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Abstract

We derive normal approximation bounds by the Stein method for stochastic
integrals with respect to a Poisson random measure over R%, d > 2. This ap-
proach relies on third cumulant Edgeworth-type expansions based on derivation
operators defined by the Malliavin calculus for Poisson random measures. The
use of third cumulants can exhibit faster convergence rates than the standard
Berry-Esseen rate for some sequences of Poisson stochastic integrals.
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1 Introduction

Normal approximation bounds for stochastic integrals with respect to a Poisson ran-
dom measure have been obtained by the Stein method in [15], using finite difference
operators on the Poisson space. Recent results in this direction include the proof of

a fourth moment theorem [8], [9], as an extension of the result of [14] to the setting of



Poisson point processes.

In this paper we derive related bounds for compensated Poisson stochastic integrals
6(u) := [ga us(v(dz) — A(dx)) of processes (u;),epe With compact support in R?, with
respect to a Poisson random measure y(dz) with intensity the Lebesgue measure A(dx)
on RY, d > 2. In contrast with [15], our approach is based on derivation operators
and Edgeworth-type expansions that involve the third cumulant of Poisson stochastic

integrals, and can result into faster convergence rates, see e.g. (1.5) below.

Edgeworth-type expansions have been obtained on the Wiener space in [11], [5], by a
construction of cumulant operators based on the inverse L™! of the Ornstein-Uhlenbeck

operator, extending the results of [12] on Stein approximation and Berry-Esseen bounds.

In Proposition 4.1 we derive Edgeworth-type expansions of the form

E [§(u)g(8(w))] = E [[[ul|2(zay g (5(w)] + Y E [¢"(8(u))Tf, 1] +E [¢"(3(u)) Ry

(1.1)

when the random field (u,),ega is predictable with respect to a given total order on R,
where I'} is a cumulant-type operator and R} is a remainder term, defined using the
derivation operators of the Malliavin calculus on the Poisson space. In comparison with
the results of [15], our bounds apply to a different stochastic integral representation of
random variables, and they allow for random integrands (u,),cgre. In particular, this

allows us to deal with random variables ¢(u) having infinite chaos expansions.

Based on (1.1), in Corollary 5.2 we deduce Stein approximation bounds of the form

dw(3(u), N) < 1= Varla(w)]| + y/Var [ull2, g

/ ud \(dz) + <u, D[ u? /\(dx)>
R R L2 (=)

where D is a gradient operator acting on Poisson functionals, and N ~ N(0,1) is a

+ I + B[R],




standard Gaussian random variable, see also Proposition 5.1. Here,
dw (F,G) := sup | E[h(F)] — E[A(G)]]
hel
is the Wasserstein distance between the laws of two random variables F' and G, where

L denotes the class of 1-Lipschitz functions on R.

In particular, when f is a differentiable deterministic function on the closed centered
ball B(R) := B(0; R) in R? with radius R > 0, vanishing on the sphere S(0; R) :=

{x € R : |z| = R}, we obtain bounds of the form
o ([ F0tde) = 3@ N) < = | +| [ P@a@n)| 02

d
+8(KdUdR>2Hf”L2(]Rd)HVR inOO(]Rd;]Rd)a

where v4 denotes the volume of the unit ball in R% and K, > 0 is a constant depending

only on d > 2. The bound (1.2) can be compared to the classical Stein bound

o ([ 1000 = M)A < [1= Ul + [ 1P@ING, (013

for compensated Poisson stochastic integrals, see Corollary 3.4 of [15], which involves
the L3(R?) norm of f instead of third cumulant £} = [, f2(x)A(d) of [,4 f(2)(y(dz)—
A(dz)), and relies on the use of finite difference operators, see Theorem 3.1 of [15] and

§ 4.2 of [4].

For example when f;, k > 1, is a radial function given on B(k'¢R) by

1 a
fr(z) = N (‘;ﬁfd ) ,  x € B(KYR),

where g € C1([0, R]) is continuously differentiable on [0, R] with g(R) = 0, and
R
C? = / g (r)yrtdr < oo,
0

so that || fellp2(p/agy = 1, the bound (1.3) yields the standard Berry-Esseen conver-

gence rate

Vg

dw (/B(kl/dm fu(@)(y(dz) — A(da:)),/\/> < N lg(r)[Pri-tdr, k>1, (1.4)
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as k tends to infinity. While (1.2) does not improve on (1.3) when the function f has

constant sign, if ¢ satisfies the condition

R
/ g (r)r~tdr =0,
0
then the third cumulant bound (1.2) yields the O(1/k) convergence rate

22K 0aR)%d
v ([, o)~y ) <RI k=1 0

which improves on the standard Berry-Esseen rate, see Section 5 for more examples.

