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Abstract

In this note we describe the stratified lognormal approximation of [2] ap-
plied to the pricing and hedging of Asian options. In addition we provide an
approximation for hedging strategies.
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1 Introduction

Asian options on the time integral ΛT :=

∫ T

0

Stdt of geometric Brownian motion

St = S0e
σBt+(r−σ2/2)t, t ∈ [0, T ], (1.1)

have been priced in [3], [1] by approximating ΛT by a lognormal random variable, as

e−rTE

[(
1

T

∫ T

0

Stdt−K
)+
]
' e−rT

(
1

T
eµ̂+σ̂

2/2Φ(d1)−KΦ(d2)

)
, (1.2)

where

d1 =
log(E[ΛT ]/(KT ))

σ̂
√
T

+ σ̂

√
T

2
=
µ̂T + σ̂2T − log(KT )

σ̂
√
T

and

d2 = d1 − σ̂
√
T =

log(E[ΛT ]/(KT ))

σ̂
√
T

− σ̂
√
T

2
,
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and µ̂, σ̂ are estimated as

σ̂2 =
1

T
log

(
E[Λ2

T ]

(E[ΛT ])2

)
(1.3)

and

µ̂ =
1

T
logE[ΛT ]− 1

2
σ̂2, (1.4)

based on the first two moments of the lognormal distribution, cf. (3.1) below.

In [2], a more accurate approximation has been proposed by applying stratified sam-

pling to the computation of (1.2), via the conditioning

E

[(
1

T

∫ T

0

Stdt−K
)+
]

=

∫ ∞
0

E

[(
1

T

∫ T

0

Stdt−K
)+ ∣∣∣ST = z

]
dP (ST = z).

Stratified sampling usually acts as a variance reduction method in Monte Carlo sim-

ulations, and in the present setting it also improves numerical precision as seen in the

graphs of Figure 1 below.

2 Conditional calculus

In this section we recall and state some facts on the conditional distribution and

moments of ΛT given ST . Rewriting (1.1) as the solution of

dSt = (1− p)σ
2

2
Stdt+ σStdBt,

with p = 1− 2r/σ2, and

dP (ST = z | S0 = x) =
1

σ
√

2πT
e−(pσ

2T/2+log(z/x))2/(2σ2T )dz

z
,

we can rewrite the conditional law of ΛT given ST = z without using the parameter

p ∈ IR.

Lemma 2.1 For all z, T > 0 we have

P
(

ΛT ∈ dx
∣∣∣ ST = z, S0 = 1

)
= σ

√
πT

2
exp

(
(log z)2

2σ2T
− 2

1 + z

σ2x

)
θ

(
4
√
z

σ2x
,
σ2T

4

)
dx

x
,

x > 0. (2.1)
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Next we define the functions

aT (z) :=
1

σ2p(z)

(
Φ

(
log z√
σ2T

+
1

2

√
σ2T

)
− Φ

(
log z√
σ2T

− 1

2

√
σ2T

))
, (2.2)

and

bT (z) =
1

σ2q(z)

(
Φ

(
log z√
σ2T

+
√
σ2T

)
− Φ

(
log z√
σ2T

−
√
σ2T

))
,

where

p(z) =
1√

2πσ2T
e−(σ2T/2+log z)

2
/(2σ2T ), and q(z) =

1√
2πσ2T

e−(σ2T+log z)
2
/(2σ2T ),

z > 0, and

Φ(x) =
1√
2π

∫ x

−∞
e−y

2/2dy, x ∈ IR,

is the standard Gaussian cumulative distribution function.

Proposition 2.2 We have

E[ΛT | ST = z, S0 = 1] =
1

σ2p(z)

(
Φ

(
log z√
σ2T

+
1

2

√
σ2T

)
− Φ

(
log z√
σ2T

− 1

2

√
σ2T

))
,

and

E[(ΛT )2 | ST = z, S0 = 1] =
2

σ2
(bT (z)− (1 + z)aT (z)), z > 0. (2.3)

3 Stratified lognormal Asian option pricing

The lognormal distribution with mean −pσ2T/2 and variance σ2T has the probability

density function

g(x) =
1

σx
√

2πT
e−(pσ

2T/2+log x)2/(2σ2T ),

where x > 0, µ ∈ IR, σ > 0, and moments

E[X] = e(1−p)σ
2T/2 and E[X2] = e(2−p)σ

2T , (3.1)

i.e.

p = 1− 2

σ2T
logE[X] and σ2 =

1

T
log

(
E[X2]

(E[X])2

)
. (3.2)

In the next proposition, as a consequence of (3.2) and Proposition 2.2 we fit the

conditional distribution of ΛT given ST = z and S0 = 1 to a lognormal distribution

using its first two moments.
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Proposition 3.1 Given z > 0, letting

σ2(z) =
1

T
log

(
2

σ2aT (z)

(
bT (z)

aT (z)
− 1− z

))
and p(z) := 1− 2

Tσ2(z)
log aT (z),

the lognormal random variable with parameter (−p(z)σ2(z)T/2, σ2(z)T ) has same first

and second moments as ΛT given ST = z and S0 = 1.

Based on Proposition 3.1 we will approximate the law of ΛT given ST = z and S0 = 1

as

dP
(

ΛT = x
∣∣∣ST = z, S0 = 1

)
' 1

σ(z)
√

2πT
e−(p(z)σ

2(z)T/2+log x)2/(2σ2(z)T )dx

x
, (3.3)

x > 0. As a consequence of this approximation we have

e−rTE

[(
1

T

∫ T

0

Stdt−K
)+
]

=
1

T
e−rTE

[(∫ T

0

Stdt−KT
)+
]

(3.4)

' e−rT

T

∫ ∞
0

(
e−p(z/x)σ

2(z/x)T/2+σ2(z/x)T/2Φ(d1(K, z, x))−KTΦ(d2(K, z, x))
)
dP (ST = z, S0 = x),

where

d1(K, z, x) =
log(E[ΛT | ST = z, S0 = x]/(KT ))

σ(z/x)
√
T

+ σ(z/x)

√
T

2

=
1

2σ(z/x)
√
T

log

(
2x(bT (z/x)− (1 + z/x)aT (z/x))

σ2K2T 2

)
+ σ(z/x)

√
T

2
,

and

d2(K, z, x) = d1(K, z, x)− σ(z/x)
√
T

=
1

2σ(z/x)
√
T

log

(
2x(bT (z/x)− (1 + z/x)aT (z/x))

σ2K2T 2

)
− σ(z/x)

√
T .

