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Abstract

Using the Malliavin calculus in time inhomogeneous jump-diffusion models,
we obtain an expression for the sensitivity Theta of an option price (with respect
to maturity) as the expectation of the option payoff multiplied by a stochastic
weight. This expression is used to design efficient numerical algorithms that are
compared to traditional finite difference methods for the computation of Theta.
Our proof can be viewed as a generalization of Dupire’s integration by parts [6]
to arbitrary and possibly non-smooth payoff functions. In the time homogeneous
case Theta admits an expression from the Black-Scholes PDE in terms of Delta
and Gamma but the representation formula obtained in this way is different from
ours. Numerical simulations are presented in order to compare the efficiency of
the finite difference and Malliavin methods.
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1 Introduction

Sensitivity analysis in finance using the Malliavin calculus has been developed by several

authors, starting with [7], to design fast Monte Carlo algorithms for the computation

of Greeks such as Delta, Gamma, Vega, Rho, which represent the sensitivity of option

prices to spot price, volatility and interest rate, respectively.

In this paper we aim at applying similar methods to the computation of sensitivities

defined as

Thetat =
∂C

∂t
(x, t, T ), and ThetaT =

∂C

∂T
(x, t, T ),

where C(x, t, T ) denote the price at time t of an option with spot price x and maturity

T . Thetat is used for European options for which T is a fixed date, whereas ThetaT (the
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sensitivity with respect to maturity) can be used in case T is a free parameter, e.g. for

the choice of the exercise date of a European option, or for American type contracts.

When the underlying price process (St)t∈[0,T ] is time homogeneous, the price C becomes

a function of the remaining time τ := T − t until exercise and we have

ThetaT = −Thetat =
∂C

∂τ
(x, t, t + τ),

which will be simply denoted by Theta.

Here we compute ThetaT in a time inhomogeneous setting, using Itô calculus and inte-

gration by parts on the Wiener space. Our method actually extends the argument of

the Dupire PDE to arbitrary payoff functions in jump-diffusion models. We present a

Malliavin type formula for ThetaT which avoids the use of finite differences, and allows

us to consider digital and European options as it does not require any smoothness on the

payoff function φ. The value of Theta for European and digital options in a geometric

Brownian model can be computed analytically, cf. e.g. [8], but such expressions are

not available in general (jump) diffusion models, for which our formulas can be used in

numerical simulations.

We proceed as follows. Section 2 contains a summary of stochastic calculus for jump-

diffusion processes and Malliavin calculus on the Wiener space. In Section 3, using

the Malliavin calculus, we obtain an expression of ThetaT in a jump-diffusion model

with arbitrary payoff functions, using a random weight Λ(u, v, w) depending on three

functional parameters u, v, w ∈ L2([0, T ]). In Section 4 we determine the parameters

which yield the best numerical performance by minimization of the variance of the

weight Λ(u, v, w), and find that this minimum is attained when u, v, w are constant

functions. A localization argument is also applied to further reduce the variance of our

Monte Carlo estimators. Monte Carlo simulations for digital and European options are

presented in Section 5 to compare the performance of the finite difference method to

that of our Malliavin calculus approach, and the values of Thetat and ThetaT .

2 Malliavin calculus and jump-diffusion processes

In this section we recall some facts and notation on the Malliavin calculus on the Wiener

space, cf. e.g. [10], [4], on jump-diffusion models, and on stochastic calculus with jumps,

see e.g. [3] for a recent introduction with references.

Consider a standard Brownian motion (Wt)t∈R+
on (ΩW , PW ) and a compound Poisson
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process (Xt)t∈R+
on (ΩX , PX) with Lévy measure µ(dy) and finite intensity

λ =

∫ ∞

−∞

yµ(dy)

which can be represented as

Xt =
Nt
∑

k=1

Uk, t ∈ R+, (2.1)

where (Nt)t∈R+
is a standard Poisson process with intensity λ and (Uk)k≥1 is an i.i.d.

sequence of random variables with probability distribution ν(dx) := λ−1µ(dx). The

processes (Wt)t∈R+
and (Xt)t∈R+

are assumed to be independent and are constructed on

the product probability space

(Ω, P ) = (ΩW × ΩX , PW ⊗ PX).

The filtration generated by (Wt, Xt)t∈R+
is denoted by (Ft)t∈R+

.

We consider the gradient and divergence operators D and δ acting on the continuous

component of jump-diffusion random functionals. Let D : L2(Ω) → L2(Ω× R+) denote

the (unbounded) Malliavin gradient D on the Wiener space, i.e.

