
Supermodular ordering of Poisson arrays
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Abstract

We derive necessary and sufficient conditions for the supermodular ordering
of certain triangular arrays of Poisson random variables, based on the compo-
nentwise ordering of their covariance matrices. Applications are proposed for
markets driven by jump-diffusion processes, using sums of Gaussian and Poisson
random vectors. Our results rely on a new triangular structure for the represen-
tation of Poisson random vectors using their Lévy-Khintchine representation.
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1 Introduction

Stochastic ordering of random vectors is used in finance and economics as a risk

management tool that yields finer information than mean-variance analysis. A d-

dimensional random vector X = (X1, . . . , Xd) is said to be dominated by another

random vector Y = (Y1, . . . , Yd) if

E[Φ(X)] 6 E[Φ(Y )], (1.1)

for all sufficiently integrable Φ : Rd → R within a certain class of functions that de-

termines the ordering.
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One writes X 6sm Y when (1.1) holds for all supermodular functions, i.e. for every

function Φ : Rd −→ R such that

Φ(x) + Φ(y) 6 Φ(x ∧ y) + Φ(x ∨ y), x, y ∈ Rd,

where the maximum ∨ and the minimum ∧ defined with respect to the componentwise

order, cf. [6] and references therein for a review with economic interpretations.

It is well-known (cf. e.g. Theorem 3.9.5 of [10]) that necessary conditions for X 6sm Y

are:

(i) Xi and Yi have same distribution for all i = 1, . . . , d, and

(ii) for all 1 6 i < j 6 d we have

Cov (Xi, Xj) 6 Cov (Yi, Yj),

where (i) above follows from the fact that any function of a single variable is su-

permodular, and (ii) follows by application of (1.1) to the supermodular function

Φi,j(x1, . . . , xd) := (xi − E[Xi])(xj − E[Xj]), 1 6 i < j 6 d.

Supermodular ordering of Gaussian random vectors has been completely character-

ized in [9] Theorem 4.2, cf. also Theorem 3.13.5 of [10], by showing that (i) and (ii)

above are also sufficient conditions when X and Y are Gaussian, cf. also [8] for other

orderings (stochastic, convex, convex increasing, supermodular) of Gaussian random

vectors.

In this paper we consider the supermodular ordering of vectors of Poisson random

variables, see [12], [5] for early references on the multivariate Poisson distribution.

As noted in Section 2, any d-dimensional Poisson random vector is based on 2d − 1

parameters, therefore (i) and (ii), which are based on d(d + 1)/2 conditions, cannot

characterize their distribution ordering except if d = 2.

For this reason, in Section 3 we consider a particular dependence structure of Pois-

son arrays depending on d(d + 1)/2 parameters based on a natural decomposition of
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their Lévy measure on the vertices of the d-dimensional unit hypercube. We show in

Theorem 4.2 that in this case, conditions (i) and (ii) become necessary and sufficient

for the supermodular ordering of X and Y as in the Gaussian setting. When d = 2,

no restriction has to be imposed on 2-dimensional Poisson random vectors X and Y .

Triangular Poisson structures of a different type have been considered in [11] for the

simulation of Poisson random vectors.

Our proof relies on the characterization of the supermodular ordering of d-dimensional

infinitely divisible random vectors X and Y by their Lévy measures, cf. [2], based

on the covariance identities of [4]. Extensions of such identities have already been

applied to other multidimensional stochastic (including convex) orderings in e.g. [3]

based on stochastic calculus and in [1] using forward-backward stochastic calculus.

We also derive sufficient conditions for the supermodular ordering of sums of Gaussian

and Poisson random vectors, with application to a jump-diffusion asset price model,

cf. Theorem 4.4. Indeed, the supermodular ordering of random asset vectors implies

the stop-loss ordering of their associated portfolios, cf. Theorem 3.1 in [7] or Theo-

rem 8.3.3 in [10].