Figure 1 compares the Asian option prices obtained from (3.4) (stratified lognormal

approximation), with the standard lognormal approximation (1.2) of [1] with the

Monte Carlo method. Significant discrepancies in the approximations can be observed

for large values of time to maturity, and the stratified approximations appear to

perform better than the standard lognormal approximation.
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Figure 1: Asian option prices with σ = 1, r = 0.05, K/S0 = 1.1, S0 = 1.5.

Hedging

The Delta of the option with respect to x = S0 can be estimated from the approxi-

mation (3.4) as

∆t = e−rT
∂

∂x
E

[(
1

T

∫ T

0

Stdt−K
)+ ∣∣∣S0 = x

]

= e−rT
∂

∂x

(
xE

[(
1

T

∫ T

0

St
x
dt− K

x

)+ ∣∣∣S0 = x

])

= e−rT
∂

∂x

(
xE

[(
1

T

∫ T

0

Stdt−
K

x

)+ ∣∣∣S0 = 1

])

= e−rTE

[(
1

T

∫ T

0

Stdt−
K

x

)+ ∣∣∣S0 = 1

]
+ e−rTx

∂

∂x
E

[(
1

T

∫ T

0

Stdt−
K

x

)+ ∣∣∣S0 = 1

]

' e−rT

T

∫ ∞
0

(
e−p(z)σ

2(z)T/2+σ2(z)T/2Φ(d1(K/x, z, 1))− KT

x
Φ(d2(K/x, z, 1))

)
dP (ST = z, S0 = 1)

+
xe−rT

T

∂

∂x

∫ ∞
0

(
e−p(z)σ

2(z)T/2+σ2(z)T/2Φ(d1(K/x, z, x))− KT

x
Φ(d2(K/x, z, x))

)
dP (ST = z, S0 = 1)

=
e−rT

T

∫ ∞
0

(
e−p(z)σ

2(z)T/2+σ2(z)T/2Φ(d1(K/x, z, 1))− KT

x
Φ(d2(K/x, z, 1))

)
dP (ST = z, S0 = 1)
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+
xe−rT

Tσ(z)
√

2πT

∫ ∞
0

e−p(z)σ
2(z)T/2+σ2(z)T/2e−(d1(K/x,z,1))

2/2dP (ST = z, S0 = 1)

−Ke
−rT

x

∫ ∞
0

(
Φ(d2(K/x, z, 1)) +

1

σ(z)
√

2πT
e−(d2(K/x,z,1))

2/2

)
dP (ST = z, S0 = 1).
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Abstract


We propose to use stratified approximations based on the gamma and log-
normal distributions for the pricing of options on average such as Asian options
and bond prices in the Dothan model. We show that this approach improves
on standard numerical approximation methods, and is not subject to the insta-
bilities encountered with closed form integral expressions.
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1 Introduction


Options on average are generally difficult to price due to the lack of simple closed form


expressions. In [9], Asian options have been priced numerically by Monte Carlo esti-


mates combined with variance reduction based on control variates, and PDE pricing


arguments have been developed in e.g. [10], page 91, [18], or § 7.5.3 of [19]. Pric-


ing based on the probability density of the averaged geometric Brownian motion has


been considered in e.g. [12], or in [5] by the use of Laguerre series. The time Laplace


transform of Asian option prices has been computed in [6], and this expression can


be used for pricing by numerical inversion of the Laplace transform, cf. also [3].
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∗∗Department of Statistics and Applied Probability, National University of Singapore, 6 Science
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Other numerical approaches to the pricing of Asian options include [20] which relies on


approximations of the average price probability based on the Lognormal distribution.


Namely, Asian options on the time integral


ΛT :=


∫ T


0


Stdt


of geometric Brownian motion


St = eσBt+(r−σ2/2)t, t ∈ [0, T ], (1.1)


have been priced in [20], [11] by approximating ΛT by a lognormal random variable,


as


e−rTE


[(
1


T


∫ T


0


Stdt−K
)+
]
' e−rT


(
1


T
eµ̂+σ̂


2/2Φ(d1)−KΦ(d2)


)
, (1.2)


where


d1 =
log(E[ΛT ]/(KT ))


σ̂
√
T


+ σ̂


√
T


2
=
µ̂T + σ̂2T − log(KT )


σ̂
√
T


and


d2 = d1 − σ̂
√
T =


log(E[ΛT ]/(KT ))


σ̂
√
T


− σ̂
√
T


2
,


and µ̂, σ̂ are estimated as


σ̂2 =
1


T
log


(
E[Λ2


T ]


(E[ΛT ])2


)
(1.3)


and


µ̂ =
1


T
logE[ΛT ]− 1


2
σ̂2, (1.4)


based on the first two moments of the lognormal distribution, cf. (3.5) below.


With respect to the above approaches, this paper is a contribution to the pricing of


options on average from a numerical point of view, by providing an alternative to


existing closed form integral expressions which suffer from numerical instabilities.


