l2(IN) → L2(B) ⊗ l2(IN), t ∈ IR+ by

P
(1)
t u = ((P

(1)
t u)k)k≥0, where

(P
(1)
t u)k = (e−t − 1)DkPtuk + e−tPtuk, k ∈ IN, u ∈ P∗F .

Then (P
(1)
t )t∈IR+ is a semi-group, and we have the relation

PtF = P
(1)
t DF F ∈ PF , t ∈ IR+.

Proof. Let F = In(fn), n ≥ 1 and fn ∈ l2(IN)◦n. We have from the expression of D

as an annihilation operator, cf. [13]:

DkPtF = e−nt
l=n−1∑
l=0

Il(fn(∗, k, . . . , k))
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and

e−tPtDkF = e−t
l=n−1∑
l=0

e−ltIl(fn(∗, k, . . . , k)).

Hence

(e−t − 1)DkPtDkF =

p=n−1∑
p=1

(e−(p+1)t − e−pt)
l=p−1∑
l=0

Il(fn(∗, k, . . . , k))

= DkPtF − e−tPtDkF,

or (P
(1)
t DF )k = DkPtF F ∈ P . From the following equalities, (P

(1)
t )t∈IR+ is a

semigroup. Let u ∈ P∗F , k ∈ IN, and choose Fk ∈ P such that uk = DkFk. We have

for s, t > 0:

(P
(1)
t+su)k = (P

(1)
t+sDFk)k = DkPt+sFkDkPtPsFk

= (P
(1)
t DPsFk)k = (P

(1)
t P (1)

s DFk)k = (P
(1)
t P (1)

s u)k k ∈ IN.

Hence P
(1)
t+s = P

(1)
t P

(1)
s , for s, t > 0.

2

Proposition 7 Let L(1) denote the generator of (P
(1)
t )t≥0. For u ∈ P∗F , we have

L(1)u =
(
(L(1)u)k

)
k∈IN

with

(L(1)u)k = (L+ I +Dk)uk, k ∈ IN.

The duality relation

(i(u), i(L(1)v))L2(B)⊗L2(IR+) = (i(L(1)u), i(v))L2(B)⊗L2(IR+) u, v ∈ P∗F ,

holds, and we have the commutation relation

L(1)D = DL on PF .

Proof. This is a consequence of the above proposition. The duality relation comes

from the equality

E[τkuk(L(1)v)k] = E[τk(L(1)u)kvk] u, v ∈ P∗F , k ∈ IN,

18



that can be checked using the explicit expression of L(1):

E[τkuk(L+ I +Dk)vk]

= E[vkL(τkuk) + τkukvk + τkukDkvk]

= E[vkτkLuk + vkukLτk − 2(D̃τk, D̃uk) + τkukvk + τkukDkvk]

= E[vkτkLuk − vkuk + τkvkuk + 2vkτkDkuk + ukDk(τkvk)]

= E[τkvkLuk + vkτkDkuk + τkukvk]

= E[τkvk(L+ I +Dk)uk], u, v ∈ P∗F , k ∈ IN.

We used here the relation L(FG) = FLG+GLF − 2(D̃F, D̃G)L2(IR+,IR
2) F,G ∈ PF ,

cf. [13], and the fact that I +Dk is adjoint of Dk, k ∈ IN with respect to P .

2

We now aim to construct Sobolev spaces of H-valued functionals, in order to extend

the Poisson gradient and divergence operators to distributions.

Definition 8 We define the norm ‖ · ‖IDp,k(H)
on P∗F by

‖ u ‖IDp,k(H)
=‖ i((IH + L(1))k/2u) ‖Lp(B,L2(IR+)) .

The space IDp,k(H) is defined to be the completion of P∗F with respect to the norm

‖ · ‖IDp,k(H)
.

The following extension of Th. 2 holds:

Theorem 7 For p > 1 and k ∈ ZZ, there exists two constants Ap,k, Bp,k > 0 such

that for any Poisson polynomial functional F ∈ PF :

Ap,k ‖ DF ‖IDp,k(H)
≤‖ F ‖IDFp,k+1

≤ Bp,k(‖ DF ‖IDp,k(H)
+ ‖ F ‖Lp(B)).

