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Solutions Manual

Chapter 1

Exercise 1.1 The payoff C is that of a put option, whose strike price K = $3
can be determined by trial and error.

Exercise 1.2 Each of the two possible scenarios yields one equation:

5+ 8=0 a=-2
with solution
2a+ 3 =6, £ = +10.

The hedging strategy at t = 0 is to shortsell —a = +2 units of the asset
S priced Sy = 4, and to put 8 = $10 on the savings account. The price
Vo = aSp + B of the initial portfolio at time ¢ = 0 is

Vo=aSo+p8=-2x4+10= 82,
which yields the price of the claim at time ¢t = 0. In order to hedge then
option, one should:
i) At time t =0,

a. Charge the $2 option price.
b. Shortsell —« = +2 units of the stock priced Sy = 4, which yields $8.
c. Put B =88+ $2 = $10 on the savings account.

ii) At time ¢t =1,

a. If S; = $5, spend $10 from savings to buy back —a = +2 stocks.
b. If S; = $2, spend $4 from savings to buy back —a = +2 stocks, and
deliver a $10 - $4 = $6 payoff.

Pricing the option by the expected value IE*[C] yields the equality
$2 = E*[C]
=0xP*(C=0)+6xP"(C =6)
= 0xP*(S; =2) + 6 x P*(S; = 5)
=6x q*7
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hence the risk-neutral probability measure P* is given by

2 1
p*:P*(Slzf)): g and q* =[P’*(Sl =2) =§
Exercise 1.3
a) Each of the stated conditions yields one equation, i.e.
da+8=1 a=2
with solution
Sa+ =3, B=-T.

Therefore, the portfolio allocation at ¢ = 0 consists to purchase a = 2
unit of the asset S priced Sy = 4, and to borrow —3 = $7 in cash.

We can check that the price V) = aSy + S of the initial portfolio at
time t =0 is
Vo=aSo+8=2x4-7=81.

b

=

This loss is expressed as
ax$2+p=2x2-7=-8§3.

Note that the $1 received when selling the option is not counted here be-
cause it has already been fully invested into the portfolio.

Exercise 1.4

a) i) Does this model allow for arbitrage?

ii) If this model allows for arbitrage opportunities, how can they be real-

izcd?‘ By shortselling | ‘ ‘By borrowing on savings | v/ ‘ ‘N.A‘ |

b) i) Does this model allow for arbitrage?

ii) If this model allows for arbitrage opportunities, how can they be real-

ized?‘ By shortselling | ‘ ‘By borrowing on savings | ‘ ‘N.A. | v ‘

¢) i) Does this model allow for arbitrage?

ii) If this model allows for arbitrage opportunities, how can they be real-

ized?‘ By shortselling | v ‘ ‘ By borrowing on savings | ‘ ‘ N.A. |

Exercise 1.5
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a) We need to search for possible risk-neutral probability measure(s) P* such
that IE* [S§1)] =(1+ T)S[(Jl). Letting

S _ g
pt =P (5 =501 +a)) = P* (1 Fa 0 —al,
0

W _ g
o =P (S = SV (1 + b)) =P <Sl S(I)SO = b) :
[¢]

M _ g
¢ =P (Sfl) =(1 +c)S[g1)) =P* <1S(1)0 =c]|,
0

We have
(1 +a)p* S8 + 1+ 0)0* SV + (1 + ) S5 = (1+7)S5)
p* +9* + q* _ 17

from which we obtain

(1—6)c+6b—r

pra+0*b+q¢c=r, P = c—a €(0,1),
—
P +6 +4q 1. q*:r ( cfia 6(0!1)

In order for p* and ¢* to belong to the interval (0,1), we should have
0<(1—-60)c+60b—1r<c—a,

O<r—(1-6"a—-60"b<c—a,

i.e.
r—c r—a
<0<
b—c b—c
r—c r—a
<0< .
b—a b—a

Therefore, there exists an infinity of risk-neutral probability measures de-
pending on the value of

0" € (max (= 2=C) min (= T2
b—c'b—a)’ b—c’'b—a ’
in which case the market is without arbitrage but not complete. This is
the case when a < r < c.
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b) Hedging a claim with possible payoft values Cy,Ch, C,. would require to
solve

1+ a)eWs 4 (1+1e@s = ¢,
1+ 0)eWSH + (1 +1e@s =,

1+ )eWsH + (14150 = .,
for £ and ¢, which is not possible in general due to the existence of

three conditions with only two unknowns.

Exercise 1.6

a) The risk-neutral condition IE*[R;] = 0 reads

bP*(Ry = b) + 0 x P*(Ry = 0) + (=b) x (Ry = —b) = bp* — bg* =0,

hence
P
p =9 = 5
since p* +¢* +0* = 1.
b) We have
. S(l) _ S(l) o X
Var ISTU =E" [R}] - (E*[R])?
0
= E° [R]
= 0*P*(Ry = b) + 02 x P*(Ry = 0) + (—b)*> x (Ry = —b)
=6 (" +4q")
=0%(1-6%)
= 0'27

hence 6* = 1 — ¢02/b?, and therefore

10 o?

2 2b2’

* *

q

p

provided that o2 < b2

Exercise 1.7

a) We denote the risk-neutral measure by p* = P*(S; = 2), ¢* =P*(S; = 1).

i) ‘ch | ‘ ‘No | v ‘ Comment: No loss is possible, while a 100%

profit is possible with non-zero probability 1/3.
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if) ‘ch | ‘ ‘No | v ‘ Comment: The (unique) risk-neutral measure

(p*,¢*) = (0,1) is given by
$2><p*+$1><q* =$1 x (l+7‘)=$l and p*+q*=1,

and is not equivalent to P given by (p,q) = (1/3,2/3).

b) We denote the risk-neutral measure by p* = P*(S; = 2), 6* = P*(S; = 1),
¢t =P*(S1 =0).

i) Comment: The risk-neutral measure (p*, 0*, ¢*)

is given by the equations

$2xp*+ 81 x0*+30x ¢ =81 x (1+7r) =91 and p*+6"+¢" =1,
(S.1.1)
which clearly admit solutions, see (biv) below.

ii) ‘Yes| v ‘ ‘No| ‘ Comment: Realizing arbitrage would mean

building a portfolio achieving no strictly negative return with prob-
ability one, which is impossible since the probability of 100% loss is
P(S;=0)=1-1/4—1/9=23/36 > 0.

iii) ‘Yes | ‘ ‘No | v ‘ Comment: Examples of claims that cannot be

attained can be easily constructed in this market. For example, the
claim 1g, 0} cannot be attained since there is no portfolio allocation
(cv, B) satistying

$2xa+p5=291

$1xa+p="91

$0 x o+ 3 = $0.

iv) ‘Yes | ‘ ‘No | v ‘ Comment: The risk-neutral measure is clearly

not unique, as for example
(p*v 6*7 q*) = (1/47 1/27 1/4) and (p*v 0*7 q*) = (1/3 1/3= 1/3)

are both solutions of (S.1.1).

Exercise 1.8

a) The possible values of R are a and b.
b) We have

E*[R] = aP*(R = a) + bP*(R = b)
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b—r+br—a
b—a b—a

¢) By Theorem 1.6, there do not exist arbitrage opportunities in this market
since from Question (b) there exists a risk-neutral probability measure P*
whenever a < r < b.
d) The risk-neutral probability measure is unique hence the market model is
complete by Theorem 1.13.
e) Taking
_a(l+0b) - pB(1+a) B—a

. and &= 2o

we check that
nm +&So(l+a)=a if R=a,
nm+E&So(1+b) =8 if R=0,
which shows that
nm +£51=C

in both cases R = a and R = b.
f) We have

mo(C) = nmo + €So
:a(l-&-b)—ﬁ(l-i-a) +[J’—a
(1+7)b—a) b—a
_a(l+b)—p(l+a)— (1+7)(a—p)

(1+7)(b—a)
ab— fa—r(a—p)
_ la=p) S.1.2
(I+7)(b—a) ( )
g) We have
E*[C] = oP*(R = a) + AP*(R = b)
- r—a
= . .1
ab—aJrﬁb—a (S5.1.3)
h) Comparing (S.1.2) and (S.1.3) above, we do obtain
(©) = 1 ®[C]
o Tl
i) The initial value 7o(C) of the portfolio is interpreted as the arbitrage-
free price of the option contract and it equals the expected value of the
discounted payoftf.
j) We have
6
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11 -5, ifK>Sl,
C=(K—-S)" =(11-8)" =
0 if K <65;.

k) We have Sp =1, a=8,b=11, a =2, § =0, hence

- 8-« _0-2 2
T Selb—a)  11-8 3

and

_a(l+b)-p(14+a) 24
- m1(b—a) T 3x1.05
1) The arbitrage-free price mo(C') of the contingent claim with payoff C' is

70(C) = nmo + £Sp = 6.952.

Exercise 1.9 Letting R denote the price of one right, it will require 10R/3 to
purchase one stock at €6.35, hence absence of arbitrage tells us that

ER +6.35 =8,
3
from which it follows that
3
R=—(8—6.35) = €0.495.
1o )

Note that the actual share right was quoted at €0.465 according to market
data. See also Exercise 17.8 for the pricing of convertible bonds.

Exercise 1.10 Let a := (152 —180)/180 = —7/45 and b := (203 — 180)/180 =
23/180 denote the potential market returns, with » = 0.03. From the strike
price K and the risk-neutral probabilities

r—a b—r

=0.6549 & * =
b a 0.6549 and g, b a

5

p’V‘=

the price of the option at the beginning of the year is given from Proposi-
tion 1.16 as the discounted expected value

1 1
— E*[(K -85 = —— (pf(K —203)" (K —152)T).
(K - 5] = o (K - 2087 4 g3 (K - 152)7)
Equating this price with the intrinsic value (K — 180)% of the put option
yields the equation

1
(K —180)" = 1

itr (pi(K —203)" + (K — 152)T)
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which requires K > 180 (the case K < 152 is not considered because both
the option price and option payoff vanish in this case). Hence we consider the

equation

1
K =180 = o (pr(K —203)" + g7 (K — 152)1),

with the following cases.
i) If K € [180,203] we get
(1+7)(K —180) = ¢ (K — 152),
hence

1 180 — ¢*152 1 180 — ¢*152
_ (147)180 — ¢15 _ (1+7)180 — ¢15 19411
1+r—gq; pr+r

K

ii) If K > 203 we find

180(1 — 203p* — 152¢*
_ 180(1 +7) Dy 9 903,
T

K

which is out of range and leads to a contradiction.

We note that the above formula
_ (1+7)180 —¢r152 _ 28b — 180a + r(180(b — a) + 152)
B py+r n b+1—-a)yr—a

K

yields a decreasing function K (r) of r in the interval [0,100%], although the
function is not monotone over R .

K(r)

15 2

o 0.5 1
r

Fig. S.1: Strike price as a function of risk-free rate r.

8
https://personal.ntu.edu.sg/nprivault/indext.html June 17, 2024


https://personal.ntu.edu.sg/nprivault/indext.html

Introduction to Stochastic Finance with Market Examples, Second Edition

Chapter 2

Exercise 2.1 Let m := $2,550 denote the amount invested each year.
a) By (2.1), the value of the plan after N = 10 years becomes

N

. 14+7r)N -1
m Z(l + ) =m(1l+ T)%,
k=1 T
which in turns becomes
N
1+7)N -1
L4+ m > (1 +r)F =m(1 + gy LT =1
r
k=1

after N additional years without further contributions to the plan. Equat-
ing

1+ -1
4= 30835 = (1 )Nt LED =1 +T2

shows that

)

(1+7,)2N+1 _ (1 +T)N+l - é
T - m
with m = 2550, or
(L+7)2 —(1+7)" 30835

= ~ 12.0921
r 2550 09215,

hence r ~ 1.23% according to Figure S.2, which is typical of an annual
fixed deposit interest rate.

10 s T N N N S T T Y N S Y S S SO SO SO S S |
0 010203040506070809 1 1.11.21.314151.61.71.81.9 2
rin %

Fig. S.2: Graph of r — ((1+7)2" — (1 4+ 7)) /r.

In the hypothesis r = 3.25% we would find

1+r)N -1
r

A=m(l+r)NT ( = 42040.42.
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b) Taking N = 10, m = 2,550 and r = 0.0325, we find

N
Aoy =m(1471)N Y (14 )N R
k=1
N
=m(1+r)V Y (1+r)
k=1
— 1y DT

.
= $42,040.42.

¢) In this case, with N =10, m = 2,550 and r = 0.0325, we find

N
Aoy = AN :mZ(l—i—r)N_k'*'1 =m(l+r)

14N -
k=1 T

1
= $30, 532.79.

Exercise 2.2

a) Let m := $3,581 denote the amount invested each year. After multiplying
(2.1) by (1 +7)" in order to account for the compounded interest from
year 11 until year 20, we get the equality

N _
A= m(l_,_r)NHw
r

shows that
50862

1 21 _ n_
(I+7) (I47) rorsl

~ 14.2033r,

showing that r ~ 2.28% according to Figure S.3.

B U T S S S S S S T S S N S S R S S |
11112131415161.71819 2 212223242526272829 3

rin%

Fig. S.3: Graph of r — ((1+7)2 — (1 +r)1Y)/r.
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b) Taking N = 10, m = 3,581 and r = 0.0325, we find

N
Aoy i =m(1+7)N Z(l 4 )N
k=1
N
=+ )V S (1)
k=1
N _
= m(1 e LD
= $59,037.94.
c¢) In this case, we find
N N _
Aoy =m Yy (147N F = m(1 + r)w = $42,877.61.
r

k=1

Exercise 2.3

a) We find m = $10, 000.

b) Denoting by Aj the amount owed by the borrower at the beginning of
year n° k = 1,2,..., N, the amount A1 = A can be decomposed at the
beginning of the first year as

,41=’ﬂ7,-‘r(141—777,)7

where A; — m is subject to interests at the rate r = 2% i.e. at the end
of the first year there remains A, = (A — m)(1 + r) to be refunded.
Similarly, the amount A, due at the beginning of the second year can be
decomposed as Ay = m — (A2 —m), i.e. at the end of the second year
there remains

(Ag—m)(1+7r)= (A —m)(L+7r)—m)(1+7)
=41+ —mA+r)2—ml+r)

to be refunded. After repeating the argument, we find that at the end of
year k there remains

, k 1—(147)k
(1+r)kA —m ;(1 +r)l =0 +r)kA —m(1+ T)ﬁ
= (1+7)k4, +m(1+r)ﬂ

to be refunded. At the end of year N, the loan will be completely repaid
if hence Ay = 0, which reads
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A+r)N"TA+m

17(1+T)N70

and yields

(1+rN-1ra rA
m = =

(1+r)N -1 IT+r)(1=1+r)=N)

Taking N = 10, A = 100,000 and r = 0.02, we find

. rA _0.02 x 100,000
(L) (A= (14+r)"N) T 1.02 x (1 —1.02710)

= $10, 914.36.

N

In this case, amount remaining on the account at the end of the first
year is (A — m)(1 + r), and at the end of the second year it becomes
((A=m)(1+r) —m)(1+r). After repeating the argument, we find that
at the end of year k there remains

C

k—1 -« 1 k (L) -1

A+ A—md (14 ) 1+ =(1+7) A=m(l+7)
1=0

on the account. Therefore, what is left at the end of year N is

A+rNA-m@ +r)(1+rr¢-

Taking N = 10, A = 100,000 and r = 0.02, we find

1.0210 —

1
1.02%% % 100,000 — 10, 000 x 1.02 x R $10,212.29.