More precisely, we propose a more accurate approximation by applying stratified sam-


pling to the computation of (1.2), via the conditioning


E


[(
1


T


∫ T


0


Stdt−K
)+
]


=


∫ ∞
0


E


[(
1


T


∫ T


0


Stdt−K
)+ ∣∣∣ST = z


]
dP (ST = z).
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Stratified sampling usually acts as a variance reduction method in Monte Carlo sim-


ulations, and in the present setting it also improves numerical precision as seen in the


graphs of Figures 2 and 3 below. The conditional expectation


E


[(
1


T


∫ T


0


Stdt−K
)+ ∣∣∣ST = z


]


can be computed in a closed integral form from Lemma 2.1 below, however this expres-


sion relies on a triple oscillating integral and it lacks sufficient stability for numerical


computation, especially in small time T , cf. Figure 1. For this reason we will replace


the integral form by the approximations (3.3) and (3.7) which are based on the gamma


and lognormal distributions, cf. [7] and [16] for a related gamma approximation in


phylogenetics.


In addition we apply the above method to the stratified computation


E


[
exp


(
−
∫ T


0


Stdt


)]
=


∫ ∞
0


E


[
exp


(
−
∫ T


0


Stdt


) ∣∣∣ST = z


]
dP (ST = z)


of bond prices in the Dothan model, cf. [4], [14], [15]. Again, the conditional Laplace


transform


E


[
exp


(
−
∫ T


0


Stdt


) ∣∣∣ST = z


]
can be computed in a closed integral form using Bessel functions, cf. Proposition 4.1


below, however this expression fails for small values of T . For this reason we will


estimate the integral by a gamma approximation, cf. (4.4) below. Note that the log-


normal approximation is ineffective here since the Laplace transform of the lognormal


distribution is not available in closed form.


We proceed as follows. In Section 2 we recall known results on the conditional dis-


tribution of ΛT . In Section 3 we propose stratified approximations of option prices


using the gamma and lognormal distributions, with an application to bond pricing in


the Dothan model in Section 4. Section 5 contains the computations on conditional


mean and variance needed for the approximations.
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2 Conditional calculus


In this section we recall and state some facts on the conditional distribution and mo-


ments of ΛT given ST .


Rewriting (1.1) as the solution of


dSt = (1− p)σ
2


2
Stdt+ σStdBt,


with p = 1− 2r/σ2, the joint probability density of(∫ T


0


Stdt, BT − pσT/2
)


can be written as


P
(∫ T


0


eσBs−pσ
2s/2ds ∈ dx,BT − pσT/2 ∈ dy


)
=


σ


2
e−pσy/2−p


2σ2T/8 exp


(
−2


1 + eσy


σ2x


)
θ


(
4eσy/2


σ2x
,
σ2T


4


)
dx


x
dy (2.1)


= e−pσy/2−p
2σ2T/8P


(∫ T


0


eσBsds ∈ dx,BT ∈ dy
)
,


y ∈ IR, x, T > 0, where


θ(v, τ) =
veπ


2/(2τ)


√
2π3τ


∫ ∞
0


e−ξ
2/(2τ)e−v cosh ξ sinh(ξ) sin (πξ/τ) dξ, v, τ > 0, (2.2)


and e−pσBT /2−p
2σ2T/8 is the density of the Girsanov shift


BT 7→ BT + pσT/2,


cf. [22], Proposition 2, and also [13].


Note that the function θ(v, τ) in (2.2) is difficult to evaluate numerically due to the


oscillating behavior of its integrand, in fact we have∫ ∞
0


e−ξ
2/(2t) sinh(ξ)(cosh(ξ))n sin (πξ/t) dξ = 0
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for all n ≥ 0, cf. [2], [8], [17] for several attempts to the numerical computation of


the function θ(v, τ).


The next lemma, which will be used in Section 4, follows from (2.1) combined with


the lognormal distribution


dP (eσBT−pσ
2T/2 = y) =


1


y
√


2πσ2T
e−(pσ


2T/2+log y)2/(2σ2T ).


Note that the conditional law of ΛT given ST = z does not depend on the parameter


p ∈ IR.


Lemma 2.1 For all z, T > 0 we have


P
(


ΛT ∈ dx
∣∣∣ ST = z


)
= σ


√
πT


2
exp


(
(log z)2


2σ2T
− 2


1 + z


σ2x


)
θ


(
4
√
z


σ2x
,
σ2T


4


)
dx


x
,


x > 0. (2.3)


Next we define the functions


aT (z) :=
1


σ2p(z)


(
Φ


(
log z√
σ2T


+
1


2


√
σ2T


)
− Φ


(
log z√
σ2T


− 1


2


√
σ2T


))
, (2.4)


and


bT (z) =
1


σ2q(z)


(
Φ


(
log z√
σ2T


+
√
σ2T


)
− Φ


(
log z√
σ2T


−
√
σ2T


))
,


where


p(z) =
1√


2πσ2T
e−(σ2T/2+log z)


2
/(2σ2T ), and q(z) =


1√
2πσ2T


e−(σ2T+log z)
2
/(2σ2T ),


z > 0, and


Φ(x) =
1√
2π


∫ x


−∞
e−y


2/2dy, x ∈ IR,


is the standard Gaussian cumulative distribution function.


In Proposition 2.2 which is proved in the Appendix Section 5 we derive the closed


form expressions of E[ΛT | ST = z] and Var[ΛT | ST = z].
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Proposition 2.2 We have


E[ΛT | ST = z] = aT (z) =
1


σ2p(z)


(
Φ


(
log z√
σ2T


+
1


2


√
σ2T


)
− Φ


(
log z√
σ2T


− 1


2


√
σ2T


))
,


and


E[(ΛT )2 | ST = z] =
2


σ2
(bT (z)− (1 + z)aT (z)), z > 0. (2.5)


As T tends to zero we have the small time asymptotics


E[ΛT | ST = z] =


√
T


σ
e(
√
σ2T/2+(log z)/


√
σ2T )2/2


∫ (log z)/
√
σ2T+


√
σ2T/2


(log z)/
√
σ2T−


√
σ2T/2


e−y
2/2dy


=
T


2


∫ 1


−1
eσ


2T/8+(log z)/2−y2σ2T/8−(y log z)/2dy


' T
√
z


2


∫ 1


−1
e−(y log z)/2dy + o(T )


