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Abstract

We derive Laplace transform identities for the volume content of random
stopping sets based on Poisson point processes. Our results are based on antic-
ipating Girsanov identities for Poisson point processes under a cyclic vanishing
condition for a finite difference gradient. This approach does not require classi-
cal assumptions based on set-indexed martingales and the (partial) ordering of
index sets. The examples treated focus on stopping sets in finite volume, and
include the random missed volume of Poisson convex hulls.
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1 Introduction

Gamma-type results for the area of random domains constructed from a finite number

of “typical” Poisson distributed points, and more generally known as complementary

theorems, have been obtained in [7], cf. e.g. Theorem 10.4.8 in [14].
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Stopping sets are random sets that carry over the notion of stopping time to set-

indexed processes, cf. Definition 2.27 in [8], based on stochastic calculus for set-

indexed martingales, cf. e.g. [6]. Gamma-type results for the probability law of the

volume content of random sets have been obtained in the framework of stopping sets

in [15], via Laplace transforms, using the martingale property of set-indexed stochas-

tic exponentials, see [16] for the strong Markov property for point processes, cf. also

[2] for extensions to Poisson processes of k-flats in Rd.

The above mentioned approaches make use of changes of measures by modifying the

intensity of the underlying Poisson point process, cf. also § 6 of [4]. In this paper

we further develop and extend the change of measure approach to the derivation of

the probability distribution of random sets, based on anticipating Girsanov identities

under a measure with density, cf. Proposition 4.1 and Corollary 5.2. Instead of relying

on set-indexed adaptedness, we use a cyclic vanishing condition of quasi-nilpotence

type for the finite difference gradient of stochastic processes. This approach does not

require any (partial) ordering of index sets, in the spirit of anticipating stochastic

calculus on the Poisson and Wiener spaces.

As a consequence of Girsanov identities we derive Laplace transform identities for the

volume of stopping sets in finite volume, cf. Proposition 5.4 and Corollaries 5.5-5.6

below. This approach also recovers classical gamma-type identities [9], [15], for the

Laplace transform of the volume of stopping sets, cf. Corollary 5.3.

This paper is organized as follows. In Section 2 and 3 we state the definitions and

preliminary results needed on stopping sets. In Section 4 we state an extension of the

Girsanov identities of [10] to measures under a density. In Section 5 we derive formulas

for the conditional Laplace transform of the random volume content of stopping sets.

Examples in finite volume are given, including the convex hull of a Poisson point

process. Section 6 contains the technical proof of the anticipating Girsanov identities

of Section 4.
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2 Poisson point processes

We work with a Poisson point process having a sigma-finite diffuse intensity measure σ

on a sigma-compact metric space X with Borel sigma-algebra B(X). The underlying

probability space

ΩX = {ω := (xi)i=1,...,N ⊂ X, xi 6= xj, ∀i 6= j, N ∈ N ∪ {∞}}

is the space of configurations whose elements ω ∈ ΩX are at most countable and

locally finite subsets of X, which are identified with the Radon point measure

ω =
∑
x∈ω

δx,

where δx denotes the Dirac measure at x ∈ X and ω(K) ∈ N ∪ {∞} represents the

cardinality of K ∩ ω.

Given K in the collection K(X) of compact subsets of X we let

FK = σ(ω(U) : U ⊂ K, σ(U) <∞)

denote the sigma-algebra generated by ω 7→ ω(U), U ⊂ K, σ(U) <∞.

Letting F =
∨
K∈K(X)FK , the space (ΩX ,F) is endowed with the probability πσ on

X such that for all compact disjoint subsets K1, . . . , Kn of X, n ≥ 1, the mapping

ω 7→ (ω(K1), . . . , ω(Kn)) is a vector of independent Poisson distributed random vari-

ables on N with respective parameters σ(K1), . . . , σ(Kn).

We will use the finite difference operator Dx defined as

DxF (ω) = F (ω ∪ {x})− F (ω), x ∈ X,

and the iterated difference operator Dsk defined by

DskF = Ds1 · · ·DskF,

where sk = (s1, . . . , sk) ∈ Xk, k ≥ 1, and D∅F = F . Recall that the standard Poisson

process (Nt)t∈R+ on X = R+ is defined by Nt(ω) = ω([0, t]), t ∈ R+. In particular we
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have the relation

DskF (ω) =
∑

η⊂{s1,...,sk}

(−1)k−|η|F (ω ∪ η),

where the above summation is taken over all (possibly empty) subsets η of Θ.

3 Stopping sets

We recall the definition of stopping set, cf. [15] and Definition 2.27 page 335 of [8].

Definition 3.1 A random compact set A(ω) is called a stopping set if

{ω : A(ω) ⊂ K} ∈ FK for all K ∈ K(X). (3.1)

When X = R+ and d = 1, the interval [0, τ ] is a stopping set when τ is a stopping

time in the usual sense with respect to the forward filtration generated by (Nt)t∈R+ .