Exercise 2.4

a) By (2.1), the the discounted value of the loan after N months is

Z

e 0 1+t =m1+r)~N 111(211?;\] —ml= a ;r T)_N7

>
Il

which should match A = $3,000 with m = $275 and N = 12, hence as in
Proposition 2.1 we have

1—(1+r)~12

= A = 10.909090909,
r m

see Equation (2.2), hence

r ~1.49767% per month.
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b) The yearly interest rate is given by
A+ —1=(1+7)12—-1=1.0149767"% — 1 ~ 19.529% per year.
Remark: Computing the interest rate as

12 x $275

—1=01=10
$3000 %

is not correct because this implicitly means that the 12 x $275 = $3, 300
are repaid as one lump sum at the end of the 12¢h month, which is not
the case.

The analysis of replies to Question (¢) shows that “All of the above” was
the most popular answer, followed by “Block”.

¢

N

12

Frequency
6

0 1 2 3 4
Reply

Fig. S.4: Histogram of replies to Question c).

Exercise 2.5 We check that for any P* of the form
P*(Ry=-1):=p", P (R, =0):=1-2p", P"(R=1):=p",

we have
IE* [Sl] = So(Qp* + 1- 2p*) = Sg,

and similarly
E*[Sy | $1] = S1(2p™ + (1 —2p7)) = 51,

hence the probability measure P* is risk-neutral.

Exercise 2.6

a) In order to check for arbitrage opportunities we look for a risk-neutral
probability measure P* which should satisfy
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B[S | Al =(1+nSY, k=01 N-1,
with r = 0. Rewriting IE* [S,(clﬁl | fk.} as
« ol
& [Sl(c+)1 ‘ ]:k'}

= (1 =S VP (R = —b | Fi) + SUP*(Re s = 0 | Fi)
+ (1 +0)SVP Ry = b | Fr)

= (1= 0)SIP*(Repy = —b) + SUP*(Riyr = 0) + (1 4+ b)SIP* (Ryyy =

k=0,1,...,N — 1, it follows that any risk-neutral probability measure
P* should satisfy the equations

{ (1+ B)SOP (Rigr = ) + SUP (Riegr = 0) + (1 - 0)SOP* (Riws = —b) =

P*(Rp1 = b) + P*(Repy = 0) + P*(Ryyy = —b) = 1,
k=01,....N—1, ie
bP*(Ry, = b) — bP*(Ry, = —b) = 0,
{P*(Rk =b) + P*(Ry = —b) = 1 — P*(R;, = 0),

k=1,2,..., N, with solution

1-6*

(R, = b) = P"(Ri = —b) = —

k=1,2,...,N.
b) We have

s — 5t 1
]E*[ = ‘]:k = [SkJrl_S(l)‘]:}

S}(€1) SIED
1 « ra(D) « [a(D)
= (B [0 1 7] - B 5| 7))
k
8(1) (]E* [S(l)l ‘ fk] - Sl(cl))
=0,

and

1 1
Ny

.
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2 2
S(l) _ S(l) S<1) _ S (1)
- E* k+1 @ k ‘]_-k | E* k+1 o) Fi
Sk Sk

1 1\ 2
Spiy =S¢
@ Tk
Sk

= VP (Ris1 = —b | Fi) + b?Pr(Ris1 = b | Fi)
_plc IP’;(IZM =0 pl- P;(IZM =0)

=031 —-6%)
:0'2

k=0,1,...,N — 1, hence

Pr(Rr,=0)=0"=1—
and therefore
" N o - 71—P;(Rk:0)7(72
Pr(Rp =0b) =P, (R, = —b) = Y T
k=0,1,...,N — 1, under the condition 0 < 0% < b?.

Exercise 2.7

a) The possible values of R, are a and b.
b) We have

E*[Rt+1 |.Ft] = a]P*(RH] =a | ]:t) -+ bP*(Rt+1 = b ‘ ft)
b—r +br—a
b—a b—a

¢) Letting p* = (r —a)/(b—a) and ¢* = (b—r)/(b — a) we have

=7

E*[Sias | Fi] = Z(p i(gt)k ( >(1+b) (1+a)"'s,

k

—5 Y (’“) (" (1+ ) (" (1 + @)~

i=0
=5, (P (1+b) + ¢ (1+a)"

_st< (1+b)+—(1+a)>k
= (1+7)kS,.

15
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Assuming that the formula holds for & = 1, its extension to k > 2 can also
be proved recursively from the tower property of conditional expectations,
as follows:

E*[Si+k | Fi] = E'[E* Stk | Frgn—1] | Fi)

1+ 7r)E*[Siti—1 | Fi

=1 +r)E B [Siir1 | Frir—2] | Fi
= (147 E*[Sip2 | F
=(
(

1+ 7)2 B E*[St4r—2 | Frrr-s] | Fil
L+ 7)? B [Spyn—s | Fi]

(1+7)k 2E* Sy | Fi

1+ )PP B [E*[Spyn | Frpa] | )
=(1+ T)k ! ]E*[SHl | Fil
=(1+7r)ks

Exercise 2.8

a) We check that

E*[Riq1 | Fi] = aP*(Rip1 = a | Fy) + bP*(Rigs = b | Fy)

*ab r+br a_.
T b—a b—a
b) We have
‘T 1 .
E* [Si41 | ] = E*[S41 | 2]

Ao(T + 1)t

1 * *
= W((l +a)SP*(Rip1 = a | Fy) + (1 +0)SP* (R = b | F))
1 b— r—a
—W<( +a)Stb +(1+b)Stb a>
~sb—a+ (b—a)r

¢ (I4+7r)(b-a)
=S, t=0,1,....,N—1.

¢) We have

B
E* [(Sn)"] = Sy 1 +Rk))

(I

=1
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N

=Sy E* {H(l + Ry)?

k=1

N
=S [T & [(1 + R
k=1

after using the independence of the returns (Rj)r=1,2,.... N, With

r—a

b—a’

E*[(HRk)ﬁ]:(1+a)ﬁz:—2+(1+b)ﬁ k=0,1,...,N,

hence we find

E* [(Sx)"] = 5§ ((1 + a)ﬁlgi—z + (1407 Z)

d) We have

. (s
P (St > aA; for some ¢ € {0, 1,...,N}) =P (t:{)r,lld,.).(,,nz > a)

_E[01y)]

= ]

= (dﬁ)ﬂ ((1+a)5% + (1+b)3Z:Z>N7

since the discounted price process

St
(My)¢=o,,..N = (*)
Av)on, N

is a nonnegative martingale by part (b).
e) Since (My)i=o,1,...,n is a nonnegative martingale, we have

E[St1 | Fi] = E[My1Aesr | F
= Ap1 E[Myq | Fi
= A1 M,
> Ay M,
=S, t=0,1,...,N—1,

because r > 0, hence (S)¢=0,1
fore, we have

~ is a nonnegative submartingale. There-

lP’*( max S;>ux

t=0,1,....,n
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So A gb—r gT—a N
< [ =2 -
_(ac) ((1+a) bfa+(1+b) " a

Chapter 3

Exercise 3.1 (Exercise 2.5 continued). We consider the following trinomial
tree.

) Sy=4,C=0
P
1-2p*
S =2 r S=2,C=0
\
S, =0,C=1
3 Sy=2,0=0
/
1-2p*
Sy =1 S =1 d Sa=1,C=0
\
S;=0,C=1
»
N Sy=0,C=1
¥
1-2p*
S =0 Sy =0,C=1
=
S, =0,C=1
At time t = 0, we find
70(C) = 3 E[(K — $)*]
0 =3 — 92
(147)2

=p*(p" + (1 -2p") +p*) + (1 - 2p")p" + (p)?
=p 4+ (1—2p")p" + (p)?
=2p" — (p)*.

At time t = 1, we find

T(C) = —— B (K — $:)* | 8]

1+7r

p* if S1 =28y,
=4 p* if 51 =5,

1 if S;=0.

Exercise 3.2 We have p* = (r—a)/(b—a) =1/2and ¢* = (b—7)/(b—a) =1/2,
and the following underlying asset price tree:

18
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§ Sy =4, C=3
p/)
* S1:2
/ \
So=1 - Sy=2 C=1
\ p/)
q* S1:1\
! Se=1, C=3.

We first price, and then hedge. At time ¢ = 1, by Theorem 3.5 we have

p*+q° 4,

1+ —g 1f51:2
m(C) =V = and m(C) =Vp =L T4 2
* * 3 147 9
P34 g o
1+r 3 T
This leads to the following option pricing tree:
So=4, Vo =3
%
Vi=4/3
. S1=2
/ \
7*
Vo =8/9 _ —
Sy =1 ) So=2V,=1
7 Vi=4/3
Si=1
X‘
So=1V,=3.

Regarding hedging, if S; = 2 the condition 52 .Sy = €955 + 12 As = V3 reads
4 +m(1+7)* =3
S =2=
252 + 772(1 + 7‘)2 = 1,

hence (£3,7m2) = (1, —4/9). On the other hand, if S; =1 we have

19
June 17, 2024 https://personal.ntu.edu.sg/nprivault/indext.html


https://personal.ntu.edu.sg/nprivault/indext.html

Solutions Manual

265 + (1 +7)?

51:1:>

=1

& +me(l+7)? =3,

hence (£2,72) = (—2,20/9). Finally, at time ¢ = 0 with Sy = 1 the condition
& -8 =651 +mAL =V yields

4
2&, +771(1+7>):§

4
S+md+r)= 3

hence (§1,m1) = (0,8/9). The results can be summarized in the following

table:

So=1
Vo = 8/9
& =0
m=238/9

Si=2,Vi=4/3 [S2 =4

So=1,m=-4/9|Va=3
So =1
Vo=3

S1=1,Vi=4/3 [Sa=1

o= —2, 12 = 20/9

V2 =3

Table S.1: CRR pricing and hedging table.

In addition, it can be checked that the portfolio strategy (&, 1k )k=1,2 is self-

financing, as we have

&5 +mAr =

Exercise 3.3

a) We have

E*[Sey1 | Fi] = E*[Seq1 | St

_5
)

T.*
= <* +q" + 2p*> St

2
=S,

20
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with r = 0.
b) We have the following graph:
Sy=4,C=25
YIS ’
=t
F—1/a
it S2=2,C=05
” .
172 b=1,C=0
S,=2,C=0
YIS g
p=t
F—1/4
i / S;=1,C=0
™= 2
12 S, =05,0=0
S:=1,0=0
LA
p =
F—1/a
Y Sy =05,C=0
™ >
12 Sy =0.25,C =0

¢) The down-an-out barrier call option is priced at time ¢t = 0 as

3
Vo = E*[C] = 2.5 x (p*)? + 0.5 x p*¢* = —.

16
At time t = 1 we have
Vi=25xp*+05x *—25><1+05><1—3
LT E0XP TSN =X ey T

if S; =2, and V] = 0 in both cases S; = 1 and S; = 0.5.

d) This market is not complete, and not every contingent claim is attainable,
because the risk-neutral probability measure P* is not unique, for example
(r*,q¢*,p*) = (1/4,5/8,1/8) and (r*,q*,p*) = (1/2,1/4,1/4) are both
risk-neutral probability measures.

Exercise 3.4 The CRR model can be described by the following binomial tree.
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. (1+5)*So
/
) (1+b)So
/ \
7"
So =1 (1+(l)(1+b)50
(1 + a)So
X}
(1+ a)2S,
a) By the formulas
Vi = ﬁlE*[Vg | 71l = —]E*[Vg | S1]
_ So(1+b)*—

1+7r

1+7r
and
Vo = ﬁ]E V1 | Fo)
_ %Jrr <p* (50(11++b): -8) x P*(S)
— ) (So(glibr);* 8) 7

we find the table

P*(SQ = So(1+b)*| S1)

. (So(1+0)* —8)
" L{s,=5,(1+b)}>

= So(14b)) +0 x P*(S;

So =
Vo=1

So =9

S1=3,Vi=1/4| Vo=

1 S22 =3
/16 Va=0
S1=1,Vi=0 So =1

Vo =

Table S.2: CRR pricing tree.

Note that we could also directly compute V; from

22
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p——— N
0= R 2 | Fol-
b) When S; = Sp(1 + b), the equation £3.59 + n2As = Vs, reads

&S0(140)2 +mAo(1+7)% = So(1 +b)2 -8

£S0(14b)(1+a) +maAo(1 +7)° =0,
which yields

So(1+b)2 -8

_ _(Sg(1+b)2—8)(1+a)
" So(b—a)(1+0) ’

& (b~ a)Ag(1 + 12

and 7y =

(S.3.4)

When S; = Sp(1 + a), the equation €352 + 17243 = V5 reads
&S0(1+a)? +mAs(1+7)2 =0
£S0(1+b)* + n2Ag(1+7)* =0,

which has the unique solution (€2, 72) = (0,0). Next, the equation &5 +

mA; = Vi reads

p*(So(1+ )2 —8)
1+r

)

&50(1+b) +mAo(l+7) =

&So(1+a) +mAp(l+7r) =0,
which yields

. So(l+b)%-38
Sob—a)(L+7)

L(1+a)(So(1+b)2—38)

Su=p (b— a)Ag(L + r)2

and m = —p

3.5)

This can be summarized in the following table:

Si=3,Vi=1/4 [5=09

So=1 Vo=1

Vo=1/16 | & =1/6, 1m0 = —1/8 [ S5 =3
61:1/8 31:1,V1:0 V2:O
7]1271/16 So =1
E2=0,1m12=0 Vo=0

Table S.3: CRR pricing and hedging tree.

When S; = Sp(1 + a) at time ¢ = 1 the option price is V; = 0 and the
hedging strategy is to cut all positions: {o = 12 = 0. On the other hand,
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if S1 = So(1+4b) then there is a chance of being in the money at maturity
and we need to increase our position in the underlying asset from & = 1/8
to & =1/6.

Note that the self-financing condition
§181 +mAL = 651 + Ay, (S.3.6)

is verified. For example when S; = Sy(1 + a) we have

1 1
§><3171—GA1:O><51+0><A1:0,

while when S7 = So(1 + b) we find

1 1 1 1 1
= - —A = — - XA =—.
8><S1 167" GXSI 8 M7y

c) We can also use the self-financing condition (S.3.6) to recover (S.3.5) by
rewriting the system of equations as
§180(1 +b) + mAo(L+7) = £250(1 +b) + m240(1 + 1)
&5 (1 +a)+nAo(1+7) =0,

with (&,72) given by (S.3.4), which recovers

3 2 1

D T

s 16 1 13
Vi=&6S1+mA = )

S S0 s =1

8 16 Hot

Exercise 3.5

a) We build a portfolio based at times ¢ = 0,1 on a4y units of stock and
$8;+1 in cash. When S; = 2, we should have

dag + P2 =0
200 + P2 = 1,
hence (az, B2) = (—=1/2,2). On the other hand, when S; = 1 we should
have
20[1 + ﬂl =1
{al + 61 =0,

hence (ag, f2) = (1, —1).
b) When S; = 2, the price of the claim at ¢t =1 is
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S+ 2= (-1/2) x2+2x1=1

When S; = 1, the price of the claim at t = 1is apS1+ 82 = 1x1—-1x1 = 0.