= T
z − 1


log z
+ o(T ), (2.6)


and E[(ΛT )2 | ST = z] = o(T ). Finally we note the scaling relation


ΛT =


∫ T


0


eσBt−pσ
2t/2dt '


∫ T


0


eBσ2t−pσ
2t/2dt =


1


σ2


∫ σ2T


0


eBt−pt/2dt, T > 0. (2.7)


3 Stratified Asian option pricing


Gamma approximation for Asian options


We use the gamma probability density function


f(x) =
1


θνΓ(ν)
xν−1e−x/θ, x > 0, (3.1)


with mean and variance


E[X] = νθ, Var[X] = νθ2,


where the shape parameter ν > 0 and the scale parameter θ > 0 can be estimated


from the first two moments of X as


θ =
Var[X]


E[X]
, ν =


(E[X])2


Var[X]
=
E[X]


θ
. (3.2)
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In the next proposition, as a consequence of (3.2) and Proposition 2.2 we fit the


conditional distribution of ΛT given ST = z to a gamma distribution using its first


two moments.


Proposition 3.1 For any z > 0, the gamma random variable with scale parameter


θ(z) :=
2


σ2


(
bT (z)


aT (z)
− 1− z


)
− aT (z),


and shape parameter ν(z) := aT (z)/θ(z) has same first and second moments as ΛT


given ST = z.


Based on Proposition 3.1 we will use the approximation


dP
(


ΛT = x
∣∣∣ST = z


)
' e−x/θ(z)


θ(z)


(x/θ(z))−1+ν(z)


Γ (ν(z))
dx (3.3)


x > 0, under which the conditional Asian option price is approximated as


e−rTE


[(
1


T


∫ T


0


Stdt−K
)+ ∣∣∣ST = z


]
=
e−rT


T
E
[
(ΛT −KT )+


∣∣∣ST = z
]


=
e−rT


T


∫ ∞
KT


(x−KT )+dP
(


ΛT = x
∣∣∣ST = z


)
' e−rT


TΓ(ν(z))


∫ ∞
KT


(x−KT )e−x/θ(z)
x−1+ν(z)


θν(z)(z)
dx


=
e−rT


TΓ(ν(z))


∫ ∞
KT


e−x/θ(z)(x/θ(z))ν(z)dx− K


Γ(ν(z))
e−rT


∫ ∞
KT


e−x/θ(z)
x−1+ν(z)


θν(z)(z)
dx


=
e−rT


T


θ(z)


Γ(ν(z))


∫ ∞
KT/θ(z)


e−xxν(z)dx− K


Γ(ν(z))
e−rT


∫ ∞
KT/θ(z)


e−xx−1+ν(z)dx


=
e−rT


T
θ(z)


Γ(1 + ν(z), KT/θ(z))


Γ(ν(z))
−Ke−rT Γ(ν(z), KT/θ(z))


Γ(ν(z))
,


where


Γ(ν, y) =


∫ ∞
y


tν−1e−tdt, y > 0,


is the upper incomplete gamma function. Hence we find


e−rTE


[(
1


T


∫ T


0


Stdt−K
)+
]


(3.4)


' e−rT


T


∫ ∞
0


(
θ(z)Γ(1 + ν(z), KT/θ(z))−KTΓ(ν(z), KT/θ(z))


)
Γ(ν(z))


dP (ST = z),
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with


dP (ST = z) =
1


σ
√


2πT
e−(pσ


2T/2+log z)2/(2σ2T )dz


z
.


The change of variable z = eσy−pσ
2T/2 can be applied in order to replace dP (ST = z)


with the Gaussian density e−y
2/2dy/


√
2π in the integral (3.4).


Figure 1 compares the integral density expression (2.3) for ΛT with the gamma and


lognormal density approximations (3.3) and (3.7) based on the first two moments.
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Figure 1: Gamma and lognormal approximations.


Lognormal approximation for Asian options


The lognormal distribution with mean −pσ2T/2 and variance σ2T has the probability


density function


g(x) =
1


σx
√


2πT
e−(pσ


2T/2+log x)2/(2σ2T ),


where x > 0, µ ∈ IR, σ > 0, and moments


E[X] = e(1−p)σ
2T/2 and E[X2] = e(2−p)σ


2T , (3.5)


i.e.


p = 1− 2


σ2T
logE[X] and σ2 =


1


T
log


(
E[X2]


(E[X])2


)
. (3.6)


In the next proposition, as a consequence of (3.6) and Proposition 2.2 we fit the


conditional distribution of ΛT given ST = z to a lognormal distribution using its first


two moments.
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Proposition 3.2 Given z > 0, letting


σ2(z) =
1


T
log


(
2


σ2aT (z)


(
bT (z)


aT (z)
− 1− z


))
and p(z) := 1− 2


Tσ2(z)
log aT (z),


the lognormal random variable with parameter (−p(z)σ2(z)T/2, σ2(z)T ) has same first


and second moments as ΛT given ST = z.


Based on Proposition 3.2 we will approximate the law of ΛT given ST = z as


dP
(


ΛT = x
∣∣∣ST = z


)
' 1


σ(z)
√


2πT
e−(p(z)σ


2(z)T/2+log x)2/(2σ2(z)T )dx


x
, (3.7)


x > 0. In particular we have


e−rTE


[(
1


T


∫ T


0


Stdt−K
)+
]


=
1


T
e−rTE


[(∫ T


0


Stdt−KT
)+
]


(3.8)


' e−rT


T


∫ ∞
0


(
e−p(z)σ


2(z)T/2+σ2(z)T/2Φ(d1(z))−KTΦ(d2(z))
)
dP (ST = z),


where


d1(z) =
log(E[ΛT | ST = z]/(KT ))


σ(z)
√
T


+σ(z)


√
T


2
=


1


2σ(z)
√
T


log


(
2(bT (z)− (1 + z)aT (z))


σ2K2T 2


)
,


and


d2(z) = d1(z)− σ(z)
√
T =


1


2σ(z)
√
T


log


(
2(bT (z)− (1 + z)aT (z))


σ2K2T 2


)
− σ(z)


√
T .


