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Abstract—Ambient RF (Radio Frequency) energy harvesting
techniques have recently been proposed as a potential solution
to provide proactive energy replenishment for wireless devices.
This paper aims to analyze the performance of a battery-free
wireless sensor powered by ambient RF energy harvesting using a
stochastic-geometry approach. Specifically, we consider a random
network model in which ambient RF sources are distributed
as a Ginibre α-determinantal point process which recovers the
Poisson point process when α approaches zero. We characterize
the expected RF energy harvesting rate. We also perform a worst-
case study which derives the upper bounds of both power outage
and transmission outage probabilities. Numerical results show
that our upper bounds are accurate and that better performance
is achieved when the distribution of ambient sources exhibits
stronger repulsion.

Index terms- RF energy harvesting, sensor networks, deter-
minantal point process, Poisson point process, Ginibre model
.

I. INTRODUCTION

Ambient RF energy harvesting techniques [1], [2], [3] offer
the capability of converting the received RF signals into
electricity. Therefore, it has recently emerged as an alternative
method to operate low-power devices [4], such as wireless
sensors. The fact that ambient RF energy harvesting aims
to capture and recycle the environmental energy such as
broadcast TV, radio and cellular signals, which are essentially
free and universally present, makes these techniques even
more appealing. In this context, one may deploy battery-free
wireless devices powered by ambient RF energy, and they may
operate indefinitely. An experiment with ambient RF energy
harvesting in [5] shows that 60µW is harvested from a TV
tower that is 4.1km away. [6] measures the ambient RF power
density from 680MHz to 3.5GHz and shows that the average
power density from 1GHz to 3.5GHz is in the order of
63µW/m2. Detected 6.3km away from Tokyo Tower, the RF-
to-DC conversion efficiency is demonstrated to be about 16%,
30% and 41% when the input power is −15dBm, −10dBm
and −5dBm, respectively [7].

Geometry approaches have been applied to analyze RF
energy harvesting performance in cellular network [8], relay
network [9] and cognitive radio network [10]. [8] investi-
gates tradeoffs among transmit power and density of mobiles
and wireless charging stations which are both modeled as a
homogeneous Poisson Point Process (PPP). [9] studies the
impact of cooperative density and relay selection in a large-
scale network with transmitter-receiver pairs distributed as a

PPP. The authors in [10] study a cognitive radio network
where the primary and secondary networks are distributed
as independent homogeneous PPPs. The secondary network
is powered by the energy opportunistically harvested from
nearby transmitters in the primary network. Under the outage
probability requirements for both coexisting networks, the
maximum throughput of the secondary network is analyzed.
Prior literature mainly focuses on performance analysis on
RF-powered wireless devices using a PPP. The study in [11]
investigates cognitive and energy harvesting-based device-to-
device (D2D) communication underlying cellular networks.
The authors adopt independent PPPs to model the locations
of BSs, cellular mobiles, and D2D devices. Specifically, two
spectrum access policies designed for cellular BSs, namely,
random spectrum access and prioritized spectrum access, are
studied. In this paper, we generalize the conventional PPP
analytical framework to an α-determinantal point process
(DPP), wherein the PPP is a special case when α approaches
zero. We focus more specifically on the so-called Ginibre DPP
which offers many advantages in terms of modeling capability
and ease of simulation [12].

This paper analyzes the point-to-point transmission between
a RF-powered sensor node and a data sink. The sensor node
needs to harvests RF energy from ambient RF sources (e.g.,
cellular mobiles). The ambient RF sources are modeled with
a Ginibre α-DPP. The sensor transmits to the data sink using
instant harvested RF energy. A power outage happens if
the instant harvested energy fails to meet the circuit power
consumption of the sensor. Moreover, if the minimum trans-
mission rate requirement cannot be fulfilled, a transmission
outage occurs. Based on the above model, we first derive
the expression of expected RF energy harvesting rate, then
characterize upper bounds of both power outage probability
and transmission outage probability in a closed form. The
performance analysis provides a useful insight into the tradeoff
among various network parameters.

