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Abstract

The aim of this work is to construct the stochastic calculus of variations on
Poisson space and some of its applications via the stochastic analysis on Wiener
space. We define a new gradient operator on Wiener space, whose adjoint
extends the Poisson stochastic integral. This yields a new decomposition of
the Ornstein-Uhlenbeck operator and a substructure of the standard Dirichlet
structure on Wiener space, with applications to stochastic analysis on Poisson
space and infinite-dimensional analysis for the exponential density.

1 Introduction

The stochastic calculus of variations on the Wiener space, cf. [9], [11], makes use of
the following ingredients: a gradient operator, its adjoint the divergence operator,
and the Ornstein-Uhlenbeck operator which is obtained as the composition of the
divergence with the gradient. The Ornstein-Uhlenbeck operator is a number operator
on the Wiener chaotic decomposition and it allows to define Sobolev spaces and
distributions on the Wiener space, cf. [19]. On the other hand, the connection with
the Ito calculus is obtained via the divergence operator which extends the [to integral,
cf. [6]. An important tool in this analysis is the Meyer inequalities, cf. [10] which give
an equivalence between the norms defined with the gradient and the norms defined
on Sobolev spaces with the Ornstein-Uhlenbeck operator. The question whether
an analogous formalism exists on Poisson space has been investigated in e.g. [2],
[12], [13]. In [12], a Fock space isomorphism using the Poisson and Wiener multiple
stochastic integral is considered. This leads to a gradient defined by finite differences,

which is not a derivation operator, and whose adjoint coincides with the compensated
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Poisson stochastic integral on square-integrable predictable processes. However, this
isomorphism is not an isometry for the LP norm, except for p = 2, and apparently
it does not allow to transpose to the Poisson space case the analysis constructed on
the Wiener space, in particular for p # 2. Another approach, initiated in [2] is to
define a gradient by shifting the jump times of a standard Poisson process on the
positive real line. The adjoint of this operator also extends the compensated Poisson
stochastic integral. It has been shown in [1], [13] that there is a discrete chaotic
decomposition on Poisson space on which the composition of this gradient with its
adjoint acts as a number operator noted L. In this approach, the trajectories of the
Poisson process are considered as sequences of independent identically distributed
exponential interjump times.

In this work, we consider the LP space of Poisson functionals as a subspace
of the LP space of Wiener functionals, and show that the above gradient can be
extended to Wiener functionals. It turns out that the composition of this gradient
with its adjoint gives a new decomposition for the Ornstein-Uhlenbeck operator on
the Wiener space. From the point of view of Dirichlet forms, this yields a substructure
of the standard Dirichlet structure on the Wiener space. As a consequence we obtain
several results in stochastic analysis for Poisson functionals that can be interpreted
in infinite dimensional analysis for the exponential density. The connection with
the Poisson process is made through the fact that the adjoint of this new gradient
coincides under certain conditions with the compensated Poisson stochastic integral.

We proceed in the following way. In Sect. 2, we consider the o-algebra F
generated by a countable collection of independent identically distributed exponential
random variables on the Wiener space, and call a Poisson functional any Wiener
functional which is measurable with respect to F. The Ornstein-Uhlenbeck operator
on the Wiener space appears to be an extension of the number operator £ defined in
[13] for Poisson functionals. We deduce results in infinite dimensional analysis for the
exponential density, such as the hypercontractivity of the semigroup associated to
L, the construction of distributions, and an algebra of test functions on the Poisson
space. We introduce in Sect. 3 a random unitary operator X of the Cameron-Martin
space which allows to define a new gradient on Wiener space by composition with
the Gross-Sobolev derivative. This gradient is related to the conditional gradient
given F on the Wiener space and to the derivative obtained by shifting the Poisson

process jump times, and its adjoint extends the compensated Poisson stochastic



integral. In Sect. 4, several results in Malliavin calculus concerning the existence
and smoothness of densities of Poisson functionals, as well as the Meyer inequalities,
are derived on the Poisson space using the operators that are defined above. Sect. 5
is devoted to the extension to higher orders of differentiation of the equivalence of
norms obtained in Sect. 4. We obtain in this way the continuity of the gradient
and divergence operators on Sobolev spaces of Poisson functionals. In the sixth
section, we deal with the independence of Poisson functionals. From the existing
criterion on Wiener space, cf. [18], we deduce necessary and sufficient conditions for
the independence of discrete multiple Poisson stochastic integrals. Those integrals
are defined with the Laguerre polynomials as stochastic integrals of deterministic
discrete time kernels, and the conditions for independence are expressed in terms of
the supports of those kernels. In the last section, we study the infinite-dimensional
diffusion process associated to the operator £ and show that it gives another example
of a process whose hitting probabilities can be estimated in terms of capacities.
Notation. The following definitions can be found in [19]. Let (W, L*(R. ), 1) be the
classical Wiener space, and let (h)g>0 be an orthonormal basis of L?(R. ), which will
remain fixed throughout this work. We note respectively D and 6 the Gross-Sobolev
derivative and its adjoint on the Wiener space. Recall that (8(hz))ken is a system
of independent gaussian normal random variables, and for F = f(6(ho), ..., 0(hy)),
feC®(R™™), DF € L3(W) ® L2(R,) is defined as

k=n

DF = " 0uf(8(ho).- .., 0(hn)) bt

k=0

The Ornstein-Uhlenbeck operator on the Wiener space is denoted by yy /2. Tt is self-
adjoint with respect to u and satisfies to L =46D. Let fn(gn) represent the Wiener
multiple stochastic integral of a symmetric function in the completed symmetric

tensor product L2(R;)°". We have LI,(g,) = nl,(g.) n € N, and any square-

oo

F=> I(g.) gr€Ll’®Ry)* kel

n=

integrable functional F' on (W, i) can be decomposed as a series
0

~

Let P denote the algebra of polynomials in ((hy))g>0, which is dense in L?(W, u).
For k € N and p > 1, let ID,; be the completion of P under the norm || F' ||, x=]l
(I + LY**F || 1ow,), and let D, ;. be the dual space of D, . Let Dy, = px Dy
The dual of D, is D_,, = Up7k D, .