Figure 2 compares the Asian option prices obtained from (3.4) (stratified gamma ap-


proximation), (3.8) (stratified lognormal approximation), and the standard lognormal


approximation (1.2) with the Monte Carlo method. Significant discrepancies in the


approximations can be observed for large values of time to maturity, and the stratified


approximations appear to perform better than the standard lognormal approximation.


A (non-stratified) gamma approximation similar to (1.2) is also included for reference.
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Figure 2: Asian option prices with σ = 1, r = 0.05, K/S0 = 1.1, S0 = 1.5.


Figure 3 is consistent with the numerical result of [11], page 486.
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Figure 3: Asian option prices with σ = 0.3, r = 0.05, K/S0 = 1.1, S0 = 1.5.


4 Stratified bond pricing in the Dothan model


The following proposition, deduced from Lemma 2.1, provides a closed form integral


expression for the conditional Laplace transform of ΛT . In the next proposition we


use the modified Bessel function of the second kind


Kζ(z) =
zζ


2ζ+1


∫ ∞
0


exp


(
−u− z2


4u


)
du


uζ+1
, ζ ∈ IR, z ∈ C, (4.1)


cf. e.g. [21] page 183, provided the real part R(z2) of z ∈ C is positive.


Proposition 4.1 For all λ, z > 0 we have


E
[
exp (−λΛT )


∣∣∣ ST = z
]


(4.2)
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=
4e−σ


2T/8


π3/2σ2p(z)


√
λ


T


∫ ∞
0


e2(π
2−ξ2)/(σ2T ) sin


(
4πξ


σ2T


)
sinh(ξ)


K1


(√
8λ
√


1 + 2
√
z cosh ξ + z/σ


)
√


1 + 2
√
z cosh ξ + z


dξ.


Proof. By the scaling relation


E
[
exp (−λΛT )


∣∣∣ ST = z
]


= E


[
exp


(
− λ


σ2


∫ σ2T


0


eBt−pt/2dt


) ∣∣∣ ST = z


]
, z > 0,


that follows from (2.7), it suffices to do the proof for σ = 1. By the Fubini theorem


we have∫ ∞
0


e−uλ exp


(
−2


1 + z


u


)
θ


(
4
√
z


u
,
T


4


)
du


u
(4.3)


=
4e2π


2/T
√
z√


π3T/2


∫ ∞
0


e−2ξ
2/T sin


(
4πξ


T


)
sinh(ξ)


∫ ∞
0


exp


(
−λu− 2


1 + 2
√
z cosh ξ + z


u


)
du


u2
dξ,


since the above integrand belongs to L1(IR2
+) as it is bounded by


(ξ, u) 7→ e−2ξ
2/T sinh(ξ) exp


(
−λu− 2


1 + z


u


)
.


Next we have∫ ∞
0


exp


(
−λu− 2


1 + 2
√
z cosh ξ + z


u


)
du


u2
=
√


2λ
K1


(√
8λ
√


1 + 2
√
z cosh ξ + z


)
√


1 + 2
√
z cosh ξ + z


,


where we used the identity (4.1). Hence we find


E
[
exp (−λΛT )


∣∣∣ ST = z
]


=


∫ ∞
0


e−uλP
(


ΛT ∈ du
∣∣∣ST = z


)
=


√
πT


2
e(log z)


2/(2T )


∫ ∞
0


e−uλ exp


(
−2


1 + z


u


)
θ


(
4
√
z


u
, T/4


)
du


u
dz


=
4
√


2λz


π
e(log z)


2/(2T )+2π2/T


∫ ∞
0


e−2ξ
2/T sin


(
4πξ


T


)
sinh(ξ)


K1


(√
8λ
√


1 + 2
√
z cosh ξ + z


)
√


1 + 2
√
z cosh ξ + z


dξ.


�


Under the Gamma approximation of Proposition 3.1 we approximate the conditional


bond price on the short rate St as


E


[
exp


(
−λ
∫ T


0


Stdt


) ∣∣∣ST = z


]
' (1 + λθ(z))−ν(z) ,
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hence by stratification we have


E


[
exp


(
−λ
∫ T


0


Stdt


)]
'
∫ ∞
0


(1 + λθ(z))−ν(z) dP (ST = z). (4.4)


Figures 4 and 5 show that the pricing formula based on the integral expression (4.2)


fails for small values of T > 0 when σ = 0.3 and σ = 0.5 while the stratified gamma


approximation (4.4) is more stable and matches the Monte Carlo simulations. In short


time we may also use the asymptotics (2.6) of E[ΛT | ST = z] to derive the small time


approximation


E


[
exp


(
−λ
∫ T


0


Stdt


) ∣∣∣ST = z


]
' 1− λE[ΛT | ST = z] ' 1 +


λT (1− z)


log z
+ o(T ).
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Figure 4: Approximations of Dothan bond prices with σ = 0.3.
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Figure 5: Approximations of Dothan bond prices with σ = 0.5.
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On the other hand, Figure 6 for σ = 1 shows that the gamma approximation (4.4)


becomes less accurate for large values of σ2T .


 0


 0.2


 0.4


 0.6


 0.8


 1


 0  1  2  3  4  5  6  7  8  9  10


time T


Monte Carlo
stratified gamma


integral expression


Figure 6: Approximations of Dothan bond prices with σ = 1.


We are not proposing a bond price approximation based on the lognormal distribution


since its Laplace transform does not admit a closed form expression. Note however


that the Laplace transform of the lognormal distribution can be approximated [1].


5 Appendix - conditional mean and variance


We now prove Proposition 2.2 which contains the closed form expressions of the


conditional mean and variance, E[ΛT | ST = z] and Var[ΛT | ST = z].