¢) At time t = 1 we build a portfolio using «; units of stock and $3; in cash.
We should have
20[1 + ﬁl =1
{ o+ 1 =0,

hence (aq,f1) = (1,-1).

The price of the claim C at time t = 0is a1 So+ 61 = 1x14+(-1)x1=0.
The probabilities (p*,¢*) = ((r —a)/(b —a),(b—7)/(b —a)) = (0,1) are
clearly risk-neutral in the sense of Definition 2.12, as they yield

o
— =

]E*[SQ | S1] = S] and IE*[S1 ‘ So] = SO.

with the risk-free rate » = 0. However, this does not form a risk-neutral
probability measure P* equivalent to IP in the sense of Definition 2.14 when
q:]P’(Rl :O)ZP(RQZO) > 0.

In case (p,q) = (0,1), the probabilities (p*,¢*) = (0,1) would yield an
equivalent risk-neutral probability measure.

According to Theorem 2.15 this model allows for arbitrage opportuni-
ties as the unique available risk-neutral probability measure P* are not
be equivalent to the historical probability measure P when ¢ = P(R; =
0) = P(Ry = 0) > 0. In this case, arbitrage opportunities are easily
implemented by purchasing the option at the price 0 of part (d) while
receiving a strictly positive payoff at maturity. More generally, arbitrage
opportunities exist when the underlying price may increase with nonzero
probability, without a possibility of strict decrease.

f

=

In case (p,q) = (0,1), no arbitrage is possible as prices remain constant.

Exercise 3.6 We have the model-free answer

W E*[h(SN) | F]
= WE*[@ + BSN | Fil

a 8 .
T (L4r)N-k * (1+r)N-F E*[Sy | Fil

wk(C) =

The hedging portfolio strategy is to hold 8 units of the underlying asset
priced Sy and a/(1 4 7)" units of the riskless asset priced Ay = (14 r)* at
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time k =0,1,...,N.

Note that in the particular case of the CRR model, this answer is also com-
patible with (3.19)-(3.20).

Exercise 3.7 Call-put parity.
a) The relation (z — K)T =2 — K + (K — )™ can be verified by successively
checking the cases © < K and = > K.
b) Respectively denoting by C(k) and P(k) the call and put prices at time
k=0,1,...,N, by part (a) we have
C(k) = (1+r)"V=PE" [(Sy — K)* | Fi]
=1+r) " VPE [Sy - K + (K - Sy)T | Fi]
=(1+7) VR E[Sy | Fi] - L +7) VK
+(1+ ) NPE (K - Sy)T| Fi
=S =1+ "V EE + 1+ r) VR E (K - Sy)T | Fi]
=8, —(1+7r) " NREK 4 Pk).

Exercise 3.8

a) Taking ¢* =1 — p* = 1/4, we find the binary tree

6.25 = (1 +b)2

25=1+4+0b

\

v
Sol/ 1.25 = (1+a)(1+0)
Q\A

05=1+a

/i

0.25 = (1+a)?

b) We find the binary tree
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S =6.25 and V5 =0

*

p/,
. Sy =25and V; =
P
/ })
So=1and Vo =1/64 ; So=1.25and V5 =0
— _—
7§ =05and Vi =1/8
})

Sz =0.25 and V2 =1

and the table

So2 = 6.25
S1 =25 V1 =0 Vo=0
So=1 Sa =1.25
Vo =1/64 Vo=0
S1=0.5,V1 =1/8[5:=0.25
Voa=1

Table S.4: CRR pricing tree.

¢) Here, we compute the hedging strategy from the option prices. When
S1 = So(1 4 b) we clearly have & = 12 = 0. When S; = So(1 + a), the
equation & 59 + 12 A2 = V5 reads

{ £S50(1+ a)® + na(147)? = (K — So(1 + a)?)
&S0(1+0)(1+a) +na(1+7)* =0

hence

_(K—S(1+a)) _ (K=S(1+a)*)(1+b)

L= b-aira M T TG —a0 e

Next, at time ¢ = 1 the equation &;51 + n1A; = V; reads

(K—(1+a)(1+0b))

€150(1+a) +m(1+7) = ST

i

§S0(1+b) +m(1+7)=0

which yields
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(K = S(1+a)(1+b))

¢ (K —So(1+a)(1+0b)(1+D)
So(b—a)(1+7) '

f=- So(b—a)(1 + )2

and 1 =

This can be summarized in the following table:

S1=25,Vi=0 |S2=6.25
So=1 Vo=0
Vo =1/64 E2=0,1m12=0 So =1.25
& =-1/16[81 =05, Vi =1/8| V=0
m =5/64 S2 =0.25
Ea=-1,m2=5/16| Va=1

Table S.5: CRR pricing and hedging tree.

If S; = So(1+a) then there is a chance of being in the money at maturity
and we need to short sell further by decreasing &; from & = —1/16 to
& = —1. Note that the self-financing condition

£151 +mAL = 51 +n2dy

is satisfied.

Exercise 3.9

a) The binary call option can be priced under the risk-neutral probability
measure P* as

1 *
1+7"E €]

1 *
= mE (11K ,00) ()]

1
=_— PSSy > K
1+r (Sn 2 K)

5

p
147’

i) (C)

with p* :=P*(Sy > K).

b) Investing $p* by purchasing one binary call option yields a potential net
return of

$1—p*  $1

— 21t Sy > K,

p* p*

$0 — p*
p*

¢) The corresponding expected return is

= —100% if Sy < K.
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1
P x <];71> +(1-p")x(-1)=0.
d) The corresponding expected return is
P x 0.86+ (1 —p*) x (1) =p* x 1.86 — 1,

which will be negative if

That means, the expected gain can be negative even if
0.538 > p* =P* (Sy > K) > 0.5.
Similarly, the expected gain
(1—p*) x0.86+p* x (—1) =0.86 — p* x 1.86,
on binary put options will be negative if 1 — p* > 1/1.86, i.e. if

0.86
> —— ~0.462.
P 186
That means, the expected gain can be negative even if 1 — 0.462 >
P* (Sy < K) > 0.5. In conclusion, the average gains of both call and
put options will be negative if p* € (0.462,0.538).

Note that the average of call and put option gains will still be negative,

as
p*x1.86—1 + 0.86 —p* x 1.86  0.86 —1

2 2 2 < 0.

Exercise 3.10

a) Based on the price map of the put spread collar option:
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130 o
Put spread collar price map f(S) "

120 |- ; yERoiin s -
110 —
100 : =
9 - — .
80 S B
70 L

60 70 80 90 s, 100 110 120 130

Ky Ky oW K3

Fig. S.5: Put spread collar price map.

we deduce the following payoff function graph of the put spread collar
option in the next Figure S.6.

20 - =
Put spread collar payoff function
15 =

10 ~

60 70 80 90 100 110 120 130
K1 Ky sy K3

Fig. S.6: Put spread collar payoff function.

b) The payoff function can be written as

—(K1 —a)" + (Ko —a)" — (z — K3)*
=—80—2)"+ (90 — )t — (z — 110)™,

see also https://optioncreator.com/stp7xy2.
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20 -
~(K-x) 4 (K-x)+
15 -(x-K3)* =

10 -
L)

5+ i -
1

20 I !
60 70 80 90 100 110 120 130

K1 K2 sy Ks
=)+

Fig. S.7: Put spread collar payoff as a combination of call and put option payoffs.*

Hence this collar option payoff can be realized by

1. issuing (or shorting/selling) one put option with strike price K1 = 80,
and

2. purchasing and holding one put option with strike price Ky = 90, and

3. issuing (or shorting/selling) one call option with strike price K3 = 110.

Exercise 3.11

a) Based on the price map of the call spread collar option:

140 =
Call spread collar price map f(S)
130 - y=S ---- s

120 |- ——"/
110 - el Z

100 - = =

90 =
80 = =
70 =t =
60 == L

60 70 80 90 s, 100 110 120 130
Ky MoK K3

Fig. S.8: Call spread collar price map.

we deduce the following payoff function graph of the call spread collar
option in the next Figure S.9.

* The animation works in Acrobat Reader on the entire pdf file.
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Call spread collar payoff function
15 =

10 -

100 110 120 130
K2 K3

60 70 80 90

K1 Sn

Fig. S.9: Call spread collar payoff function.

b) The payoff function can be written as

7(K1 — .’l?)+ -+ (CE - }'('2)+ - (l‘ — K3)+
=—(80 —2)* + (z — 100)* — (z — 110) T,

see also https://optioncreator.com/st3edcz.

20 -
~(K-x)F+(x-Kp)+
15 | -(x-K3)* 2

! .
60 70 80 90 100 110 120 130

K1 sv Ko Ks
(=)be(+]

Fig. S.10: Call spread collar payoff as a combination of call and put option payoffs.*

Hence this collar option payoff can be realized by

1. issuing (or shorting/selling) one put option with strike price K; = 80,
and
2. purchasing and holding one call option with strike price K3 = 100, and

* The animation works in Acrobat Reader on the entire pdf file.
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3. issuing (or shorting/selling) one call option with strike price K3 = 110.

Exercise 3.12 We have

TS+ + Sy
oo (B

T

&(S1) + -+ ¢(Sn)

<E* [ since ¢ is convex,

N
_ Ep(S)] + - + E[¢(Sw)]
N

— E*[6(E*[Sx | Fi])] + - + E*[¢(E*[Sy | Fn))] because (S,)ner is a martingale

N oG > (On)n 3
< EE6(SN) | Fall +- V + BB [(Sn) | Fu] by Jensen’s inequality,
_ E'[¢(Sn)] + - + E*[p(Sn)]
B N by the tower property.

=E"[¢(Sn)]-

he above argument is implicitly using the fact that a convex function ¢(S,,)

of a martingale (S, )nen is itself a submartingale, as

#(Sk) = $(E*[Sy | Fi]) <E*[¢(Sn) | F], k=1,2,...,N.

Exercise 3.13 (Exercise 2.7 continued).

a) The condition Vy = C reads

b

=

Jus

NINTN + EN(l + a)SN,1 = (1 + G)SN—I - K
NMNTN + fN(l + b)SN,1 = (1 + b)SN,1 - K,
from which we deduce the (static) hedging strategy {y = 1 and ny =
—K(1+7)"N /.
We have
IN_1TN—1 +En_1(1+a)Sny_2 = nnTn_1 +En(1+a)Sh 2
NN—1TN—1 +EN—1(1+0)Sn_2 =nnTn—1 + En(1 4+ b)Sn_2,

which yields éy_1 = &y = 1 and ny_y = ny = —K (1 + 7)™ /7. Simi-
larly, solving the self-financing condition

nems + &(1+a)Si—1 = nepame + E1(1 +a)Sp1
Neme + & (1 +0)St—1 = neyame + Eera (14 0)Si—1

at time ¢ yields

K
&=1 and n=—-(1+r"N=, t=1,2,...,N.
o
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c) We have

Wt(C) = ‘/t
= 7y + &St

=5 - K( +r)’N?
0

=8 — K147~ W9
d) Forallt=0,1,...,N we have

A+r)WOE[C| Rl =0+r) N ODE[Sy - K | F,

=Q+r) VOB Sy | F] - (1+r) "V DE K | F

=147 VA4 )NS, - K1 +r)~ D

=8 —K(1+r) W9

=V, =m(C).
For a future contract expiring at time N we take K = So(1+r)" and the
contract is usually quoted at time ¢ using the forward price (147)N (S, —
KA+n)N ) =0+nN"18 - K=1+7N"1S, —Sy(1+7)V, or sim-
ply using (14 r)V~*S;. Future contracts are “marked to market” at each
time step t = 1,2,..., N via a positive or negative cash flow exchange
(1 +r)N-tS, — (14 r)N=t+18, | from the seller to the buyer, ensuring
that the absolute difference |(1 + r)N¥ =S, — K| has been credited to the
buyer’s account if it is positive, or to the seller’s account if it is negative.

Exercise 3.14

a) We write

EnSNo1(1+1/2) + gy = (Sn—1(1 +1/2))?
VN =
EvSn-1(1—1/2) +nn = (Sn-1(1 - 1/2))%,

which yields
N = 25N

NN = 73(31\],1)2/4.
b) i) We have
E*[(Sn)? [ Fn-1] = p"(Sn-1)*(1+1/2)* + (1 = p")(Sn-1)*(1 — 1/2)?
= S(Sx ) (14127 + (1 - 1/2)
=5(Sn-1)%/4.
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ii) We have

En—1SN—1 +1N—140 =

EN-1SN—2(1+1/2) + vy
Env—1Sn—2(1=1/2) + nn_y
VN_

—~

5 S —1)%/4
{ 5(Sn—2(1+1/2))%/4

5(Sn—2(1—1/2))*/4,

hence

{ En—1=5SNn_2/2

nN—1 = —15(Sy_2)?/16.
iii) We have

Ev—1SNn-1+nN-140 = 5SN_2SNn-1/2 — 15(SN_2)?/16
{ 5(Sn-2)*(1+1/2)/2 — 15(Sy_2)*/16

5(Sx—2)?(1 — 1/2)/2 — 15(Sx—2)2/16

5(Sn_2)? — 15(Sy_2)%/16
{ 45(Sn_2)%/16

5(Sn_2)%/16,

and on the other hand,

EnSn—1+nnAg =2(Sn-1)” — 3(Sn-1)%/4
{ 2(Sn_2)%(1 +1/2)% — 3(Sy_2)2(1 + 1/2)%/4

2(Sn-2)*(1 = 1/2)* = 3(Sn—2)*(1 — 1/2)*/4
{45(SN2) /16

5(Sn_2)%/16.

Remark: We could also determine (§y_1,7n-1) as in Proposition 3.12,
from (§x,nn) and the self-financing condition

Env—1Sn—1 +nv-140 = EnSN—1 F N AN—1,

as
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En—1Sn—2(1+1/2) + 9N

En—1SNn-1+nN-140
En—1Sn—2(1 = 1/2) + N1
=EévSn—1+nnAo
=2(Sn_1)% —3(Sy_1)?/4
2(Sw_2)?(1+1/2)° — 3(Sw_2)*(1+ 1/2)%/4

2(Sn_2)%(1 —1/2)% = 3(Sn_2)2(1 — 1/2)%/4,

which recovers éx 1 = 5Sy_2/2 and ny_1 = —15(Sy_2)%/16.

Exercise 3.15

a) By Theorem 2.19 this model admits a unique risk-neutral probability mea-
sure P* because a < r < b, and from (2.16) we have

b—r  0.07-0.05

PR =a) = = = o7 =002
and 0.05 — 0.02
T—a . — U.
P =p) = -
(B =) = 3= = 007 —0.02’
t=1,2,....N.

b) There are no arbitrage opportunities in this model, due to the existence
of a risk-neutral probability measure.