In particular, any interval [0, Tn], where Tn is the n-th Poisson jump time is a stopping

set; in finite volume with X = [0, T ] we can also consider any interval [0, Tn ∧ T ] as

well as the interval [TNT
, T ] where TNT

is the last Poisson jump time before time T ,

with TNT
= 0 if NT = 0 (note that the process 1[0,TNT

)(t) is predictable with respect

to the backward Poisson process filtration generated by (Nt)t∈R+).

When X = Rd with d ≥ 1, examples of compact stopping sets include, in infinite

volume (see [4], [5] for other examples),

- the minimal closed ball centered in the origin and containing exactly n ≥ 1 points,

- the Poisson-Voronoi flower, which is the union of balls centered at the vertices of

the Voronoi polygon containing the point 0 and exactly two other process points,

- the closed complement of the convex hull of a Poisson point process inside a convex

subset of Rd.

The latter example is a stopping set because the addition of a point within the convex

hull will not modify its shape, in other words whether a compact K contains A(ω)

is equivalent to whether K can contain all edges of the convex hull, and this can be

decided based on the sole knowledge of the positions of configuration points contained
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in K.

A stopping set A(ω) will be said to be non-increasing if

A(ω ∪ {x}) ⊂ A(ω), ω ∈ ΩX , x ∈ X, (3.2)

which implies in particular

Dx1A(y) ≤ 0, x, y ∈ X.

A stopping set A(ω) will be said to be stable if

x ∈ A(ω) =⇒ x ∈ A(ω ∪ {x}), ω ∈ ΩX , x ∈ X, (3.3)

i.e. Dx1A(x) ≥ 0, for all x ∈ X. In particular, for A(ω) a stable and non-increasing

stopping set we have

Dx1A(x) = 0, x ∈ X.

The above monotonicity and stability conditions are not restrictive in practice because

they are satisfied by common examples of stopping sets:

- The closed complement A(ω) of the convex hull of a Poisson point process inside a

convex subset of Rd is a stable and non-increasing stopping set. The stability follows

from the fact that the addition of a point x ∈ A(ω) to ω creates a new vertex in

the convex hull of ω ∪ {x}. On the other hand, A(ω) is non-increasing because the

addition of any configuration point can only make the convex hull larger.

- The Poisson-Voronoi flower is also a stable stopping set, which is non-increasing

because each disk is defined by three points while only one of them is displaced by

the addition of a new configuration point and the modified disk can only have a

smaller radius.

The minimal closed ball centered in the origin and containing exactly n ≥ 1 points

is also a stable and non-increasing stopping set. The stability property depends on

the openness or closedness of the stopping set. For example the closed complement

of the convex hull is stable, while the open complement is not stable according to (3.3).

The following lemma will be needed for the proof of Proposition 4.2 below.
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Lemma 3.2 Let A(ω) be a non-increasing stopping set. Then for any FA-measurable

random variable F (ω) we have

DxF (ω) = 0, x ∈ Ac(ω), ω ∈ ΩX .

Proof. Consider B ∈ F such that

B ∩ {ω : A(ω) ⊂ K} ∈ FK ,

hence

Dx(1B(ω)1{A(ω)⊂K}) = 0, x ∈ Kc,

for all K ∈ K(X) and ω ∈ ΩX . Let now ω ∈ ΩX and x ∈ Ac(ω). There exists

K ∈ K(X) such that

x ∈ Kc ⊂ Ac(ω)

and in particular A(ω ∪ {x}) ⊂ A(ω) ⊂ K since A(ω) is non-increasing, hence

Dx1B(ω) = 1B(ω ∪ {x})− 1B(ω)

= 1B(ω ∪ {x})1{A(ω∪{x})⊂K} − 1B(ω)1{A(ω)⊂K}

= Dx1B∩{A⊂K}(ω) = 0,

and we extend the statement from B ∈ FA to any FA-measurable F (ω) by a monotone

class argument. �

In particular, Lemma 3.2 shows that

Dx1A(ω)(y) = 0, y ∈ X, x ∈ Ac(ω), ω ∈ ΩX , (3.4)

by taking F = 1A(ω)(y) ∈ FA for y ∈ X.

4 Girsanov identities

Proposition 4.1 is a Girsanov identity for random, non-adapted shifts of a Poisson

point process which extends Proposition 2.1 of [10] by including a density F . Recall

that the adapted Girsanov identity for a Poisson point process on X = R+ can be

stated as

E

F exp

(
−
∫ T

0

utσ(dt)

) ∏
t∈ω∩[0,T ]

(1 + ut)

 = E[F ],
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provided that

E

F exp

(∫ T

0

utσ(dt)

) ∏
t∈ω∩[0,T ]

(1 + ut)

 <∞,
for (ut)t∈R+ an adapted process such that ut > −1, t ∈ R+ and F an independent non-

negative random variable which is measurable with respect to sigma-algebra generated

by the future increments (Nt−Ns)T≤s≤t of the Poisson process (Nt)t∈R+ after time T .