DtF (ωW , ωX) :=

n
∑

k=1

1[0,tk ](t)∂kf(Wt1 , . . . , Wtn , ωX)

for F a random variable of the form

F (ωW , ωX) = f(Wt1 , . . . , Wtn , ωX),

where f(·, ωX) ∈ C∞
b (Rn), PX(dωX)-a.s., is uniformly bounded on R

n × ΩX . Denote by

〈·, ·〉L2(R+) and ‖ · ‖ the scalar product and norm in L2(R+), and define

DuF := 〈u, DF 〉, u ∈ L2(Ω × R+),

by abuse of notation. Given a symmetric function gn ∈ L2(Rn
+ × ΩX), let

In(gn)(ωW , ωX) = n!

∫ ∞

0

∫ tn

0

· · ·

∫ t2

0

gn(t1, . . . , tn, ωX)dWt1 · · ·dWtn

denote the multiple stochastic integral of gn with respect to Brownian motion (Wt)t∈R+
,

with the isometry formula

E[In(gn)Im(gm)] = n!1{n=m}E[〈gn, gm〉L2(Rn
+

)], (2.2)
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gn ∈ L2(Rn
+ × ΩX), gm ∈ L2(Rm

+ × ΩX). The (unbounded) divergence operator δ :

L2(Ω × R+) → L2(Ω) adjoint of D, also called the Skorohod integral, satisfies the

duality relation

E[〈DF, u〉] = E[Fδ(u)], u ∈ Dom(δ), F ∈ Dom(D),

where Dom(D) and Dom(δ) denote the respective closed domains of D and δ.

Recall also the following lemma, cf. Proposition 1.3.3 of [10].

Lemma 2.1 Let u ∈ Dom (δ) and F ∈ Dom (D) be such that uF ∈ L2(Ω × R+) and

Fδ(u) − 〈u, DF 〉 ∈ L2(Ω). Then uF ∈ Dom (δ) and we have the divergence formula

δ(uF ) = Fδ(u) − 〈u, DF 〉 (2.3)

Recall also that δ coincides with Itô’s stochastic integral on square-integrable adapted

processes, in particular

δ(u) =

∫ ∞

0

utdWt

for all adapted and square-integrable process (ut)t∈R+
, and δ(u) = I1(u), u ∈ L2(R+),

cf. e.g. [10].

We will consider Markovian jump-diffusion price processes given as solutions to the

equation






dSt = at(St)dt + bt(St)dWt + ct(St−)dXt,

S0 = x,

where at(·), bt(·), ct(·) are C1 Lipschitz functions, uniformly in t ∈ [0, T ], T > 0.

Itô’s formula for (St)t∈R+
reads

φ(St, t) = φ(Ss, s) +

∫ t

s

∂φ

∂u
(Su, u)du +

∫ t

s

∂φ

∂x
(Su, u)au(Su)du +

∫ t

s

∂φ

∂x
(Su, u)bu(Su)dWu

+
1

2

∫ t

s

∂2φ

∂x2
(Su, u)b2

u(Su)du +
∑

s<u≤t

(

φ(Su− + cu(Su−)∆Xu, u
−) − φ(Su−, u−)

)

,

0 ≤ s ≤ t. Recall also that since µ is the Lévy measure of (Xt)t∈R+
we have

E

[

∑

s<u≤t

(

φ(Su− + cu(Su−)∆Xu, u
−) − φ(Su−, u−)

)

]

(2.4)

= λE

[
∫ t

s

∫ ∞

−∞

(φ(Su + zcu(Su), u) − φ(Su, u)) ν(dz)ds

]

,
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for sufficiently integrable φ, cf. e.g. [3] and references therein.

Consider the option price

C(x, t, T ) := e−
R T

t
rsds

E

[

φ(ST )
∣

∣

∣
St = x

]

.

We will assume that the discounted price process (e−
R t

0
rsdsSt)t∈R+

is a martingale, i.e.

we work under the no arbitrage condition

at(y) − rty + λct(y) = 0, y ∈ R, (2.5)

which can be realized in multiple ways, depending on the choice of the triple (at, λ, ct).

As is well known, this means that jump-diffusion markets are not complete in general,

see e.g. Ch. IX of [3] and references therein. Using the fact that t 7→ e
R T

t
rsdsC(St, t, T )

is a martingale, Itô’s formula shows that C(St, t, T ) satisfies the Black-Scholes PDE

Thetat = rtC(x, t, T ) − at(x)
∂C

∂x
(x, t, T ) −

1

2
b2
t (x)

∂2C

∂x2
(x, t, T ) (2.6)

−λ

∫ ∞

−∞

(C(x + zct(x), t, T )) − C(x, t, T ))ν(dz).