We proceed as follows. In Section 2 we recall the construction of Poisson random

vectors, and in Section 3 we specialize this construction to a certain dependence set-

ting based on Poisson arrays. Finally in Section 4 we prove our main characterization

of supermodular ordering for such vectors, including extensions to the increasing su-

permodular order, cf. Theorem 4.2 and Proposition 4.3. In addition we provide a

sufficient condition for the supermodular ordering of sums of Gaussian and Poisson

random vectors in Theorem 4.4, with application to an exponential jump-diffusion

asset price model. We also include a remark on the related convex ordering problem

for such Poisson arrays in Proposition 4.5.
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2 Poisson random vectors

Consider X = (Xi)16i6d a d-dimensional infinitely divisible Poisson random vector

with Lévy measure µ on Rd, which satisfies

E[ei〈t̄,X〉] = exp

(∫
Rd

(ei〈t̄,x〉 − 1)µ(dx)

)
,

where t̄ = (t1, . . . , td) ∈ Rd and 〈·, ·〉 denotes the scalar product in Rd.

Since (Xi)16i6d has Poisson marginals, all marginals of µ on Rd are supported by

{0, 1} and consequently the Lévy measure µ(dx) is supported on the vertices of the

unit hypercube of Rd and takes the form

µ(dx) =
∑

∅6=S⊂{1,2,...,d}

aSδeS(dx),

where (aS)∅6=S⊂{1,2,...,d} is a family of nonnegative numbers and

Cd = {0, 1}d =

{
eS :=

∑
i∈S

ei : S ⊂ {1, . . . , d}

}
denotes the vertices of the d-dimensional unit hypercube, identified to the power set

{0, 1}d ' {S ∈ {1, . . . , d}} of {1, . . . , d}, and (ek)16k6d is the canonical basis of Rd.

Consequently, any d-dimensional Poisson random vector X = (X1, . . . , Xd) can be

represented as

Xi =
∑

S∈{0,1}d
S 6=0

1{i∈S}XS =
∑

S⊂{1,2,...,d}
S3i

XS, i = 1, . . . , d, (2.1)

where (XS)∅6=S⊂{1,2,...,d} is a family of 2d − 1 independent Poisson random variables

with respective intensities (aS)∅6=S⊂{1,2,...,d}, cf. also Theorem 3 of [5].

In particular, at most 2d − 1 degrees of freedom are needed in order to characterize

the probability distribution of X. Note also that

Cov (Xi, Xj) =
∑

S⊂{1,2,...,d}
S3i,j

Var [XS] > 0, i, j = 1, . . . , d,
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cf. also Theorem 4 of [5], showing that X has positive covariances.

For example when d = 2 we have{
X1 = X{1} +X{1,2}
X2 = X{2} +X{1,2},

(2.2)

and when d = 3 we find
X1 = X{1} +X{1,2} +X{1,3} +X{1,2,3}
X2 = X{2} +X{1,2} +X{2,3} +X{1,2,3}
X3 = X{3} +X{1,3} +X{2,3} +X{1,2,3}.

(2.3)

By decomposing the sum (2.1) according to the
(
d
i

)
subsets S1

i , . . . , S
(d
i)

i of {1, . . . , d}
of sizes i = 1, . . . , d we can also write

Xi =
d∑

i=1

(d
i)∑

j=1

1{i∈Sj
i }
XSj

i
, i = 1, . . . , d.

3 Triangular Poisson arrays

Since Poisson random vectors can depend on 2d−1 degrees of freedom (aS)∅6=S⊂{1,2,...,d},

it should be generally not possible to characterize their ordering based on the data of

its covariance matrix which contains only d(d+ 1)/2 components.

In this paper we restrict ourselves to d-dimensional Poisson random vectors (Xi)16i6d

whose Lévy measure µ(dx) is supported by

{ei,j := e1 + · · ·+ ei−1 + ej : 1 6 i 6 j 6 d} ,

i.e. µ(dx) takes the form

µ(dx) =
∑

16i6j6d

ai,jδei,j(dx), (3.1)

where

ei,j = (1, . . . , 1,
↑

i−1

0, . . . , 0, 1
↑
j

, 0, . . . , 0), 1 6 i 6 j 6 d,
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and the vector (Xi)16i6d actually depends on d(d+ 1)/2 parameters (ai,j)16i6j6d.

In other words the d-dimensional Poisson random vector (Xi)16i6d with Lévy measure

µ given by (3.1) can be represented as

X =
∑

16k6l6d

Xk,lek,l, (3.2)

where (Xi,j)16i6j6d is a triangular array of independent Poisson random variables with

respective parameters (ai,j)16i6j6d, and we have

Xi =
i∑

k=1

Xk,i +
d∑

k=i+1

d∑
l=k

Xk,l, (3.3)

i = 1, . . . , d.