Proof. We have (IH + L(1))k/2DF = D(I + L)k/2F , F ∈ PF . Hence

‖ DF ‖IDp,k(H)
= ‖ i((IH + L(1))k/2DF ) ‖Lp(B,L2(IR+))

= ‖ i(D(I + L)k/2F ) ‖Lp(B,L2(IR+))

= ‖ D(I + L)k/2F ‖IDp,0(H)

= ‖ D̃(I + L)k/2F ‖Lp(B,L2(IR+)) k ∈ ZZ, p > 1.

It remains to apply Th. 2 to (I + L)k/2F .
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2

Corollary 2 The operator j ◦ i ◦D can be extended as a continuous operator

j ◦ i ◦D : IDFp,k −→ IDp,k−1(H) k ∈ ZZ, p > 1.

The operator δ̃ ◦ i(·, 0) can be extended as a continuous operator

δ̃ ◦ i ◦ (·, 0) : IDp,k(H) −→ IDFp,k−1 k ∈ ZZ, p > 1.

Proof. We have for u ∈ P∗F and F ∈ PF :

| E
[
F δ̃ ◦ i ◦ (u, 0)

]
| = | E

[
(i(u, 0), D̃F )L2(IR+,IR

2)

]
|

= | E
[
(i(u), i(DF ))L2(IR+)

]
|

= | E
[
(i((IH + L(1))k/2u), i((IH + L(1))−k/2DF ))L2(IR+)

]
|

≤ ‖ u ‖IDp,k(H)
‖ DF ‖IDq,−k(H)

≤ Cp,k ‖ u ‖IDp,k(H)
‖ F ‖IDq,−k+1

from Th. 7 and Prop. 7, where p, q > 1 are such that 1/p + 1/q = 1 and Cp,k is a

constant. Hence ‖ δ̃ ◦ i(u) ‖IDFp,k−1

≤ Cp,k ‖ u ‖IDp,k(H)
. For the second relation, we

have

(j ◦ i ◦DF, u)L2(B)⊗l2(IN) = E
[
F δ̃ ◦ i(u)

]
= E

[
(I + L)k/2F (I + L)−k/2δ̃ ◦ i(u)

]
≤ ‖ F ‖IDFp,k

‖ δ̃ ◦ i(u) ‖IDFq,−k

≤ Cp,k ‖ F ‖IDFp,k

‖ u ‖IDFq,−k+1

u ∈ P∗F , F ∈ PF .

Hence ‖ j ◦ i ◦DF ‖IDFp,k−1

≤ Cp,k ‖ F ‖IDFp,k

, F ∈ PF .

2

The main problem that we encounter in the extension of the Meyer inequalities to

the case of higher derivatives lies with the definition of the iterated gradient D̃D̃F .

In fact, even for F ∈ PF , e.g. F = τ0, D̃F is a random indicator function and D̃D̃F

can not make sense as a random variable. To circumvent this difficulty, we choose

to take

‖ i ◦DkF ‖L2(B)⊗L2(IRk
+),

where Dk : L2(B) → L2(B) ⊗ H◦k is the k-th iteration of D, for the norm of the

iterated gradient of F ∈ PF . We are going to give an equivalence of norms between

the norm ‖ · ‖IDF2,k

and the norm defined with i ◦Dk, for p = 2 and k ≥ 0.
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Proposition 8 For k ∈ IN, there exists Ak, Bk > 0 such that for any Poisson poly-

nomial functional F ∈ PF ,

Ak ‖ i ◦DkF ‖2
L2(B)⊗L2(IR+k)

≤ ‖ F ‖2
IDF2,k

≤ Bk

(
‖ i ◦DkF ‖2

L2(B)⊗L2(IR+k)
+ ‖ F ‖2L2(B)

)
.

Proof. We need the following lemma, which is a generalization of Eq. (2).

Lemma 2 Let F ∈ PF . We have for n ≥ 1 and k1, . . . , kn ∈ IN:

Dk1 · · ·DknPtF = e−ntPtDk1 · · ·DknF

+(e−t − 1)

j=n∑
j=1

e−jtDk1 · · ·Dkn−j
PtDkn−j+1

· · ·DknDkj
F.