By differentiation inside the expectation, Delta and Gamma can be written as

Delta :=
∂C

∂x
(x, t, T ) = e−

R T

t
rsds

E

[

YTφ′(ST )
∣

∣

∣
St = x

]

(2.7)

and

Gamma :=
∂2C

∂x2
(x, t, T ) = e−

R T

t
rsds

E

[

ZT φ′(ST ) + (YT )2φ′′(ST )
∣

∣

∣
St = x

]

, (2.8)

where (Yt)t∈R+
:= (∂xSt)t∈R+

and (Zt)t∈R+
:= (∂2

xSt)t∈R+
are the so called first and

second variation processes. Recall that (2.7) can be rewritten as

Delta =
∂C

∂x
(x, t, T ) =

e−
R T

t
rsds

T − t
E

[

φ(ST )

∫ T

t

Ys

bs(Ss)
dWs

∣

∣

∣
St = x

]

, (2.9)

by integration by parts using the Malliavin calculus, and similarly for Gamma, cf. e.g.

[7], [1], [4], [5].

However, this Black-Scholes PDE approach does not apply to the computation of ThetaT

in time inhomogeneous models, for which we provide a different method in Section 3.

3 Computation of ThetaT

Consider an option with payoff function φ and price

C(x, t, T ) = e−
R T

t
rsds

E

[

φ(ST )
∣

∣

∣
St = x

]

.
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Recall that in the case of European options in a continuous market, i.e. with ct(·) = 0,

at(y) = αty, and payoff function φ(x) = (x − K)+, Dupire’s PDE [6] reads

ThetaT =
∂C

∂T
(x, t, T, K) (3.1)

= (αT − rT )C(x, t, T, K) +
K2b2

T (K)

2

∂2C

∂K2
(x, t, T, K) − KαT

∂C

∂K
(x, t, T, K),

and can be proved by taking expectations on both sides of Itô’s formula applied to

C(x, t, T, K), differentiation with respect to T , and finally integrating by parts with

respect to the Lebesgue measure on R.

Our computation of ThetaT will follow the same steps, replacing integration by parts on

R with the duality between D and δ on the Wiener space, to extend Dupire’s argument

to arbitrary payoff functions and jump-diffusion models. Consider (Sx
t,s)s∈[t,∞) given by

the jump-diffusion equation







dSx
t,s = as(S

x
t,s)ds + bs(S

x
t,s)dWs + cs(S

x
t,s−)dXs,

Sx
t,t = x,

(3.2)

where in addition, at(x) and bt(x) are respectively C1 and C2 in x, for all t ∈ R+. The

derivative with respect to T can be put inside the expectation if φ is differentiable.

Using Itô’s formula, Relation (2.4), and the fact that the expectation of the stochastic

integral with respect to (Wt)t∈R+
is zero, we have:

C(x, t, T ) = e−
R T

t
rsds

E
[

φ(Sx
t,T )
]

= φ(x) − E

[
∫ T

t

rse
−

R s

t
rpdpφ(Sx

t,s)ds

]

+E

[
∫ T

t

e−
R s

t
rpdpφ′(Sx

t,s)as(S
x
t,s)ds

]

+ E

[
∫ T

t

e−
R s

t
rpdpφ′(Sx

t,s)bs(S
x
t,s)dWs

]

+
1

2
E

[
∫ T

t

e−
R s

t
rpdpφ′′(Sx

t,s)b
2
s(S

x
t,s)ds

]

+E

[

∑

t<s≤T

e−
R s

t
rpdp

(

φ(Sx
t,s− + cs(S

x
t,s−)∆Xs) − φ(Sx

t,s−)
)

]

= φ(x) −

∫ T

t

rse
−

R s

t
rpdp

E
[

φ(Sx
t,s)
]

ds +

∫ T

t

e−
R s

t
rpdp

E
[

φ′(Sx
t,s)as(S

x
t,s)
]

ds

+
1

2

∫ T

t

e−
R s

t
rpdp

E
[

φ′′(Sx
t,s)b

2
s(S

x
t,s)
]

ds

+λ

∫ T

t

e−
R s

t
rpdp

E

[
∫ ∞

−∞

(φ(Sx
t,s + zcs(S

x
t,s)) − φ(Sx

t,s))ν(dz)

]

ds. (3.3)

Hence ThetaT can be expressed as

ThetaT =
∂

∂T

(

e−
R T

t
rsds

E
[

φ(Sx
t,T )
]

)
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= −rT e−
R T

t
rpdp

E
[

φ(Sx
t,T )
]

+ e−
R T

t
rpdp

E
[

φ′(Sx
t,T )aT (Sx

t,T )
]

+
1

2
e−

R T

t
rpdp

E
[

φ′′(Sx
t,T )b2

T (Sx
t,T )
]

+λe−
R T

t
rsds

E

[
∫ ∞

−∞

(φ(Sx
t,T + zcT (Sx

t,T )) − φ(Sx
t,T ))ν(dz)

]

. (3.4)

The above expression fails when φ is not twice differentiable, but the derivatives on φ

will be removed by integration by parts on the Wiener space, using the relation

φ′(Sx
t,T ) =

Duφ(Sx
t,T )

DuSx
t,T

, u ∈ L2([t, T ]), (3.5)

which follows from the derivation property of D. The jump component in (3.4) can be

left untouched since it does not contain any derivative of φ.