The remainder of this paper is organized as follows. Sec-
tion II introduces the network model, geometry model of
ambient RF sources and performance metrics. Section III
estimates the performance metrics of the sensor for both
Ginibre α-DPP and PPP modeling of ambient RF sources. The
numerical results are demonstrated in Section IV, followed by
the conclusion in Section V.



Fig. 1. A network model of ambient RF energy harvesting.

II. SYSTEM MODEL

A. Network Model

We consider a sensor node i harvesting RF energy from
ambient RF energy sources. We assume that the ambient RF
energy sources are distributed as a Ginibre α-DPP, which will
be specified in detail in Section III. We assume that the sensor
node is solely powered by the harvested RF energy to supply
its operations for data transmission. The sensor contains an
energy harvester and an information transmitter, which are
equipped with separated antennas, so that they can function
independently and concurrently. In other words, the sensor is
able to perform data transmission and RF energy harvesting
simultaneously. The instantaneous harvested energy is first
used to operate the sensor circuit and then the surplus energy
is provided for information transmission.

The RF energy harvesting rate by the sensor node i from
the RF energy source k in a free-space channel P i,kH can be
obtained based on the Friis equation [13] as follows:

P i,kH = βiP
k
S

GkSG
i
H(λk)2

(4πdi,k)2
(1)

where βi is the RF-to-DC power conversion efficiency of the
sensor node i. P kS is the transmit power of RF energy source k.
GkS is the transmit antenna gain of RF energy source k. GiH is
the receive antenna gain of sensor node i. λk is the wavelength
emitted at RF energy source k. di,k is the distance between
the transmit antenna of RF energy source k and the receiver
antenna of sensor node i. Let xi ∈ R2 and xk ∈ R2 denote
the coordinates of the sensor node i and RF energy source
k, respectively. The distance can be obtained from di,k =
ε + ‖xi − xk‖, where ε is a fixed (small) parameter which
ensures that the associated harvested RF power is finite in
expectation. Physically, ε is the closest distance that the RF
energy sources can be to the sensor node.

Then, the aggregated RF energy harvesting rate by sensor

node i can be obtained from

P iH =
∑
k∈K

P i,kH =
∑
k∈K

βiP
k
S

GkSG
i
H(λk)2

(4π(ε+ ‖xi − xk‖))2
(2)

where K is a random set consisting of all RF energy sources.
We assume that K is a point process [14].

The sensor consumes a base circuit power, denoted as P iC.
Following practical models [15], the circuit power consump-
tion of the sensor is assumed to be fixed. The transmit power
of sensor node i is then given by P iT =

[
P iH − P iC

]+
where

[x]+ = max(0, x). The maximum transmission rate of sensor
node i is obtained as follows:

Ci = W · log2

(
1 + hi

P iT
σ2

)
(3)

where W is the transmission bandwidth. hi denotes the channel
gain between the transmit antenna of sensor node i and the
receive antenna of data sink. σ2 is the noise power.

B. Geometric Modeling of Ambient RF Energy Sources

As an extension of the Poisson setting, we model the
locations of RF energy sources using a point process K on
an observation window O := B(0, R) which is the closed ball
centered at the origin and of radius R > 0. In other terms, K
is an almost surely finite random collection of points inside
B(0, R). We refer to [14] and [16] for the general theory of
point processes.

We let α = −1/j for j ∈ N∗ and we focus on the Ginibre
α-DPP, which is a class of point processes well-suited for
applications. The Ginibre process is a type of α-DPP (see [17]
for definitions and technical results). The Ginibre process is
defined by the so-called Ginibre kernel given by

K(x, y) = ρeπρxȳe−
πρ
2 (|x|2+|y|2), x, y ∈ O = B(0, R).

(4)
This kernel is that of the usual Ginibre process defined, e.g.,
in [12], to which we have applied a homothety of parameter√
πρ > 0 : x 7→ x/(

√
πρ). Here, ρ > 0 is the density of the

point process. Next we recall a few features of the Ginibre
process.
• The intensity function of the Ginibre process is given by

ρ(1)(x) = K(x, x) = ρ, (5)

c.f. [17]. This means that the average number of points
in a bounded set B ⊂ B(0, R) is

∫
B
ρdxdy.