For example when d = 2 we have{
X1 = X1,1+X2,2

X2 = X1,2+X2,2,
(3.4)

which coincides with (2.2), and when d = 3 we get
X1 = X1,1 +X2,2 +X2,3 +X3,3

X2 = X1,2 +X2,2 +X3,3

X3 = X1,3 +X2,3 +X3,3,

which, in comparison with (2.3), excludes an interaction component specific to rows

2 and 3. Note that the 2-dimensional case (3.4) does not impose any such restriction

on the form of the vector X.

From (3.3) we have

Cov (Xi, Xi) = E[Xi] =
i∑

k=1

ak,i +
d∑

k=i+1

d∑
l=k

ak,l, (3.5)

and

Cov (Xi, Xj) =

j∑
k=i+1

ak,j +
d∑

k=j+1

d∑
l=k

ak,l, 1 6 i < j 6 d, (3.6)
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hence the vector C = (Cov (Xi, Xj))16i6j6d is obtained from A = (ak,l)16k6l6d and the

matrix transformation C = M × A, i.e.

Cov (Xi, Xj) =
∑

16j6k6d

ak,lMi,j,k,l, 1 6 i 6 j 6 d,

where the (d(d+ 1)/2)2-dimensional matrix M = (Mi,j,k,l) 16i6j6d
16k6l6d

is given by

Mi,j,k,l = 1{j+16k6l6d} + 1{16k6i, i=j=l} + 1{i+16k6j, i<j=l}.

We can check by an elementary computation that the inverse M−1 of M is given by

the inversion formula

ak,l =



Cov (X1, X1) +
d∑

j=3

Cov (X2, Xj)−
d∑

j=2

Cov (X1, Xj), k = l = 1,

Cov (Xl, Xl)− Cov (X1, Xl), k = 1, 2 6 l 6 d,

Cov (Xk−1, Xl)− Cov (Xk, Xl), 2 6 k < l 6 d,

Cov (Xk−1, Xk) +
d∑

j=k+2

Cov (Xk+1, Xj)−
d∑

j=k+1

Cov (Xk, Xj), 2 6 k = l 6 d,

(3.7)

with, for d = 2, 
a1,1 = Cov (X1, X1)− Cov (X1, X2),

a1,2 = Cov (X2, X2)− Cov (X1, X2),

a2,2 = Cov (X1, X2).

In particular it follows from (3.7) that the distribution of X given by (3.3) is charac-

terized by its covariance matrix (Cov (Xi, Xj))16i6j6d, and the vector X admits the

representation (3.2) provided its covariances yield non-negative values of (ak,l)16k6l6d

in (3.7). Such conditions differ from the ones imposed in relation with the triangular

representation of [11].

In the simple case ai,j = 0, 1 6 i < j 6 d, we have

Xi =
d∑

k=i

Xk,k, i = 1, . . . , d,

and ai,i = Var [Xi] = Var [Xi,i] + · · ·+ Var [Xd,d], i = 1, . . . , d.
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4 Supermodular Poisson arrays

When d = 2 we note that from (3.3)-(3.6) we have

E[X1] = a1,1 + a2,2, E[X2] = a1,2 + a2,2, and Cov (X1, X2) = a2,2,

hence the Lévy measure µ(dx) of any 2-dimensional Poisson random vector X =

(X1, X2) can be represented as∫
R2

φ(x)µ(dx) = φ(1, 0)a1,1 + φ(0, 1)a1,2 + φ(1, 1)a2,2

= φ(1, 0)(E[X1]− Cov (X1, X2)) + φ(0, 1)(E[X2]− Cov (X1, X2)) + φ(1, 1)Cov (X1, X2)

= E[X1]φ(1, 0) + E[X2]φ(0, 1) + Cov (X1, X2)(φ(1, 1)− φ(1, 0)− φ(0, 1)),

for any function φ : C2 −→ R such that φ(0) = 0.

More generally, for all d > 2, the next Lemma 4.1 provides a representation of Lévy

measures which will be used in the proof of our main result Theorem 4.2 below.

Lemma 4.1. Assume that X is a Poisson array represented as in (3.2), with Lévy

measure µ. Then for any function φ : Cd −→ R such that φ(0) = 0 we have∫
Rd

φ(x)µ(dx) =
d∑

j=1

E[Xj]φ(e1,j)+
∑

16i<j6d

Cov (Xi, Xj)(φ(ei+1,j)+φ(ei−1,i−1)−φ(ei,i)−φ(ei,j)),

with e0,0 := (0, . . . , 0).