To end this introduction, we shortly describe the method that will be used
in the next sections. Let us write down the usual integration by parts formula on
Wiener space:

E[Fi(u)] = E[(DF,u) 12w,

for u € Dom($) and F € Dom(D). Consider also a random operator
X LA(Ry) — L*(Ry)

such that X is unitary, p-a.s. This operator can be viewed as an isometry from
L*(W) ® L*(R,) to L*(W) @ L*(R.). Let us apply the above integration by parts
to F and Xu, with F € Dom(D) and u € L2(W) ® L*(R.) such that Xu € Dom(9).
We have from the properties of X:

E[F§oX(u)] = E[(DFaXU)LQ(R+)]
= E[(X* o DF,u) 2.,

X* being the adjoint of X. We will show that it is possible to choose X such that
d o X extends the stochastic integral with respect to a compensated Poisson process
defined on the Wiener space. It will appear that X* oD is closely related to a gradient
defined on Poisson space by shifts of the Poisson process jump times, cf. [2], [13].
Moreover, we have

<Sox> o (X%D) — D=1,
and

I X0 DF lr2w )=l DF 2wy 1—as.

from the fact that X is a.s. unitary. As a consequence, any result in Malliavin calculus
that involves the norm of the gradient D or the Ornstein-Uhlenbeck operator £ will
be valid on Poisson space and interpreted in terms of the stochastic calculus of
variations for the Poisson process, using the compensated Poisson stochastic integral

and the derivation with respect to shifts of the jump times.

2 The Poisson space as a subspace of the Wiener
space

A characterization of the standard Poisson process on the positive real line is that it

is a jump process with jumps of fixed size 1 and independent identically distributed



exponential interjump times. We intend here to construct a Poisson process, or equiv-
alently a countable collection of exponential random variables on the Wiener space.
We will make use of the fact that the half sum of two independant normal random
variables has a X? law with 2 degrees of freedom, i.e. an exponential distribution.

Let R R
5(h2k)2 + 5(h2k+1)2
2

then (7x)r>o is a family of independent exponentially distributed random variables,

Tk = kzO,

hence it represents a Poisson process (N;);>o. This does not require the system
(hi)k>0 to be complete in L?(R,). Let Ty = Zﬁzlg_l T;, k > 0, represent the k-th
jump time of (Ny)i>o. We have

Nt == Z 1[Tk7oo[<t)7 t c R+.
k=1

Note that this construction does not preserve the filtrations generated by the Poisson
and Wiener processes, i.e. the filtrations generated by (N:):>o and the Brownian
motion (B;);>o on (W, i) are not comparable. We define an application = : W — RN
by

E(w) = (Tk)ken 1 — a.S. (1)
Denote by B the range of =, endowed with the largest o-algebra that makes =

measurable, and let P be the image measure of u by =:
P ==.pu,
and define an operator © : LP(B, P) — L?(W, u) by
OF = FoZ,

where F' is a polynomial functional on B, i.e. F((zg)ren) = f(z0,...,2n), n € N,
f polynomial. The operator © can be extended as an isometry from LP(B, P) to
LP(W, i), p> 1. The dual of © : L*(B, P) — L*(W, pu) is ©* : L*(W, ) — L*(B, P),
given by

O*F =0 'E[F | F|, FeL*W,np).

We call F the o-algebra on W generated by =. In the sequel, LP(W, F, u#) will be
identified with L?(B) for p > 1.



Definition 1 (Poisson space). The space (W,F, r) is called the Poisson space.

We call a Poisson functional any random variable on (W, F, ur). Let
Pr={f(70,--.,7n) : [ polynomial, n € N}
denote the set of polynomial Poisson functionals.

We recall, cf. [13] that Pr is dense in L*(W, F, p7) and that there exists a discrete
chaotic decomposition of the space L*(W, F, ju7) of square-integrable Poisson func-
tionals. This decomposition uses discrete multiple stochastic integrals defined with

the Laguerre polynomials

Lk(x):§<l?)(_;)i reRy, keN,

=0

which are orthonormal with respect to the exponential density. Let H = [*(IN) be the
Hilbert space of square-summable sequences, and let (eg)ren denote the canonical
basis of H. For n > 1, we define the discrete multiple stochastic integral of a
symmetric function f, on N" as a linear mapping I,, : H*" — L*(W, F, yr), first on

elementary functions:

onq ong

I(epto--oe ) =mnyle - nglLy (k) - -+ Ly (Thy)

where ny + --- +ng = n, ky # -+ # kg € N. The mapping [, is extended to
any element of the completed symmetric tensor product H°" by density, since the
linear functional I, satisfies to an isometry formula, cf. [13]. Moreover, integrals
of different orders are orthogonal. As a result, any F in L*(W,F, qx) has the

orthogonal decomposition
F=) L(f) freH* keN
n=0

with the conventions H° = R and I, = Ig. The following proposition says that the
Poisson random variable I,,(f,) is a multiple Wiener integral of order 2n, and gives
its expression in the Wiener chaotic decomposition. For simplicity, the development

is only written for f, = ;™. Let C* = nl/(k!(n —k)!), 0 <k <n,n e N.

Proposition 1 The Wiener chaos expansion of I,(e) is given by

oy (CUT R G [eni o o@ne20)\ i i
L(ey") = on Z Iy, <h22 © h21(<:+1 )) Cn/(022n)1/2'
=0



Proof. The proof relies on the following relation between the Hermite and Laguerre

polynomials, cf. [4], p. 195:

I2+y2

n!L,( )

) = C S i (o) Ho () (220 — 28]

and on the definition of the multiple Wiener integral with the Hermite polynomials,
cf. [6]. Here, Hi(x) is the k-th normalized Hermite polynomial, defined by the

generating series

o0

HZ:OV” H\;%) = exp(yz —°/2) v,z € R.