Proposition 4.1 Consider φ : ΩX × X → R+ a non-negative process and F (ω) a

non-negative random variable such that

DΘ0F (ω)DΘ1φ(ω, x1) · · ·DΘk
φ(ω, xk) = 0, σ⊗k(dx1, . . . , dxk)− a.e., (4.1)

for all ω ∈ ΩX , k ≥ 1, and all families Θ1, . . . ,Θk of (possibly empty) subsets of

{x1, . . . , xk} with union Θ0 ∪Θ1 ∪ · · · ∪Θk = {x1, . . . , xk}. Then under the condition

E

[
F (ω) exp

(∫
X

φ(ω, x)σ(dx)

)∏
x∈ω

(1 + φ(ω, x))

]
<∞,

we have the Girsanov identity

E[F (ω)] = E

[
F (ω) exp

(
−
∫
X

φ(ω, x)σ(dx)

)∏
x∈ω

(1 + φ(ω, x))

]
.

The proof of Proposition 4.1 is given in the appendix Section 6.

We show in Proposition 4.2 below that Condition (4.1) of Proposition 4.1 is satisfied

by the indicator functions of stopping sets. Given A(ω) a stopping set we define the

stopped sigma-algebra

FA = σ(B ∈ F : B ∩ {ω : A(ω) ⊂ K} ∈ FK , K ∈ K(X)), (4.2)

cf. e.g. Definition 1 of [15].

Next we show that the indicator function of a stable and non-increasing stopping set

A(ω) satisfies Condition (4.1) of Proposition 4.1, cf. also Proposition 3.3 of [3] for a

particular situation.
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Proposition 4.2 For any stable and non-increasing stopping set A(ω), Condition (4.1)

is satisfied by φ(ω, x) := 1Ac(ω)(x) and any FA-measurable random variable F (ω).

Proof. Let x1, . . . , xk ∈ X. We consider the following cases.

(i) {x1, . . . , xk}∩Ac(ω) 6= ∅. First, if there exists i ∈ {1, . . . , k} such that xi ∈ Ac(ω),

then xi ∈ Ac(ω∪ η) for any η ⊂ {x1, . . . , xk} because A(ω) is non-increasing, and this

shows Dxi1A(ω∪η)(x) = 0 for all x ∈ X by (3.4), hence DΘ1A(ω)(x) = DΘ1Ac(ω)(x) = 0

whenever {xi} ⊂ Θ ⊂ {x1, . . . , xk}. This shows that

DΘ11Ac(ω)(x1) · · ·DΘk
1Ac(ω)(xk) = 0 (4.3)

provided that Θ1 ∪ · · · ∪Θk 6= ∅. If Θ1 ∪ · · · ∪Θk = ∅, then Θ0 = {x1, . . . , xk} and we

can assume again that {x1, . . . , xk} ⊂ Ac(ω), since otherwise we would have

DΘ0F (ω)DΘ11Ac(ω)(x1) · · ·DΘk
1Ac(ω)(xk) = (DΘ0F (ω))1Ac(ω)(x1) · · ·1Ac(ω)(xk) = 0.

Under the condition {x1, . . . , xk} ⊂ Ac(ω) we have DxiF (ω∪η) = 0 for all i = 1, . . . , k

by Lemma 3.2 since Ac(ω ∪ η) ⊃ Ac(ω) for any η ⊂ {x1, . . . , xk}, and this shows that

DΘ0F (ω) = 0 due to the relation

DΘF (ω) = DΘ\{xi}DxiF (ω) =
∑

η⊂Θ\{xi}

(−1)|Θ|−|η|DxiF (ω ∪ η) = 0,

where the above summation is taken over all (possibly empty) subsets η of Θ \ {xi}.
(ii) {x1, . . . , xk} ∩ Ac(ω) = ∅. Next, if {x1, . . . , xk} ⊂ A(ω) then it follows from

Lemma 4.3 below that there exists xe ∈ {x1, . . . , xk} such that xe ∈ A(ω∪{x1, . . . , xk}).
Hence since A(ω) is non-increasing we have

1A(ω∪η)(xe) = 1A(ω)(xe) = 1

for all η ⊂ {x1, . . . , xk}, and

DΘ1A(ω)(xe) = 0,

for all non-empty Θ ⊂ {x1, . . . , xk}, by the relation

DΘ1A(ω)(xe) =
∑
η⊂Θ

(−1)|Θ|+1−|η|1A(ω∪η)(xe)

= 1A(ω)(xe)
∑
η⊂Θ

(−1)|Θ|+1−|η|
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= 1A(ω)(xe)(1− 1)|Θ|+1

= 0, (4.4)

where the summation above is taken over all (possibly empty) subsets η of Θ. As a

consequence, a factor in the product

DΘ11Ac(ω)(x1) · · ·DΘk
1Ac(ω)(xk) =

k∏
l=1

DΘl
1Ac(ω)(xl)

has to vanish when Θ1 ∪ · · · ∪ Θk 6= ∅. In case Θ1 ∪ · · · ∪ Θk = ∅ we can show as in

(i) above that DΘ0F (ω) = 0, which concludes the proof. �

The next lemma has been used in the proof of Proposition 4.2.