Proof. We have∑
16i<j6d

Cov (Xi, Xj)(φ(ei+1,j) + φ(ei−1,i−1)− φ(ei,i)− φ(ei,j))

=

(
d∑

j=3

Cov (X2, Xj)−
d∑

j=2

Cov (X1, Xj)

)
φ(e1,1)−

d∑
j=2

Cov (X1, Xj)φ(e1,j)

+
d∑

i=2

(
Cov (Xi−1, Xi) +

d∑
j=i+2

Cov (Xi+1, Xj)−
d∑

j=i+1

Cov (Xi, Xj)

)
φ(ei,i)

+
∑

26i<j6d

(Cov (Xi−1, Xj)− Cov (Xi, Xj))φ(ei,j)
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= −
d∑

j=1

E[Xj]φ(e1,j) +
∑

16i6j6d

ai,jφ(ei,j),

where the conclusion comes from the above inversion formula (3.7).

The above Lemma 4.1 shows that the transpose M−1† of M−1 is given by

M−1†
i,j,k,l = 1{k=16i=j=l} + 1{k=i+16l=j} + 1{k=l=i−1<j−1} − 1{k=l=i<j} − 1{k=i<l=j},

and we have∫
Rd

φ(x)µ(dx) =
∑

16k6l6d

ak,lφ(ek,l)

=
∑

16k6l6d

φ(ek,l)
∑

16i6j6d

M−1
k,l,i,jCov (Xi, Xj)

=
∑

16i6j6d

Cov (Xi, Xj)
∑

16k6l6d

M−1
k,l,i,jφ(ek,l)

=
∑

16i6j6d

Cov (Xi, Xj)
∑

16k6l6d

M−1†
i,j,k,lφ(ek,l).

Consider now two Poisson arrays X and Y whose respective Lévy measures µ and ν

are represented as

µ(dx) =
∑

16i6j6d

ai,jδei,j(dx) and ν(dx) =
∑

16i6j6d

bi,jδei,j(dx),

as in (3.1). If Xi has the same distribution as Yi for all i = 1, . . . , d then E[Xi] = E[Yi],

i = 1, . . . , d, and Lemma 4.1 shows that∫
Rd

φ(x)ν(dx)−
∫
Rd

φ(x)µ(dx)

=
∑

16i<j6d

(Cov (Yi, Yj)− Cov (Xi, Xj))(φ(ei+1,j) + φ(ei−1,i−1)− φ(ei,i)− φ(ei,j))

=
∑

16i<j6d

(Cov (Yi, Yj)− Cov (Xi, Xj))ti,jφ(ei−1,i−1), (4.1)

where ti,j is the linear mapping defined on φ by

ti,jφ(z) = φ(z + ei + ej) + φ(z)− φ(z + ei)− φ(z + ej),

and

ti,jφ(ei−1,i−1) = φ(ei−1,i−1 + ei + ej) + φ(ei−1,i−1)− φ(ei−1,i−1 + ei)− φ(ei−1,i−1 + ej)

9



= φ(ei+1,j) + φ(ei−1,i−1)− φ(ei,i)− φ(ei,j).

In other words, (4.1) provides the explicit form of the decomposition stated in Theo-

rem 1 of [6].

Relation (4.1) also shows that the nonnegativity of the coefficients

Cov (Yi, Yj)− Cov (Xi, Xj) > 0, 1 6 i < j 6 d, (4.2)

becomes a necessary and sufficient condition for the supermodular ordering of the

Lévy measures µ and ν which here have finite support.

Next is the main result of this paper. It reformulates (4.2) as a necessary and suf-

ficient condition for supermodular ordering of triangular Poisson arrays, based on

Theorem 4.6 of [2] which allows us to carry over the notion of supermodularity from

the finite support setting of Lévy measures µ, ν on the cube Cd, to the infinite support

setting of Poisson random variables.

Theorem 4.2. Consider two Poisson arrays X and Y both represented as in (3.2).

Then the conditions

E[Xi] = E[Yi], 1 6 i 6 d, (4.3)

and

Cov (Xi, Xj) 6 Cov (Yi, Yj), 1 6 i < j 6 d, (4.4)

are necessary and sufficient for the supermodular ordering X 6sm Y .