O

Denote by £ the number operator on the discrete chaotic decomposition, that is £

is a linear operator with
LIn(gn) = nIn(gn) gn € Hon7 nc ]N,

so that the domain of £ is made the following Poisson functionals:

Dom(L) = {Z[n(fn> : Zn2 | I (fn) H§< Oo};

and L leaves invariant the space Pz of polynomial Poisson functionals. The operator
L is the infinite dimensional generalization of the operator 9>+ (1—xz)9, on C*(R),
whose eigenvectors are the Laguerre polynomials.

We now define Sobolev spaces of Poisson functionals. We call Df: , the completion

of the algebra Pz of polynomial Poisson functionals under the norm
_ k/2 )
VE I pz = L+ L F Nl F € Pr,
p> 1,k €7, and let

Fo_ F Foo_ F
D7 =\Dj,, D’ =)D},
Dk Dk

The next proposition says that the o-algebra F generated by the Poisson functionals

is £~ -stable. We refer to [17] for the notion of L~ '-stable o-algebra.

Proposition 2 The operators L and ﬁ/Z commute with the conditional expectation

with respect to F:

E[LF | F]=2LE[F | F] F e Dom(L), p>1, ke Z,



hence L2 is an extension of L. The norms | - I, and || - || = are equivalent
D, p,k

on Pz, and ]DfO 15 an algebra. Moreover,
E[-|F|:Dyy— D, p>1, ke Z,
15 continuous.

Proof. Prop. 1 gives

itj)  (ilih1/? . .
(—1/2)¢ +J)mlj(iﬂm(m) i and j even,

0 otherwise.

Hence

E[ﬁf 1(5) h2k+1) | 7]

= V(i + I EL(H(5(har)) H;(0(hars1))) | 73]
(t+7) (Z'+j)!E[H'(S(h%))ﬂj(5(h2k+1)) | 7]
= 2V/(i + )ILE[H;(6(hor)) H; (0 (hows1)) | 73]
= 2LE[l;(hg) o h2k+1> | 7]

for any 4,7,k € N. It follows that if i,...,44,j1,...,7¢ € N, ky # -+ # kg and
F= H ’Ll+3l< ;’;{fl Oh;i}r&-l)

p=d

E[ﬁmf} - Y E

p=1

HLH-JZ O” Oh;i:l-&-l) |:£'[7:p+jp( ;;fp © h;?cp—f—l) | Tp] |f]
l#p

p=d
- 2ZHE [Iilﬂl gzz ;?cl—ﬁ—l) | Tl} LE [ zpﬂp(h;;f © h;é 1) | Tp]
p=1I#p

— 9LE[F| 7],

hence
E[LI,(gn) | F) = 2LEL(g:) | Fl.  gn € L*(Ry)™"

This implies that 2L1,(f,,) = ﬁfn( fn), fn € H°™. The equivalence of norms follows
from the LP-multiplier theorem, with the fact that ID7 is an algebra, since for
p,q,r > 1 such that 1/r = 1/p+ 1/q and k € ZZ, there exists a constant C, ,x such
that

1 (L + L£/2)"2(FG) [l1row)
< Gy | (L+L/2)*PF o | (L +L£/2)*2C ||raw)  F.G € P,



cf. [19]. The continuity of E[ - | ] can be established as follows. For p > 1 and
k € 7, there exists a constant C, ; such that

| EF |7 7, < Goull EIF | 7] p,,

o | (T + LYE[F | F] | oqw)
Co | EI(T+ L)2F [ F] o qw
Corl Fllp, FeP.

AN

O

Another consequence of this proposition is that £ is self-adjoint with respect to
f7- Being the restriction of L /2 to Poisson functionals, £ shares several properties
with £. The theorem below can be interpreted as a result in infinite-dimensional
analysis for the exponential density, since L is the infinite dimensional generalization
of the operator whose eigenvectors are the Laguerre polynomials, which form an

orthonormal sequence for the measure e™*1y,01dx.

Theorem 1 (Hypercontractivity). Let p > 1 and t > 0. There exists ¢ > p such
that
|| e:pp(—tﬁ)F ||L‘1(B)§|| F ||LP(B) F e Lq(B>

Proof.  Since exp(—tL) = exp(—tL/2) on L2(W,F, uz), we can apply to Poisson
functionals the existing hypercontractivity theorem on Wiener space, which says that

for any ¢t > 0 there is ¢ > p such that

| exp(~tL/2)F s <I F gy F € LI(W).

Example of a generalized Wiener functionals which is a Poisson functional.
From [1], Prop. VI.1.2.2, we have the following Wiener chaos expansion for the

distribution

T =27 </ ho(t)dBt,/ hl(S)st) c DZ—T? r> 1,
0 0

where ¢ is the Dirac distribution at 0 in R?:

n k=n
_ L —1 1 o2k 7 o2n—2k

n>0



Hence from Prop. 1, T' is the limit in _lDéE _., 7 > 1, of a sequence of polynomial
Poisson functionals.

We end this section with two definitions. In [13], a gradient operator has been defined
for Poisson functionals as a directional derivative in the directions of H = [*(IN), or
equivalently by shifts of the Poisson process jump times. We recall this definition

with a different interpretation.
Definition 2 We define D : L*(W, i) — L*(W, F, 7)) ® H by

-1 = _
(DF, W) = — lim [O'F|(E+¢h) - F

e—0 g

he H, F € Pr.