Proof. By induction. From Lemma 1, the result is true for n = 1. Assume that the

relation is verified at the order n ≥ 1. We have for k1, . . . , kn+1 ∈ IN:

Dk1 · · ·Dkn+1F = e−ntDk1PtDk2 · · ·DknF

+(e−t − 1)Dk1

j=n∑
j=2

e−jtDk2 · · ·Dkn−j−1PtDkn−j
· · ·Dkn+1Dkj

F

= e−ntDk1PtDk2 · · ·DknF + (e−t − 1)e−ntDk1PtDk1 · · ·Dkn+1F

+(e−t − 1)

j=n∑
j=2

e−jtDk1 · · ·Dkn−j−1PtDkn−j
· · ·Dkn+1Dkj

F

= e−ntDk1PtDk2 · · ·Dkn+1F

+(e−t − 1)

j=n∑
j=1

e−jtDk1 · · ·Dkn−j−1PtDkn−j
· · ·Dkn+1Dkj

F.

This shows that the equality is satisfied for any n ≥ 1.

2

Proof of Prop. 8. Let us write the discrete chaotic decomposition of F :

F =
∑
n≥0

In(fn),

which gives

‖ F ‖2
IDF2,k

= E[F (I + L)kF ] =
∑
n≥0

(1 + n)k ‖ In(fn) ‖22 .
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Taking Ak = 1/((k + 1)k) and Bk = 1, we have

Ak(n+ 1)k ≤ 1 + n(n− 1) · · · (n− k) ≤ Bk(1 + n)k n > k.

Hence ‖ F ‖IDF2,k

is equivalent to

F →
(
E[FL(L − I) · · · (L − (k − 1)I)(L − kI)F ] + E[F 2]

) 1
2 .

It remains to show that

E [FL(L − I) · · · (L − nI)F ] =‖ i ◦Dn+1F ‖2
L2(B)⊗L2(IRn+1

+ )
, n ≥ 0.

We know that this statement is true for n = 0. Suppose that it is true at the rank

n, and let us show that then it is also true at the rank n+ 1.

E[FL(L − I) · · · (L − (n+ 1)I)F ]

= E
[
(i ◦DnF, i ◦Dn(L − (n+ 1)I)F )L2(IRn

+)

]
= E

[ ∑
k1,...,kn

τk1 · · · τknDk1 · · ·DknFDk1 · · ·Dkn(L − (n+ 1)I)F

]

= E

[ ∑
k1,...,kn

τk1 · · · τknDk1 · · ·DknF

(
i=n∑
i=1

Dki
+ L

)
Dk1 · · ·DknF

]

= E

[ ∑
k1,...,kn

τk1 · · · τknDk1 · · ·DknF

(
i=n∑
i=1

Dki

)
Dk1 · · ·DknF

]

+E

[ ∑
k1,...,kn

τkn+1Dkn+1τk1 · · · τknDk1 · · ·DknFDk1 · · ·Dkn+1F

]

= E

 ∑
k1,...,kn+1

τk1 · · · τkn+1Dk1 · · ·Dkn+1FDk1 · · ·Dkn+1F


= E

[
(i ◦Dn+1F, i ◦Dn+1F )L2(IRn+1

+ )

]
F ∈ PF ,

where we used the relation

Dk1 · · ·Dkn(L − (n+ 1)I)F =

(
j=n∑
j=0

Dki
+ L

)
Dk1 · · · · · ·DknF,

obtained by differentiating the result of Lemma 2.

2
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6 Independence of Poisson functionals

In this section, we apply the criterion given in [18] for the independence of multi-

ple Wiener integral in order to obtain similar results for discrete multiple Poisson

stochastic integrals of the type In(fn), fn ∈ l2(IN)◦n. The following result allows

to characterize the independence of discrete multiple Poisson stochastic integrals in

terms of the supports of their discrete time kernels.

Theorem 8 Let fn ∈ H◦n and gm ∈ H◦m, m ≥ n. The Poisson functionals In(fn)

and Im(gm) are independent if and only if

fn(k1, . . . , kn)gm(k1, kn+1, . . . , kn+m−1) = 0, ∀k1, . . . , kn+m−1 ∈ IN.