In Sections 2 and 3 we recall some background material on the Malliavin calculus and
differential geometry on the Poisson space, by revisiting the approach of [16], [17] using
the recent constructions of [1] and references therein on the solution of the divergence
problem. In Section 4 we derive Edgeworth-type expansions for the compensated Pois-
son stochastic integral d(u), based on a family of cumulant operators that are associated
to the random field (u,),crae. In Section 5 we obtain Stein-type approximation bounds

for stochastic integrals using deterministic examples of integrands.

The d-dimensional setting of this paper requires d > 2 and a bounded domain in R? in
order to construct a gradient operator D for Poisson functionals by kernel inversion of
the divergence operator on R? using results of [1] and references therein. Consequently
it does not cover the case d = 1 of the standard Poisson process on the half line
R, which requires a significantly different treatment, see [18]. In particular, the one-
dimensional case is technically easier as it does not require Laplace inversion for the
construction of the gradient operator D, while stronger conditions on the integrands f

in Poisson stochastic integrals have to be imposed in the case d > 2 through the norm
d

95 £l oy

Preliminaries

Let d > 2 and 0 < R < R := 2R. We let C°(B(R')) denote the space of C*®
functions on B(R') which vanish on the sphere S(0; R') = {z € R? : |z| = R'}. Given



n € CP(B(R')) such that fB(R)n(x)dx = 1, we recall the existence of a C* kernel
function G, : B(R') x B(R') — R? defined as

Yo—vy r—y\ ds
Gy(z,y) 12/( )n(y+ )—d, z,y € B(R),
0 S s s

see [1], and satisfying the following properties:

i)

ii)

iii)

The kernel G, (x,y) satisfies the bound

Kq

d—1’

— 1 LYy EBR), (1.6)
’x - y’Rd

|Gy (2, Y)|pe <

for a constant K,; > 0 depending only on d, see Lemma 2.1 of [1], by choosing K
and the function n € C>°(B(R')) therein so that ||7]|e < (d — 1)K4(R')™.

For any p > 1 and g € LP(B(R')) the function
f@= [ Gina@)Ndy). e B(R),
B(R!)
satisfies the bound
1 fllr By < KavaR\|glloprry), > 1, (1.7)
which follows from Young’s inequality and (1.6), cf. Theorem 2.4 in [1].

For any h € C3°(B(R')) we have the relation

b= [ M) = [ (Gw), VER@)aid(dr), v € B(R),
B(R')\B(R) B(R)
(1.8)
cf. Lemma 2.2 in [1], by taking n € C*(B(R') \ B(R)). In particular, when
h € Cg°(B(R)) we have

b = [ (G V@), yeBR). (1)

An extension of the framework of this paper, by replacing B(R) with a compact d-

dimensional Riemannian manifold M and A(dz) with the volume element of M, would

require the Laplacian £ = div VM to be invertible on C°(M) with

£ lu(z) = /M g(o,v)u() Mdy),  z€ M, ueC>(M),
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where g(x,y) is the heat kernel on M. In this case we can define G,(z,y) € R? as
Gy(z,y) = V¥g(2,y), A ® Ndx, dy) — a.e.,
with the relation
VML u(z) = /Mu(y)Gn(:c,y) Ady) € T, M, €M, ueCr(M),

from which the divergence inversion relation (1.9) holds by duality.

2 Gradient, divergence and covariance derivative

There exists different notions of gradient and divergence operators for functionals of
Poisson random measures. The operators of [2], [19], [7], and their associated inte-
gration by parts formula rely on an R%valued gradient for random functionals and
a divergence operator which is associated to the non-compensated Poisson stochastic
integral of the divergence of R%valued random fields. This particularity, together with
a lack of a suitable commutation relation between gradient and divergence operators
on Poisson functionals, makes this framework difficult to use for a direct analysis of
Poisson stochastic integrals, while it has found applications to statistical estimation

and sensitivity analysis, see [7], [19].

In this paper we use the construction of [16], [17] which relies on real-valued tangent
processes and on a divergence operator that directly extends the compensated Pois-
son stochastic integral. This framework also allows for simple commutation relations
between gradient and divergence operators using the deterministic inner product in
L*(R%,)\), see Proposition 2.6, and it naturally involves the Poisson cumulants, see

Definition 3.2 and Relation (3.6).

Gradient operator

In the sequel we consider a Poisson random measure y(dz) on B(R), constructed on a
probability space (2, F, P), and we let {X3,...,X,,} denote the configuration points
of v(dz) when B(R) contains n points in the configuration v, i.e. when vy(B(R)) = n.



Definition 2.1 Given A a closed subset of B(R'), we let Sa denote the set of random

functionals F4 of the form
Fo=) 1pmmy-nfa (X1, X)), (2.1)

where fo € R and (f,)n>1 s a sequence of functions satisfying the following conditions:
- foralln > 1, f, € C°(A™) is a symmetric function in n variables,
- foralln>1andi=1,...,n we have the continuity condition

fo(xy, oo xn) = fao1 (T, i1, Tiay - o X)) (2.2)

for all xy,...,x, € B(R') such that |x;|ga > R.