Lemma 4.3 Let A(ω) be a stable and non-increasing stopping set. For any ω ∈ ΩX ,

and x1, . . . , xk ∈ A(ω), there exists i ∈ {1, . . . , k} such that xi ∈ A(ω ∪ {x1, . . . , xk}).

Proof. Assume that {x1, . . . , xk} ⊂ Ac(ω ∪ {x1, . . . , xk}). We will show that

Ac(ω ∪ {x1, . . . , xk}) = Ac
(
ω ∪ ∪ki=j{xi}

)
, (4.5)

by induction on j = 1, . . . , k + 1, with the convention ∪ki=k+1{xi} = ∅. This leads to

Ac(ω ∪ {x1, . . . , xk}) = Ac(ω) for j = k + 1, and to xj ∈ Ac(ω), j = 1, . . . , k, which is

a contradiction since we assumed that {x1, . . . , xk} ⊂ A(ω).

Relation (4.5) clearly holds for j = 1, and we suppose that it holds for some j ∈
{1, . . . , k}. By assumption we have xj ∈ Ac(ω ∪ {x1, . . . , xk}), which implies

xj ∈ Ac(ω ∪ {x1, . . . , xk}) = Ac(ω ∪ ∪ki=j{xi}),

hence

xj ∈ Ac(ω ∪ ∪ki=j+1{xi})

by the stability condition (3.3). Consequently, by (3.4) or Lemma 3.2 we have

Ac(ω ∪ {xj+1, . . . , xk}) = Ac(ω ∪ ∪ki=j{xi})

since A(ω) is a stable and non-increasing stopping set. �
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5 Laplace transforms of stopping sets

In the following consequence of Propositions 4.1 and 4.2 we start by recovering the

conditional moment generating function of
∑

x∈ω g(x)1Ac(ω)(x) given FA, for g in the

space Cc(X) of continuous functions with compact support in X. Given that this

moment generating function characterizes the point process distribution, we recover

the intuitive fact that given FA, the restriction of ω to Ac(ω) is a Poisson point process

with intensity 1Ac(ω)(x)σ(dx) when A(ω) is a stopping set.

Proposition 5.1 For any stable and non-increasing stopping set A(ω) we have

E

exp

 ∑
x∈ω∩Ac(ω)

g(x)

∣∣∣∣∣FA
 = E

[
exp

(∫
Ac(ω)

(eg(x) − 1)σ(dx)

) ∣∣∣FA] ,
for all non-negative g ∈ Cc(X).

Proof. Taking f(x) = eg(x) − 1, x ∈ X, by Propositions 4.1 and 4.2 we have

E

F (ω) exp

(
−
∫
Ac(ω)

f(x)σ(dx)

) ∏
x∈ω∩Ac(ω)

(1 + f(x))

 = E[F (ω)] (5.1)

for any FA-measurable bounded random variable F (ω). Next, letting

F = Ge
∫
Ac(ω) f(x)σ(dx) = Ge

∫
X f(x)σ(dx)−

∫
A(ω) f(x)σ(dx),

where G is a FA-measurable bounded random variable, we get

E

G ∏
x∈ω∩Ac(ω)

(1 + f(x))

 = E

[
G exp

(
−
∫
Ac(ω)

f(x)σ(dx)

)]
.

�

As a consequence of Propositions 4.1 and 4.2 with φ := z1Ac(ω), z > 0, we also obtain

the following corollary.

Corollary 5.2 Consider A(ω) a stable and non-increasing stopping set and F (ω) a

non-negative FA-measurable random variable with

E
[
F (ω)ezσ(Ac)(1 + z)ω(Ac)

]
<∞, (5.2)

for some z > 0. We have the Girsanov identity

E[F (ω)] = E
[
F (ω)e−zσ(Ac)(1 + z)ω(Ac)

]
, z > 0. (5.3)
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The gamma Laplace transform E[e−zTn ] = (1 + z)−n of the n-th Poisson jump time

Tn can be recovered as a straightforward application of Girsanov identities to the

stopping set A = [0, Tn] with respect to the standard Poisson process filtration.

The following consequence of (5.3) on the conditional Laplace transform is consistent

with the gamma-type results Theorem 2 of [9] and Theorem 2 of [15].

Corollary 5.3 Let A(ω) be a stable and non-increasing stopping set. We have the

conditional Laplace transform

E[e−zσ(A) | ω(A) = n] =
1

(1 + z)n
Pz({ω(A) = n})
P({ω(A) = n})

, z > 0, n ∈ N, (5.4)

where Pz denotes the Poisson point process distribution with intensity zσ(dx).