It F € Py with F = f(9,...,7,), then

k=n
DF = — Z 3kf(7'0, e ,Tn)l{k}.
k=0

The operator D : L*(W, F, wr) — L*(W,F, jyr) ® H is closable and its expression

in the discrete chaotic decomposition is written as follows, cf. [13]:

k=n—1

n!
Dila(fa) = D2 Tl(fulido o)) 5 EN, fu€ BN,
k=0

Finally, we define for later use an operator ¢ that turns a discrete-time process into

a continuous-time process, using the Poisson process itself.

Definition 3 If f : N — R" is a function of discrete variable, we define a d-

parameter process i(f) by
i(f)(tr, ... tq) = f(Nt;,...,Ntf) t1,...,tg € Ry.

The operator i is easily extended to stochastic processes of discrete d-dimensional
parameter. If n =d =1, let j : L*(W) ® L*(Ry) — L*(W) ® [*(N) denote the dual
of i : L*(W) ® I?(N) — L*(W) ® L*(R,), i.e. j is a random operator such that

(i(u),v) 2wy = (U, j (V)@ p— a.s.

for u e L*(W) ® I*(N), v € L*(W) ® L*(R,). We have explicitely
Tk+1

jv) = Z 1{k}/ v(s)ds.

E>0 Ty

10



3 A new gradient operator on Wiener space

In this section, we define an extension to Wiener functionals of the above gradient
operator D, taking into account the conditional gradient given F, cf. [1] for this no-
tion. This new gradient has the following properties: its adjoint coincides with the
compensated Poisson stochastic integral under certain conditions, and by composi-
tion with its adjoint it yields the Ornstein-Uhlenbeck operator on the Wiener space.
It is expressed by composition of the Gross-Sobolev derivative D on the Wiener space
with a random unitary operator which is defined below. The n-th jump time of the

Poisson process (Ny)er, defined on (W, i) is denoted by T, = 2228_1 Tk, n >0 .

Definition 4 For pi-a.s. w, we define an operator X : L*(R;, R?*) — L%(Ry) by

v — Z 0(haw)har + 0 (Pa1) hori1 / o u(s)ds
V2 T

_
k>0 k

n 0(hag) hag1 — 6 (hagy1)ha

Tk

Tt
/ u®(s)ds  u=(uV,u®) € C(Ry, R?).
Tk

We are going to show that p-a.s., X is unitary from a certain random subspace H of
L*(R,,R?) into L2(R,).

Definition 5 For ji-a.s. w € W, we define H to be the random subspace of L*(R., R?)
of the form
={i((f,9)) + (f,9) € P(N,R*)}.

The operator ¢+ was introduced in Def. 3.
Proposition 3 The operator X is unitary from H into L*(R,):
X*X =1y and  XX* = IR,y p—a.s.

and its adjoint is X* : L*(Ry) — L*(R,,R?), given by

Xy — ~ 7 Z 1[Tk T [((V, ha) L2 (roy) S(h%) + (v, h2k+1)L2(R+)S(h2k+l)a

k>0

~ A~

(v, haks1) 2y )0 (har) — (v, har) r2r )0 (hors1)) o — a.s.
Proof. We have if u = (u®,u?) € C*(Ry, R?) and v € C°(R,):

(XU, U)LQ(R+)

11



_ 1 Z Tt u(1)<8)d85(h2k)(h2k7U)LQ(R+) + 0(hak+1) (hor+1, V) 2R )

ﬁ k>0 7 Tk Tk
. . .
+/ s u(2)<8)d85(h2k+1>(h2k+17U)LQ(R_,_)T_ 0 (hars1)(har, V) r2(ry )
Ty 3

= (4, X"V)2r, g2y M — a.s.

Hence X and X* are adjoint g — a.s. It is easy to check that X*X = I7 and XX* =
Ip2g+y pt— a.s., and the fact that X : H — L*(R,) is unitary follows.

O

Again, X is easily extended to two dimensional stochastic processes as an isometry
X: L2(W)® L*(Ry,R?) — L*(W) ® L*(R,), with the properties that
XX* = I wyeremy) and (Xu,v)remy) = (U, X0) p2g, g2y H — @.5.,

ue L2(W)® L2 (R, R?), v e L2A(W) ® L*(R,). We now define a gradient D by
composition of D with X*.
Definition 6 We define an operator D : L*(W) — L*(W) ® L*(R4, R?) by

DF:ix*oDF Fep.

V2

Then DF = v/2X o DF, F € P. According to this definition, D is a derivation

operator on the Wiener space.
Proposition 4 As a direct consequence of the fact that X is unitary, we have:
e The operators D and D can be extended to the same domains. More precisely,

2| DF 2o, zy=ll DF 3o,y F € Doy, pi—aus.,

R, ,R?
hence the operator D is closable and local.

o Let —ﬁ/Z denote the Ornstein-Uhlenbeck operator on the Wiener space. We

have the following decomposition of L:
L£/2=4D.

Note that the usual decomposition of the Ornstein-Uhlenbeck operator is given by

L =106D.

12



We now show that for F' € Dom(ﬁ), the second component D@ F of DF is
related to the conditional gradient of F' given F, cf. [1], whereas its first component
DWF is expressed with the operator D defined in Def. 2 by shifts of the Poisson
process jump times. Denote by H the orthogonal subspace in L*(W) @ L*(R.) of
the set

{ZDU . UeDf, Z¢ LOO(W,M)} .

Let P™ be the orthogonal projection on ‘H in L?*(W) ® L?*(R,). Recall that the
conditional gradient given F of F € ID,; is defined as D¥F = P'DF, F € ID,;,
of. [1], V.5.2.3.