We also let S denote the union of the sets Sa over the closed subsets A of B(R').

The gradient operator D is defined on random functionals F' € S of the form (2.1) as
DyF = Z ]-{'y(B R))=n} Z Xza y VR f (Xh B 7Xn)>1Rd7 (23)
y € B(R). For any F € S, by (1.6) we have DF € L'(Q x B(R)) from the bound
B[ prian)] < IV ek [ ] 6 (a)
B(R)
= IV flasle | / Gl )l () ()
B(R) Y B(R)
1
= Kl Sl [ [ @)
B(r) JB(R) | = Ylga

< K2R RY||V™ flgal|so

< 0.

Poisson-Skorohod integral

We let Uy denote the space of simple random fields of the form

u = ZgiG,», n>1, (2.4)
i=1

with G; € SAZ. and g; € CSO(B(R», 1=1,...,n.



Definition 2.2 We define the Poisson-Skorohod integral 6(u) of u € Uy of the form
(2.4) as

n

Su) ==Y <G/B

i=1 (R)

0:(2) (W) = A(d2)) — (95, DGi)rommy ) (25)
In particular, for h € C°(B(R)) we have
6(h) = h(z dzx) — \dz)).
(h) /B(R) () (v(d) — A(dx))

The proof of the next proposition, cf. Proposition 8.5.1 in [16] and Proposition 5.1 in
[17], is given in the appendix.

Proposition 2.3 The operators D and 0 satisfy the duality relation
IE)[(u, DF>L2(B(R))] = IE[F(S(U)], FeS uel. (26)

As a consequence of Proposition 2.3 and the denseness of S in L'(2) and that of U
in L'(Q x B(R)), the gradient operator D is closable in the sense that if (F},),en C S
tends to zero in L*(Q) and (DF,),en converges to U in L'(Q x B(R)), then U = 0
a.e.. Similarly, the divergence operator ¢ is closable in the sense that if (u,)nen C Uo

tends to zero in L?*(Q x B(R)) and (6(uy,))nen converges to G in L'(Q), then G = 0 a.s..
The gradient operator D defines the Sobolev space D! with the Sobolev norm

1 F[pyy = 1Fllz2) + I DF L1 xB(R))» FeS.

In the sequel we fix a total order < on B(R) and consider the space Py C Uy of simple
predictable random field of the form

wi=Y gk, (2.7)
i=1
such that the supports of g, ..., g, satisfy

Supp (g;) = --- X Supp (g,) and F; € Sa,,

where Supp (¢1) U --- U Supp (gi-1) C A; C B(R') and A; < Supp (¢:), 1 =1,...,n.



Such random fields are predictable in the sense of e.g. § 5 of [10] and references therein.

We will also assume that the order < is compatible with the kernel G, in the sense
that
G,(z,y) =0 forall =z,ye€ B(R) such that z <y. (2.8)

Under the compatibility condition (2.8) we have in particular
D,F =0, yeB(R), A=y, FecSa

Moreover, if u € Py is a predictable random field of the form (2.7) we note that by
(2.3) and the compatibility condition (2.8) we have

DyF; =0, Ay, i=1,...,n,

hence

Dyu, =0, r =<y, zy€ B(R). (2.9)

FExample. The order < defined by
z=(zW,. 2D <y=GW, . . .y = 0 <yD (2.10)
is compatible with the kernel G, provided that the support of 7 is contained in
{z=(z",...,29) e B(R)\ B(R) : 2 > R}.
The proof of the next Proposition 2.4 is given in the appendix.

Proposition 2.4 The Poisson-Skorohod integral of u = (ug)zepr) in the space Py of

simple predictable random fields satisfies the relation
) = [ wlr(de) ~ Ado)) (211)
B(R)

which extends to the closure of Py in L*(2x B(R)) by density and the isometry relation

E[§(u)’] = E [/B(R) u? A(dg;)] : u € Py. (2.12)



Covariant derivative

In addition to the gradient operator D, we will also need the following notion of covari-
ant derivative operator V defined on stochastic processes that are viewed as tangent

processes on the Poisson space €2, see [17].