Proposition 3.1 Let u, v, w ∈ L2([t, T ]) such that DuS
x
t,T , DvS

x
t,T , DwSx

t,T are a.s. non-

zero and belong to Dom (D) and
aT (Sx

t,T )

DuSx
t,T

u,
b2
T (Sx

t,T )

DvSx
t,T

v,
Γt,T (v)

DwSx
t,T

w satisfy the hypotheses

of Lemma 2.1, where Γt,T (v) :=
b2
T (Sx

t,T )

DvSx
t,T

I1(v)−2bT (Sx
t,T )b′T (Sx

t,T )+
b2
T (Sx

t,T )D2
vS

x
t,T

|DvSx
t,T |

2
. Then

the weight Λt,T (u, v, w), 0 < t < T , defined by

Λt,T (u, v, w) := −a′
T (Sx

t,T ) − rT + aT (Sx
t,T )

(

I1(u)

DuSx
t,T

+
D2

uS
x
t,T

|DuSx
t,T |

2

)

+
1

2

((

b2
T (Sx

t,T )

DvSx
t,T

I1(v) − 2bT (Sx
t,T )b′T (Sx

t,T ) +
b2
T (Sx

t,T )D2
vS

x
t,T

|DvSx
t,T |

2

)(

I1(w)

DwSx
t,T

+
D2

wSx
t,T

|DwSx
t,T |

2

)

+
b2
T (Sx

t,T )

DwSx
t,T DvSx

t,T

(

I1(v)
DwDvS

x
t,T

DvSx
t,T

− 〈v, w〉 −
DwD2

vS
x
t,T

DvSx
t,T

+2
DwDvS

x
t,T D2

vS
x
t,T

|DvSx
t,T |

2

)

−
2b′T (Sx

t,T )bT (Sx
t,T )

DvS
x
t,T

(

I1(v) +
D2

vS
x
t,T

DvS
x
t,T

))

+ b′T (Sx
t,T )2 + b′′T (Sx

t,T )bT (Sx
t,T ),

belongs to L2(Ω) and for any φ : R → R such that |φ| is bounded by a Lipschitz function

on R we have

ThetaT = (3.6)

e−
R T

t
rsds

E

[

Λt,T (u, v, w)φ(Sx
t,T) + λ

∫ ∞

−∞

(φ(Sx
t,T + zcT (Sx

t,T )) − φ(Sx
t,T ))ν(dz)

]

.

Proof. Using (2.3) and (3.5) we get, assuming first that φ, gT are twice continuously

differentiable:

E
[

φ′(Sx
t,T )gT (Sx

t,T )
]

= E

[

gT (Sx
t,T )

DuSx
t,T

Duφ(Sx
t,T )

]
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= E

[〈

Dφ(Sx
t,T ),

gT (Sx
t,T )

DuS
x
t,T

u

〉]

= E

[

φ(Sx
t,T )δ

(

gT (Sx
t,T )

DuS
x
t,T

u

)]

= E

[

φ(Sx
t,T )

(

gT (Sx
t,T )

DuSx
t,T

I1(u) − Du

(

gT (Sx
t,T )

DuSx
t,T

))]

= E

[

φ(Sx
t,T )

(

gT (Sx
t,T )

DuSx
t,T

I1(u) − g′
T (Sx

t,T ) +
gT (Sx

t,T )D2
uS

x
t,T

|DuSx
t,T |

2

)]

.

With gT (·) = aT (·) we obtain

E
[

φ′(Sx
t,T )aT (Sx

t,T )
]

= E

[

φ(Sx
t,T )

(

aT (Sx
t,T )

DuSx
t,T

I1(u) − a′
T (Sx

t,T ) +
aT (Sx

t,T )D2
uS

x
t,T

|DuSx
t,T |

2

)]

,

(3.7)

while gT (·) = b2
T (·) yields

E
[

φ′′(Sx
t,T )b2

T (Sx
t,T )
]

= E
[

φ′(Sx
t,T )Γt,T (v)

]

.

By a similar argument we get

E
[

φ′′(Sx
t,s)b

2
s(S

x
t,s)
]

= E
[

φ′(Sx
t,T )Γt,T (v)

]

= E

[

Γt,T (v)
Dwφ(Sx

t,T )

Dw(Sx
t,T )

]

= E

[

φ(Sx
t,T )δ

(

w
Γt,T (v)

DwSx
t,T

)]

= E

[

φ(Sx
t,T )

(

Γt,T (v)

DwSx
t,T

I1(w) − Dw

(

Γt,T (v)

DwSx
t,T

))]

= E

[

φ(Sx
t,T )

(

Γt,T (v)

DwSx
t,T

(

I1(w) +
D2

wSx
t,T

DwSx
t,T

)

−
2b′T (Sx

t,T )bT (Sx
t,T )

DvSx
t,T

(

I1(v) +
D2

vS
x
t,T

DvSx
t,T

)

+
b2
T (Sx

t,T )

DwSx
t,T DvSx

t,T

(

I1(v)DwDvS
x
t,T

DvSx
t,T

− 〈v, w〉 −
DwD2

vS
x
t,T

DvSx
t,T

+
2DwDvS

x
t,T D2

vS
x
t,T

|DvSx
t,T |

2

)

+2b′T (Sx
t,T )2 + 2b′′T (Sx

t,T )bT (Sx
t,T )
)]

.