Proof. By Theorem 4.6 in [2] it suffices to show that∫
Rd

φ(x)µ(dx) 6
∫
Rd

φ(y)ν(dy)

for all supermodular functions φ : Rd −→ R satisfying φ(0) = φ(e0,0) = 0, where

µ(dx) and ν(dy) respectively denote the Lévy measures of X and Y . By Lemma 4.1

we have the identity∫
Rd

φ(x)ν(dx)−
∫
Rd

φ(x)µ(dx) (4.5)
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=
∑

16i<j6d

(Cov (Yi, Yj)− Cov (Xi, Xj))(φ(ei+1,j) + φ(ei−1,i−1)− φ(ei,i)− φ(ei,j)).

Next, the supermodular inequalities

φ(ei,i) + φ(ei,j) 6 φ(ei,i ∧ ei,j) + φ(ei,i ∨ ei,j) = φ(ei−1,i−1) + φ(ei+1,j) (4.6)

show that

(Cov (Yi, Yj)−Cov (Xi, Xj))(φ(ei+1,j)+φ(ei−1,i−1)−φ(ei,i)−φ(ei,j)) > 0, 1 6 i < j 6 d,

under condition (4.4), which allows us to conclude by (4.5).

Note that in view of Condition (4.3), the inequality (4.4) can be rewritten using joint

moments, as

E[XiXj] 6 E[YiYj], 1 6 i < j 6 d.

The next proposition is relative to the increasing supermodular order.

Proposition 4.3. Consider two Poisson arrays X and Y both represented as in (3.2),

and assume that

E[Xi] 6 E[Yi], 1 6 i 6 d,

and

Cov (Xi, Xj) 6 Cov (Yi, Yj), 1 6 i < j 6 d.

Then we have

E[Φ(X)] 6 E[Φ(Y )]

for all nondecreasing supermodular functions Φ : Rd −→ R.

Proof. First we note that Theorem 4.6 of [2] can be easily extended to nondecreasing

supermodular functions φ on Rd satisfying φ(0) = 0, using the same approximation

as in Lemma 4.3 therein. The conclusion follows again from Lemma 4.1 and the

decomposition∫
Rd

φ(x)ν(dx)−
∫
Rd

φ(x)µ(dx)

=
d∑

j=1

(E[Yj]− E[Xj])φ(e1,j)
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+
∑

16i<j6d

(Cov (Yi, Yj)− Cov (Xi, Xj))(φ(ei+1,j) + φ(ei−1,i−1)− φ(ei,i)− φ(ei,j)),

for all nondecreasing supermodular functions φ : Cd −→ R, since φ(e1,j) > φ(0) = 0,

j = 1, . . . , d.

Sums of Gaussian and Poisson vectors

Theorem 4.2 can be extended to a sufficient condition for the sum of Gaussian and

Poisson vectors, as follows.

Theorem 4.4. Consider two Poisson arrays X and Y both represented as in (3.2),

and two d-dimensional centered Gaussian random vectors U , V such that U is in-

dependent of X and V is independent of Y . Then the conditions E[Xi] = E[Yi],

1 6 i 6 d, and

Cov (Ui, Uj) 6 Cov (Vi, Vj), Cov (Xi, Xj) 6 Cov (Yi, Yj),

1 6 i < j 6 d, are sufficient for the supermodular ordering X + U 6sm Y + V .

Proof. This is a consequence of Theorem 4.2 of [9] on Gaussian random vectors,

Theorem 4.2 above, and the fact that the supermodular ordering is closed under

convolution, cf. Theorem 3.9.14-(C) of [10].

Proposition 4.3 can be similarly extended to sums of Gaussian vectors and Poisson

arrays.

As an application of Theorem 4.4 we can consider exponential jump-diffusion models

(X1
t , . . . , X

d
t )t∈R+ of the form

X i
t = X i

0 exp
(
σiB

i
t + ηiZ

i
t + µit

)
, i = 1, . . . , d, (4.7)

as in (3.3), where Zi
t is the Poisson jump process

Zi
t =

i∑
k=1

Nk,i
t +

d∑
k=i+1

d∑
l=k

Nk,l
t , i = 1, . . . , d,

and {(Nk,l
t )t∈R+ , 1 6 k 6 l 6 d} is a family of d(d+1)/2 independent standard Poisson

processes with respective intensities (ak,l)16k6l6d, (B1
t , . . . , B

d
t )t∈R+ is a d-dimensional
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Browian motion, X i
0, σi, ηi are nonnegative coefficients, and µi ∈ R, i = 1, . . . , d. In

that case, Theorem 4.4 shows that the supermodular ordering of vectors of the form

(X1
t , . . . , X

d
t ) follows from the componentwise orderings of the covariance matrices of

the d-dimensional Brownian and Poisson processes (B1
t , . . . , B

d
t ) and (Z1

t , . . . , Z
d
t ), cf.