Definition 2.5 Let the operator V be defined on u € Py as

Vyuy = Dyu, + (G, (z,y), Vﬂfdux)w, z,y € B(R).
We note that from the compatibility condition (2.8) and Relation (2.9) we also have
Vyu, =0, r =y, x,y€ B(R). (2.13)

From the bound

E { /B — V| )\(dx)/\(dy)]

< 1Dull s + E [ / (G (s ), VE e A(dxwdy)}
B

(R)xB(R)

1
/ [T |deu9&|Rd}‘(d$))‘(d?/)]
B(R)

< ||DU||L1(Q><B(R)><B(R)) + Kyl
xB(R) |T — Y|ga

< || Dull i oxryxB(R) + KavaR'TE {/ IVfduARd)\(da;)}
B

(R)

d
= ||DullioxBryxB(R) + KavaR ||V ul| 11 x B(R) R4

we check that V extends to the Sobolev space ﬁé’l of predictable random fields defined

as the completion of Py under the Sobolev norm

[ullg = Hu||L2(Q,W01’1(B(R))) + | Dull 1 @xB(r)x B(R)): u € Po,

where W, ?(B(R)) is the first order Sobolev space completion of C5°(B(R)) under the

norm

d
Ifllwrem) = fler) + IV flemmeg, =1
Commutation relation

In the sequel, we denote by f))é’oo the set of predictable random fields u in IB)(I)’I that are

bounded together with their covariant derivative V.
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Proposition 2.6 For u € Di™

relation

D,3(u) = uly) +6(V,u). € B(R).

Proof. Taking h € C§°(B(R)), we have §(h) € S and

D,8(h)

where we applied (

We conclude by the denseness of Py in ]ﬁé’l

D and 6.

1.9).
we check that 0(u) € S,

_ D / — \(dx))
_ /B (R)<Gn(x,y),vm h(@))gay(dz)

_ /B RCIa VE h(a))pa(dz) + 6(3,h)

= h(y)+3d(V,h), y€B(R),

a predictable random field, we have the commutation

(2.14)

Next, taking u = hF € P, a simple predictable random field,

and by (2.5) or (6.3) we have

Dyd(Fh) = y (F h DF>L2( B(R )))

= Dy (Fo(h ))

— §(h)Dy,F + FD,5(h)

= 6(h)D,F + F(h(y) + 6(V,h))
(
(

o~ —~

— Fh(y) + 8(hD,F + FV,h)
~ Fhiy) +5(%,(FR)
= uy—i-é(%yu), y € B(R).

3 Cumulant operators

and by the closability of the operators %,

O

In the sequel, given h in the standard Sobolev space W'?(B(R)) on B(R) and f €
LYB(R)) with 1 =p~t + ¢, p,q € [1,00], we define

/th dy/f

(2,), VE h(2)) ra\(dy),

(3.1)



xr € B(R). More generally, given k > 1 and u € ]IN)é’l a predictable random field, we let
the operator (%u)k be defined in the sense of matrix powers with continuous indices,

as

Vu f _/ Vﬂckuy zp_ U Vﬂflum)fxl (dml)"')‘(dxk)u
B(R) B(R)
y € B(R), f € L*(B(R)).
Proposition 3.1 For anyn € N, p > 1, r € [0,1], h € W?/0="""/"(B(R)) and

f € LP/0=""(B(R)) we have the bound

~ 4
I(VR)" fllesry < (Kavald)" | fll Loso-om (s )HHV]R M ora=ni=1r prymay-  (3-2)
7j=1
Proof. For n =1 we have

1R F I = / / F)T,h(@) Ady)| Alde)

_ / F )Gy (2 9), VE B(2))gaA(dy)| A(dz)
B(R) |/ B(R)

- [ { [, TS ), T >>Rd A(da)

< / F)Gy(w, ) Mdy)| V5 h(w) 2\ (d)
B(R) |/B(R) Rd
p/(1-r) o r
_ (/ / 7 ()G, 3) A(dy) A(dm) (/ VE () A >)
Rd B(R)
< (KavaR )P F 1 pramn 50 )HVR%HLP/T(B . (33)

where we used the bound (1.7). Next, assuming that (3.2) holds at the rank n > 1 and

using (3.3), we have

I(VRY" ™ fllirwmy = (VR (VR)flleser)y)
d
< (KdUdR,) ”(Vh>fHLP/<1 ™ (B(R)) HHVR hHLp/(l nI=1/r(B(R);R%)
7j=1
n+1
n d
< (KdUdR/) H||fHLp/(1fr)"+1(B(R)) H HVR h||Lp/<1—r)j*1/r(B(R);Rd)7
j=1
and we conclude to (3.2) by induction on n > 1. O
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In particular, for r = 0, f € LP(B(R)), p > 1, and h € WH(B(R)) the argument of
Proposition 3.1 shows that

— n n d
IOVR)" Flleemy < BavaR) I flleomap IV bllie pryme,  n €N

We note that for u € D)™ a predictable random field, the random field (Vu)u € DE™
is also predictable from (2.13) and (3.1).

In the next definition we construct a family of cumulant operators which differs from

the one introduced in [13] on the Wiener space.

Definition 3.2 Given k > 2 and u € 15(1]’00 a predictable random field we define the
operators TV : Dy, — LY(Q) by

TvF = F((Vu)*2u,w) r2pmy) + (V) 'u, DF) ranery),  F € Dy

We note that for & in the space W (B(R)) of bounded functions in W'(B(R)), and
feLP(B(R)),p>1,m>1, we have

(" (0o = / @) [ G, TR e\ )Nl

= — f@ )hm“( ) Adz),

m—+1 B(R)
where we applied (1.8), hence
- 1 -
0 (O Py = e [ W )R (@) M),
m+1 B(R)

which implies by induction

~ m)!