Summing (3.7) with the above relation we rewrite (3.3) as

C(x, t, T ) = φ(x) +

∫ T

t

e−
R s

t
rpdp

E
[

Λt,s(u, v, w)φ(Sx
t,s)
]

ds (3.8)

+λ

∫ T

t

e−
R s

t
rpdp

E

[
∫ ∞

−∞

(φ(Sx
t,s + zcs(S

x
t,s)) − φ(Sx

t,s))ν(dz)

]

ds.

To conclude the proof we extend (3.8) by approximation of φ using C2
b functions and

then differentiate with respect to T in order to obtain (3.6). �
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Remarks

a) As noted at the end of Section 2, Thetat can be computed via the Black-Scholes

PDE (2.6) and the values (2.7)-(2.9) of Delta and Gamma. In the time homoge-

neous linear model (4.1) below this representation coincides with our expression

(3.6) of −ThetaT when using the optimal weights of Section 4. In a general time

homogeneous model we still have Thetat = −ThetaT but the two representations

may differ.

b) Instead of (3.5) we could have used the pointwise version

φ′(Sx
t,T ) =

Dsφ(Sx
t,T )

DsS
x
t,T

, s ∈ [0, T ],

as in e.g. [7], but its usefulness relies mainly on the possibility to express DsS
x
T

using the first variation process (Yt)t∈R+
in continuous models as

DsS
x
T = bs(S

x
s )

YT

Ys

, s ∈ [0, T ],

cf. p. 124 of [10], which leads to

Ys

bs(Ss)
Dsφ(ST ) = YT φ′(ST ), s ∈ [0, T ], (3.9)

and to (2.9). On the other hand, our expressions do not directly use the first

and second variation processes and involve elementary Wiener integrals I1(u) of

deterministic functions (i.e. centered Gaussian random variables) instead of Itô

stochastic integrals of adapted processes as in (2.9).

c) The argument of proof of Proposition 3.1 requires to differentiate with respect to

the terminal value T and not with respect to the current time t, thus in a time

inhomogeneous setting it does not apply to the computation of Thetat.

To close this section we recall the principle of the localization method introduced in [7]

which aims to reduce the variance of Monte Carlo estimators, in a formulation adapted

to our setting and in the time homogeneous case. Payoff functions of the form

φ(y) = 1[K,∞)(y) and φ(y) = (y − K)+

have a singularity at y = K. The idea of localization is to decompose the payoff function

φ as

φ = gη + hη, η > 0,
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in such a way that hη is twice differentiable and gη contains the singularity of φ, see e.g.

[9] for digital options and [2] for European options. Applying the Malliavin approach

to gη and using (3.4) for φ = hη we get

Theta = e−τr
E

[(

Λ(u, v, w)gη(S
x
τ ) + λ

∫ ∞

−∞

(φ(Sx
τ + c(Sx

τ )y) − φ(Sx
τ ))ν(dy)

)]

−re−τr
E [hη(S

x
τ )] + e−τr

E
[

h′
η(S

x
τ )a(Sx

τ )
]

+
1

2
e−τr

E
[

h′′
η(S

x
τ )b2(Sx

τ )
]

,

where the integration by parts method has been applied to the first and second deriva-

tives on gη. In the case of European options we take

hη(y) =
1

4η
(y − (K − η))21[−η,η](y − K) + (y − K)1]η,∞)(y − K),

and for digital options we choose

hη(y) =
1

2

(

1 +
y − K

η

)2

1(−η,0](y − K) +

(

1 −
1

2

(

1 −
y − k

η

)2
)

1(0,η)(y − K)

+ 1[η,∞)(y − K).