Proof of Proposition 2.2. By scaling it suffices to do the proof for σ = 1. Under


conditioning we write


St = eσ(Bt−tBT /T )+t(log z)/T , t ∈ [0, T ],


hence


E[ΛT | ST = z] =


∫ T


0


E[St | ST = z]dt


=


∫ T


0


et(log z)/T+t(T−t)/(2T )dt


=


∫ T


0


et((log z)/T+1/2)−t2/(2T )dt


= e(T/2+log z)2/(2T )


∫ T


0


e−(t−T/2−log z)
2/(2T )dt


13







= e(T/2+log z)2/(2T )


∫ T/2−log z


−T/2−log z
e−x


2/(2T )dx


=
√
Te(T/2+log z)2/(2T )


∫ − log z√
T


+
√
T/2


− log z√
T
−
√
T/2


e−y
2/2dy


=
√


2πTe(T/2+log z)2/(2T )


(
Φ


(
− log z√


T
+


1


2


√
T


)
− Φ


(
− log z√


T
− 1


2


√
T


))
,


from which we conclude by (2.7). Next we have


E[(ΛT )2 | ST = z] = E


[(∫ t


0


eBt−tBT /T+t(log z)/Tdt


)2
]


= 2


∫ T


0


∫ t


0


e(s+t)(log z)/TE[eBs−sBT /T+Bt−tBT /T ]dsdt


= 2


∫ T


0


∫ t


0


e((s+t)(log z)/T+
1
2T


(t(T−t)+s(T−s)+2s(T−t)))dsdt,


= 2e(3T/2+log z)2/(2T )


∫ T


0


e−t
∫ t


0


e−
1
2T


(3T/2−s−t+log z)2dsdt


= 2e(3T/2+log z)2/(2T )


∫ T


0


e−t
∫ −3T/2+2t−log z


−3T/2+t−log z
e−x


2/(2T )dxdt


= 2e(3T/2+log z)2/(2T )
√
T


∫ T


0


e−t
∫ − log z√


T
− 3


2


√
T+2t
√


1
T


− log z√
T
− 3


2


√
T+t
√


1
T


e−y
2/2dydt


= 2
√


2πTe(3T/2+log z)2/(2T )


∫ T


0


e−tΦ


(
− log z√


T
− 3


2


√
T + 2t


√
1


T


)
dt


−2
√


2πTe(3T/2+log z)2/(2T )


∫ T


0


e−tΦ


(
− log z√


T
− 3


2


√
T + t


√
1


T


)
dt.


By integration by parts we have∫ T


0


e−tΦ


(
− log z√


T
− 3


2


√
T + 2t


√
1


T


)
dt =


√
2


πT


∫ T


0


e−t−(3T/2−2t+log z)2/(2T )dt


+Φ


(
− log z√


T
− 3


2


√
T


)
− e−TΦ


(
− log z√


T
+


1


2


√
T


)
=


√
2


πT


∫ T


0


e−(2t−T−log z)
2/(2T )−(3T/2+log z)2/(2T )+(T+log z)2/(2T )dt


+Φ


(
− log z√


T
− 3


2


√
T


)
− e−TΦ


(
− log z√


T
+


1


2


√
T


)
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= −e−TΦ


(
− log z√


T
+


1


2


√
T


)
+ Φ


(
− log z√


T
− 3


2


√
T


)
+
e−5T/8√


z


(
Φ


(
− log z√


T
+
√
T


)
− Φ


(
− log z√


T
−
√
T


))
,


and similarly,∫ T


0


e−tΦ


(
− log z√


T
− 3


2


√
T + t


√
1


T


)
dt


= −e−TΦ


(
− log z√


T
− 1


2


√
T


)
+ Φ


(
− log z√


T
− 3


2


√
T


)
+


√
1


2πT


∫ T


0


e−t−(3T/2−t+log z)2/(2T )dt


= −e−TΦ


(
− log z√


T
− 1


2


√
T


)
+ Φ


(
− log z√


T
− 3


2


√
T


)
+
e−T


z


(
Φ


(
− log z√


T
+


1


2


√
T


)
− Φ


(
− log z√


T
− 1


2


√
T


))
.


Consequently we have


E[(ΛT )2] = 2
√


2πT


(
Φ


(
log z√
T


+
√
T


)
− Φ


(
log z√
T
−
√
T


))
e(3T/2+log z)2/(2T )−5T/8−(log z)/2


−2
√


2πT


(
Φ


(
log z√
T


+
1


2


√
T


)
− Φ


(
log z√
T
− 1


2


√
T


))(
e


1
2T


(3T/2+log z)2−T + e(T/2+log z)2/(2T )
)


= 2
√


2πT


(
Φ


(
log z√
T


+
√
T


)
− Φ


(
log z√
T
−
√
T


))
e(T+log z)2/(2T )


−2
√


2πT (1 + z)e(T/2+log z)2/(2T )


(
Φ


(
log z√
T


+
1


2


√
T


)
− Φ


(
log z√
T
− 1


2


√
T


))
,


which yields (2.5) by (2.7). �


In the next proposition, for reference we also compute the unconditional mean and


variance of ΛT , which have been used in (1.2), cf. also (7) and (8) page 480 of [11].


Note that closed-form expressions are available for the moments of ΛT of all orders, cf.


Corollary 2 page 33 of [22] and the references given in Postscript #3 page 54 therein.


Proposition 5.1 We have


E[ΛT ] =
erT − 1


r
,


and


E[(ΛT )2] = 2
re(2r+σ


2)T − (2r + σ2)erT + (r + σ2)


r(r + σ2)(2r + σ2)
.