V) f,h™) 2 :—/ R (z) f(2) Mdx).

((Vh) )L2(B(R)) CETON (z)f(x) A(dz)

In Lemma 3.3 we generalize this identity to h a random field.

Lemma 3.3 Forn € N, m > 1, u € IB%’OO a predictable random field and f €
LP(B(R)), p > 1, we have

(Va)" fou™ e mom) = ﬁ

[ @) aan (3.4
B(R)
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3

+ ﬁ«w)” "t D/B(R) uy )\(dx)>

k=1 L2(B(R))
Proof. Using the adjoint V*u of Vu on L*(B(R)) given by
(V*u)v, := / (Vi )0y A(de), y € B(R), ve L*(B(R)),
B(R)
with the duality relation
(v, (V*u)R) 28y = (Vu)v, h)2(ry, v € L*(B(R)),
we will show by induction on £ =0,1,...,n that
= / e / uﬁi%xoumﬁxlum Vg, g, Adzy) -+~ Ada,)
B(R) B(R)
—Z i oo | Vagttay Vo e, Da ™ A(day) - Mdza_i1)
= - m+@ ' B5(R) xo Wzq Tn—i—1 YT i H i Yp, gy 1 n—i—1
m+k / / U oty Vi e A(dzn) - A(d ). (3.5)

By (3.1), this relation holds for k& = 0. Next, assuming that the identity (3.5) holds for

some k € {0,1,...,n — 1}, and using the relation

vxn,k,luxn,k = Dxn,k,luxn,k_'_(Gn(xnfk; $n7k71>7 vxn,kuxnfk%Rdv Tn—k—1,Tn—k € B(R)>

we have
(V' e

(m+1) / ./B(R) %mouml e 6mn—i—1u$n—iDmn_iUZi_i Adxy) - Mpy1—i)
! ﬁ B(R) | ./B Zijr”zvxou“ Vo Ua A1) - A(darg—y)

. m: — . m+i
= Z _m — / /B . Vigllay Ve, Uz, Da, g™ Ndwy) - Mdrn 1)
m + k‘ ' /B /B m+k onuxl U Va:n_k—2uxn—k—1D»’Cn—k—luﬂcn—k A(dwl) T A(d$n—k)

m—l—k |/ / :En ks Tn—k— 1) v:r:n,kurn,k>Rd
B(R B(R

14



X Um+k 2vxou$1 ' xn o Uz, 4 A<dx1) e )\(dl’n_k)

Tn—k

k
a ZZI: (m +@) /B(R)
m! /
+—

m!
S
X / <Gn($, Tp—k-1),
B(R)

k1
m/! ~ ~

_ meti ,

= E CE) /B(R VaoUay Vi, o ytg,  Da, upt ™ A(dzy) -+ - MdZpg1-i)

zoum e V:Jcn,¢,1 umn,iD ‘um+i i )\(dxl) o A(danrlfi)

Tn—i Tn+1

xoum s vxn—kuwn—k—lDxn—k—lu;‘n+k+1 )\(dZL‘ ) )‘(dxn—k)

xoum to vxnszfqunfkfl

\\\

Vﬂfdu?+k+1)Rd)\(dx))\(dxl) o NdT 1)

~—

Ttk (m + k +1 / / Zt+i+11vrourl e vwn7k72uxn7kfl A(dxl) T )‘(dx”—k—l)

k+1 |
— E *, \n—1 m—l—z m. o *, \n—k—1, m+k+1
N (m + z) (V )" Dy Alds) + (m+k+1)! (Viu) Yo ’

=1 B(R)
which shows by induction that (3.5) holds at the rank k = n, in particular we have
n+1

<k, \N, m m| m+n m| *, \n+1—1 m—H 1
(Viu)"uy’ = CE +Zm(v u) D, / Ady),

xr € B(R), which yields (3.4) by integration with respect to x € B(R) and duality.
0

As a consequence of Lemma 3.3 we have

k k—1
U 1 ~ )
Fu]_ = / z )\ d!E + o < VU k_l_lu7 D
k s (k—1)! (dz) Zz! (Vu)

1=2

u’, A(dw)> ,

B(R) L2(B(R))

k > 2. Hence when h € W'?(B(R)), p > 1, is a deterministic function such that
|VE'h||oe < 00, we find the relation
1 / .

—_— h*(x) A(dx) = K, k> 2, 3.6

which shows that I'1 coincides with the cumulant £} = || B(R) h*(z) M(dz) of order
k > 2 of the Poisson stochastic integral fB(R) h(z)(y(dx) — A(dx)).