4 Optimization of convergence

In this section we consider constant interest rate and volatilities r, σ and ζ , i.e. we

consider (3.2) in the linear case, with






















a(y) = (r − λζ)y,

b(y) = σy,

c(y) = ζy,

(4.1)

and

St = x exp

((

r − λζ −
σ2

2

)

t + σWt

)

∏

0<s≤t

(1 + ζ∆Xs), t ∈ R+,

hence the no arbitrage condition (2.5) is satisfied and the discounted price process

(e−rtSt)t∈R+
is a martingale. We have

DuS
x
τ = σ

∫ τ

0

usdsSx
τ ,

hence D2
vS

x
τ /|DvS

x
τ |

2 = 1/Sτ and we get

Λτ (u, v, w) = −r +
r̂

σ

I1(u)
∫ τ

0
usds

−
σ

2

I1(w)
∫ τ

0
wsds

+
I2(v ◦ w)

2
∫ τ

0
vsds

∫ τ

0
wsds

,

where r̂ = r−λζ . Our goal is now to find functions u, v, w which minimize Var[Λτ (u, v, w)].
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Proposition 4.1 The infimum on Var[Λτ (u, v, w)] is attained for any non-zero constant

functions u, v, w of the form us = c1, vs = c2, ws = c3, s ∈ [0, τ ], and is given by

inf
u,v,w

Var[Λτ (u, v, w)] = Var[Λopt] =
1

2τ 2
+

1

σ2τ

∣

∣

∣

∣

r̂ −
σ2

2

∣

∣

∣

∣

2

,

where r̂ = r − λζ, with

Λopt = −r +
Wτ

στ

(

r̂ −
σ2

2

)

+
1

2τ

(

W 2
τ

τ
− 1

)

. (4.2)

Proof. For any u ∈ L2([0, τ ]) such that
∫ τ

0
usds 6= 0, letting

ũt :=
ut

∫ τ

0
usds

, t ∈ [0, τ ],

the weight Λτ (u, v, w) is expressed as

Λτ (u, v, w) = −r +
r̂

σ
I1(ũ) −

σ

2
I1(w̃) +

1

2
I2(ṽ ◦ w̃).

Recall that the Cauchy-Schwarz inequality yields

‖ũ‖2 ≥
1

τ
, (4.3)

with equality if and only if ũt = 1/τ , t ∈ [0, τ ].

Let

F (u, v, w) = Var[Λτ(u, v, w)]

=
r̂2

σ2
‖ũ‖2 − r̂〈ũ, w̃〉 +

σ2

4
‖w̃‖2 +

1

4
‖ṽ‖2‖w̃‖2 +

1

4
〈ṽ, w̃〉2

=
1

σ2

∥

∥

∥

∥

r̂ũ −
σ2

2
w̃

∥

∥

∥

∥

2

+
1

4
‖ṽ‖2‖w̃‖2 +

1

4
〈ṽ, w̃〉2,

where we applied the isometry (2.2). The optimal value of (u, v, w) solves







































d

dε
F (u + εh, v, w)|ε=0 = 0

d

dε
F (u, v + εh, w)|ε=0 = 0

d

dε
F (u, v, w + εh)|ε=0 = 0,

(4.4)

for all h ∈ L2([0, τ ]), i.e.

2r̂2

σ2

(

〈h, ũ〉 − ‖ũ‖2

∫ τ

0

hsds

)

− r̂

(

〈h, w̃〉 − 〈ũ, w̃〉

∫ τ

0

hsds

)

= 0,
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1

2
‖w̃‖2

(

〈h, ṽ〉 − ‖ṽ‖2

∫ τ

0

hsds

)

+
1

2

(

〈ṽ, w̃〉〈h, w̃〉 − 〈ṽ, w̃〉2
∫ τ

0

hsds

)

= 0,

and

σ2

2

(

〈h, w̃〉 − ‖w̃‖2

∫ τ

0

hsds

)

+
1

2
‖ṽ‖2

(

〈h, w̃〉 − ‖w̃‖2

∫ τ

0

hsds

)

+
1

2

(

〈ṽ, w̃〉〈h, ṽ〉 − 〈ṽ, w̃〉2
∫ τ

0

hsds

)

− r̂

(

〈h, ũ〉 − 〈ũ, w̃〉

∫ τ

0

hsds

)

= 0.

Clearly, for any c1, c2, c3 6= 0 the constant functions us = c1, vs = c2, ws = c3, s ∈ [0, τ ],

are solutions of this problem. Let us show that this solution is unique. For all h ∈

L2([0, τ ]) such that
∫ τ

0
hsds = 0, equation (4.4) yields



























2r̂2

σ2
〈h, ũ〉 − r̂〈h, w̃〉 = 0

‖w̃‖2〈h, ṽ〉 + 〈ṽ, w̃〉〈h, w̃〉 = 0

σ2〈h, w̃〉 + ‖ṽ‖2〈h, w̃〉 + 〈ṽ, w̃〉〈h, ṽ〉 − 2r̂〈h, ũ〉 = 0.