Proof. Taking F = 1{ω(A)=n}e
−zσ(A) ∈ FA, by (5.3) we get

E[e−zσ(A)1{ω(A)=n}] = E[e−z(σ(X)−σ(Ac))1{ω(A)=n}]

= e−zσ(X)E[(1 + z)ω(Ac)1{ω(A)=n}]

=
1

(1 + z)n
e−zσ(X)E[(1 + z)ω(X)1{ω(A)=n}]

=
1

(1 + z)n
Pz({ω(A) = n}).

�

When Pz({ω(A) = n}) does not depend on z > 0 as assumed in [15], Corollary 5.3

recovers the gamma Laplace transform

E[e−zσ(A) | ω(A) = n] =
1

(1 + z)n
, z > 0,

conditionally to the number n ≥ 0 of points in A.

Stopping sets in finite volume

In case σ(X) < ∞, taking F = e−zσ(A) in Corollary 5.2 we can derive the Laplace

transform

E[e−zσ(A)] = e−zσ(X)E[(1 + z)ω(Ac)], z > 0,
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of the random variable σ(A(ω)) where A(ω) is a stable and non-increasing stopping

set. More generally, Relation (5.3) in Corollary 5.2 shows that

E[f(σ(Ac))1{ω(A)=n}] = E[f(σ(Ac))e−zσ(Ac)1{ω(A)=n}(1 + z)ω(Ac)], (5.5)

for all z > 0. In the next proposition we provide a more explicit form for (5.5)

by denoting σcn(x1, . . . , xn) the volume content of the complement Ac(ω) in X when

A ∩ ω = {x1, . . . , xn} has n ∈ N points.

Proposition 5.4 Assume that σ(X) < ∞ and consider a stable and non-increasing

stopping set A(ω). We have

E[f(σ(Ac(ω)))1{ω(A)=n}] =
e−σ(X)

n!

∫
Xn

eσ
c
n(x1,...,xn)f(σcn(x1, . . . , xn))µn(dx1, . . . , dxn),

(5.6)

n ≥ 1, for f bounded and measurable on R, where

µn(dx1, . . . , dxn) := 1{A({x1,...,xn})⊃{x1,...,xn}}σ(dx1) · · ·σ(dxn), n ≥ 1.

Proof. By (5.5) we have, conditioning on the number k of points in Ac(ω),

E[f(σ(Ac))e−zσ(Ac)1{ω(A)=n}(1 + z)ω(Ac)]

=
e−σ(X)

n!

∞∑
k=0

(1 + z)k

k!∫
Xn

(σcn(x1, . . . , xn))ke−zσ
c
n(x1,...,xn)f(σcn(x1, . . . , xn))µn(dx1, . . . , dxn)

=
e−σ(X)

n!

∞∑
k=0

k∑
l=0

1

(k − l)!
zl

l!∫
Xn

(σcn(x1, . . . , xn))ke−zσ
c
n(x1,...,xn)f(σcn(x1, . . . , xn))µn(dx1, . . . , dxn)

=
e−σ(X)

n!

∞∑
m=0

1

m!

∞∑
l=0

zl

l!∫
Xn

(σcn(x1, . . . , xn))m+le−zσ
c
n(x1,...,xn)f(σcn(x1, . . . , xn))µn(dx1, . . . , dxn)

=
e−σ(X)

n!

∞∑
m=0

1

m!

∫
Xn

(σcn(x1, . . . , xn))mf(σcn(x1, . . . , xn))µn(dx1, . . . , dxn),

which yields (5.6) by (5.5). �
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By (5.6) we have

E[e−zσ(A)1{ω(A)=n}] =
e−(1+z)σ(X)

n!

∫
Xn

e(1+z)σc
n(x1,...,xn)µn(dx1, . . . , dxn)

=
1

n!

∫ σ(X)

0

e−(1+z)xνn(dx), (5.7)

where νn(dx) is the image measure on [0, σ(X)] of µn(dx1, . . . , dxn) by

(x1, . . . , xn) 7→ σ(X)− σcn(x1, . . . , xn),

with ν1(dx) = ν2(dx) = δσ(X)(dx). Hence

P({ω(A) = n}) =
e−σ(X)

n!

∫
Xn

eσ
c
n(x1,...,xn)µn(dx1, . . . , dxn)

=
1

n!

∫ σ(X)

0

e−xνn(dx), (5.8)

and the probability distribution of the random variable σ(Ac) on {ω(A) = n} is given

by
1

n!
e−xνn(dx), n ≥ 1.

Consequently we have the following corollary of Proposition 5.4 which, in comparison

with Corollary 5.5, provides an expression for the ratio Pz({ω(A) = n})/P({ω(A) =

n}), z > 0.