• The covariance of any α-DPPs of kernel K is given by

Cov(K(A),K(B)) = α

∫
A×B

|K(x, y)|2 dxdy,

where K(A) and K(B) denote the random number of
point process points located within the disjoint bounded
sets A,B ⊂ R2.

• For every bounded set B ⊂ R2 we have

Pr(K ∩B = ∅) = Det(Id + αKB)−1/α, (6)



where KB is the operator restriction of K to the space
L2(B) of square integrable functions on B. Here, Id is
the identity operator on L2(B) and Det stands for the
Fredholm determinant which is defined e.g. in [18].

Since α < 0, K(A) and K(B) are negatively correlated and
the associated α-DPP is known to be locally Gibbsian, see
e.g. [19], therefore it is a kind of repulsive point process. In
particular, the Ginibre α-DPP exhibits more repulsion when
α is close to −1. As α→ 0, K(A) and K(B) tend to not be
correlated, and the corresponding point process converges to
the PPP, c.f. [17].

We will write K ∼ Det(α,K, ρ) when K is an α-DPP
with kernel K defined in (4) and density with respect to the
Lebesgue measure ρ. The spectral theorem for Hermitian and
compact operators yields the following decomposition for the
kernel of K:

K(x, y) =
∑
n≥0

λnϕn(x)ϕn(y),

where (ϕi)i≥0 is a basis of L2(O, λ), and (λi)i≥0 the cor-
responding eigenvalues. In e.g. [12] it is shown that the
eigenvalues of the Ginibre point process on O = B(0, R) are
given by

λn =
Γ(n+ 1, πρR2)

n!
, (7)

where

Γ(z, a) :=

∫ a

0

e−ttz−1 dt, z ∈ C, a ≥ 0, (8)

is the lower incomplete Gamma function. On the other hand,
the eigenvectors of K are given by

φn(z) :=
1√
λn

√
ρ

√
n!
e−

πρ
2 |z|

2

(
√
πρz)n, n ∈ N, z ∈ O.

We refer to [12] for further mathematical details on the Ginibre
point process.

Lastly, we emphasize that the Ginibre α-DPP is stationary,
in the sense that its distribution is invariant with respect to
translations, c.f. [12]. Hence, our choice of O = B(0, R)
centered at the origin instead of xi is justified.

C. Performance Metric

We define the performance metrics of the sensor node as
the expected energy harvesting rate, power outage probability
and transmission outage probability. The expected RF energy
harvesting rate is defined as:

ϕ , E
[
P iH
]
. (9)

An power outage occurs when the sensor node becomes
inactive due to lack of enough energy supply. The power
outage probability is then given by,

φ = Pr
(
P iH < P iC

)
(10)

Let m ≥ 0 denote the minimum transmission rate require-
ment. If the sensor fails to achieve this requirement, transmis-
sion outage occurs. The transmission outage probability can

be defined as,
ψ = Pr (Ci < m) (11)

III. PERFORMANCE ANALYSIS

A. Ginibre α-determinantal point process

In this section we estimate the metrics defined in Sec-
tion II-C when K ∼ Det(α,K, ρ) is the Ginibre DPP with
parameter α = − 1

m , where m ∈ N∗. We assume additionally
that P kS := PS, GkS := GS, and λk := λ do not depend on k.

For the estimation of (10) and (11), we might proceed by
Monte Carlo simulation of the underlying α-DPP. Simulation
of α-DPPs when α < 0 is done by using the Schmidt or-
thogonalization algorithm developed in full generality in [20],
and specifically in [12] for the Ginibre point process. The
simple generalization to all α < 0 can be found in the recent
survey [21], and additional details on DPP can be found
in [22].

Monte Carlo methods can however be quite time-consuming
in practice, especially when it is repeatedly applied to multiple
values of the parameters. Thus, in many applications, it is of
major interest to have some practical bounds at hand, such as
the ones which we present now. First, we obtain the expected
RF energy harvesting rate in the following theorem.