Proposition 5 The conditional gradient D7F of F' € Dy given F is
D¥F =V2X(0,DPF) ju—a.s.
Let F' € Pg be a polynomial Poisson functional. We have
DF =i((DF,0)) pu— a.s.
Proof. Let F = f(5(hy),...,0(hy)) with f € C=®(R™"). We have
DF —/2X(0, D?F) = v2X(DWF,0),

hence DF — /2X(0, D@ F) € {ZﬁU Ue ]D;l, Z e L>*(W, u)} We also have

E[Z(X(0,DPF), DU)2m,)] =0 U € Pr, Z € L=(W,p),

hence v/2X(0, D@F) = PHDF. The result is obtained by density. For the second
part, we notice that the conditional gradient of a Poisson functional given F is 0 and

that a simple calculation yields X* DU = v/2i(DU,0), U € Pr.
O

The following definition gives the adjoint of D. Let V be the class of processes defined
by
V={uec*(W)® L*(Ry,R? :
w=(FC3(h0). . 8(hn)), (00 0(k)) ) frg € CX(RE™), me N},
Definition 7 We define the operator 6 : L*(W) ® L*(Ry, R?) — L*(W) by
< 1

d(v) = 7

doX(v), wveV.

13



We have the following commutative diagram:

V2D V26

L2(W) L*(W)® L*(R) L*(W)® L*(R) L2(W)
T X |
L2(W) _ D L2(W)® L*(Ry,R?) L*(W)® L*(R,,R?) J L2(W).

Proposition 6 The operator é is closable, adjoint of D and satisfies to
o(u) = / uM (s)d(N, — s) — trace(Du), u €V,
0

where trace(Du) = [ DM uM (s)ds + I DPu? (s)ds.

Let Dom($) denote the domain of the closed extension of 4.
Proof. Recall that by definition, cf. [6], [19], if v = S'=¢ hifi(6(ho), - . - ,6(hy)) with
f; €CE(R™M),i=0,...,n, then

o) = 6(hi) fi(6(ho), .., 0(hn)) — Bifi(0(ho), - - ., (h)).
Applying the above formula to Xu, u € V, we obtain:

o(u) = 6(Xu)

2, 8 2 < < _ ¥ <
_ Zu(l)(Tk+1)6(h2k) ;Ti(h%ﬂ) +u(z)(TkH)5(hzk)(S(hzkﬂ)2Tk5(h2k+1)5(hzk)

~

k>0
1 Tkt

+— ((Du<1><s), hoi)d(haw) + (Du®(s), h%ﬂ)&h%ﬂ)) ds

27—k- Tk
I R 3 A (2) 3
F— ((Du (), hows1 )8 (hawsr) — (Du®(s), m)&(@)) ds

27_k Ty

1 Tht1 Tk41 'y 2 y 2 Tht1
+— u(l)(s)ds—/ u(l)(s)é(h%) + 0o +1) —/ uM (s)ds

2
Tk Ty T 27—k Ty

= / u(l)(s)d(Ns—s)—/ Dgl)u(l)(s)ds—/ D@y (s)ds.
0 0

0

The operator § is adjoint of D and closable since X and X* are adjoint and the domain

of D is dense in L*(W).

14



Let (F)i>0 be the filtration generated by (N;)i>o on (W, p).

Corollary 1 Ifu = (uV,u®) € L2 (W) ® L*(Ry, R?) is (F;)-predictable, then 6(u)

coincides with the compensated Poisson stochastic integral of uV:

6(u) = /000 uM (s)d(N, — s),

and any Poisson stochastic integral has a representation as an anticipative Wiener-

Skorohod integral:
/ uM(s)d(N, — s) = 6(X(uV,0))/V2.
0

Proof. The conditional gradient given F of a Poisson functional is 0, cf. Prop. 5,
hence from Prop. 6 the first part of this statement is identical to the Poisson space
result that can be found in [1], [2], [13]. The representation property comes from the

. ’“_ 1 :
relation § = 756 o X.
O

The above coincidence can occur under weaker conditions, for instance without pre-
dictability requirements. For example, it is sufficient to have (u),0) € V with

ulV € AW, F, pyr) @ LA(R..) and

S(h -

u®(t) = - Z U7y, 1.1 (2) arctan <A<—2k)> DPuM(t) teRy.
k>0 ) h2k+1)

In this case, DMy 4+ DPy?) = 0 p@dt-a.e., and the trace term in (6) vanishes. The

representation property for Poisson stochastic integrals as Wiener-Skorohod integrals

also extends to anticipative integrands in Dom(8). This result differs from the result

obtained via the Clark formula, cf. [3], in that the process \%Xu that we obtain is

not adapted and its expression is easier to compute.

4 Meyer inequalities on Poisson space and appli-
cations

The first consequence of the above propositions is that the Meyer inequalities on
Poisson space hold for the operators D and £, given that they are verified for D
and L. The spaces LP(B, P) and LP(W, F, yr) are identified via the operator © for
p= L
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Theorem 2 For any p > 1, there exist A,, B, > 0 such that for any Poisson poly-

nomial functional F € P,

Ay | DF |l po(.12m4)
< T+ L)2F o)< Bo(| DF wosorewey + | F llzes))-

Proof. 'We write the Meyer inequalities, cf. [10], on the Wiener space and make use
of the facts that X is unitary from H to L*(Ry), u — a.s. and £ is an extension of
2L.

O

The difference between this result and the Meyer inequalities on the Wiener space
comes from the fact that on Poisson functionals, D is defined by shifting the jump
times of the Poisson process, and its adjoint extends the compensated Poisson
stochastic integral, whereas D is defined by shifts of the Wiener process trajectories
and its adjoint extends the It6-Wiener stochastic integral.

We can also define the composition of a Schwartz distribution with a Poisson
functional as a distribution in IDZ w- Let Soi, k € 7L, be the completion of the
Schwartz space S(R?) under the norm || ¢ ||s,, =l (1+ | 2 |> +A)*6 |-

Theorem 3 Let F17 ey Fd S ]Dfo such that d@t(((DF“ DF’]')L2(R+,R2))1§i,j§d)71 S
(ps1 LP(B, P). Then for k € 7 and p > 1, there exists Cpy, > 0 such that

I éoF llpar< Cou | ¢ s & € S(RY).
This implies that if T' € Sax, T o F' is well defined in Dy, p > 1, k € 7.