Corollary 5.5 Assume that σ(X) <∞. For any stable and non-increasing stopping

set A(ω) we have

E[e−zσ(A) | ω(A) = n] =

∫ σ(X)

0
e−(1+z)xνn(dx)∫ σ(X)

0
e−xνn(dx)

, z ∈ R+, n ∈ N. (5.9)

Proof. By Relation (5.4) in Corollary 5.3 and Relations (5.7)-(5.8) we have

E[e−zσ(A) | ω(A) = n] =
1

(1 + z)n
Pz({ω(A) = n})
P({ω(A) = n})

=
E[e−zσ(A)1{ω(A)=n}]

P({ω(A) = n})
=

∫ σ(X)

0
e−(1+z)xνn(dx)∫ σ(X)

0
e−xνn(dx)

.

�
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The above analysis also yields the Laplace transform of σ(A).

Corollary 5.6 Assume that σ(X) <∞. For any stable and non-increasing stopping

set A(ω) we have the Laplace transform

E[e−zσ(A)] = e−σ(X) + e−(1+z)σ(X)

∞∑
n=1

1

n!

∫
Xn

e(1+z)σc
n(x1,...,xn)µn(dx1, . . . , dxn), (5.10)

z > 0.

Proof. By Proposition 5.4 we have

E[f(σ(Ac))] = E[f(σ(Ac))e−zσ(Ac)(1 + z)ω(Ac)]

= e−σ(X)f(0) + e−σ(X)

∞∑
n=1

1

n!

∫
Xn

eσ
c
n(x1,...,xn)f(σcn(x1, . . . , xn))µn(dx1, . . . , dxn).

�

Next we consider some examples of applications for Corollaries 5.5 and 5.6.

Convex hulls of Poisson point processes

The closed complement A(ω) of the (open) convex hull Ac(ω) of a Poisson point

process in a convex domain X of finite volume in Rd is a stable and non-increasing

stopping set, cf. Section 3 and Figure 1 for an illustration.

A(ω)

ω

Figure 1: Convex hull of a Poisson point process.

When n = 1, 2 we clearly have P({ω(A) = n}) = P({ω(X) = n}) and σc1(x1) = 0 and

σc2(x1, x2) = 0. When n = 3, σc3(x1, x2, x3) is given when X ⊂ R2 by Heron’s formula

σ3(x1, x2, x3)

=
1

4

√
(|x1 − x2|+ |x1 − x3|+ |x2 − x3|)(−|x1 − x2|+ |x1 − x3|+ |x2 − x3|)

14



×
√

(|x1 − x2| − |x1 − x3|+ |x2 − x3|)(|x1 − x2|+ |x1 − x3| − |x2 − x3|),

x1, x2, x3 ∈ X, which can also be used to compute σcn(x1, . . . , xn) for any convex

polytope by triangulation. In higher dimensions, Heron’s formula can be replaced with

simplex volumes that can be computed with help of the Cayley-Menger determinants,

and the Laplace transform of σ(A) can be computed from (5.10). By Corollaries 5.5

and 5.6 and the expression of σcn(x1, . . . , xn) we can compute the conditional and

unconditional Laplace transforms E[e−zσ(A) | ω(A) = n] and E[e−zσ(A)], z > 0, n ∈ N.

Last Poisson jump time

When X = [0, T ], the last Poisson jump time TNT
before time T , with TNT

= 0

if NT = 0, is not a stopping time for the forward filtration of the Poisson process,

however TNT
can be seen as the first jump time of the time reversed Poisson process

(NT−t)t∈[0,T ] and the process

u(t, ω) = z1[TNT
,T ](t) = z(1− 1[0,TNT

)(t)), t ∈ R+,

is backward predictable on [0, T ]. In this case, by (5.1) with A = [TNT
, T ] and

σ(dt) = dt, F = f(TNT
) and φ(t) = 1[0,T ](t), we simply have µ1(dt1) = dt1 and

µn(dt1, . . . , dtn) = 0, n ≥ 2, hence by (5.10) we find

E[f(σ(Ac))e−zσ(Ac)(1 + z)ω(Ac)]

= f(0)P({NT = 0}) + E
[
f(TNT

)e−zTNT (1 + z)NT−11{NT≥1}
]

= f(0)e−σ(T ) + e−T
∫
X

eσ
c
1(t)f(σc1(t))µ1(dt)

= e−Tf(0) +

∫ T

0

e−(T−t)f(t)dt.

Hence, taking f(x) = exz1(0,∞)(x), Relation (5.9) recovers the Laplace transform

E[e−z(T−TNT
) | NT ≥ 1] =

1

1 + z

(
eT − e−zT

eT − 1

)
, z > −1,

of the truncated exponential distribution on [0, T ].

Annuli in finite volume

In the case where X is a ball centered at 0 in Rd we can consider the stable and

non-increasing stopping set A(ω) = Bm(ω) ∩ X where Bm(ω) is the smallest closed

15



ball centered at the origin and containing m ≥ 1 process points in ω. Here we have

σcn(x1, . . . , xn) = 1{n≥m}(σ(X)− vd(max(|x1|, . . . , |xn|))), n ∈ N,

where vd(r) is the volume of the d-dimensional ball with radius r. In case d = 1,

X = [0, T ] and A = [0, Tm ∧ T ], we have

σcn(x1, . . . , xn) = 1{n≥m}(T −max(x1, . . . , xn)), n ∈ N.