Theorem 1. The expected RF energy harvesting rate can be
explicitly computed as

E[P iH ] = 2πβiPS
GkSG

i
Hλ

2

(4π)2

ρ

(
ε

R+ ε
+ ln(R+ ε)− 1− ln(ε)

)
, (12)

Proof: We have

E[P iH ] = βiPS
GkSG

i
Hλ

2

(4π)2

∫
W

ρ(1)(x)

(ε+ ‖x‖)2
dx

by Campbell’s formula [14], where ρ(1)(x) = K(x, x) = ρ is
the intensity function of K given by (5), which yields

E[P iH ] = βiPS
GkSG

i
Hλ

2

(4π)2
2π

∫ R

0

ρ
r

(ε+ r)2
dr,

by polar change of variable, and the integral on the r.h.s. is
computed explicitly as∫ R

0

r

(ε+ r)2
dr =

(
ε

R+ ε
+ ln(R+ ε)− 1− ln(ε)

)
,

which yields the result.
Note here that the expected RF energy harvesting rate does

not depend on the parameter α of the DPP.
Now, we give a practical upper bound to the probability that

the sensor node becomes inactive due to lack of energy supply
Pr
(
P iH < P iC

)
. Specifically, we prove the following:

Theorem 2. Let us define

γi :=

√
βiPSGkSG

i
Hλ

2

(4π)2P iC
. (13)



Then, the following bound holds:

Pr
(
P iH < P iC

)
≤

∏
n≥0

(1 + α
Γ(n+ 1, πρ inf(R, γi)

2)

n!
)

−1/α

, (14)

where Γ(z, a) is defined in (8).

Proof: Let us define

f(xk) := βiPS
GkSG

i
Hλ

2

(4π(ε+ ‖xk‖))2
,

for k ∈ K.

Pr
(
P iH < P iC

)
= Pr(

∑
k∈K

f(k) ≤ P iC)

≤ Pr(∀k ∈ K, f(xk) ≤ P iC)

= Pr(∀k ∈ K, ‖xk‖ ≥ γi − ε)
= Pr(K ∩ B(0, γi − ε) = ∅),

where we have chosen ε such that γi− ε ≥ 0. Thus by (6) we
obtain

Pr
(
P iH < P iC

)
≤ Det(Id + αKB(0,γi−ε))

−1/α.

Since in our case K is the Ginibre kernel, the eigenvalues of
K are given by (7). By standard properties of the Fredholm
determinant which can be found e.g. in [18], we find

Pr
(
P iH < P iC

)
≤

∏
n≥0

(
1 + α

Γ(n+ 1, πρ inf(R, γi − ε)2)

n!

)−1/α

,

and the result follows by letting ε go to zero on the r.h.s. of
the previous equation, since the associated function of ε is
continuous.

It should be noted that the eigenvalues in Theorem 2 are
in decreasing order, and decrease exponentially when n ≥
πρ inf(R, γi)

2, see [12] for details. Hence, the product which
appears in Theorem 2 is very well approximated by N∏

n≥0

(
1 + α

Γ(n+ 1, πρ inf(R, γi)
2)

n!

)−1/α

,

where N � πρ inf(R, γi)
2.

The variations of the bound obtained in Theorem 2 with
respect to α is now explicited. It is easy to show that

d

dα
ln


∏
n≥0

(1 + αλn)

−1/α


=
1

α2

∑
n≥0

(1 + αλn) ln(1 + αλn)− αλn
1 + αλn

≥ 0,

which means that the bound of Theorem 2 is lowest when
α = −1, i.e. when repulsion is maximal, and increases with

α.
Next, in order to estimate the transmission outage probabil-

ity Pr (Ri < m), it suffices to apply Theorem 2. Specifically,
we have

Theorem 3. Let we define

γmi :=

√√√√ βiPSGkSG
i
Hλ

2

(4π)2
(
P iC + σ2

hi
(2m − 1)

) , (15)

then we obtain

Pr (Ri < m) = Pr

([
P iH − P iC

]+
<
σ2

hi
(2m − 1)

)
= Pr

(
P iH < P iC +

σ2

hi
(2m − 1)

)

≤

∏
n≥0

(
1 + α

Γ(n+ 1, πρ inf(R, γmi )2)

n!

)−1/α

,

(16)

where we have used Theorem 2 and the fact that 2m− 1 ≥ 0.