=
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4 Edgeworth-type expansions

Classical Edgeworth series provide expansion of the cumulative distribution function
P(F < x) of a centered random variable F' with IE[F?] = 1 around the Gaussian cu-
mulative distribution function ®(z), using the cumulants (&, ),>1 of a random variable
F and Hermite polynomials. Edgeworth-type expansions of the form
"k
BIFg(F)] = _ = Bl (F)] + Blg" (F)Con Fl, 0> 1,

=1
for F' a centered random variable, have been obtained by the Malliavin calculus in
[11], where I',,1; is a cumulant-type operator on the Wiener space such that n!E[",, F]]
coincides with the cumulant k,.; of order n + 1 of F, n € N, cf. [13], extending the

results of [3] to the Wiener space.

In this section we establish an Edgeworth-type expansion of any finite order with an
explicit remainder term for the compensated Poisson stochastic integral §(u) of a pre-

dictable random field (u;).ep(r)- In the sequel we let (-,-) denote (-,-)r2(p(r))-

Before proceeding to the statement of general expansions in Proposition 4.1, we illus-
trate the method with the derivation of an expansion of order one for a deterministic
integrand f. By the duality relation (2.6) between D and §, the chain rule of derivation
for D and the commutation relation (2.14) we get, for g € C2(R) and f € W, (B(R))
such that || VX' f|. < oo,

E[5(/)g(6(f))] = B[, D)) (5(f))]
— EI(f, g O] + B[, 65 F))g (0(f)]
— (£ N G)] +E [V, DG G(F) )]
= E[(f, g G+ E[(V) ], D5())g"(6())]
~ Bl NG+ [ o TN B O]+ BTN )5 0()]
= W EIY 6] + 5rd Elg" (0] + B [0S 120).
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since by Lemma 3.3 we have

(En =3 [ FEAw) = gk

In the next proposition we derive general Edgeworth-type expansions for predictable

integrand processes (U ),cpd-

Proposition 4.1 Let u € D™ and n > 0. For all g € C]*'(R) and bounded G € Dy

we have

E[Go(u)g(6(w))] = E[(u, DG)g(d(w))] + ZE [ (8(uw))T};1 G

G (5(u)) (/( . (nu::i) (dz) + HZH< Vau)" ' Fu, D u—%)\(dx)>>]

I E [Gg("+1)(5(u))<(Vu) u, §(V* u)>} .

+E

Proof. By the duality relation (2.6) between D and §, the chain rule of derivation for

D and the commutation relation (2.14), we get

E [G((Vu)*u, Dé(u))g(d(u))] — B [G<(Vu)’“+1 Dé(u)>g’ o(u))]

= E [G{(Vu)ru,u)g(5(w)] + E [GU(Vu)ru,8(V*u))g(5(w)] — E [G((Vu)* u, Di(u))g'(5(u))]
= E [G{(Vu)*u, u)g(5(w)] + E [(V*u, D(Gg w) (V) u)]) — B [G{(Vu)**u, Dé(u)) g (5(u))]
= E [G((Vu)"u, u)g(5(w))] + E [(Vu)*'u, DG)g(3(u))] + B [G(V*u, D(Vu)*u))g(5(u))]

= [g(5(u))T},G],

where we used (2.9) and (2.13). Therefore, we have

E[Go(u)g(d(u))] = E[(u, D(Gg(6(u))))]
= B[G{u, D5(u))g' (6(u))] + E[(u, DG)g(6(u))]
= E[(u, DG)g(5(u))] + E [Gg" D (6(w) (V) "u, DS (u))]

£ 3 (B [Gg ™ (6() (T, Do(w)] — E [Gg®*(3(u)) (Fu)+u, Do(w)])

n

= E[{u, DG)g(3(u))] + Y E [¢W(6(w)T}0 G + E [Go"V(6(w){(Va) v, D3(u))]

k=1

17



n

= E[(u, DG)g(6(u)] + > E [¢®(3(w))I'},,G]

+ T [Gg" ) (6(w) (V) u, w)] + T [Gg" D (5(u)){(Vu)"u, 5(V*u))],
and we conclude by Lemma 3.3. O

When f € W' (B(R)) is a deterministic function such that |[VE'f|l. < oo, and
g € C°(R), Proposition 4.1 shows that

E[6(f)g(5(f))]

n+1

= g0 L £ N Bl )]+ B [ DT )]
k=1 B
n+1
= Y LB GO) + B GOSN a0
k=1
with, by Proposition 3.1 applied with p =2 and r = 0,
B[00 < VBV
= ||(6f)n+1f”L2(B(R))
< (KqvaR)" ™| fll 2w IV £ oy e

In addition, as n tends to 400 we have

B = Yo [ @ N B [ ()]
= g @ B [ ()]

= E { . F@)(g(6(f) + f(x)) — g(3(£))) Mdz)

provided that the derivatives of g decay fast enough, which is a particular instance of
the standard integration by parts identity for finite difference operators on the Poisson

space, see e.g. Lemma 2.9 in [15] or Lemma 5 in [4].