¢) This market model is complete because the risk-neutral probability mea-
sure is unique.

d) We have
C= (SN)27
hence s )2
~ N _
O= Q=M.
with
h(z) = 22(1 +7)V. (S.3.7)
Now we have ~
Vi = 0(t, X¢),

where the function v (¢, z) is given from Proposition 3.8 as

=5 (Yoo (= (557 (75) ).

k=0

Using (S.3.7) and the binomial theorem, we find

36
https://personal.ntu.edu.sg/nprivault/indext.html June 17, 2024


https://personal.ntu.edu.sg/nprivault/indext.html

Introduction to Stochastic Finance with Market Examples, Second Edition

N—t
ot 2) =221+ 1) Y <N];t)

k=0
k N—t—k
gty (L) (L)
1+r 1+7r
N—t
N —t
— 2201 N
22(1+7) ;} )

(r=a)(+0\* (b= +a?\
x((b—a)(l+r)2> <(b_a)(1+r)2>
2 N (7'7(1)(14*1))2 (b*7’)(1+a)2 N—t
22(1+7) ((bfa)(1+r)2 (bfa)(1+r)2>
N—t

z? ((T —a)(1+b)2+ (b—7r)(1+ a)Q)
(14 r)N=2t(b—a)N-t

S22 ((r—a)(1 20402+ (b—r)(1+2a+a?))"
- (I+r)N-2(b—q)Nt

22 (r(1+2b+b?) —a(l+2b+b?) + b(1 + 2a + a?) — r(1 + 2a + a2))N7

t

t

I+ N2 —g)N 1
s(L+r(@a+b+2)—ab)VN?
(I+r)N-2 :

e) We have

v (t, }T*ﬁXt,l) —v (t, 11:Xt,1>

& =
t Xic1(b—a)/(1+71)
2 2
X (%) - (ﬁi) (14r(a+b+2)—ab)N?
T Y O —a)/(1+7) (1+r)N-2

(1+r(a+b+2) —ab)V "
(14 r)N-t ’

:St_l(a+b+2) t:1,2,‘..,N,

representing the quantity of the risky asset to be present in the portfolio
at time ¢. On the other hand we have

o Vi-8x,
t X?

_Vi-€X,
o

N—tXt 7Xt71((1+b+2)/(1+7")

:X,,(1+r(a+b+2)*ab) 7r0(1+7“)N721’
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St — St—l(a +b+ 2)
mo(14r)N
ot (4 @)1+ b)
mo(L + )N

=S (1+7r(a+b+2)—ab)N !

= —(S1)*A +r(a+b+2) —ab)

s

t=1,2,...,N.

f) Let us check that the portfolio is self-financing. We have
Eip1- S = f?“S? + ft1+15t1

(14+a)(1+0b)

= —(S)2(1+7r(a+b+2) —ab)N 7171 P sP
- N—t—1
S a+ b+ ) D T
B (1+7r(a+b+2)—ab)N—t1
= (5)? A+ )Nt

x((a+b+2)(14+7r)—(1+a)(1+D))
_ 1 2 . _\N-—t
= 7(1+T)N—3t(Xt) (I+7r(a+b+2)—ab)
=1+
=& 5, t=1,2,...,N.
Exercise 3.16
a) We have
Vi = &St + meme
=& (14 Re)Si—1 +ne(1L4r)me—1.

b) We have

E*[Re|Fio1] = aP*(Ry = a | Foy) + WP* (R = b | Fooq)

=a 7T+br a
T b—a b—a
r r
bbfa_abfa

¢) By the result of Question (a), we have

E*[V, | Fict]l = E*[& (1 + R)Si—1 | Fema] + E* (1 + r)m—1 | Fii]
=4S B 1+ R | Feoal + U+ r) B [peme—y | Feoi)
= (1 +7)&Si—1 + (L+7)meme—a
=1 +7r)&-1Si—1+ A +r)n—1m—1
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=1 +7r)Vi,
where we used the self-financing condition.
d) We have
1 *
Vier = mE Vi | Fi-1]
= 3 P Ri=a|Fe)t PR =b| Fin)
1+7r 1+7

. 1 0.25 —0.15 0.15 —0.05
T 14015 ( 0.25 — 0.05 + 0.25 — 0.05)
1 (38
T (5 * 5)
= 4.78.

Problem 3.17 CRR model with transaction costs.

a) 1) In the event of an increase in the stock position &, the corresponding
cost of purchase (14 A)(&t41 —&¢)S: > 0 has to be deducted from the
savings account value 7y A;, which becomes updated as

Ne41de = meAe — (L+ N) (&1 — &) St
hence we have
N1 A + (L + N1 Sp = mAr 4 (1 4+ N)ESe.

ii) In the event of a decrease in the stock position &, the corresponding
sale profit (& —&4+1)(1—X)S: > 0 has to be added to from the savings
account value n; Ay, which becomes updated as

Ne+1Ae = meAr + (& — &1) (1 — NSy,
hence we have
N1 Ae + &1 (1= NS = ne Ay + &(1 = A) S,
b) We have:
i) If €41(8Se-1) > &(Se-1),
(€(St=1) = &41(B51-1))B"St-1 = (41 (BSe-1) = 1e(Se-1))p-
i) If §41(8S1-1) < &e(Se-1),

(&(Se—1) = E41(8S1-1)) 8,511 = (011 (BSi—1) — 1:(Si—1))p,
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and
i) If & (wSe—1) > &(Se-1),
(&(Se—1) — €1 (aSi1)) a"Sim1 = pies1 (@Si—1) — piie(Si—1)-
iv) If &40 (aSi—1) < &(Si-1),

(€(Se-1) — E41(aSe-1)) @, i1 = pes1(aSe—1) — pre(Se-1).
We find

N

¢

95(&(Si-1), €41(B81-1)) (6(St-1) =41 (BS1-1)) Se—1 = pne41(BSi—1)—pme(Si—).
and
Ga€e(St-1)s &v1(@Si-1)) (&(St-1)=€r41(S1-1)) St = prsa (@Si—1)—pme(Si—1).
d) The equation is
Si-19p(6(Si-1), &e1(BSi-1)) (€(Si-1) — &1 (BSi-1))

7§t—lga(£t(st—l)7éH»l(aSt—l))(gt(Sf,—l) — &y1(aSi—1))
= pNe1(BSi—1) — 1 (aSi—1),

which can be rewritten as
f(2,8-1) =0 (S.3.8)
at x = &(Si—1). The function
x> f(z,S-1)
is continuous by construction, and its derivative is the function
T g5(, &41(BS-1)) — ga(@, Eeg1(aSi-1)),

which can only take four values " —a', " —a,, B, —a', B, — a,, which
are all strictly positive due to the conditions

am:=a(l+X) <Bl-A) =4,
a, =a(l=X) < Bl =X =4,
am:=a(l+ ) <pBA+ ) =p"

Hence x +— f(z,S;—1) is strictly increasing, and we have

lim f(z,Si—1) = —oc0 and lim f(z,S;—1) = oc.
T——00 T—00
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Therefore, Equation (S.3.8) admits a unique solution & = & (S;—1).
e) We have

(S0 1) = p= Ne+1(BSi—1) — N1 (aSi—1)
S 1(93(5t(5t 1) i+1(BSi- 1))*.%(&(515 1) §er1(aSi— 1)))
§r+1(ﬂ5t 1)95 (& (St—1), &e+1(BSe—1)) — &e+1(aSi—1)ga (& (Se-1), &e+1(Si—1))
98(6¢(St-1), §e+1(BSi-1)) — 9a (& (St—1); §e1(wSe-1)) '

and

I ga(ft(stfl)’£t+1(a5t71))g/5(£t(st71)7£t+1(6st71))£t+1(ﬂstfl)
B P9a(&(Si-1), Ee+1(aSi—1)) — pgp(&t(St—1); §e41(BSi-1))
_3, lgﬁ(ét(sf,—l)a§t+1(55t—1))ga(§t(5t—1)-,§t+1(a5t—1))§t+1((¥5t—1)
B £9a (& (St—1); &er1(aSi-1)) — pgs (e (St—1), §e+1(8Si-1))
9a (& (St—1), Ee1(aSt—1))ne41(BSt—1) — 95(&e(St—1), &1 (BSt—1)) 011 (St 1)
9a(&(Se-1), &1 (aSi—1)) — g5(&e(St-1), §e4+1(BSi-1))

i) In case f(§41(aSi—1),8i-1) = 0 we have &(Si—1) < &qa(aSi—1)
because f is increasing, hence

9a(&(Si—1), &1(aSi—1)) = ' (14 N)a.

11) In case f(£t+1(aSt_1),St_1) < 0 we have Eg,(St_l) > €t+1(aSt_1)
because f is increasing, hence

9a(&(St-1),&1(aSi—1)) = a, = (1 = Na.

Note that in case f(&41(Si—1), Si—1) = 0 we have &(S;—1) = &11(aSi—1)
hence there is no transaction from S;_; to aS;_;. Similarly,

i) If f(&41(8Se-1),Si—1) > 0 then &(Si—1) < &41(BSi—1), hence
95(&(Si—1), &+1(BSe-1)) = B (1 + N)B.
iv) If f(&41(8Si-1), Se—1) < 0 then &(S;—1) > &41(BSi—1), hence
98(&(St-1), &+1(BSi-1)) = B = (1 = A)B.
Note that in case f(&41(8Si-1), Si—1) = 0 we have &(S;—1) = &+41(851-1)
hence there is no transaction from S;_; to 8S;_.

With the parameters N =2, K =82, Sy =8, p=1,a=0.5, 8 =2, and
the transaction cost rate A = 12.5%, we find the tree of asset prices

f

N

g

8
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So =32
51:16/
50:8/ \52:8
L=
\
Sp =2

Fig. S.11: Tree of market prices with N = 2.

At maturity time N we use the equations (4.4.4)-(4.4.5) of Proposi-
tion 4.11, which read here

_ h(BSN—1) — h(aSN—l)!

En(Sn-1) = B = )5 (4.4.4)
where h(t,z) = (x — K)*, and
(S ) = PN 1) = ah(BSv—1) (4.4.5)

(B—a)AN

as the evaluation of the terminal payoff is not affected by bid/ask prices.
This yields

(12(16),£2(16)) = (=2,1) and  (12(4),£(4)) = (=2,1).
In this case we check that f(&(16),S0) = f(1,8) = 0 and f(£2(4), So) =
f(1,8) = 0, which yields the hedging strategy £;(8) = &(16) = &(4) =1
and 71(8) = n1(15) = n1(4) = —2 as the portfolio is self-financing. This

static hedging involves no transaction costs and gives the initial price
Vo=8x1-2x1=$6.

Due to the simplicity of the case K = $2, we now consider the case K = $4.
In this case, (4.4.4) and (4.4.5) give

(12(16),£5(16)) = (=4,1) and  (n2(4),2(4)) = (=4/3,2/3),
which yields
f(§2(16)780) = f(178)

= (L0 - 1)~ ga1,2/3)(1 ~2/3) - =Y
R
R
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1 1
:fg(lf)\)oﬂrg
= 1><0875><1+1
o3 23

>0,

hence
98(£1(50), £2(8S0)) = By = (L + A)B.

We also have
f(&2(4), %) = f(2/3,8)

= 05(2/3,1)(2/3 - 1)~ 0al2/3,2/3)(2/3 — 2/3) - — )

-t
= 31+ 05+ 3
2 1
=—3X 1.125 + 3
<0,
hence

9a(£1(S0), &2(@S0)) = @, = (1 = M.

Therefore, we find

(S0) = p n2(8S0) — n2(aSo)
41(50) pSo(Qﬁ(§1(50)7§2(ﬁSo)) — 9a(£1(S0), £2(aSp)))
£2(850)95(£1(S0), £2(8S0)) — &2(wS0)ga (§1(S0), §2(xS0))
98(61(50), 2(850)) — ga(€1(S0),&2(aSo))
72(BSo) — na2(So) n £2(8S0)(1 +X)B — & (aSe)(1 — Ma

“ S+ VB = (1= X)) A+ NE— (1 Na

B —4— (—4/3) 1.125 x 2 — (2/3) x 0.875 x 0.5
- 8(1.125 x 2 —0.875 x 0.5) 2 x 1.125 — 0.5 x 0.875

— 0.8965,

and

m(So) = go!]a(‘fl(so)v52(0450)).%(51(So),fz(ﬂsu))fz(ﬂso)
£9a(&1(50), &2(aSo)) — pgs(€1(S0), €2(B50))
_ 5, 98(&(50), £1(550))ga (€1 (S0), €2(0:50))€2(50)
* pga(€1(S0), €2(aS0)) — pgs(&1(S0), £2(BS0))
9a(§1(S0), £2(S0))m2(BS0) — 95(£1(S0), €2(8S0))n2(cSo)
9a(&1(S0); §2(@S0)) — 95(£1(S0), £2(BS0))

+
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_ 5, (L= Nall+VB&(3%) _ 5 (1+ VB~ Nags(aSh)
pP(L=Na—p(l+A)B (I=Xap—(1+X)Bp
+(1 = Nanz(B850) — (1 + A)Bn2(vSo)
IT=Na-(1+Np
- 80.875 x 0.5 x 1.125 x 2 —1.125 x 2 x 0.875 x 0.5 x 2/3
0.875 x 0.5 —1.125 x 2
0.875 x 0.5 x (—4) — 1.125 x 2 x (—4/3)

0.875 x 0.5 —1.125 x 2
= —2.1379.

This leads to the initial option price
Vo = 0.8965 x 8 — 2.1379 = 5.0345.
Remark: Note that with A =0 and K = 4 we would find

8 20 44
51 (S()) = § = 0‘887 m (SO) = 75 = 72.227 and VO = 5 = 4.88.
Therefore, the presence of transaction costs increases the price of the
option, and requires a higher stock position and a higher level of debt.
h) Please refer to the attached IPython notebook.*

Remark: Transaction costs in the CRR model were originally introduced in
Boyle and Vorst (1992). The present solution is based on the method of
Mel'nikov and Petrachenko (2005), which originally also takes into account
different borrowing and lending rates p" = 1+ " and p, = 1+ r, which can
be regarded as bid/ask prices for the riskless asset, and can also represent
transaction costs.

Problem 3.18 CRR model with dividends (1).

a) Denoting §2 the asset price at time 2 before the dividend is paid at the
rate a, we find that the ex-dividend asset price Sy after dividend payment
is N N
Sy = 93 — aSa,

hence

Vo = €25 + Ay + koS
So
1-—a

=652 + Ay +alp
So
1_

=& + 2 As.