B. Poisson point process

We end this section by computing the previous results in
the case of PPP. As a corollary of Theorem 2, we find in the
case of a PPP (which is obtained as the limit as α→ 0 in the
theorem):

Corollary 1. Let K ∼ Poiss(O, ρ) be a Poisson process on
W = B(0, R) with density ρ. Then, the following bound holds:

Pr
(
P iH < P iC

)
≤ e−πρ inf(R,γi)

2

, (17)

where γi is as defined in Theorem 2.

Similarly, we have,

Corollary 2. When K is a Poisson process, the transmission
outage probability can be estimated as follows:

Pr (Ri < m) ≤ e−πρ inf(R,γmi )2 , (18)

where γmi is defined in (15).

IV. NUMERICAL RESULTS

The results in this section are obtained based on the
following values of parameters unless specified otherwise.
Both the transmitting antenna gain GkS and receiving antenna
gain GiS are set to be 1.5. The RF-to-DC power conversion
efficiency βi is considered to be 30%. We assume that all the
ambient RF energy sources are LTE-enabled mobiles operating
with P kS = 1W transmit power on the typical 1800MHz
frequency. The corresponding wavelength λk is 0.167m. The
circuit power consumption P iC is fixed to be −18dBm (i.e.,
15.8µW ) as in [23]. The noise power is −90dBm, (i.e.,
10−12W ). The transmission bandwidth is set to be 1kHz. The
channel gain between the sensor and data sink is calculated
as [24]: hi = 62.5d−4, where d, assumed to be 50 meters, is
the distance between the sensor node and the data sink.
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Fig. 2. Snapshots of the distribution of ambient RF energy sources (a) α = −1 (b) α = −0.5 (c) α = −0.03.
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Fig. 3. Upper bound of an power outage probability versus density of ambient RF energy sources for (a) DPP and (b) PPP.

In Fig. 2, we show some snapshots of the distribution of
ambient RF sources in a circle area with the radius R = 10m,
when the RF source density is 1. It is illustrated that strong
repulsion exists between the RF sources when α = −1. As a
result, the RF sources tend to be located uniformly over the
area. We can observe that the repulsion keeps decreasing when
α approaches zero. When α = −0.03, the RF sources show
clustering, which is a feature of the PPP.

Figure 3 shows the upper bound of power outage probability
versus the density of ambient RF sources. It is confirmed that
the analytical expressions in (14) and (17) are indeed upper-
bounds. It can be observed in Fig. 3(a) that the upper bound
of an power outage probability increases with α. Compared
between Fig. 3(a) and Fig. 3(b), we observe that when the
DPP tends to PPP, i.e. repulsion is reduced, the probability
that the sensor becomes inactive is higher. The power outage
probability is the lowest when α = −1, i.e. when the model
exhibits maximal repulsion.

We demonstrate the upper bound of the transmission outage

probability versus the density of ambient RF sources in Fig. 4.
It can be seen that the analytical expressions in (16) and
(18) are very accurate. Compared with Fig. 4(a) and 4(b),
we can make a similar observation that when the DPP tends
to be a PPP, the probability that the sensor fails to reach the
minimum rate requirement is higher. Finally, we can conclude
that given a certain density of ambient RF sources, the sensor
achieves better performance when the distribution of ambient
RF sources shows stronger repulsion/less attraction.

V. CONCLUSION

This paper has presented the performance analysis of a
wireless sensor powered by ambient RF energy harvesting by
adopting a stochastic-geometry approach. We have analyzed
the cases when the ambient RF sources are geographically
distributed as a Ginibre α-DPP, which includes the Poisson
point process. We have derived the expression of the expected
RF energy harvesting rate. We have also characterized the
worst-case performance of a sensor node in terms of the
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Fig. 4. Upper bound of transmission an outage probability versus density of ambient RF energy sources for (a) DPP and (b) PPP (m = 3).

upper bounds of the power outage and the transmission outage
probabilities. Numerical results have shown that all the simu-
lation results agree with the corresponding analytical results,
which leads us to believe that the upper-bounds are usable
in practice. We have additionally found that given a certain
density of ambient RF sources, the sensor achieves better
performance when the distribution of ambient RF sources
shows stronger repulsion/less attraction. Our future work will
extend the performance analysis from an individual node level
to a system level.
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