5 Stein approximation

Applying Proposition 4.1 with n = 0 and G = 1 to the solution g, of the Stein equation
Lcsoa](2) = 2(2) = g,(2) — 262(2), 2 €R,

18



and letting u € ]IN)é’l be a predictable random field, this gives the expansion

P((u) <) = ®(z) = E[g,(0(w)){u,u) —0(u)gz(5(u))] (5.1)
= E[(1 — (u,u))g(6(u))] + E [(u,6(Va))g,(5(u)],

around the Gaussian cumulative distribution function ®(z), with ||g:||cc < V27/4
and [|¢.|lc < 1, x € R, by Lemma 2.2-(v) of [6]. The next result follows from the
application of Proposition 4.1 with n =1 and G = 1.

Proposition 5.1 For any random field u € ]ﬁé’w we have

/ ul \(dw) + <u, D u? )\(da:)> H
B(R) B(R)

2 [[(Vu)u, 5(V*u))|]. (5.2)

dw (6(u), N)
< E[1- (u,u) - <§*U,Du)|] +IE {

Proof. For n =1 and G = 1, Proposition 4.1 shows that

E[5(w)g(3(w)] = Elg'(6(u)((u,u) + (V*u, Du))]

lg {g"w(u)) (/B(R)u A(dz) + <“ D/ >)]

2
E[g" (5(w){(Vu)u, §(Vu))].

+

+

Let h : R — [0, 1] be a continuous function with bounded derivative. Using the solution

gn € C{(R) of the Stein equation
h(z) — E[h(N)] = ¢'(2) — 29(2),  z€R,

with the bounds ||} |lcc < [|F]lee and ||g/]lcc < 2||W||oo, © € R, cf. Lemma 1.2-(v) of

[12] and references therein, we have

E[7(6(u))] = ERN)] = E[6(u)gn(6



hence
|B[0(w)h(3(u)] = ERWN)]] < [ llwE 1 = (u,u) — (Vu, Du)|]

+Hh’||oo]E[/B(R)ui)\(dx)+<u,D B(R)U§A<dx)>u
+2[[0 oo T [[((Ve)u, 6(V*u))]],

which yields (5.2). O

As a consequence of Proposition 5.1 and the It6 isometry (2.12) we have the following

corollary.

Corollary 5.2 Foru € ﬁé’oo we have

dw(8(u), N) < 1= Var[S(w)]| + /Var [ul%s 5y

/B LA+ <u,D /B . ui)\(da:)>H

+E[[(V*u, Du)[] + 2 [|{(Vu)u, 5(V*u))]].

+E|

Proof. By the It6 isometry (2.12) we have

Var[o(u)] = E [( /B - Uy (y(dz) — A(dx))ﬂ = E[(u, u)],

hence
E [|1 - (u,u) — (V*u, Du)|]
< E[1 - E[(uw)]] + E[[(u,u) — B(u,u)][] + E[(Vu, Du)|
= |1 = Var[5(u)]| + vE[((u, u) — B[(u, u)])?] + B[ (V*u, Du)|]
= |1 — Var[o(u)]| + \/Var |ul|Z . } + ]E[](%*u, Du)|].

In particular, when Var[d(u)] = 1, Corollary 5.2 shows that

) < \/Var[||u||%2(B(R))] +E [ /B(R) ud \(dzx) + <u,D/B(R) u? )\(d:v)>H
(¥, Du) + 2 [|(Fu)u, 69" 0)].
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When f € Wy *°(B(R)) is a deterministic function we have

Varls(f)) = E [( /B ) - A(dx>>)2] - /B IRACRCE

and Corollary 5.1 shows that
1|

dw (5(1).N) < '1 -/ RACH
Given the bound

B[V < VE[S(V2)P]
= (VHfllzsmy)

d
< (KqvaR) |l flle2mrpIVE FIl oo (5 ey

+2E [I5((VF)21)].

obtained from Proposition 3.1 with p = 2 and r = 0, f € W, (B(R)), we also have

the following corollary.

Corollary 5.3 For f € Wy *°(B(R)) we have

i [, fteate) = ), N) = \1—|rfui2(3(m>\+\ [, e

d
+2(Kqval || fl 2 a1V 1 50ryime)-
In particular, if || f||z2(s(r)) = 1 we find

a ([ @) = s ) < / £3(2) Mda)