For n = 1, . . . ,m we have P({ω(A) = n}) = P(NT = n) and σ(X) = T , while for

n ≥ m+ 1 we have P({ω(A) = n}) = P(Tn ≤ T ), and by Proposition 5.6,

E[f(σ(A))e−zσ(Ac)(1 + z)ω(Ac)1{ω(A)=n}]

=
1

n!

∫
Xn

eσ(X)−σc
n(x1,...,xn)f(σ(X)− σcn(x1, . . . , xn))dx1 · · · dxn

=
1

n!

∫ T

0

· · ·
∫ T

0

e−max(t1,...,tn)f(max(t1, . . . , tn))dt1 · · · dtn

=
1

(n− 1)!

∫ T

0

e−tf(t)tn−1dt,

and (5.9) becomes the Laplace transform

E[e−zTm | Tm < T ] =
1

(1 + z)m
Pz(NT ≥ m)

P(NT ≥ m)
=

1− e−(1+z)T
∑m−1

k=0 ((1 + z)T )k/k!

(1 + z)m(1− e−T
∑m−1

k=0 T
k/k!)

of the truncated gamma distribution on [0, T ].

6 Appendix

In this section we give the proof of Proposition 4.1 which extends the argument of

Proposition 2.1 in [10] to take into account a density F (ω). We will use the multiple

Poisson stochastic integral

In(fn)(ω) :=

∫
∆n

fn(x1, . . . , xn)(ω(dx1)− σ(dx1)) · · · (ω(dxn)− σ(dxn)),

where fn is a symmetric function of n variables in the space L2
σ(Xn) of functions on

Xn which are square-integrable with respect to σ⊗n, and

∆n = {(x1, . . . , xn) ∈ Xn : xi 6= xj, ∀i 6= j}.

The proof of Proposition 4.1 will be based on the following Lemmas 6.1 and 6.2. In

the sequel we let u⊗n(x1, . . . , xn) := u(x1) · · ·u(xn), x1, . . . , xn ∈ X, for u ∈ L2
σ(X).
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Lemma 6.1 Let A(ω) be a random set and F (ω) a bounded random variable. We

have

E
[
F (ω)In(1⊗nA(ω))

]
= E

[∫
Xn

Dx1 · · ·Dxn

(
F (ω)

n∏
p=1

1A(ω)(xp)

)
σ(dx1) · · · σ(dxn)

]
.

Proof. For all (possibly random) disjoint subsets A1(ω), . . . , An(ω) of X with finite

measure, denoting by 1
A

k1
1 (ω)
◦· · ·◦1Akn

n (ω) the symmetrization in k1 +· · ·+kn variables

of the function 1
A

k1
1 (ω)
⊗ · · · ⊗ 1Akn

n (ω), we have the relation

IN(1
A

k1
1 (ω)
◦ · · · ◦ 1Akn

n (ω)) =
n∏
i=1

Cki(ω(Ai), σ(Ai)) (6.1)

between the multiple Poisson integrals and the Charlier polynomial defined as

Cn(x, λ) =
n∑
k=0

xk
n∑
l=0

(
n

l

)
(−λ)n−ls(l, k), x, λ ∈ R.

cf. § 4.3.3 of [13], where

s(k, l) =
1

l!

l∑
i=0

(−1)i
(
l

i

)
(l − i)k

is the Stirling number of the first kind, cf. page 824 of [1], i.e. (−1)k−ls(k, l) is the

number of permutations of k elements which contain exactly l permutation cycles,

n ∈ N. By the moment identity

E
[
F (ω) (ω(A))k

]
= E

[∫
Xj

ε+
sj

(
F (ω)1A(ω)(x1) · · ·1A(ω)(xj)

)
σ(dx1) · · ·σ(dxj)

]
(6.2)

cf. Proposition 3.1 of [11] or Theorem 1 of [12], where ε+
sk

is the addition operator

defined on any random variable F : ΩX −→ R by

ε+
sk
F (ω) = F (ω ∪ {s1, . . . , sk}), ω ∈ ΩX , s1, . . . , sk ∈ X,

and using the Stirling inversion formula

n∑
k=l

S(n, k)s(k, l) =
n∑
k=0

S(n, k)s(k, l) = 1{n=l}, n, l ≥ 0, (6.3)

cf. e.g. page 825 of [1], we have

E
[
F (ω)In(1⊗nA(ω))

]
= E [F (ω)Cn(ω(A), σ(A))]
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=
n∑
l=0

n∑
k=0

E

[
F (ω) (ω(A))k

(
n

l

)
(−σ(A))n−ls(l, k)

]
=

n∑
l=0

(
n

l

)
s(l, k)

n∑
k=0

×
k∑
j=0

S(k, j)E

[∫
Xj

ε+
sj

(
F (ω)(−σ(A))n−l1A(ω)(x1) · · ·1A(ω)(xj)