The proof relies again on the fact that X is unitary and ZDZ:o C DD, given the Wiener

space result in [19]. In the same way, we obtain:

Theorem 4 Under the hypothesis of the preceding theorem, the Poisson functional
F = (F,...,Fy) has a C* density on R".

The hypothesis is expressed by perturbations of the Poisson process trajectories. The
following exponential integrability criterion comes from [5] and [16] for the gaussian

case. It is proved in the same way as Th. 2 and 3.

Theorem 5 If F € D), p > 1, is such that | DF | oo (W L2, R2)) < 00, then there
exists A > 0 such that

Elexp(\F?)] < .
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Denote by (W, p1, D21, €) the standard Dirichlet structure on Wiener space, cf. [1].
The Dirichlet form ¢ is defined as €(F,G) = —LE[FLG], F,G € Dom(D). It ad-
mits a carré du champ operator I' defined by I'(F,G) = (ﬁF, DG)LQ(R+). Prop. 4
shows that this structure admits v/2D as well as D as a gradient, i.e. I'F,G) =
2(DF, DG)2(r,). Moreover, (W, F, jx, DD}, €| IDJ,) is the Dirichlet substructure
generated by (7)ken, cf. [1], V.5.1.1. As a substructure, (W, F, uz, D}, € | D} )

is local, admits a carré du champ operator, and satisfies the energy image density

property:

Theorem 6 If I, ..., Fy € D], with det((DF;, DF}) 2(n, 2))1<ij<d) > 0 p-a.s.,
then the law of F' = (Fi,..., Fy) is absolutely continuous with respect to the Lebesque

measure on R?.

We obtained a criterion for the law of a Poisson functional to have a density, which
directly involves the stochastic calculus of variations by perturbations of the Poisson

process trajectories.

5 Extensions

In this section, we give a version of the Meyer inequalities for higher orders of differ-
entiation, and extend the operators joio D and doi to Sobolev spaces of H-valued
functionals. Let P} denote the set of functions v : N — P such that « has a finite

support in IN. This set is dense in L?(B) ® I*(N).

Lemma 1 Define the operator P : L*(B) ® I’(N) — L*(B) @ I*(N), t € Ry by
PPy = ((Pt(l)u)k)kzo, where

(PMu), = (e = 1)DyPoug + ¢ Py, k € N, u € Pk
Then (Pt(l))teR+ is a semi-group, and we have the relation
PF=PYDF FePr teR,.

Proof. Let F = I,,(f,), n > 1 and f, € [*(IN)*". We have from the expression of D

as an annihilation operator, cf. [13]:

DyPF = e L(fu(xky ... k)



and

l=n—1
e 'P,DF =e! e L(fu(x, k.. k)
1=0
Hence
p=n—1 l=p—1
(' =O)DPDF = > (e —e) N L (fulx, ko K))
p=1 =0

= D,PF — e 'P,D,F,

or (PYDF), = D,P,F F € P. From the following equalities, (Pt(l))t€R+ is a
semigroup. Let u € Pz, k € IN, and choose F}, € P such that u, = DyFj,. We have
for s,t > 0:

(P = (PY.DF)i = DyPevsFi Dy PiPoFy
= (PYDPF): = (PYPODER): = (PYPDy), ke N.

Hence Pt(il, = Pt(l)Pél)7 for s, > 0.

Proposition 7 Let LY denote the generator of (Pt(l))tzo. For uw € Px, we have
LOu = ((LVu)y), o with

keN
(LYu) = (L + 1 + Dp)up, k€N,
The duality relation
(i(w), i(LD) 2 myeremy) = ((LD0),i(0) 22w, uv € Pr,
holds, and we have the commutation relation

LYD = DL on Pr.

Proof. This is a consequence of the above proposition. The duality relation comes

from the equality

E[Tkuk(ﬁ(l)v)k] = E[Tk(ﬁ(l)u)kvk] u,v € 7);:, ke ]N,
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that can be checked using the explicit expression of £

= ElvopL(mug) + Tpugvy + Trug Dy

Il
&

Ukaﬁuk + Ukuk,CTk — Q(DTk, Duk) + TRURVE + TkukaUk]

Il
&

= b

[
[
[opTiLug — vpug + ToRuy + 2087 Dyt + wg Dy (Tpv)]
[Tevk Lug + VT Dyug + Trugvy)

[

= F Tkvk(ﬁ + I+ Dk)uk] u,v € ’P;:, k € NN.

We used here the relation £(FG) = FLG + GLF — 2(DF, DG)LQ(R+’R2) F,G € Py,
cf. [13], and the fact that I + Dy is adjoint of Dy, k € IN with respect to P.

O

We now aim to construct Sobolev spaces of H-valued functionals, in order to extend

the Poisson gradient and divergence operators to distributions.
Definition 8 We define the norm || - H]Dp,k(H) on Pk by
| u ||ﬂ)p7,€(H):H i((Ig + 5(1))k/2u) ||LP(B,L2(R+)) .

The space D, (H) is defined to be the completion of Py with respect to the norm
H : ”DM(H)

The following extension of Th. 2 holds:

Theorem 7 For p > 1 and k € 7, there exists two constants Ay, By > 0 such

that for any Poisson polynomial functional F € Pg:
Lr | DF I p, yn =N Fllpz, < Bosll DE I, iy + I F lzee)-
Proof. We have (I + LO)2DF = D(I + L)*?F, F € Pr. Hence

| DF Hﬂ)p,k(H) = | (([H‘i‘£ )k/2DF) |l Lo (B, L2R )
= [|i(DU + £)**F) || o8.12w)
= | DI+ L)"*F ID, o)
= || DI+ L)**F 12w,y k€Z, p>1.