[0}

* Right-click to save as attachment (may not work on G)
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{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from IPython.core.display import display, HTML\n",
    "display(HTML(\"\"\"<a href=\"https://personal.ntu.edu.sg/nprivault/indext.html\">https://personal.ntu.edu.sg/nprivault/indext.html</a>\"\"\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install networkx"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "import networkx as nx \n",
    "import numpy as np\n",
    "import matplotlib \n",
    "import matplotlib.pyplot as plt \n",
    "\n",
    "N=2;S0=8\n",
    "\n",
    "r=0;a=-0.5;b=1;lamb=0.125\n",
    "\n",
    "p = (r-a)/(b-a)\n",
    "q = (b-r)/(b-a)\n",
    "\n",
    "def plot_tree(g):\n",
    "    plt.figure(figsize=(20,10))\n",
    "    pos={}\n",
    "    lab={}\n",
    "    \n",
    "    for n in g.nodes():\n",
    "        pos[n]=(n[0],n[1])\n",
    "        if g.nodes[n]['value'] is not None: lab[n]=float(\"{0:.2f}\".format(g.nodes[n]['value']))\n",
    "    \n",
    "    elarge=g.edges(data=True)\n",
    "    nx.draw_networkx_labels(g,pos,lab,font_size=15,font_family='sans-serif')\n",
    "    nx.draw_networkx_nodes(g,pos,node_color='red',alpha=0.4,node_size=1000)\n",
    "    nx.draw_networkx_edges(g,pos,edge_color='purple',alpha=0.9,width=3,edgelist=elarge)\n",
    "    plt.ylim(-N+0.5,N+1.5) \n",
    "    plt.xlim(-0.5,N+0.5)\n",
    "    plt.show()\n",
    "    \n",
    "def graph_stock():\n",
    "    S=nx.Graph()\n",
    "    for k in range(0,N):\n",
    "        for l in range(-k+1,k+3,2):\n",
    "            S.add_edge((k,l),(k+1,l+1))\n",
    "            S.add_edge((k,l),(k+1,l-1))\n",
    "            \n",
    "    for n in S.nodes():        \n",
    "        k=n[0]\n",
    "        l=n[1]-1\n",
    "        S.nodes[n]['value']=S0*((1.0+b)**((k+l)/2))*((1.0+a)**((k-l)/2))\n",
    "    return S\n",
    "\n",
    "plot_tree(graph_stock())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def gb(x,y,b,lamb):\n",
    "    if x <= y:\n",
    "        return (1+b)*(1+lamb)\n",
    "    else:\n",
    "        return (1+b)*(1-lamb)\n",
    "\n",
    "def ga(x,y,a,lamb):\n",
    "    if x <= y:\n",
    "        return (1+a)*(1+lamb)\n",
    "    else:\n",
    "        return (1+a)*(1-lamb)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def European_call_hedge(K):\n",
    "\n",
    "    price = nx.Graph()\n",
    "    hedge_risky = nx.Graph()\n",
    "    hedge_riskless = nx.Graph()\n",
    "    S = graph_stock()\n",
    "\n",
    "    for k in range(0,N):\n",
    "            for l in range(-k+1,k+3,2):\n",
    "                price.add_edge((k,l),(k+1,l+1))\n",
    "                price.add_edge((k,l),(k+1,l-1))\n",
    "                hedge_risky.add_edge((k,l),(k+1,l+1))\n",
    "                hedge_risky.add_edge((k,l),(k+1,l-1))    \n",
    "                hedge_riskless.add_edge((k,l),(k+1,l+1))\n",
    "                hedge_riskless.add_edge((k,l),(k+1,l-1))    \n",
    "    \n",
    "    for l in range(-N+1,N+3,2):\n",
    "        price.nodes[(N,l)]['value'] = np.maximum(S.nodes[(N,l)]['value']-K,0)\n",
    "        hedge_risky.nodes[(N,l)]['value'] = None\n",
    "        hedge_riskless.nodes[(N,l)]['value'] = None\n",
    "        \n",
    "    for l in range(-N+2,N+2,2):\n",
    "        hedge_risky.nodes[(N-1,l)]['value'] = (price.nodes[(N,l+1)]['value']-price.nodes[(N,l-1)]['value'])/(b-a)/S.nodes[(N-1,l)]['value']\n",
    "        hedge_riskless.nodes[(N-1,l)]['value'] = ((1+b)*price.nodes[N,l-1]['value']-(1+a)*price.nodes[(N,l+1)]['value'])/(b-a)/(1+r)**N\n",
    "\n",
    "    for k in reversed(range(0,N-1)):\n",
    "        for l in range(-k+1,k+3,2):           \n",
    "            if gb(hedge_risky.nodes[(k+1,l-1)]['value'],hedge_risky.nodes[(k+1,l+1)]['value'],b,lamb)*(hedge_risky.nodes[(k+1,l-1)]['value']-hedge_risky.nodes[(k+1,l+1)]['value'])-(1+r)**(k+1)*(hedge_riskless.nodes[(k+1,l+1)]['value']-hedge_riskless.nodes[(k+1,l-1)]['value'])/(S.nodes[(k,l)]['value']) >= 0:\n",
    "                g_a=(1+lamb)*(1+a)\n",
    "            else:\n",
    "                g_a=(1-lamb)*(1+a)\n",
    "            if -ga(hedge_risky.nodes[(k+1,l+1)]['value'],hedge_risky.nodes[(k+1,l-1)]['value'],a,lamb)*(hedge_risky.nodes[(k+1,l+1)]['value']-hedge_risky.nodes[(k+1,l-1)]['value'])-(1+r)**(k+1)*(hedge_riskless.nodes[(k+1,l+1)]['value']-hedge_riskless.nodes[(k+1,l-1)]['value'])/(S.nodes[(k,l)]['value']) >= 0:\n",
    "                g_b=(1+lamb)*(1+b)\n",
    "            else:\n",
    "                g_b=(1-lamb)*(1+b)\n",
    "            hedge_risky.nodes[(k,l)]['value'] = (g_b*hedge_risky.nodes[(k+1,l+1)]['value']-g_a*hedge_risky.nodes[(k+1,l-1)]['value'])/(g_b-g_a)+(1+r)**(k+1)*(hedge_riskless.nodes[(k+1,l+1)]['value']-hedge_riskless.nodes[(k+1,l-1)]['value'])/(g_b-g_a)/(S.nodes[(k,l)]['value'])\n",
    "            hedge_riskless.nodes[(k,l)]['value'] = g_a*g_b*S.nodes[(k,l)]['value']*(hedge_risky.nodes[(k+1,l-1)]['value']-hedge_risky.nodes[(k+1,l+1)]['value'])/(g_b-g_a)/(1+r)**(k+1)+(g_b*hedge_riskless.nodes[(k+1,l-1)]['value']-g_a*hedge_riskless.nodes[(k+1,l+1)]['value'])/(g_b-g_a)    \n",
    "    \n",
    "    return hedge_risky,hedge_riskless"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "K = input(\"Strike K=\")\n",
    "\n",
    "print('Underlying asset prices:')\n",
    "plot_tree(graph_stock())\n",
    "print('Risky hedging strategy:')\n",
    "plot_tree(European_call_hedge(float(K))[0])\n",
    "print('Riskless hedging strategy:')\n",
    "plot_tree(European_call_hedge(float(K))[1])\n",
    "print(European_call_hedge(float(K))[0].nodes[(0,1)])\n",
    "print(European_call_hedge(float(K))[1].nodes[(0,1)])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def Hedge_then_price(K):\n",
    "\n",
    "    hedge_riskless = European_call_hedge(K)[1]\n",
    "    hedge_risky = European_call_hedge(K)[0]\n",
    "    S = graph_stock()\n",
    "    hedge_then_price = nx.Graph()\n",
    "\n",
    "    for k in range(0,N):\n",
    "            for l in range(-k+1,k+3,2):\n",
    "                hedge_then_price.add_edge((k,l),(k+1,l+1))\n",
    "                hedge_then_price.add_edge((k,l),(k+1,l-1))\n",
    "        \n",
    "    for l in range(-N+1,N+3,2):\n",
    "        hedge_risky.nodes[(N,l)]['value'] = None\n",
    "        hedge_then_price.nodes[(N,l)]['value'] = None\n",
    "\n",
    "    for k in reversed(range(0,N)):\n",
    "        for l in range(-k+1,k+3,2):\n",
    "            hedge_then_price.nodes[(k,l)]['value'] = hedge_risky.nodes[(k,l)]['value']*S.nodes[(k,l)]['value']+hedge_riskless.nodes[(k,l)]['value']*(1+r)**k\n",
    "    return hedge_then_price"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "K = input(\"Strike K=\")\n",
    "\n",
    "print('Underlying asset prices:')\n",
    "plot_tree(graph_stock())\n",
    "print('Risky hedging strategy:')\n",
    "plot_tree(European_call_hedge(float(K))[0])\n",
    "print('Riskless hedging strategy:')\n",
    "plot_tree(European_call_hedge(float(K))[1])\n",
    "print('Hedge then price:')\n",
    "plot_tree(Hedge_then_price(float(K)))\n",
    "print(Hedge_then_price(float(K)).nodes[(0,1)])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}
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b) Denoting §1 the asset price at time 1 before the dividend is paid at the
rate a, we find that the ex-dividend asset price S; after dividend payment
is N N
S1 =51 — ady,

hence

Vi =68+ mA + a6 5

S
=65 +7]1A1+Oz§11 :
—a
S
=§11 L AL
—a
c) If S1 =3 we have
92 | pa?—$1 S, =0,
S 1-a
V2:§21 + Ay =
o 38

+m222 =0 ifSy =3,
l1-«a

hence (&,72) = ((1 — «)/6,—1/8).

If S =1 we have

3
S 152a+n222:0 if Sy =3,
V2=§21 2 Ay =
-a &2 2
T2 =0 ifSy=1,
1-—a
hence (&2,72) = (0,0).
d) We have
11—« 1 1—2a .
Vi=6S51+2n=3x 6 72><8: 1 if S1 =3,

Vi=&S1+2n=0x14+0x2=0 if S =1.
e) We have

3 1-2 .
SENP ¢ s, =3,
S1 l-a 4

1—

i=6&

+mdis =
@ &1
1—a

hence (&1,m1) = (o — 1)(2a — 1)/8, (2ac — 1) /16).
f) At time k = 0 we have

+2771:0 ifSliL
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(a—l)(2a—1)+2a—1: (2&—1)2.

Vo = &uSo +m = 8 16 16

g) Multiplying the prices (Sk)r=1,2 of the original tree by

() - () - ()

we find the prices (Sk)r=12 = (Sk/(1 — a)¥)x=12 as in the following tree:

h) The market returns found in Question (g) are @ = 1/3 and b = 3, with
r = 1%. Therefore we have
L rT—a 1-1/3 1

e S R

. 3-1 b-r 3
CT343  b—a 4

i) If S = 3 we have

L 15, =g gL
1+7’IE [(S2 K) |5173]7$1><2—87

which coincides with

3
V1:§251+27]2:§—

ool o

If S; = 1 we have
1 _
— - K)*t =1]=
s [(Sa—K)*|Si=1]=0,

which coincides with
V1 = fgsl + 2772 =0.
j) At time k£ = 0 we have
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1

m]E* [(S2— K)t] = =

which coincides with

3 1 1
%_£ISO+7]1_674_372 61
We also have
1 * 1 1 1 1
[1]:17 X === X — = —.
1+7r 1+ 8 8 8 64

Problem 3.19 CRR model with dividends (2).

a) We have

(1+b)(1—a)S", if Ry=b

g _
W=
(1+a)(1—a)S", if Ry=a
=(1+R)1-0a)8Y,,  k=12..,N,
and
(1) (1)H(1+R k=0,1,...,N,
i=1
with the binary tree
(14b)(1 - a)SY
s

(1+a)(1-a)sSV

b) The asset price before dividend payment is S,(Cl) /(1—a), hence the dividend
amount is ~ ~
Sy’ S}(€1) _ Sy

1-—«a 1—a’

therefore, the dividend value represents a percentage «/(1 — ) of the ex-

dividend price S,(ﬂl). Moreover, the return of the risky asset satisfies the
following relation
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1
e
11—«

SRRt

1, b-r 1
VoS

=(1+nsY, k=01, ,N-1

¢) When reinvesting the dividend amount T a &S, ,(Cl) into the new portfolio
-«

allocation, we have

Vi = §k+15£1) + 7]k+151(€0)
= &S + 80 4 %&Sfj)
(1)

S
=& = o Sy,

at times k = 1,2,..., N — 1. Moreover, at time N we will similarly have

(1)
« S
VN = ENS](\}) + mstﬁ\P + 7]NS](\?) = 5Nﬁ + 7]NS](\(]J)7

therefore the self-financing condition reads

(1)

Vi = e+ mS® k=1,2,...,N. (S.3.9)

d) By the self-financing condition (S.3.9) we have

. 5 s,
Vie = Vi—1 = fkﬂﬁ + M1 — §k5(707) =k
k k—1
(1)
gks(l) S -
= (0) k Nk — fk ?0)1 — Nk
S (1—a) Sil1

S 50
_§k<(0)k ];0)1 ) k=1,2,...,N,
S (1—a) S

which allows us to conclude from Question (b) that
E” [Vk | Fro1] — Vi1 =E* [‘71« Vi | Fre—1]

(1) s
e (e )
S (1= ) Sk 1
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s s,
s -a) 5,

s
_5(‘“0)<1E ’fk 1} (1+7)S“>>
Sk

=0, k:l,Q,...,N,

=& E”

k—1

therefore (Vi) _ 01,00, N—1
Assumlng that the portfolio strategy attains the claim C' we have C' = Vi
and C = VN7 hence by the martingale property of (Vk)k:o 1. N_; under
P*, we find

is a martingale under P*.

&)
~

Vi =E" [Vy |F] =E"[C|A], k=01,...N,

which shows that

1

Vi = (LR

E‘[C|Fl.  k=0,1...,N,

f) By a binomial probability computation, we have

1 *
Vi = TF N F E*[h(SN) | Fi

1 | | 7
- E* | h (1 +R ) d ’
(1 +r)N=k [ <Izt+1 l > } k} o=5("

1
T (1 4r)N-k

N—k
« Z (N;k> (p*)l(q*)N’k’lh(S,il)(l +b)’“(1 +a)N7k71(1 7a)N—k)
1=0
= Co(k, SV (1 — a)N* N, a,b,7).

g) We “absorb” the dividend rate « into new market returns by taking
Gq, Do, 7o such that

14aq = (14+a)(1—a), 1+ba=1+b)(1-0), 1+ra=1+r)(1-a),
i.e.

o =—a+a(l—a), by=-a+bl—aqa), ro=—-a+r(l—a).
As a consequence, we have

1

Vi=———v—+¢
P A )R
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N—k
x (N : k) ) @)Y (R )M (1 - )N
=0

RO e
= A E l:0< !