Theorem 3.9.8-(P8) of [10], since every exponential function in (4.7) is increasing.

Convex ordering

We end this paper by some comments in the case of the convex ordering.

Proposition 4.5. Consider two Poisson arrays X and Y both represented as in (3.2).

Then we have X 6cx Y if and only if X and Y have same distributions.

Proof. Assume X 6cx Y , i.e. we have

E[Φ(X)] 6 E[Φ(Y )]

for all convex functions Φ : Rd −→ R. Clearly this implies E[Xk] = E[Yk], k =

1, . . . , d. Next, letting 0 6 k < l 6 d and assuming that Cov (Yi, Yj)−Cov (Xi, Xj) = 0

whenever 1 6 i 6 k 6 d and 1 6 i < j 6 l 6 d, we check that the function

(x1, . . . , xd) 7→ φk,l+1(x1, . . . , xd) := max

(
0, 2xl+1 −

d∑
a=k

xa

)

is convex on Rd. In addition, taking again ei,j := e1 + · · ·+ ei−1 + ej, 1 6 i 6 j 6 d,

we note that it satisfies φk,l+1(ei,j) = 1 if and only if 1 6 i 6 k < l + 1 = j 6 d,

otherwise φk,l+1(ei,j) = 0, hence

φk,l+1(ek+1,l+1) + φk,l+1(ek−1,k−1)− φk,l+1(ek,k)− φk,l+1(ek,l+1) < 0,

while

φk,l+1(ei+1,j) + φk,l+1(ei−1,i−1)− φk,l+1(ei,i)− φk,l+1(ei,j) = 0

whenever 1 6 k < i 6 d or 2 6 l + 1 < j 6 d. Hence from Lemma 4.1, the condition

Cov (Yk, Yl+1) > Cov (Xk, Xl+1) implies∫
Rd

φ(x)ν(dx)−
∫
Rd

φ(x)µ(dx)
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=
∑

16i<j6d

(Cov (Yi, Yj)− Cov (Xi, Xj))(φ(ei+1,j) + φ(ei−1,i−1)− φ(ei,i)− φ(ei,j))

= (Cov (Yk, Yl+1)− Cov (Xk, Xl+1))(φ(ek+1,l+1) + φ(ek−1,k−1)− φ(ek,k)− φ(ek,l+1))

< 0,

which is a contradiction. After proceeding similarly with φk+1,l, we conclude by in-

duction that Cov (Yk, Yl)− Cov (Xk, Xl) = 0 for all 1 6 k < l 6 d.
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[4] C. Houdré, V. Pérez-Abreu, and D. Surgailis. Interpolation, correlation identities, and inequal-
ities for infinitely divisible variables. J. Fourier Anal. Appl., 4(6):651–668, 1998.

[5] K. Kawamura. The structure of multivariate Poisson distribution. Kodai Math. J., 2(3):337–345,
1979.

[6] M.A Meyer and B. Strulovici. The supermodular stochastic ordering. CEPR Discussion Paper
DP9486, May 2013. http://www.cepr.org/pubs/dps/DP9486.

[7] A. Müller. Stop-loss order for portfolios of dependent risks. Insurance Math. Econom.,
21(3):219–223, 1997.

[8] A. Müller. Stochastic ordering of multivariate normal distributions. Ann. Inst. Statist. Math.,
53(3):567–575, 2001.

[9] A. Müller and M. Scarsini. Some remarks on the supermodular order. J. Multivariate Anal.,
73:107–119, 2000.

[10] A. Müller and D. Stoyan. Comparison methods for stochastic models and risks. Wiley Series in
Probability and Statistics. John Wiley & Sons, Ltd., Chichester, 2002.

[11] C.H. Sim. Generation of Poisson and gamma random vectors with given marginals and covari-
ance matrix. Journal of Statistical Computation and Simulation, 47:1–10, 1993.

[12] H. Teicher. On the multivariate Poisson distribution. Skand. Aktuarietidskr., 37:1–9, 1954.

14