If a solution (ũ, ṽ, w̃) different from (1/τ, 1/τ, 1/τ) exists, then one can find h ∈ L2([0, τ ])

such that
∫ τ

0
hsds = 0 and (〈h, ũ〉, 〈h, ṽ〉, 〈h, w̃〉) 6= (0, 0, 0), hence the determinant

‖ṽ‖2‖w̃‖2 − |〈ṽ, w̃〉|2 = 0 (4.5)

of the above linear system vanishes. From (4.3) and (4.5) we get

F (u, v, w) =
1

σ2

∥

∥

∥

∥

r̂ũ −
σ2

2
w̃

∥

∥

∥

∥

2

+
1

4
‖ṽ‖2‖w̃‖2 +

1

4
|〈ṽ, w̃〉|2

=
1

σ2

∥

∥

∥

∥

r̂ũ −
σ2

2
w̃

∥

∥

∥

∥

2

+
1

2
‖ṽ‖2‖w̃‖2

≥
1

τσ2

∣

∣

∣

∣

∫ τ

0

(

r̂ũs −
σ2

2
w̃s

)

ds

∣

∣

∣

∣

2

+
1

2τ 2

=
1

τσ2

∣

∣

∣

∣

r̂ −
σ2

2

∣

∣

∣

∣

2

+
1

2τ 2
,

which is greater than the optimal value found when ũ, ṽ, w̃ are constant functions.

Moreover, equality occurs only when ‖ṽ‖2 = 1/τ , ‖w̃‖2 = 1/τ , and

∥

∥

∥

∥

r̂ũ −
σ2

2
w̃

∥

∥

∥

∥

2

=
1

τ

∣

∣

∣

∣

r̂ −
σ2

2

∣

∣

∣

∣

2

,

i.e. when r̂ũ − σ2

2
w̃, ṽ, w̃ are constant, which implies that ũ is also constant, except

when r̂ = 0, in which case no constraint is imposed on u.
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We now need to prove that this solution corresponds to the global minimum of F .

Since F (u, v, w) ≥ 0, the infimum exists and we denote it by l. By continuity of F on

L2([0, τ ])3 there exist a sequence (un, vn, wn)n∈N such that

l = lim
n→∞

E[Λτ (un, vn, wn)
2].

We can assume that (un, vn, wn) is bounded: if not, replace it by the bounded sequence
(

un

‖un‖
,

vn

‖vn‖
,

wn

‖wn‖

)

n∈N

,

on which F takes the same values as on (un, vn, wn)n∈N. Under this hypothesis, there

exists a subsequence (unk
, vnk

, wnk
)k∈N converging weakly to (u, v, w) in L2([0, τ ])3. We

have

E[Λτ (u, v, w)Λτ(unk
, vnk

, wnk
)]

= r̂2 +
r̂2

σ2
〈ũ, ũnk

〉 −
r̂

2
〈ũ, w̃nk

〉 −
r̂

2
〈ũnk

, w̃〉 +
σ2

4
〈w̃, w̃nk

〉

+
1

4
〈ũ, ũnk

〉〈w̃, w̃nk
〉 +

1

4
〈ũ, w̃nk

〉〈w̃, ũnk
〉,

and by weak convergence of (unk
, vnk

, wnk
)k∈N to (u, v, w) we get

lim
n→∞

E[Λτ (u, v, w)Λτ(unk
, vnk

, wnk
)] = E[|Λτ (u, v, w)|2].

Moreover,

0 ≥ l − E[|Λτ (u, v, w)|2]

= lim
n→∞

E[Λτ (unk
, vnk

, wnk
)2] − E[|Λτ (u, v, w)|2]

≥ lim
n→∞

E[|Λτ (u, v, w)− Λτ (unk
, vnk

, wnk
)|2]

+2E[Λτ (u, v, w)Λτ(unk
, vnk

, wnk
)] − 2E[|Λτ(u, v, w)|2]

≥ lim
n→∞

E[(Λτ (u, v, w)− Λτ (unk
, vnk

, wnk
))2]

+2 lim
n→∞

E[Λτ (u, v, w)Λτ(unk
, vnk

, wnk
)]

−2E[|Λτ (u, v, w)|2]

≥ lim
n→∞

E[(Λτ (u, v, w)− Λτ (unk
, vnk

, wnk
))2]

≥ 0,

hence limn→∞ Λτ (unk
, vnk

, wnk
) = Λτ (u, v, w) in L2(Ω) and

l = E[|Λτ (u, v, w)|2].

Thus the global minimum is attained for ũ = ṽ = w̃ = 1/τ . �

Note that infu,v,w∈L2([0,τ ]) Var[Λτ (u, v, w)] is minimal in terms of σ and r when (Sx
t )t∈R+

is an exponential Brownian motion, i.e. r̂ = σ2/2. In this case we have

inf
u,v,w∈L2([0,τ ])

Var[Λτ (u, v, w)] =
1

2τ 2
.
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5 Numerical simulations

As in Section 4, we consider the (time homogeneous) linear model (4.1):







dSs = rSsds + σSsdWs + ζSs−(dXs − λds),

S0 = x,
(5.1)

where

Xt = a1N
1
t + · · ·+ adN

d
t , t ∈ R+, (5.2)

and (Nk
t )t∈R+

, k = 1, . . . , d, are independent Poisson processes with respective intensities

λ1, . . . , λd, with λ = λ1 + · · ·+ λd and

ν(dx) =
λ1

λ
δa1

(dx) + · · ·+
λd

λ
δad

(dx).