= (1= a)NFCy(k, S, N, g, bas ),

)(p*)’“(Q*)N”“"h(SLU(l +b2)*(1 4 ag)¥ )

where
re —a r—a
* = P* =p) =2 o _
p (Rx ) — b—a>07
and ) ,
* . ¥ _ _ba=Ta O—T
q .7P(Rkia)7ba7aaib7a>0’
k=1,2,...,N.
h) We have
Vom 1 Ca(ka5, N, anb E=01... . .N
k*m 0(7 ko 4Vs Qo a77°o¢)7 =0,1,...,N,

hence by the martingale property we have
B 1

T (1)
=FE [‘7k+1 | Fi]

Vi Co(k, SV, N,y aa, bay 7a)

1 *

= e B [Calk+ 1,50, N, 0o, bayra) | 2]
1

= W (p*ca(k +1, Slgtl)(l + ba)vNa [ boura)

+q"Co(k+ 1,81 (1 + ag), N, a, ba, ra)> .
This yields

(14 7)Ca(k, SV, N, aas bas o)
= p*Ca(k + 1-,51(@1)(1 + ba)va aavba»""a) + q*cn(k' + 17S](€1)(1 + aa)1 N, aq, baara)-

i) We find the equations
Sy + &1+ aa)Sy = Ca (b (14 aa) {21, N, a bas 7o)
NS + 661+ ba)Sy = Ca(k, (L4 ba) {21 N, s by 7o),

which imply
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§ C(,(k‘, (1 + bo)S](cljlst a(l/vb(xvr()/) - Ca(k-, (1 JF aO)S]({-17)17N$ aavbn-,ra)
k=

(be — aa) S,
Colk, (14 b)SM 1, N, oy b 7a)
(ba — aO/)SI(cl—)l
Colk, (14 aa)SM | Nyt bas o)
(ba = a&)Sl(cl—)l

=(1-a)N*

—(1—a)N*

and

(14 ba)Ca (K, (14 50) SV, Ny s by 7a)
(b = aﬂ)sl(co—)l

(14 aq)Cq (k, 1+ a,,)S,(clj17 N, aq, ba,ro,)

(ba — aa)sl(c(i)l
(14 ba)Co (ky (14 52) S, N, s b )
(b = aﬂ)Sl(cO—)l

(1+ aa)Colk, (14 aa)S |, N, ag, ba, 7o)

(ba = ‘la)slio—)1 7

M =

— (1 _ O[)N—k

—(1—a)Nk

k=1,2,...,N.
j) A possible answer: We have

N—-k

- — 3 (M, oy

(b—a)S;2) 1=

X (h((l — )N EsM @ 4 p)R (1 a)N k1)

7h((1 _ oz)N’kS,il)(l + b)k(l +a)N—k—l+1))

and
N—k
1 N =K\ ok o\N—k—l
TS ST T

(b-a)s i\

x (4 D)((1 = )V S (14 ) (1 4+ @)V 1)

—(1+a)h((1— )N FSD A+ b (14 a)N’k’l)) :
k=1,2,...,N. Differentiation with respect to « of the general term inside

the above summations yields respectively
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1+ a)yh’ (1 +a)y) — (1+ b)yh'((1 +b)y) (8.3.10)
for &, and

(1+b)yh' (1 +b)y) — 1+ a)yh' (1 +a)y), (S.3.11)
for ng, with y := (1 — )N "*SN (1 + )k (1 +a)V~*+~" and a < b.

We note that the sign of the above quantities (S.3.10)-(S.3.11) depends on
whether the function  — zh/(z) is non-decreasing, which is the case for
example for the payoff functions h(z) = (z — K)* and h(z) = (K —z)*
of both European call and put options.

In particular, when the function x — zh/(z) is non-decreasing, the
amount invested on the risky (resp. riskless) asset will be lower (resp.
higher) in the presence of a higher dividend.

We also note that the expected return
pA+b)(l—a)+q¢(1+a)(l—a)=r(1-—a)
and the variance

P4 DR — a)? + (L4 a)2(1— a)? — (1 — a)?
=(1-a)@EA+0)*+q¢(1+a)? -1

of returns are lower in the presence of dividends.

Problem 3.20

a) In order to check for arbitrage opportunities we look for a risk-neutral
probability measure P* which should satisfy

B[S Al =4Sy, k=01 N-1
Rewriting IE [S,(:Jr)] | Fi] as

E* [SY)) | Fi] = (1 + a)SP* Ry = a | Fi) + SVP (s = 0 | Fi)
+(1+0) SR (Repr = b | Fi)
= (1+a)SVP*(Rey1 = a) + SUP*(Ryyq = 0)
+(1+b)SP (Ripr =),

k=0,1,...,N — 1, it follows that any risk-neutral probability measure
P* should satisfy the equations
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b

=

(1+7)sy) =

(14 0SSP (Ryy1 = b) + SUP*(Riyr = 0) + (1 + a)SP*(Re 1 = a),

P*(Ries1 = b) + P*(Rpq1 = 0) + P*(Rpq1 = @) = 1,
k=0,1,...,N—1, ie.
bP*(Ri, =b) + aP*(Ry =a) =,
P*(Ry, = b) + P*(Ry = a) = 1 — P*(Ry = 0),
k=1,2,...,N, with solution

PRy =)= "~ —l]f’*_(fk =0)a _r- gl_—aa*)a7

and =(1—P*(Rk:U))b—T_(1_9*)17_7"

b—a N b—a ’
k=1,2,...,N. We check that this ternary tree model is without arbitrage
if and only if there exists 0* := P*(R, = 0) € (0,1) such that

P*(Ry = a)

(1—-0")a<r<(1-060, (S.3.12)

or ,
1—- ifr>0,

r—a b—r b
0 < 0" < min s =
—a b ro.
1-—- ifr<o.
a

Condition (S.3.12) is necessary in order to have
P*(R,=b)>0 and P*(Ry=a)>0,

and it is sufficient because it also implies
P'(Rr=b=1-0"-P"(Ry=0a) <1

and
P*(Ry=a)=1—-0"—P*(R,=0b) <1.

We will show that this ternary tree model is without arbitrage if and only
ifa<r<b.

(7) Indeed, if the condition a < r < b is satisfied there always exists
0 € (0,1) such that
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a<(l—0la<r<(1-6)b<b,
as can be seen by taking

0e <O,min (T_a,b_T>>,
—a b

hence there exists a risk-neutral probability measure P}, and the market
model is without arbitrage.

(77) Conversely, if this ternary tree model is without arbitrage there exists
some 6 = P*(R; = 0) € (0,1) such that

(1-0)a<r<(1-0)b.

¢) When 7 < a < 0 < b the risky asset overperforms the riskless asset,
therefore we can realize arbitrage by borrowing from the riskless asset to
purchase the risky asset. When a < 0 < b < r the riskless asset overper-
forms the risky asset, therefore we can realize arbitrage by shortselling
the risky asset and save the profit of the short sale on the riskless asset.
Under the absence of arbitrage condition a < r < b, every value of 6 €

(0,1) such that
—a b—
0 < # < min <r a7 T)
—a b

d

=

satisfies
(1—-0)a<r<(1-0)b,

and gives rise to a different risk-neutral probability measure, hence the
risk-neutral measure is not unique and by Theorem 5.11 this ternary tree
model is not complete.

In particular, every risk-neutral probability measure Pj will give rise to a
different claim price

Oy — 1 " _
FL (C)fwﬂzg[ﬂft], t=0,1,...,N.
e) We have
S(l) _S(l)
Var* k+1 o) k ]:k
S
2 2
* S/(c{zl B Sl(cl) * Sl(::l B Slil)
= (S(l) ’]’-k —|E T Fr
k k
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1) M\ 2

= &’Py(Rit1 = a | Fi) + VP (Rer = b | Fi) —7°

O BRea =00 or (- By(Rei =0)a
b—a b—a

=ab(@—1)+7r(a+b)—r?

_ 2

k=0,1,...,N — 1, hence

a2 +7r2 —r(a+b)

P (R, =0) =6 =1
o (R = 0) + s ,

and therefore

By (R =b) =~ —fi_(fk =0)a_o (;br(_aa—) ",

and
_ (1-P:(R,=0)b—r _ r(b—r) —o?

b—a alb—a)
k=1,2,..., N, under the condition

Py (R = a)

o2 > max(—r(r —a),r(b — 1)),
in addition to the condition 0 < 6 < 1, i.e.
r(b—r)+rb<o?<(b—7r)(r—a).
Finally, we find
—r(r—a)<o? < (b-7)(r—a),

if r € (a,0], and
rb—r1)<o? < (b—7)(r—a),
if r € [0,b).
In this case the ternary tree becomes a trinomial recombining tree, and
the expression of the risk-neutral probability measure becomes

f

=

r(b+1)+ (1—0)b

o(f =b) = b2 +2b '

and

(1-6)b—r

Py (Ry = a) = (b+1)w7
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k=1,2,...,N. The market model is without arbitrage if and only if there
exists 0 := Py (R, = 0) € (0,1) such that

b
-1 —G)H—l <r<(1-6),

or r
0<f<1l——.
b

g) Using the tower property of conditional expectations, we have

F(kSY) = WE*[C | Fi]

1
T r)NE EYE(C | Fria] | Fil
e B O s | 7]

1 *
=17, F [f(k+1,5000) | 7]

= ﬁ (f(k +1,80(1+ )Py (R = a) + f(k+1,5 )P} (Ry, = 0)

(e 1S+ 1) Py (Re = 1))
h) In this case we have f(N,z) = (K —z)*.

i) See the attached code.**
j) Taking 6 = 0.5 we find the following graph:

25

(a) Underlying asset prices. (b) Put option prices.

Fig. S.12: Put option prices in the trinomial model.

* Download the modified (trinomial) IPython notebook that can be run here or
here.

f Download the corresponding (binomial) IPython notebook. The Anaconda distri-
bution can be installed from https://www.anaconda.com/distribution/ or tried online
at https://jupyter.org/try.
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{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "import networkx as nx \n",
    "import numpy as np\n",
    "import matplotlib \n",
    "import matplotlib.pyplot as plt \n",
    "\n",
    "N=2;S0=1\n",
    "\n",
    "r = 0.1; b=1.0; a=-b/(1+b);\n",
    "\n",
    "theta = 0.5; \n",
    "p = (r-(1-theta)*a)/(b-a)\n",
    "q = ((1-theta)*b-r)/(b-a)\n",
    "\n",
    "def plot_tree(g,color):\n",
    "    pos={}\n",
    "    lab={}    \n",
    "    for n in g.nodes():\n",
    "        pos[n]=(n[0],n[1])\n",
    "        lab[n]=float(\"{0:.2f}\".format(g.nodes[n]['value']))\n",
    "    elarge=g.edges(data=True)\n",
    "    nx.draw_networkx_labels(g,pos,lab,font_size=15,font_family='sans-serif')\n",
    "    nx.draw_networkx_nodes(g,pos,node_color=color,alpha=0.4,node_size=1000)\n",
    "    nx.draw_networkx_edges(g,pos,edge_color='blue',alpha=0.7,width=3,edgelist=elarge)\n",
    "    plt.autoscale(enable=True)\n",
    "    plt.show()\n",
    "    \n",
    "def graph_stock():\n",
    "    S=nx.Graph()\n",
    "    for k in range(0,N):\n",
    "        for l in range(-k,k+1,1):\n",
    "            S.add_edge((k,l),(k+1,l+1))\n",
    "            S.add_edge((k,l),(k+1,l))\n",
    "            S.add_edge((k,l),(k+1,l-1))\n",
    "            \n",
    "    for n in S.nodes():\n",
    "        k=n[0]\n",
    "        l=n[1]\n",
    "        S.nodes[n]['value']=S0*((1.0+b)**((k+l)/2))*((1.0+a)**((k-l)/2))\n",
    "    return S\n",
    "\n",
    "plot_tree(graph_stock(),'lightblue')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def European_put_price(K):\n",
    "\n",
    "    price = nx.Graph()    \n",
    "    hedge = nx.Graph()\n",
    "    S = graph_stock()\n",
    "\n",
    "    for k in range(0,N):\n",
    "            for l in range(-k,k+1,1):\n",
    "                price.add_edge((k,l),(k+1,l+1))\n",
    "                price.add_edge((k,l),(k+1,l))\n",
    "                price.add_edge((k,l),(k+1,l-1))\n",
    "    \n",
    "    for l in range(-N,N+1,1):\n",
    "        price.nodes[(N,l)]['value'] = np.maximum(K-S.nodes[(N,l)]['value'],0)\n",
    "     \n",
    "    for k in reversed(range(0,N)):\n",
    "        for l in range(-k,k+1,1):\n",
    "            price.nodes[(k,l)]['value'] = (price.nodes[(k+1,l+1)]['value']*p+price.nodes[(k+1,l)]['value']*theta+price.nodes[(k+1,l-1)]['value']*q)/(1+r)        \n",
    "    return price"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "K = input(\"Strike K=\")\n",
    "\n",
    "put_price = European_put_price(float(K))\n",
    "\n",
    "print('Underlying asset prices:')\n",
    "plot_tree(graph_stock(),'lightblue')\n",
    "print('European put prices:')\n",
    "plot_tree(put_price,'purple')\n",
    "print('Price at time 0 of the European put option:',float(\"{0:.4f}\".format(put_price.nodes[(0,0)]['value'])))"
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.6"
  },
  "widgets": {
   "state": {},
   "version": "1.1.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}



{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from IPython.core.display import display, HTML\n",
    "display(HTML(\"\"\"<a href=\"https://personal.ntu.edu.sg/nprivault/indext.html\">https://personal.ntu.edu.sg/nprivault/indext.html</a>\"\"\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install networkx"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "import networkx as nx \n",
    "import numpy as np\n",
    "import matplotlib \n",
    "import matplotlib.pyplot as plt \n",
    "\n",
    "N=2;S0=1\n",
    "\n",
    "r = 0.1;a=-0.5;b=1; # change \n",
    "\n",
    "# add definition of theta \n",
    "\n",
    "p = (r-a)/(b-a) # change \n",
    "q = (b-r)/(b-a) # change \n",
    "\n",
    "def plot_tree(g):\n",
    "    plt.figure(figsize=(20,10))\n",
    "    pos={}\n",
    "    lab={}\n",
    "    \n",
    "    for n in g.nodes():\n",
    "        pos[n]=(n[0],n[1])\n",
    "        if g.nodes[n]['value'] is not None: lab[n]=float(\"{0:.2f}\".format(g.nodes[n]['value']))\n",
    "        \n",
    "    elarge=g.edges(data=True)\n",
    "    nx.draw_networkx_labels(g,pos,lab,font_size=15)\n",
    "    nx.draw_networkx_nodes(g,pos,node_color='lightblue',alpha=0.4,node_size=1000)\n",
    "    nx.draw_networkx_edges(g,pos,edge_color='blue',alpha=0.7,width=3,edgelist=elarge)\n",
    "    plt.ylim(-N-0.5,N+0.5) \n",
    "    plt.xlim(-0.5,N+0.5)\n",
    "    plt.show()\n",
    "    \n",
    "def graph_stock():\n",
    "    S=nx.Graph()\n",
    "    for k in range(0,N):\n",
    "        for l in range(-k,k+2,2): # change range and step size\n",
    "            S.add_edge((k,l),(k+1,l+1))\n",
    "#           add edge\n",
    "            S.add_edge((k,l),(k+1,l-1))\n",
    "            \n",
    "    for n in S.nodes():\n",
    "        k=n[0]\n",
    "        l=n[1]\n",
    "        S.nodes[n]['value']=S0*((1.0+b)**((k+l)/2))*((1.0+a)**((k-l)/2))\n",
    "    return S\n",
    "\n",
    "plot_tree(graph_stock())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def European_call_price(K):\n",
    "\n",
    "    price = nx.Graph()    \n",
    "    hedge = nx.Graph()\n",
    "    S = graph_stock()\n",
    "\n",
    "    for k in range(0,N):\n",
    "            for l in range(-k,k+2,2): # change range and step size\n",
    "                price.add_edge((k,l),(k+1,l+1))\n",
    "#               add edge\n",
    "                price.add_edge((k,l),(k+1,l-1))\n",
    "    \n",
    "    for l in range(-N,N+2,2): # change range and step size \n",
    "        price.nodes[(N,l)]['value'] = np.maximum(S.nodes[(N,l)]['value']-K,0)\n",
    "     \n",
    "    for k in reversed(range(0,N)):\n",
    "        for l in range(-k,k+2,2): # change range and step size         \n",
    "            price.nodes[(k,l)]['value'] = (price.nodes[(k+1,l+1)]['value']*p+price.nodes[(k+1,l-1)]['value']*q)/(1+r) # add theta       \n",
    "    return price"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "K = input(\"Strike K=\")\n",
    "\n",
    "call_price = European_call_price(float(K))\n",
    "\n",
    "print('Underlying asset prices:')\n",
    "plot_tree(graph_stock())\n",
    "print('European call prices:')\n",
    "plot_tree(call_price)\n",
    "print('Price at time 0 of the European call option:',float(\"{0:.4f}\".format(call_price.nodes[(0,0)]['value'])))"
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.4"
  },
  "widgets": {
   "state": {},
   "version": "1.1.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}
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There also exists extensions of the trinomial model to five states (pentanomial
model), six states (hexanomial model), etc.