As an example, consider f; given on B(k'9R) by

+2(Kqual IV 112 5y

1 d
fr(x) = C'—\/Eg (‘gﬂfd ) , z € B(kYR),

where g € C'([0, R]) is such that g(R) = 0, and
R
C? = Ud/ g2 (r)r*=tdr,
0

so that f, € L*(B(kY?R)) with

/
112 P L P
LA(B(kYIR)) ™ (2 0 Ll/d cz J, ;



and

3 1 K 3 —1/dy,.d—1 1 3 d—1
f2(r)dr = === grk r® dr = gTT_flr,
/B(kl/dR) k( ) C3k3/2 /0 ( ) 03\/E 0 ( )

k > 1. We have
lg'll%.d

RY ¢ 12
HV kaLOO(B(R) R%) = C2f1+2/d’

hence
v 1/d pr\2
dyy (/ fula — A(dz)), N> < f;?(x))\(da:)'Jrz(KZlif/dC}j) P

B(R)
R /\2
(% 3 d—1 2(KdUdR) d ma
< d _ i
| M L R ve el U S

In particular, if g satisfies the condition

R
/ G (r)ritdr =0,
0

then we find the O(1/k) convergence rate
2(KqvqaR
v ([ potan) - san).a) < ML gz g

For example, taklng
1 || 1 || || 1/d
fr(x) = C\/Eg(kl/d) = ok <h1 (kl/d — ahy pd ) ) T€ B(kYR),
with a € R, hy, hy € C1([0, R]) such that h;(R) = hy(R) = 0, and

C? = /OR(hl(r) — ahy(r))?r¢tdr > 0,

we can choose a € R satisfying the cubic equation

/ I (T)rd_ldr
B(R)

R R R R
= a3/ 3 (r)r“tdr + 3a2/ hy(r)h3(r)r®tdr — 3@/ B3 (r)ho(r)r?=tdr + / h3 (r)ri=tdr
0 0 0 0
=0,

which yields the bound

c(a,d, hy, hs)
du ( / (kl/dmfm)w(dx)—A(dx»,N) < dodhule) sy,

from (1.5), where c(a, d, hq, hy) depends only on a € R, d > 2 and hy, hy € C'([0, R]),
whereas (1.3) can only yield the standard Berry-Esseen convergence rate (1.4) as

fo lg(r)[3rd=Ltdr > 0.
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6 Appendix

Proof of Proposition 2.35.

As a consequence of (1.8) and (2.2) we have

fn (171, ey i1, Y, i1y - - J]n) — fn—l (l’l, vy L1, L1y - - - ,ZEn>

= fo(T1, o T, Yy Tty e T) — fre1 (B0, o Tt Tigy - -5 Tpy) / n(z) A(dz)
B(R)\B(R)
= fo(T1, o X1, Y, Tig1y - Tp) — / () fo (T1, o i1, T, Tig1, - - - T) A(dT)
B(R)\B(R)
= [ (G) VE o))
B(R)
= / (G(zs,y), Vﬂfjfn (1, .., Tp)YmaA(dy), (6.1)
B(R)

Tl Tis1, Yy Tig1y- -, Ly € B(R'). Recall that for all FF € S of the form (2.1) we

have

E[F] Z = /B - Fal@y, . an) Mday) - - A(dxy,).
Hence, using (6.1), for g € Cj(B(R)) and F' of the form (2.1) we have
E D,F \(d
[, oD, )
—E [Z 1oB(r _n}z / Gy (X0, y), Vi f (X1, ., X)) raA(dy) (6.2)

va /B(R) / Z/ o (@09, VE fo(@r, ) reMdy)A(day) - - A(da,)

(ME:T/‘
n.
/ Z/ D a1, s T iy s @) Adar) - A(dy) -~ ()

va /B(R / - 1/ MNAY) fo s (21,2 1) A(dzr) - - (1)
va /B(R) /B(R) (Zg 7)) /B(R)g(y))\(dy)) (@, e A(day) - Adan)
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—e|r([ RECCE )|

Next, for u of the form (2.4), we check by a standard argument that

E[(u, DF)] = Z]E {gi, DF)]

n

= Y (E[(g:, D(FG;)) — F{g;, DG,)))

=1

FZ( [, 0 = X)) ~ (5. DG)
_ B[P )].

O

Proof of Proposition 2.4. Taking u € Py a predictable random field of the form (2.7)
we note that by (2.3) and the compatibility condition (2.10) we have

9:(y)D,F; =0, y€B(R), i=1,...,n,

hence by (2.5) we have
o(u) = 6 (Z Fi9i> = ZFzCS(gz) (6.3)

- ZF ., ) = M)
- / () = ),

showing that 6(u) coincides with the Poisson stochastic integral of (u;),ep(r). Regard-

ing the isometry relation (2.12), we have

Epw?] = E (ZF / gAas)(v(dx)A(dx»)]

= E|) FF /B(R) gi(x)(y(dx) — /\(dx))/B(R) 95(x)(y(dx) — A(dx))
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\<ici<n B(R)
IR ZF ( / B0 d) - A(dx>>)2
- E ZE;FQ /B(R) g; (x)\(dz)

- E [ /B N w? () A(dx)] ,

which shows that (2.11) extends to the closure of Py in L*(Q2 x B(R)) by density and

a Cauchy sequence argument. 0
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