Proof. We have the following orthogonal decompositions for fn and gm:

fn =
∑

k1 6= · · · 6= kd
n1 + · · ·+ nd = n

αn1,...,nd

k1,...,kd
e◦n1
k1
◦ · · · ◦ e◦nd

kd

gm =
∑

l1 6= · · · 6= lp
m1 + · · ·+mp = m

β
m1,...,mp

l1,...,lp
e◦m1
l1
◦ · · · ◦ e◦mp

lp
.

From Prop. 1, the random variables In(fn) and Im(gm) belong respectively to the

2n-th and 2m-th Wiener chaos. Denote by f̂2n and ĝ2m the corresponding kernels.

We have In(fn) = Î2n(f̂2n) and Im(gm) = Î2m(ĝ2m), i.e.

f̂2n =
∑

k1 6= · · · 6= kd
n1 + · · ·+ nd = n

αn1,...,nd

k1,...,kd
fn1,...,nd

k1,...,kd

and

ĝ2m =
∑

l1 6= · · · 6= lp
m1 + · · ·+md = m

β
m1,...,mp

l1,...,lp
g
m1,...,mp

l1,...,lp
,

with

Î2n(fn1,...,nd

k1,...,kd
) = In(e◦n1

k1
◦ · · · ◦ e◦nd

kd
), Î2m(g

m1,...,mp

l1,...,lp
) = In(e◦m1

l1
◦ · · · ◦ e◦mp

lp
).

From Prop. 1, we find explicitely

fn1,...,nd

k1,...,kd
=

∑
0 ≤ i1 ≤ n1

. . .
0 ≤ id ≤ nd

(−1)nCi1
n1
· · ·Cid

nd

2n(C2i1
2n1
· · ·C2id

2nd
)1/2

h◦2i12k1
◦ h◦2n1−2i1

2k1+1 ◦ · · · ◦ h◦2id2kd
◦ h◦2nd−2id

2kd+1
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and

g
m1,...,mp

l1,...,lp
=

∑
0 ≤ j1 ≤ m1

. . .
0 ≤ jp ≤ mp

(−1)mCj1
m1
· · ·Cjp

mp

2m(C2j1
2m1
· · ·C2jp

2mp
)1/2

h◦2j12l1
◦h◦2m1−2j1

2l1+1 ◦· · ·◦h◦2jp2lp
◦h◦2mp−2jp

2lp+1 .

From [18], In(fn) is independent of Im(gm) if and only if f̂2n ⊗1 ĝ2m = 0 a.s., i.e.∑
αn1,...,nd

k1,...,kd
β
m1,...,mp

l1,...,lp
fn1,...,nd

k1,...,kd
⊗1 g

m1,...,mp

l1,...,lp
= 0,

which means

αn1,...,nd

k1,...,kd
β
m1,...,mp

l1,...,lp
fn1,...,nd

k1,...,kd
⊗1 g

m1,...,mp

l1,...,lp
= 0

for k1 6= · · · 6= kd and l1 6= · · · 6= lp, since{
fn1,...,nd

k1,...,kd
⊗1 g

m1,...,mp

l1,...,lp
: k1 6= · · · 6= kd and l1 6= · · · 6= lp

}
is orthogonal in L2(IR+)◦n+m−2, due to the particular form of fn1,...,nd

k1,...,kd
and g

m1,...,mp

l1,...,lp
.

This condition is equivalent to αn1,...,nd

k1,...,kd
β
m1,...,mp

l1,...,lp
= 0 if {k1, . . . , kd}

⋂
{l1, . . . , lp} 6= ∅,

or

fn(k1, . . . , kn)gm(k1, kn+1, . . . , kn+m−1) = 0 ∀k1, . . . , kn+m−1 ∈ IN.

2

7 Diffusion process and capacities

In this section, we study the diffusion process associated with −L, and show that it

gives another example of a process whose hitting probabilities of open sets can be

estimateds in terms of capacities, cf. [8], [15]. We start by introducing capacities on

the Poisson space. The space B is endowed with the largest topology that makes

O ⊂ B open in B if Ξ−1(O) is open in W . We can define the capacities cr,p on B as

follows:

cr,p(O) = inf
{
‖ u ‖IDFp,r

: Θ−1u ≥ 1{O} P − a.s.
}

for O open in B, and

cr,p(A) = inf {cr,p(O) : O open and A ⊂ O}
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for any subset A of B.