15







Proof. For the second moment we have


E[(ΛT )2] =


∫ T


0


∫ T


0


e−pσ
2a/2−pσ2b/2E[eσBaeσBb ]dbda


= 2


∫ T


0


∫ a


0


e−pσ
2a/2−pσ2b/2eσ


2(a+b)/2ebσ
2


dbda


= 2


∫ T


0


e−(p−1)σ
2a/2


∫ a


0


e−(p−3)σ
2b/2dbda


=
4


(p− 3)σ2


∫ T


0


e−(p−1)σ
2a/2(1− e−(p−3)σ2a/2)da


=
4


(p− 3)σ2


∫ T


0


e−(p−1)σ
2a/2da− 4


(p− 3)σ2


∫ T


0


e−(p−1)σ
2a/2e−(p−3)σ


2a/2da


=
8


(p− 3)(p− 1)σ4
(1− e−(p−1)σ2T/2)− 4


(p− 3)σ2


∫ T


0


e−(2p−4)σ
2a/2da


=
8


(p− 3)(p− 1)σ4
(1− e−(p−1)σ2T/2)− 4


(p− 3)(p− 2)σ4
(1− e−(p−2)σ2T )


= 2
re(2r+σ


2)T − (2r + σ2)erT + (r + σ2)


r(r + σ2)(2r + σ2)
,


since r − σ2/2 = −pσ2/2. �
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6 Addendum - Error bounds in the Wasserstein


distance


This section deals with approximation error bounds based on the Malliavin calculus


and the Stein method. In particular we apply recent results on the Malliavin calculus


and the Stein method, cf. [NP09], to study the error generated by the gamma and log-


normal approximations using Wasserstein type distance estimates between probability


measures. Recall that letting


I1(f) =


∫ T


0


f(t)dBt


denote the first order integral of f ∈ L2([0, T ]) with respect to Brownian motion, the


Malliavin gradient is the operator Dt defined as


DtF =
n∑
k=1


fk(t)
∂g


∂xk
(I1(f1), . . . , I1(fn)), t ∈ [0, T ],


where the random variable F has the form F = g(I1(f1), . . . , I1(fn)), the function


g is in the space C1([0, T ]n) of continuously differentiable functions on [0, T ]n, and


f1, . . . , fn ∈ L2([0, T ]), n ≥ 1, cf. e.g. [Üst95] and references therein. We denote


by (Ft)t∈[0,T ] the filtration generated by the Brownian motion (Bt)t∈[0,T ] built on the


Wiener space W as the coordinate process Bt(ω) = ω(t), ω ∈ W . Recall also that the


Ornstein-Uhlenbeck operator L can be defined via its semigroup (Pt)t∈IR = (etL)t∈IR+


by the Mehler formula


e−tLF (ω) = Ẽ[F (e−tω +
√


1− e−2tω̃)], t > 0, (6.1)


cf. § I.2 page 15 of [Üst95], where ω̃ denotes an independent copy of ω ∈ W . We will


consider the Wasserstein type distance


d(X, Y ) := sup
h∈H
|E[h(X)]− E[h(Y )]|, (6.2)


between the laws of random variables X, Y , where


H := {h ∈ C2b (IR) : max{‖h‖∞, ‖h′‖∞, ‖h′′‖∞} ≤ 1}.


In the sequel we let 〈·, ·〉 denote the inner product defined by


〈f, g〉 :=


∫ T


0


f(t)g(t)dt, f, g ∈ L2([0, T ]).
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Gamma error bounds


Letting Γθ̂,ν̂ denote the gamma distribution with parameters (ν̂, θ̂) given from (3.2).


We have E[ΛT ] = E[Γθ̂,ν̂ ] and the bounds


d(ΛT ,Γθ̂,ν̂) = d(ΛT − E[ΛT ],Γθ̂,ν̂ − E[Γθ̂,ν̂ ])


≤ K


√
E[(2θ̂ΛT − 〈DΛT , D(−L)−1(ΛT − E[ΛT ])〉)2],


for K > 0 a constant, cf. [NP09], Theorem 3.11, and


d(ΛT ,Γθ̂,ν̂) = d(ΛT − E[ΛT ],Γθ̂,ν̂ − E[Γθ̂,ν̂ ])


≤ d(ΛT ,Γθ̂,ν̂) ≤ K


√
E[(2θ̂ΛT − 〈D·ΛT , E[D·ΛT | F·]〉)2], (6.3)


cf. [PT13], Corollary 3.4, after rescaling with respect to the parameter θ̂.


Lognormal error bounds


On the other hand, applying Theorem 1 and § 4.4 of [KT12] with b(x) = E[Lpσ2T/2,σ2 ]−
x we have E[b(Y )] = E[b(ΛT )] = E[ΛT ]− E[L−p̂σ̂2T/2,σ̂2 ] = 0 and


d(ΛT ,L−p̂σ̂2T/2,σ̂2T ) ≤ K
√
E[(aT (ΛT )− 〈DΛT , D(−L)−1(ΛT − E[ΛT ])〉)2], (6.4)


where L−pσ2T/2,σ2 is a lognormal random variable with mean −p̂σ̂2T/2 and variance


σ̂2T given by (1.3)-(1.4) and


aT (z) =
1


p(z)


(
Φ


(
(log z)− δ


σ


)
− Φ


(
(log z)− δ


σ
− σ


))
,


is defined in (2.4). Replacing the use of the Ornstein-Uhlenbeck covariance represen-


tation in the derivation of (6.4) with the Clark-Ocone covariance representation as in


(6.3) and [PT13] yields the bound


d(ΛT ,L−pσ2T/2,σ2 ≤ K
√
E[(aT (ΛT )− 〈D·ΛT , E[D·ΛT | F·])〉)2]. (6.5)


Next we show how the terms


〈DΛT , D(−L)−1(ΛT − E[ΛT ])〉 and 〈D·ΛT , E[D·ΛT | F·]〉


appearing in (6.3)-(6.5) can be computed in the unconditional case.
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Proposition 6.1 We have


〈D·ΛT , E[D·ΛT | F·]〉 =


∫ T


0


∫ T


0


eσBs−pσ
2(s+t)/2


∫ s∧t


0


eσBu+σ
2(T−u)/2dudsdt.