)
σ(dx1) · · ·σ(dxj)

]

=
n∑
l=0

(−1)n−l
(
n

l

) n∑
j=0

n∑
k=0

s(l, k)S(k, j)

×E
[∫

Xn−l+j

ε+
sj

(
F (ω)1A(ω)(x1) · · ·1A(ω)(xn−l+j)

)
σ(dx1) · · ·σ(dxn−l+j)

]
=

n∑
l=0

(−1)n−l
(
n

l

)
E

[∫
Xn

ε+
sl

(F (ω)1A(ω)(x1) · · ·1A(ω)(xn))σ(dx1) · · ·σ(dxn)

]

= E

[∫
Xn

Dx1 · · ·Dxn

(
F (ω)

n∏
p=1

1A(ω)(xp)

)
σ(dx1) · · ·σ(dxn)

]
.

�

The next lemma is in the proof of Proposition 4.1.

Lemma 6.2 Assume that φ : ΩX × X → R+ is a non-negative process and F (ω)

is a non-negative random variable satisfying Condition (4.1). Then for all bounded

non-negative random processes φ : X × ΩX → R+ with compact support we have

E
[
F (ω)In(φ⊗n)

]
= 0.

Proof. (i) We start with a random set A(ω) and a non-negative random variable

F (ω) that satisfy the condition

DΘ0F (ω)DΘ11A(ω)(x1) · · ·DΘk
1A(ω)(xk) = 0, σ⊗k(dx1, . . . , dxk)− a.e., ω ∈ ΩX ,

for all k ≥ 1, whenever Θ0 ∪ Θ1 ∪ · · · ∪ Θk = {x1, . . . , xk}, ω ∈ ΩX . By Lemma 6.1

we have

E
[
F (ω)In(1⊗nA(ω))

]
= E

[∫
Xn

Ds1 · · ·Dsn

(
F (ω)

n∏
p=1

1A(ω)(sp)

)
σ(ds1) · · ·σ(dsn)

]
.

(6.4)

Next we have

Dx1 · · ·Dxk(F (ω)1A(ω)(x1) · · ·1A(ω)(xk))
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=
∑

Θ1∪···∪Θk={1,...,k}

DΘ1(F (ω)1A(ω)(x1))DΘ21A(ω)(x2) · · ·DΘk
1A(ω)(xk),

where the above sum runs over all (possibly empty) subsets Θ1, . . . ,Θk of {1, . . . , k}
such that Θ1 ∪ · · · ∪Θk = {1, . . . , k}. In addition,

DΘ1(F (ω)1A(ω)(x1)) =
∑

η1∪η2=Θ1

Dη1F (ω)Dη21A(ω)(xk),

where the sum runs over all sets η1, η2 such that η1 ∪ η2 = Θ1, hence

DΘ1(F (ω)1A(ω)(x1)) · · ·DΘk
1A(ω)(xk)

=
∑

η1∪η2=Θ1

Dη1F (ω)Dη21A(ω)(x1)DΘ21A(ω)(x2) · · ·DΘk
1A(ω)(xk)

= 0,

σ⊗k(dx1, . . . , dxk)− a.e., ω ∈ ΩX , for all k ≥ 1, which yields

E
[
F (ω)In(1⊗nA(ω))

]
= 0 (6.5)

by (6.4).

(ii) Assuming without loss of generality that φ takes values in [0, 1] we consider the

step process approximation

0 ≤ φm(ω, t) :=
2m−1∑
k=0

k

2m
1{k/2m≤φ(ω,t)<(k+1)/2m} =

2m∑
k=1

k

2m
1Bk(ω)(t) ≤ φ(ω, t),

t ∈ X, m ≥ 1, where

Bk(ω) = {t : k/2m ≤ φ(ω, t) < (k + 1)/2m}, k = 0, 1, . . . , 2m − 1.

By the polarization identity

h1 ◦ · · · ◦ hn =
1

n!

k=n∑
k=1

(−1)n−k
∑

l1<···<lk

(hl1 + · · ·+ hlk)◦n

we can extend (6.5) to φ⊗nm as E [F (ω)In(φ⊗nm (ω, ·))] = 0 for all m ≥ 1, and the

extension to the general case follows by dominated convergence as m goes to infinity.

�
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Proof of Proposition 4.1. As in the proof of Proposition 2.1 of [10] we apply Lemma 6.2

to a step function approximation φm(ω, t) of φ(ω, t) and deduce by Fubini’s theorem

that

E

[
F (ω)e−

∫
K φm(ω,x)σ(dx)

∏
x∈K∩ω

(1 + φm(ω, x))

]

= E[F (ω)] + E

[
F (ω)

∞∑
n=1

1

n!
In(1Kn(·)φ⊗nm (ω, ·))

]

= E[F (ω)] +
∞∑
n=1

1

n!
E
[
F (ω)In(1Kn(·)φ⊗nm (ω, ·))

]
= E[F (ω)],

and we complete the proof by the same steps as in [10] �
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