Chapter 4

Exercise 4.1 If 0 < s < ¢, using the facts that IE[B,] = 0 and IE [Bﬂ =0,
t > 0, we have

E[B;B] = E[(B; — B.)B] + E [B?]
=0+s

= s,

and similarly we obtain IE[B;B,] = ¢t when 0 < t < s, hence in general we
have
E[B;B;] = min(s, t), s,t>0.

Exercise 4.2 We need to check whether the four properties of the definition
of Brownian motion are satisfied.

a) Conditions 1-2-3 can be checked using the time shift ¢ — ¢+ ¢. As for
Condition 4, B.ty — Beys clearly has the centered Gaussian distribution
with variance ¢+t — (c + s) = t — s. We conclude that (Beys — Be)ier,
is a standard Brownian motion.

We note that B is a centered Gaussian random variable with variance
ct? - not t, hence (Besz)ier , is not a standard Brownian motion when
c#1.

Similarly, checking Conditions 1-2-3 does not pose any particular problem
using the time change t + t/c?. As for Condition 4, B.y; — By, clearly
has a centered Gaussian distribution with

b

=

C

N

VaI‘(C(Bt/C2 - Bﬁ/pg)) = CZVaI‘(Bt/@ - Bﬁ/cg)
= (t—s)?/c?

=t—s.

As a consequence, (Bt /Ca) er, 15 @ standard Brownian motion.
+

d) This process does not have independent increments, hence it cannot be a
Brownian motion. For example, by (4.1) we have

E [(Bi+ Bij2 — (Bs + Bu)) (Bs + Byp)]

= [B:B; + B:B; s + B;2Bs + By /2B, 2]
-E [BSBS + BsB5/2 + BS/ZBS + BS/ZBS/2]
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—s+o4s+ u u
TATYTETS TS T T T
_S
=2

which differs from 0, hence the two increments are not independent. In-
deed, independence of By + By /o — (BS + By)2) and B, + B, 2 would yield

E [(By+ Bz — (Bs + Byj2)) (Bs + By)o)]
=E [B; + Byjs — (Bs + Byy2)| E [(Bs + By 2)]
=0.

Exercise 4.3 By Definition 4.5, we have
T
fo 2dB; = 2(Br — By) = 2Br,

which has a Gaussian distribution with mean 0 and variance 47". On the other
hand, by Definition 4.5 again, we have

T
JO (2 x 1jo,1/9)(t) + Lz y2,7)(t))dB; = 2(Brj2 — Bo) + (Br — Brys)
= Br + Brya,
which has a Gaussian distribution with mean 0 and variance

Var[BT + BT/2] = Var[(BT - BT/Q) + 2BT/2]
= Var[Br — Byp/s] + 4 Var[Br/s]

T 4T
T2
5
-5

Equivalently, using the It isometry (4.8), we have

Var KJ;)T(Q X o779 (t) + Lz o, (0)de>]
=E |:(J‘OT(2 x Ljo,7/2)(t) + Lery2.1) (t))dBt> 2}

T

= fo (2 % Lo,7/21(t) + Lryam) (t))zdt
T/2 T

jg dt + jm dt
o

=

=4
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27

Exercise 4.4 By Proposition 4.12; the stochastic integral jo sin(t) dB; has

a Gaussian distribution with mean 0 and variance

2m 2 _ 1 27 . -~
ju sin®(t)dt = B jo (1 — cos(2t))dt = .

Exercise 4.5 By the It formula (4.28), we have

d(f(t)By) = f(t)dB, + Bdf (t) + df (t) - dB
= f(t)dB: + B f'(t)dt + f'(t)dt - dB;
= f(t)dB; + B f'(t)dt,

and by integration on both sides we get
[ rwaB,+ [ By = [ d(7(1)B,)
0 tT o TF ~Jo g

= f(T)Br — f(0)Bo
=0,

since f(T) = 0 and By = 0, hence the conclusion. Note that this result can
also be obtained by integration by parts on the interval [0, 7], see (4.11).

Exercise 4.6

a) The stochastic integral Jbl t2dB; is a centered Gaussian random variable

with variance
E|([ a5 ’ "t =
fot ) 7j0t b=
b) The stochastic integral ful t~1/24B, has the variance

E {(fol t‘l/ZdBt>2

In fact, the stochastic integral jol t=1/2dB; does not exist as a random
variable in L?(£2) because the function ¢ — t~1/2 is not in L2([0,1]).

= jol %dt = +00.

Remark. Writing Relation (4.11) with f(t) = t~'/2 gives
tmzgp, = B Lt e
Jot dBtfﬁJerot Bidt,

however this is only a formal statement as f is not in C*([0, 1]). Informally,

T
we can check that the term JO =3/ 2B,dt has the infinite variance
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<L’T Btfl(t)dt) |-® [(foT Bt ’(t)dt> (fOT Bsf’(s)dsﬂ
=k U s Bthf'(S)f’(t)dsdt]
- j j s E[B,B;]dsdt
- Zjo jo s™3243 2 min(s, t)dsdt
g [

Sl ]

= +o0,

E

where we used Relation (4.1) or the result of Exercise 4.1

Exercise 4.7

a) By Proposition 4.12, the probability distribution of X, is Gaussian with
mean zero and variance

Var[X,] = E {(jj" sin(nt)dBt>2

27
= fo sin2(nt)dt

2m 27
%L cos(0)dt — % L cos(2nt)dt

=, n>1.

b) The random variables (X}, ),>1 have same Gaussian distribution, and they
are pairwise independent as from Corollary 4.13 we have

E[X, X, =E Uz sin(nt)d By J2 sin(mt)dBt]
= f sin(nt) sin(mt)dt

1 27
=3 f cos((n —m)t)dt — - jo cos((n + m)t)dt
=0
and the vector (X,,, X,,) is jointly Gaussian, for n,m > 1 such that n #

m. Note that this condition implies independence only when the random
variables have a Gaussian distribution.
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Exercise 4.8 We have X; = f(B;) with f(z) =sin’x, f'(z) = 2sinacosz =
sin(2z), and f”(z) = 2 cos(2x), hence
dX; = dsin®(B;)
= df(Bt)
= f'(By)dB; + %f”(Bt)dt
= sin(2B;)dB; + cos(2B;)dt.

Exercise 4.9

a) Using the Itd isometry (4.16), we have
) T T
E[B} = E UO dB, (T +2 BtdBt)]
T T T
-TE UO dBt} +2FE UO dB, |, BtdBt}

=2F UOT B, dt]

—o (" BBt
- Jo [B:]
=0.

We also have

E[Bf] =E

T 2
(T +2 fo BtdBt>

2
T T
T2 ¢+ 4Tf B,dB, + 4 (f BtdBt)
0 0

(fUT BtdBt> ’

=E

—T2+4T]EUTBdB} 4T
= o Dt 1| +

T
:T2+4]EUO \Btﬁdt}
2 T 2
=12 4+4] E[B/’]dt
T

72
=T +4f0 tdt
TZ
=72 +4—
Ty
=372
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b) If X ~ N(0,02), we have X ~ Brp with 62 = T, hence the answer to
Question (a) yields
E[X*]=0 and [E[X*]=30"

We note that those moments can be recovered directly from the Gaussian
probability density function as

31 _ 1 *© 3 —a2/(20?) —
]E[X]fﬁj,w:be dr =20
and 1
oo 2 o2
E[X'] = ot j—oo 2™ /) gp = 304,

Exercise 4.10 Taking expectation on both sides of (4.39) shows that
0= [(Br)*]
=E|C ’ B,
= + fo G, rdBy
T
=C+E Uﬂ ct,TdBt}
=0

by (4.17), hence C' = 0. Next, applying It&’s formula to the function f(z) = 23
shows that

(Br)® = f(Br)
= f(B Ty By)dB, L (T g By)dt
= f(Bo) + [, /'(B)dB.+ 3 [ f"(By)
(T T
= 3]0 B2dB, +3JO Bdt.
By the integration by parts formula (4.11) applied to f(t) = ¢, we find
T T T
fo Bydt = TBy — jo tdB, = fo (T — t)dB,,
hence
T T
(Br)® = 3]0 B2dB, +3 (TBT - fO tdBt>

_ o (T 2
7310 (T —t + B?)dB,,
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and we find ¢, = 3(T — t + B2), t € [0, T]. This type of stochastic integral
decomposition can be used for option hedging, cf. Section 7.5.

Exercise 4.11

a) We have

E [e J) f(s)dBs

7|

E] — ol f®)ABs [eJ}f" F(s)dB.
= oo f(9)dBs | [ef f(s)st}
= exp <j f(s)dBs + = 3 j f(s)] ds) (S.4.13)

t < T, where we used the Gaussian moment generdtmg function
[eX] = e /2 for X ~ N(0,0%) and the fact that L f(s)dBs ~

0
E
T
N <O,L f2(s)ds > by Proposition 4.12.
b) We have

{cxp(fotfs)dB —fj FA(s)d )\f}
—exp % j I s)ds> [exp (jo f(s)st> u}
3 Jy 20 ) B e (j“f(s)st+ f. reas.)

|

(-
(-3

—exp EJ F(s)dB, — 7j 72 > E [exp (j‘ f(s)dBS> fu}
(

Il
o)

Xp ]:u:|

I
@

= exp

[ f(s)aB, - 7j f2(s)ds> E [exp <jt f(s)st>]

NI S WO Y RO

:exp<JOf(sdBffj 7 ), 0<u<t.

This result can also be obtained by directly applying (S.4.13).
¢) We apply the conclusion of Question (b) to the constant function f(t) :=
o,t>0.

Exercise 4.12 We have

s, = (s - 51)
=dsy" —as®
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= ;LS(l)dt + o1 dW ) — (uSPdt + oodW )
= u(SM — pS?)dt + o1 dW ) — o).

The process M; := Uth(l) — UQW,@ is a continuous martingale, with

AM; + dM, = (01dW" = 02dW )« (01dW " = odW )
= 2dW « aw - 20100dW Y « dWP + o2aW P < aw P
= (02 — 2poi0y + 02)dL.

0= /0? — 2po102 + 03

M,
Wt = ot = %Wél) _

[

Therefore, letting

and
o2

2
Wt( ),
by the Lévy characterization theorem, see e.g. Theorem IV.3.6 in Revuz
and Yor (1994), the process (W;)icr, is a standard Brownian motion with

quadratic variation dWy « dW; = dt, with

S, = (St — SPYdt + oraw M — gaw
= uSidt + odWs.

Remark: Since p € [—1, 1], we have
72p0102+02 >01 720102+02 (o1 —03)? > 0.

Exercise 4.13
a) Using (4.31), we have

E {exp <ﬁ LT BtdBt>]

E [ (B-1)/2]

o BT/2 g [ewBT)?/z]
e—BT/2
V2rT f

o= BT/2

_ o(B=1/T)2%/2 .
V21T j

e T foc o= /(2/(1/ T ”
VI=BT ) \/2x ()T — ﬂ)

o—BT/2

= V=T

,5’1:2/20—:52/(2T)dl,
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b

=

for all 8 < 1/T, knowing that By ~ N(0,T).

The function 3 — 1/4/1 — BT can be identified as the moment generating
function of the gamma distribution with shape parameter A = 1/2, scaling
parameter 1/T and probability density function

1
TV1/26=v/T
v pag W e
due to the relation
T (oo 1
By A—Le=v/T gy = 1T
F(/\)JO ey le V=G B <1T,

therefore T' + IOT B;dB; = B2 has a gamma distribution with shape
parameter 1/2 and scaling parameter 7. In other words, the square
1+ IUT B:dB;/T = B2/T of the normal random variable BT/\/T ~
N(0,1) has a x? distribution with one degree of freedom.

Exercise 4.14

a) Letting V; = e** X}, we have

dY; = d(e" X,)

= beb Xy dt + ePtd X,
= be" X, dt + " (—bX,dt + oe~"'dBy)
= 0dBy,
hence y .
Y, :Y0+JO day, :Y0+aj0 dB, =Yy + 0By,
and

X, =e Y, = e Yy + 0e B, = e Xy + o7 B,.

Alternatively, we can also search for a solution X; of the form X; =
f(t, Bt), with

of

10?
o ];(t,Bt)dt

of
dX; =df(t,By) = t, By)dt + == (t, By)dB; + - =5
+ = df(t, Bt) (t, Bt) +(99:(7t) t+26x
from the It6 formula. Matching this expression to the stochastic differen-

tial equation (4.40) would yield

10%f

0
a—{(t, B)+ 555 (4 Bidt = —bX, = ~bf(t, By)

and

65

June 17, 2024 https://personal.ntu.edu.sg/nprivault/indext.html


https://personal.ntu.edu.sg/nprivault/indext.html

Solutions Manual

%(2&, By) = oe™,
hence

of
ot

10%f af

2 0x2 ox

(t,z) + === (t,2)dt = —bf(t,x) and ==(t,z)=ce

x € R, which can be solved as f(t,z) = f(t,0) + oxe™® and

of .
E(va) - 7bf(t70)7

which gives f(t,0) = £(0,0)e™", and recovers
X, = f(t,B;) = Xpe * + 0e B,

b) Letting Y; = e® X;, we have

=

dy, = d(e"*X,)
= be" X, dt + "dX,

t>0.

= be" Xydt + e ( — bXydt + oe™ "' dBy)

= Ue(b’“)tdBt7

hence we can solve for Y; by integrating on both sides as

t t
_ _ (b—a)s
thYoJrfodstYojLJLe dB,,
This yields the solution
it
X, =e Y, = e "Xy + ge JO eb=54B,

Comments:

t>0.

t>0.

(i) This type of computation appears anywhere discounting by the factor

e~ is involved.

(ii) In part (b) the solution cannot take the form X; = f(¢, B;) when

a # b. Indeed, solving
of

—=(t,z) = oe

ox

—at

gives f(t,z) = f(t,0) + oze™, yielding

of _of
at

10%f

2 0x2 ot

which cannot match —bf (¢, z) unless a = b.
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-t
(iii) The stochastic integral I e(’=®*4B_ cannot be computed in closed

form. Tt is a centered Gaussian random variable with variance
2(b—a)t
jt Q20-a)s g _ e2(b—a)t _ 1
0 2(b—a)

if b # a, and variance ¢ if a = b. Using integration by parts on [0,¢],
we may also write

t t
fo e~(@tsgp, = =@ tIB, 1 (a4 1) fo e~ @tsBds, £ >0.