Proof. For any f ∈ L2([0, T ]) we have


Dte
I1(f) = f(t)eI1(f),


and


E[Dte
I1(g) | Ft] = g(t)E[eI1(g) | Ft]


= g(t)e
∫ T
0 g2(s)ds/2E[eI1(g)−


∫ T
0 g2(s)ds/2 | Ft]


= g(t)e
∫ T
0 g2(s)ds/2e


∫ t
0 g(s)dBs−


∫ t
0 g


2(s)ds/2


= g(t)e
∫ t
0 g(s)dBs+


∫ T
t g2(s)ds/2,


hence


〈D·eI1(f), E[D·e
I1(g) | F·]〉 = eI1(f)


∫ T


0


f(u)g(u)e
∫ u
0 g(s)dBs+


∫ T
u g2(s)ds/2du,


and


〈D·eσBs , E[D·e
σBt | F·]〉 = eσBs


∫ s∧t


0


eσBu+σ
2(T−u)/2du.


This yields


〈D·eσBs−pσ
2s/2, E[D·e


σBt−pσ2t/2 | F·]〉 = eσBs−pσ
2(s+t)/2


∫ s∧t


0


eσBu+σ
2(T−u)/2du,


and


〈D·ΛT , E[D·ΛT | F·]〉 =


∫ T


0


∫ T


0


〈D·eσBs−pσ
2s/2, E[D·e


σBt−pσ2t/2 | F·]〉dsdt.


�


As for (6.3) and (6.4) we have the following result. In order to compute the term


(−L)−1(ΛT − E[ΛT ]) we will use the representation formula


(−L)−1F (ω) =


∫ ∞
0


e−tLFdt =


∫ 1


0


Ẽ[F (aω +
√


1− a2ω̃)]da, (6.6)


for F ∈ L2(Ω) with E[F ] = 0, that follows from the Mehler formula (6.1), cf. also


Lemma 3.8 of [Vie09].
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Proposition 6.2 We have


〈D·ΛT , D·(−L)−1(ΛT − E[ΛT ])〉 =


∫ T


0


∫ T


0


s ∧ t
t
e−p(s+t)σ


2/2eσBs+σ
2t/2


×


(
1− eσBt−σ2t/2 +


√
2π


t
Bte


B2
t /(2t)


(
Φ
(
Bt/
√
t
)
− Φ


(
Bt/
√
t− σ


√
t
)))


dsdt.


Proof. By (6.6) we have, denoting by Ĩ1(g) the stochastic integral of g ∈ L2([0, T ])


with respect to ω̃,


(−L)−1(eI1(g) − E[eI1(g)]) = Ẽ


[∫ 1


0


eaI1(g)+
√
1−a2Ĩ1(g)da


]
=


∫ 1


0


eaI1(g)+(1−a2)η2/2da


= eη
2/2


∫ 1


0


eaI1(g)−a
2η2/2da


= eη
2/2e(I1(g))


2/(2η2)


∫ 1


0


e−(I1(g)/η−aη)
2/2da


=
1


η
eη


2/2e(I1(g))
2/(2η2)


∫ η


0


e−(a−I1(g)/η)
2/2da


=
1


η
eη


2/2e(I1(g))
2/(2η2)


∫ η−I1(g)/η


−I1(g)/η
e−a


2/2da


=


√
2π


η
eη


2/2e(I1(g))
2/(2η2) (Φ (I1(g)/η)− Φ (I1(g)/η − η)) ,


with η2 =


∫ T


0


g2(s)ds, hence


Dt(−L)−1(eI1(g) − E[eI1(g)]) =


√
2π


η
eη


2/2Dt


(
e(I1(g))


2/(2η2) (Φ (I1(g)/η)− Φ (I1(g)/η − η))
)


=


√
2π


η
eη


2/2e(I1(g))
2/(2η2)Dt (Φ (I1(g)/η)− Φ (I1(g)/η − η))


+


√
2π


η
eη


2/2 (Φ (I1(g)/η)− Φ (I1(g)/η − η))Dte
(I1(g))2/(2η2)


=
1


η2
g(t)eη


2/2e(I1(g))
2/(2η2)


(
e−(I1(g)/η)


2/2 − e−(I1(g)/η−η)2/2
)


+


√
2π


η3
eη


2/2e(I1(g))
2/(2η2) (Φ (I1(g)/η)− Φ (I1(g)/η − η)) g(t)I1(g)


=
1


η2
g(t)


(
eη


2/2 − eI1(g)
)


+


√
2π


η3
eη


2/2g(t)I1(g)e(I1(g))
2/(2η2) (Φ (I1(g)/η)− Φ (I1(g)/η − η)) ,
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hence, for any f ∈ L2([0, T ]),


〈DeI1(f), D(−L)−1(eI1(g) − E[eI1(g)])〉


=
1


η2
eI1(f)+η


2/2〈f, g〉
(


1− eI1(g)−η2/2 +
√


2π
I1(g)


η
e(I1(g))


2/(2η2) (Φ (I1(g)/η)− Φ (I1(g)/η − η))


)
,


and


〈DeσBs , D(−L)−1(eσBt − E[eσBt ])〉


=
s ∧ t
t
eσBs


(
eσ


2t/2 − eσBt +
√


2π/tBte
B2
t /(2t)+σ


2t/2
(


Φ
(
Bt/
√
t
)
− Φ


(
Bt/
√
t− σ


√
t
)))


,


which yields


〈DeσBs−pσ2s/2, D(−L)−1(eσBt−pσ
2t/2 − E[eσBt−pσ


2t/2])〉 (6.7)


=
s ∧ t
t
e−p(s+t)σ


2/2eσBs+σ
2t/2


×


(
1− eσBt−σ2t/2 +


√
2π


t
Bte


B2
t /(2t)


(
Φ
(
Bt/
√
t
)
− Φ


(
Bt/
√
t− σ


√
t
)))


.


�


Note also that the above bounds can also be computed under conditioning given


ST = z, by writing


St = zt/T eσUt = zt/T eσ(Bt−
t
T
BT ),


where


Ut := Bt −
t


T
BT , t ∈ [0, T ],


is a standard Brownian bridge with U0 = UT = 0.
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