It remains to apply Th. 2 to (I + £)*/?F.
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Corollary 2 The operator joio D can be extended as a continuous operator
joioD: DD} — Dy 1(H) ke, p>1.
The operator o i(+,0) can be extended as a continuous operator
doio(-,0): Dyy(H) — D2, | ke, p>1
Proof. We have for u € Pr and F' € Pg:
|E[Féoio (u,O)] | = |E [(z’(u,O), DF)LQ(R+,R2)} |

= | E[(i(u),i(DF)) 2@, |
| E[(i((Ig + LDY20),i((Ig + LD) 2 DF)) o] |

< Nulp, .ul DF D, o
< Gullulp,ml Flip, .,
from Th. 7 and Prop. 7, where p,q > 1 are such that 1/p+ 1/¢g =1 and C,, is a

constant. Hence || & o i(u) lp7 < Corlullp - For the second relation, we
p,k—1 p,

have

(jOiODF, U)LQ(B)®I2(N) = F [FSOZ(U)]

E [(1 LR + L) 0 d(u)

< = .

< I Flprlloeitlips

< GullFlips Nullpr  ~— wePr FePr.
Hence || joio DF HDZk_lg Cox || F HD;, F € Pgr.
O

The main problem that we encounter in the extension of the Meyer inequalities to
the case of higher derivatives lies with the definition of the iterated gradient DDF.
In fact, even for F € Pr, e.g. F =79, DF is a random indicator function and DDF
can not make sense as a random variable. To circumvent this difficulty, we choose
to take
[ io D'F ||L2(B)®L2(R’j_)>

where D* : L?(B) — L*(B) ® H°* is the k-th iteration of D, for the norm of the
iterated gradient of F' € Px. We are going to give an equivalence of norms between

the norm || - || 5= and the norm defined with ¢ o D¥ for p=2and k > 0.
2,k
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Proposition 8 For k € IN, there exists Ay, By > 0 such that for any Poisson poly-

nomial functional F € P,

Ag flio D'F Hi?(B)@L?(R*k)

< I F Wz, < Bi(lli0 D*F Iagorsesy + | F lacw))-
Proof. We need the following lemma, which is a generalization of Eq. (2).
Lemma 2 Let F' € Pr. We have forn > 1 and ky, ..., k, € N:
Dy, -+ Dy, PF = e ™PDy, - Dy, F

=n
_|_(€7t _ 1) Z 6*thk1 . Dkn,thDknfjﬁLl te DknijF'
j=1

Proof. By induction. From Lemma 1, the result is true for n = 1. Assume that the

relation is verified at the order n > 1. We have for ky, ..., k11 € N:

Dk1 e Dkn-HF = eintDkIPtDkQ s DknF

+(e7t = 1)Dy, i e /"Dy, -+ Dy, —j1 oDy, _; -+ Dy, D, F
=2
= e "Dy, P,Dy, ] Dy, F + (e7" = 1)e " Dy, PDy, -+ Dy, F
+(et—1) ]Ese_thkzl w0 D1 5Dy o+ D Diy
=2
_ eintDklptDlm . DanF
+(€_t — 1) JX_S €_thk;1 e Dkzn—j—lptDkn—j T DanijF.
=1

This shows that the equality is satisfied for any n > 1.

Proof of Prop. 8. Let us write the discrete chaotic decomposition of F:

F= Z[n(fn)a

n>0

which gives

I F I|§D§k= E[F(I+ L) F] =Y (1+n)" | L(fa) [ -

n>0
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Taking A, = 1/((k + 1)*) and By, = 1, we have
An+1DF<1+4+nn—-1)---(n—k) < Bi(1+n)f n>k
Hence || F | s, is equivalent to
F— (BIFL(L— 1) (£ — (k= D)I)(L — kI)F] + E[F?])? .

It remains to show that

E[FL(L—1)- (L —nl)F] =||io D™'F |2 n > 0.

LQ(B)®L2(R1+1)’

We know that this statement is true for n = 0. Suppose that it is true at the rank

n, and let us show that then it is also true at the rank n + 1.

EIFL(L 1) (L — (n+1)])F]

— E|(ioD"FioD™(L— (n+ 1)I>F)L2(Ri>]

= F Z Tlek"DklDknFDlekn<£_(n—|—1)I)F
Lk1,....kn

= F Z Tkl"'TknDkl"'DknF (ZDkz—l—,C) DleknF
LK1, kn i1

= F Z Tky "'TknDkl"'DknF (ZD&) Dkl DknF
LK1, kn i—1

+E Z Thnir Dk T = Ty Dy =+ Doy F' Dy - -+ Dy, F
ki,....kn

— E Z Ty Thos Dty -+ Dy FDpy -+~ Dy, | F

- E [(i o D" F o D"“F)LQ(RTI)} F e Py,

where we used the relation

j=n

Dy, -+ Dy (L —(n+1))F = (Z Dy, + E) Dy, v Dy, F,

J=0

obtained by differentiating the result of Lemma 2.
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6 Independence of Poisson functionals

In this section, we apply the criterion given in [18] for the independence of multi-
ple Wiener integral in order to obtain similar results for discrete multiple Poisson
stochastic integrals of the type I,,(f,), fn € I*(N)°". The following result allows
to characterize the independence of discrete multiple Poisson stochastic integrals in
terms of the supports of their discrete time kernels.

Theorem 8 Let f, € H*" and g,, € H™, m > n. The Poisson functionals I,,(fy)
and I, (gm) are independent if and only if

fn(l{il, ceey kn)gm(l{il, kn—l—l; ceey kn+m—1) == 0, \V/kl, ey kn+m—1 c NN.