Let (X
(n)
t )t∈IRn

+
denote the W -valued n-parameter Ornstein-Uhlenbeck process, i.e.

X
(n)
t = e−(t1+···+tn)/2W

(n+1)

et1 ,...,etn ,·,

where W (n+1) is the (n+1)-parameter Brownian sheet defined on a probability space

(Ω,A, Q), cf. [7].

Proposition 9 Let Y
(n)
t = Ξ(X

(n)
t ), t ∈ IRn

+. The process Y (n) is a B-valued P-

symmetric n-parameter process with continuous paths. Its transition semi-groups are

given by

P i
t = Θ−1exp(−tL)Θ, t ∈ IR+, i = 1, . . . , n.

Proof. We refer to the definitions in [8]. We know that X(n) is a µ-symmetric n-

parameter process. Let (F it )t∈IR+ , i = 1, . . . , n denote its associated filtrations. We

have

(1) For any t ∈ IRn
+, Y

(n)
t ∈

⋃
1≤i≤nF iti since X

(n)
t ∈

⋃
1≤i≤nF iti , and the law of Y

(n)
t

is P since P = Ξ∗µ and X
(n)
t has law µ.

(2) For any 1 ≤ i ≤ n and F ∈ L2(B,P ), we have for u ∈ IRn
+ and a ∈ IR+:

E[F (Y
(n)
u1,...,ui+a,...,un

) | F iui
] = E[ΘF (X

(n)
u1,...,ui+a,...,un

) | F iui
]

= e−aL̂ΘF (X(n)
u )

= Θ−1e−aLΘF (Y (n)
u ).

2

Applying the result of [8], [15], we obtain that the process (Y
(n)
t )t∈IRn

+
is another

example of a process whose hitting probabilities can be estimated in terms of capac-

ities:

Theorem 9 Let O be an open set in B. For t ∈ IRn
+, there exists two constants

K1, K2 > 0 depending only on t and n ∈ IN such that

K1cn,2(O) ≤ Q(∃s ∈ [0, t] : Y (n)
s ∈ O) ≤ K2cn,2(O).

Proof. From [15], there exists K̂1, K̂2 > 0 such that

K̂1ĉn,2(Ξ
−1(O)) ≤ Q(∃s ∈ [0, t] : Y (n)

s ∈ O) ≤ K̂2ĉn,2(Ξ
−1(O)),
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where ĉn,2(Ξ
−1(O)) is the usual capacity on Wiener space, defined as

ĉn,2(Ξ
−1(O)) = inf

{
‖ u ‖ID2,n

: u ≥ 1O ◦ Ξ µ− a.s.
}
.

We need to show that cn,2(O) can be estimated in terms of ĉn,2(Ξ
−1(O)). We have

cn,2(O) ≥ inf
{
‖ u ‖ID2,n

: u ≥ 1O ◦ Ξ µ− a.s.
}

≥ ĉn,2(Ξ
−1(O))

≥ inf
{
‖ u ‖ID2,n

: E[u | F ] ≥ 1O ◦ Ξ µ− a.s.
}

≥ K inf
{
‖ E[u | F ] ‖IDF2,n

: u ∈ ID2,n and E[u | F ] ≥ 1O ◦ Ξ µ− a.s.
}

= Kcn,2(O),

with K > 0. The last inequality comes from the continuity of E[ · | F ] from IDp,k to

IDFp,k, cf. Prop. 2.

2

For n = 1, Prop. 9 shows that the diffusion process associated to −L is the B-valued

process Y = (Ξ(X
(1)
t ))t≥0. The coordinates of (Yt)t∈IR+ are the square norms of

independent two-dimensional Ornstein-Uhlenbeck processes, hence they satisfy the

stochastic differential equation

dVt =
√

2VtdWt + (1− Vt)dt,

where (Wt)t∈IR+ is a brownian motion. In the usual Poisson space interpretation, the

trajectories of (Yt)t≥0 take their values in a space of step functions whose interjump

times move according to the square norms of independent 2-dimensional Ornstein-

Uhlenbeck processes.
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