We have

St = x exp

((

r − λζ −
σ2

2

)

t + σWt

)

(1 + ζa1)
N1

t · · · (1 + ζad)
Nd

t , t ∈ R+,

and

Theta = e−rτ
E

[

Λτ (u, v, w)φ(Sx
τ ) +

d
∑

k=1

λk(φ(Sx
τ (1 + ζak)) − φ(Sx

τ ))

]

.

We apply the Malliavin formula (3.6) with ũs = ṽs = w̃s = 1/τ , s ∈ [0, τ ], to com-

pute ThetaT = −Thetat for European and digital options, i.e. with non-smooth payoff

functions. In the geometric model with the optimal weight Λ(u, v, w), localization yields:

Theta = −re−rτ
E [φ(Sx

τ )] + r
e−rτ

στ
E [gη(S

x
τ )Wτ ] +

e−rτ

2τ
E

[

gη(S
x
τ )

(

W 2
τ

τ
− σWτ − 1

)]

+e−rτ
E

[

d
∑

k=1

λk(φ(Sx
τ (1 + ζak)) − φ(Sx

τ ))

]

+re−rτ
E
[

Sx
τ h′

η(S
x
τ )
]

+
σ2

2
e−rτ

E
[

Sx
τ

2h′′
η(S

x
τ )
]

.

Finite differences approximations for ThetaT are computed using the following formula:

ThetaT =
C(x, t, (1 + ε)T ) − C(x, t, (1 − ε)T )

2εT
. (5.3)

We take x=100, r=0.05, K = 110, t = 0.8, T = 1, σ = 0.15, ζ = 0.3, λ = 1, and choose

d = 1, and η = 10 for the localization parameter. Figure 5.1 shows the convergence

of the Malliavin and finite difference methods as the number of Monte Carlo events

increases.
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Figure 5.1: Estimation of Theta vs number of events

Digital options

The next graphs allow us to compare the Monte Carlo simulations of Theta as a function

of K obtained by finite differences and by the Malliavin method in a jump model, with

ε = 10−3. The main interest of the Malliavin method is to be independent of the choice

of the parameter ε and to perform better or at least comparably to the finite differences

method, including when ε is adjusted to its optimal value, see also Figures 5.5 and 5.6

below.
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Figure 5.2: Finite differences vs localized Malliavin; digital option with jumps (20000 samples)
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Figure 5.3: Localized vs global Malliavin; digital option in a jump model (20000 samples)

The localized Malliavin method appears to perform best, while the finite differences

yields the worse results. Figure 5.4 allows one to compare the graphs of Theta for

European options in continuous and jump models, using the localized Malliavin method.

In this figure as well as in Figures 5.7 and 5.8 below we take σ = 0.05, ζ = 0.224, and

λ = 2.
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Figure 5.4: Comparison of Theta in continuous and jump models for digital options (200000 samples)

In continuous models, analytic formulas are available for the computation of Theta for

digital and European options, cf. e.g. [8].
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European options

In the next graph we have chosen ε = 0.3, for which the finite differences method showed

the best performance.
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Figure 5.5: Finite differences vs localized Malliavin; European option with jumps (20000 samples)

In this case the Malliavin and finite differences method appear to give comparable levels

of precision, but the localized Malliavin method still improves on both methods. In

particular it corrects the lack of precision of the Malliavin method for smaller values of

K, as shown in Figure 5.6.
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Figure 5.6: Localized vs global Malliavin; European option with jumps (20000 samples)
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The next graph allows one to compare the simulation of Theta in continuous and jump

model for European options using the localized Malliavin method.
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Figure 5.7: Comparison of continuous and jump models for European options (200000 samples)

Finally in Figure 5.8 below we compare Thetat and −ThetaT in a simple time inho-

mogeneous jump-diffusion model for digital options with c(y) = ζeβ(T0−t)y and a(y) =

(r − λζeβ(T0−t))y using the localized Malliavin method, with β = 4 and T0 = 1.
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Figure 5.8: Comparison of -Thetat and ThetaT in a time inhomogeneous model (200000 samples)
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Conclusion

The Malliavin method provides an expression for Theta in time inhomogeneous mo-

dels, which is independent of the parameter ε of the finite differences method. In time

homogeneous models this representation is different from the one obtained from the

Black-Scholes PDE, which does not apply to the time inhomogeneous case. The nume-

rical performances of the Malliavin and finite differences method are comparable when

the window parameter ε of the finite differences method is adjusted to its optimal value,

but the localized Malliavin method appears to improve on both the finite differences

and global Malliavin methods.
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