Proof. We have the following orthogonal decompositions for f,, and g,,:

— ni,...;Nd 0Ny ong
fn = E Oy .o ka Cky "0 €,
ki b
n+---+ng=n
— »Mp omy omyp
Im = 2 : ﬁh, €L Oel )
bt

my+---+my,=m
From Prop. 1, the random variables I,,(f,) and I,,(g,) belong respectively to the
2n-th and 2m-th Wiener chaos. Denote by fzn and @, the corresponding kernels.

We have In(fn) = an(an) and Im(gm) = j?m(QQm)y Le

f _ Z Qe LN
2n — kl? 7kd k17"'7kd
B A
nit ot ng=n
and
Gom = > B g
L #1,
my+---+mg=m
with
Lo (fnd) = Lu(eg™ o+ 0 6i™), Lo (g)" ™) = Ln(ef™ o+ 0 ;™).

From Prop. 1, we find explicitely
(=)"Ch -~ G

N1y 0217 o2n1—2i L. 02ig o02ng—2ig
Sk = Z on(C21 .. O/ hop © Moty ™t 0 -+ -0 hg't o hg e
. 2 2
0< 11 < nq " i
0< id < ng
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(—-1)mCi - O,

M1, Mp 02j1 o2mi1—2j1 . 702jp 7 02mp—2jp
9y = E 2m(02j1 O e 21, © Mo 41 0hg "o hy 1y
. 2m1 2my,
0<j1<m
0<Jjp<my

From [18], I,,(f,) is independent of I,,(g,,) if and only if fgn ®1 Jon = 0 a.s., i.e.

N1y.eesNg QM1 Mp £N,..., 1 mi,...,Mp
Oy ke Py Thka 190, 0, = 0,
which means
N1yeesTig QM5 Mp pNA,..ey ng mi,...,Mp
kvoka Plidy Jhrpky @190, 0, = 0

for ky # -+ # kqgand [y # --- # 1, since
{f,ﬁ{jjj,;jf Ri1g, kA F kg and L £ # lp}

is orthogonal in L*(R.)*"*™~2, due to the particular form of fi'i" and g;""";"™”.

This condition is equivalent to aj' 0 3™ = 0if {ky, ..., ka} O {l1, ..., [} #0,

P

or

fn(kly cey k’n)gm(kl, ]fn+1, e 7kn+m—1) = 0 Vkl, . >kn+m—1 & ]N

7 Diffusion process and capacities

In this section, we study the diffusion process associated with —L, and show that it
gives another example of a process whose hitting probabilities of open sets can be
estimateds in terms of capacities, cf. [8], [15]. We start by introducing capacities on
the Poisson space. The space B is endowed with the largest topology that makes
O C B open in B if Z71(0) is open in W. We can define the capacities ¢, on B as
follows:

¢ p(O) = inf {|| u ”]DZ; : O lu> 10y P— a.s.}

for O open in B, and

¢rp(A) =1inf {¢, ,(O) : O open and A C O}
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for any subset A of B.

Let (Xt(n))teRi denote the W-valued n-parameter Ornstein-Uhlenbeck process, i.e.

-----

where W(™+1) is the (n+ 1)-parameter Brownian sheet defined on a probability space

(Q,A,Q), cf. [7].

Proposition 9 Let Y, = E(Xt(n)), t € RY. The process Y™ is a B-valued P-
symmetric n-parameter process with continuous paths. Its transition semi-groups are
given by

Pl =0 exp(—tL)O, tc Ry, i=1,...,n.

Proof. We refer to the definitions in [8]. We know that X™ is a p-symmetric n-

parameter process. Let (F/)iwer ., @ =1,...,n denote its associated filtrations. We

have

(1) For any t € R", ¥, € Ui<icn Fi, since x" e Ui<icn Fi» and the law of y,™

is P since P = =, and Xt(") has law .

(2) For any 1 <7 <nand F' € L*(B, P), we have for v € R} and a € Ry:
EIF(Y o) | Fill = EIOF(X[ i

= ¢ LOF(XM)

u

un) | 7l

77777

O

Applying the result of [8], [15], we obtain that the process (Y;(n)>t€Ri is another
example of a process whose hitting probabilities can be estimated in terms of capac-

ities:

Theorem 9 Let O be an open set in B. Fort € R, there exists two constants

Ky, Ky > 0 depending only ont and n € IN such that
K]_CnQ(O) < Q(HS € [O,t] : Y;(n) € O) < K26n72(0).
Proof. From [15], there exists K1, K2 > 0 such that

K16,2(E7H0)) < Q(3s € 0,1] : Y™ € 0) < Kyéna(E7H0)),
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where ¢, 2(271(0)) is the usual capacity on Wiener space, defined as

na(E7H0)) = inf{” u ||D2n cu>1p0Z pu— a.s.}.

We need to show that ¢, 5(0) can be estimated in terms of é, (=7 (0)). We have

Cn2(0) > inf{||u||]D2m: w>1po= ,u—a.s.}
> ¢,2(E71(0))
> inf{HuHDM: Eul|F|>1p0Z u—a.s.}
> Kmf{u Elu| F) | pyr +u€ Doy and Elu| F] 2 10 0= /L—a.s.}

= Kcng(O),

with K > 0. The last inequality comes from the continuity of E| - | F| from ID,,, to
D7, | cf. Prop. 2.

D,k

O

For n = 1, Prop. 9 shows that the diffusion process associated to —L is the B-valued
process Y = (E(Xt(l)))tzo. The coordinates of (Y;);cr, are the square norms of
independent two-dimensional Ornstein-Uhlenbeck processes, hence they satisfy the

stochastic differential equation
AV, = 2V dW, + (1 — V;)dt,

where (W})ser, is a brownian motion. In the usual Poisson space interpretation, the
trajectories of (Y;);>o take their values in a space of step functions whose interjump
times move according to the square norms of independent 2-dimensional Ornstein-

Uhlenbeck processes.
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