Exercise 4.15

a) Note that the stochastic integral

T 1
IO T—sdBS

is not defined in L?(£2) as the function s — 1/(T — s) is not in L2([0, T]),
and by the It6 isometry (4.8) we have

]E[(LTTI_SdBS>2

On the other hand, by (4.27) and (4.42) we have

X\ dX, 1 1
d(T_t>—T_t+ng<7T_t>+dXt d(—T_t>

_dX X
T Tt (T-1)2
dB,

Tt

*J‘T 1 ds — 1 OO,JF
T Jo (T -s)2 S o o

dt

hence, by integration over the time interval [0,¢] and using the initial
condition Xy = 0, we find

X, X [ X, ¢ dB,
=— - = < .
Tt T ' Ud<Tfs> Ufons’ Ost<T

b) By (4.17), we have
b1
E[X,] = (T - t)c E Uﬂ ﬁd&} =0, 0<t<T

¢) By the Ito isometry (4.8), we have

67
June 17, 2024 https://personal.ntu.edu.sg/nprivault/indext.html


https://personal.ntu.edu.sg/nprivault/indext.html

Solutions Manual

¢
Var[X,] = (T — t)%0? Var {jn ﬁst]

2
=Tt E|( [ R
oT—s °
_ 2.2 t 1
= (-t | T
L 1 1
_ _ )22 I
=(T—-t)%0 <T—t T)
702tb7 0<t<T.

d) We have

12
. X — lim VarlX,] = 2 1. - _
i X220 = Jimg arlXe] = o Jim <t T> 0

Exercise 4.16 Exponential Vasic¢ek (1977) model (1). Applying the It6 for-
mula (4.29) to X; = ¢e™ = f(ry) with f(z) = e, we have

dX; = de™
1
= f/(rt)drf, + §f//(7’f,)d’l”t . d’V’f,
1
=e"tdr, + ic”drt - dry
1
=" ((a — bry)dt + odBy) + 56”(((1 — bry)dt + odB;)?
o2
=e"((a —bry)dt + odB,) + ?e"’dt
o2
=X, <a +5 - blog(Xt)> dt + o X4dB;
= X4(@ — bf (Xy))dt + 0g(X1)dBy,

hence
2

a=a+ % and b=b
the functions f(z) and g(z) are given by f(x) = logz and g(z) = x. Note
that this stochastic differential equation is that of the exponential Vasicek

model.

Exercise 4.17 Exponential Vasicek model (2).
a) We have Z; = e~ 7 + UI e~ (t=9)yp .

t
0
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—a 6 —a ‘o —s)a
b) We have YV; = e tY0+E(21—e t)+crf0e (t=s)agp..
¢) We have dX; = X, <9 4 % —alog Xt) dt + o X, dB,.

0 Y
d) We have r, = exp (e”"t logrg + 7(1 — e””‘) +o J e’(”"””’st).
a Jo

e) Using the Gaussian moment generating function identity E[eX] = e@’/2
for X ~ N(0,a?) and the variance formula (4.10), we have

0 t
Elr | 7] = E {exp (C%t logro+_ (1=¢™*) +0 [ 07“75)%3‘“’) ‘fu}
a
_ ee""t logro+ 8 (1—97‘“)"'0 Iy e~ (t=s)agp, E |:exp (O‘ Jt ei(f’fs)adB,g) ‘ ]:u:|
= ee"“ logro+2 (1—e’aL)+U Jorem (7B, LD [exp (U It e_(t_S)ast>:|

0 u o2 ot
—at . (1 _ —at —(t—s)a —2(t—s)a
exp (e logro+a(l e )+0L e st-‘r—Q Le ds>

“ 2
exp (e_‘” logro + g(l — e_“t) +o fo e~ (=s)agp 4 Z—(l - e_z(t_“)“))
a a
= exp (o’(““m (0"“‘ logro + g(l —e ") + Ujou o’(“’s)“st>
0 o?
Z(1 _ o= (t—u)a 9 (1 _ .—2(t—wa
e T ))
—(t—u)a 4 —(t—u)a a’ —2(t—u)a
=exp|e logru+;(17e )“v’@(lfe )
_ e (tmwa Q _ a—(t—u)a 0'72 _ a2(t—u)a
=1y, exp(a(l e )+4a(1 e ) .

In particular, for u = 0 we find

2
IE[’T‘L] = T‘Siat’ exp <+§(1 — e*”'t) + Z?(l _ 672at)> )

f

=

Similarly, we have
20 t

E[r? | F]=E {oxp <20’a‘ logro + = (1—e ) + 20 jo c’("s)“dBS> ’]—'u}
a

_ e2c"” logTo+270 (1*07QL)+20‘ f[;‘ e~ (t=9)agp, E |:exp <20’ ft e—(t—s)ast>:|
u
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N————

—(t—u)a 26 —(t—u)a 0—2 —2(t—u)a
=exp | 2e 1ogru+z(1—e )+;(l—e )

2e~ (t—w)a 20 —(t—u)a 02 —2(t—u)a
= (11— Z (11—
r exp ( p (1-e )+ . (1-e ).
hence
Var[ry | Fu] = B2 | Fu] — (B[r | Fu])?

2
_ Tie—ufu)a exp (%9(1 _ e—(tfu)a) + %(1 _ ef2(t—u)a)>

_Tie*(f*u)a exp (%(1 _ e—(tflL)a) + % (1 _ 672(1& u)a))

«(1-em (- 0-e 70 ))

0 o?
g) We find hm E[r] = roexp Tt and

20 2 2
lim Var[r,] = exp <* * i) (1 S <’i>>
t—o0 a a 2a
(Z) (=(5)-)
=exp | — exp|— | —1]).
a a
Exercise 4.18 Cox-Ingersoll-Ross (CIR) model.

a) We have

e =10+ f:(a — Bry)ds + afot V7B, t>0. (S.4.14)

b) Taking expectations on both sides of (S.4.14) and using the fact that the
expectation of the stochastic integral with respect to Brownian motion is
zero, we find
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u(t) = E[r]
—E [ro + jot(a — Bro)ds+ o jot ﬁst]
- E [ro T (f;(a - BTS)ds]
=+ E {j{;(a - /m)ds]
= ro+ [ (o~ BElr)ds
= ro+ [/ (o~ Bu(s))ds,

which yields the differential equation u'(t) = a — Bu(t). Letting w(¢) :
e%tu(t), we have

w'(t) = BePtu(t) + Pt/ (t) = e,
hence

Elr] = u(t)
= e Plu(t)

t
=e P (w(O) +a jo e/jsd5>
=e Pt (u(O) + %(em - 1))
= e Bty + %(1 —e P, >0 (S.4.15)
¢) By applying It6’s formula (4.29) to
t t
rf =f (7‘0 + jo (v — Brg)ds + Ufo \/EdB_g) ,

with f(z) = 22, we find

1
d(r)* = f'(re)dre + if//(Tt)th - dry
= 2rydry + dry » dry
= ri(0? + 20 — 207r4)dt + 207"?/2dBt

or, in integral form,
t t
r? = rg + fo ro(0% 4 2a — 2Br,)ds + 20 In rf/QdBS, t>0. (S.4.16)

d) Taking again the expectation on both sides of (S.4.16), we find

71
June 17, 2024 https://personal.ntu.edu.sg/nprivault/indext.html


https://personal.ntu.edu.sg/nprivault/indext.html

Solutions Manual

o(t) = E[r{]

t t
= [r?} + J;J 7'5(02 +2a — 2fry)ds + 20 jo ’riﬂst}

-t
=r2+E [JO re(0? + 20 — 2ﬂrs)ds]

t
=13+ [ (0 Elr] + 20 E[r] - 28 E[r2))ds
t
=0(0) + Jo (o2u(s) + 2au(s) — 2Bv(s))ds,
and after differentiation with respect to ¢ this yields the differential equa-

tion
v (t) = (02 + 2a)u(t) — 26v(t), t>0.

By (S.4.15) we find
V() = (02 + 20) <% + <7'0 - %) (fﬁt) —2Bv(t),  t>0.
Looking for a solution of the form
v(t) =co+ cre™ P 4 cpe 2P, t>0,
we find
V'(t) = —fere Pt — 28cpe 2Pt

= (02 +2a) (% + (rg - ﬁ) e’5t> —2B(co + cre Pt 4 cpe™2Pt)

B

78 2 ) 2 ) ) 73 *ﬁt72 - — 28¢ *ﬁt72 e~ Bt
= [7’(0 +2a)+ (07 +2a) | o 3 e Beo — 2Bcie Beae™ 7,
t > 0, hence

0= 2(02 +20) — 2Bco,

B

—Ber = (02 + 2a) <r0 — %) —2Bcy,

and )
2

with

rg =v(0) =co+ 1 + c2,

which yields
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and

0227‘3—00—61

2
+2
=r§—%(02+2a)—0 5 a(ro—%>

=72 — (02 +2a)<—72aﬁ>,

E[rf] = v(t)

e) We have

=co+ cle’ﬂt + CQe’Zﬁt

242
= 2&62(02 +2a) 4+ HTa (ro - g) e Pt

+<r§—(02+2a) <%—%>>e_2m, t>0.

Var[ry] = IE[7'2] — (]E[rt])z
2
=2 (0?+20)+ 2 20 (r a) e Pt

2ﬁ2 B

(et (o))
()

242
= 2(0 +20/)+U + a(r a)e_ﬁt

Problem 4.19

B

( — (02 + 20) <% _ %)) e
( ) B(n-g)er- <Tg_2r0;+ (%) );;

2 2 2
(7Pt —e201) 4 Qo Q9 st ao® o= 28t
/? 2ﬁ2 2 252"

" ( Bt o2y L 27 P (17e*f’") . t>0.

a) The It6 formula cannot be applied to the function f(z) := (z — K)T

because it

is not (twice) differentiable.

b) The function = — f.(z) can be plotted as follows with K = 1.

June 17, 2024
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0 Ke K K+e
x

Fig. S.13: Graph of the function z + f-(z).

We note that f. converges uniformly on R to the function z — (z — K)*
as we have

0< fe(z) - (awK)*gi, zeR (S.4.17)

¢) Applying the It6 formula to the function f. we find
o / 1 T 11
J(Br) = fo(Bo) + [ JUBOAB + 5 [ 12/(Bo)dt
T 1 (T
= fo(Bo) + [ SUBAB, + - [ L—ciser) (B
and to conclude it suffices to note that
T
(({tel0.T] : K—e<Bi<K+e}) = [ L nio(Bodt.

d) The derivative f/(z) of f.(z) is given by

1 ifx>K+e,
1

fs/(l’) = E(x—K—i—a) fTK—-e<z<K+e,
0 ifr<K—e.

Hence we have
o0y ) = LLOB gy = [ oo @) = f(@)) dx

= [T )Py
1 K+e 2
<25+4QJ E(foJrs) dx

1 3K+5
—25+12 3 {(I*K#’E)]

K—¢
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0 Ke K K+e
x

Fig. S.14: Graph of the derivative = — fZ(z).

2e
) =
5+3

e) i) We have
g ! 2 T , y
E Uo (Like,00)(Br) = FL(By)) dt] :,fg ]E[(Il[x,oo)(Bt)ffs(Bt)) }dt
T (oo » .
= fo Loo (L1k 00y () — fgf(x))ZCﬂc /(zt)dxﬁdt
< S Q@ - fé(x))Qe%Kfs)“’/(m) i

< Mo () = HONaqey) f, o700 ——ar

\/27rt
2e 2
< |2+ ) /<2”—dt,
- < 3 ) fo V2rt

dt

Tt

where

1
e (K—e)%/(2t) = —K*/(8t)
fo dt < j th < 00,

V27t 27t

. T 2
for ¢ < K/2, hence lgr})E UO (Lix,00)(Br) = fLU(BY)) dt} = 0, and
by the Itd isometry

E [(jo‘” (Lircoe) (Br) = fE(Bz))dBt)z} —E ([ (Lo (B) - 1o(B) at]

we find that

e—0

lim E [(fo‘x’ 1 00) (B:)dB; — fooo fs(Bt)dBt)2:| —0,
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which shows that fooo f<(By)dB, converges to jooo Iik,00)(Bt)dB; in

L2(02) as € tends to zero.
ii) By (S.4.17) we have

E[((Br—K)* - £.B1)"] < 5,

hence f.(Br) converges to (Br — K)* in L?(2).
iii) Similarly, f-(Bo) converges to (By — K)" for any fixed value of By.
As a consequence of (ei), (eii) and (eiii) above, the equation (4.47) shows
that 1
gﬂ({te 0,7] : K—e<B <K+e})
admits a limit in L?(£2) as ¢ tends to zero, and this limit is denoted by
L[Ié.T]. The formula (4.48) is known as the Tanaka formula.

Problem 4.20

a) We have

0 <E[(X -¢)F]
1 00 2 2
= — (x—e)e ™ /) dy
V2ro? -L
1 oo 2 2 g o 2 2
- —2*/(20%) g _ j —2%/(20%) g
e T e R
V2mo? L V2mo? Je

2 P o0
4 [efzz/(202):| —eP(X >¢)

V2no?

2
9o/ _p(X > e),

V2ro?

which leads to the conclusion.
b) We have

P(X €drand X +Y € dz
P(Xede | X+Y =2)= ( PX+Y cdo) )

_P(X edrandY € (dz) —x)
B P(X +Y €dz)
Im(a? § B7) v/ (207) = (=) /(26

" T

_ VUYB2H1/0% (21462 /0%)+ (a2 422~ 205) (1402 /8)—22) /(20 +6%)) g
V2

_ VB H1/0% (20162 /02 10?/87) 2202 18— 202(1+0%/52) /(20 +6) g
V2
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_ Vi 1/@;1/0‘2 o (8/acta/B)—20/8)/(2(0>+5%) g
Y
Vv 1/5\;;1/0‘2 o~ (@ (@487 /(@B))—za/ B/ (2(a™+6%) g
Y
V 1//iji1/a2 o-(2—202/(a2+B7)2/(2/(1/a?+1/8%)) g
27

c¢) Given that B, =« we decompose

B, = (Bu - B(u+1])/2) + (B(u+v)/2 - Bu) +,
and apply the result of Question (b) by taking
X = B(u+v)/2 - Bu and Y = Bv - B(quv)/g,
v—u

2
which shows that the distribution of B(y1v)/2 = ¥+ X given that B, = x

a?=p%=

and z=y—uz,

and B, = y is Gaussian N <I ; y v ; ) with mean
a2z y—x T4y . azﬁz v—u
T+ a2 + 32 =z + 7 =3 and variance m -

d) Four linear interpolations are displayed in Figure S.15.

Fig. S.15: Samples of linear interpolations.

e) Clearly, the statement is true for n = 0 because Zl(o) and B; have the
same N(0, 1) distribution. Next, assuming that it holds at the rank n, we
note that the terms appearing in the sequence

n+1 n+1 n+1 n+1 n+1
Z20) = (0,250, 2030 200 20 2.

can be written for any £k =0,1,...,2" — 1 as

s
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(n+1) (n+1)
Zy Z(

+
(n+1) k/2n+1 2k+42)/2n+1 — (n+1)
ooy Do e 3 FN(0,1/2F2)  Z3005 s

28 s + 230
- (n)  Zak/2ntt T L(2k)/2n i n+2) ()
= 2 5 +N(0,1/2"%2)  Z3 0 g

(n) (n)
B 70 A Zoyansr T Lioppayjant 1 7
=1 Lo 2 oma | Ay e

(S.4.18)

On the other hand, the result of Question (c) shows that given that
Boyjon+1 = x and B(apy2)/2n+1 =y, the distribution of Bapy1)/9n+1 is

N <B2k/zn+1 + Baktoy/ontt (2k +2)/2"T — (2k + 2)/2”+1>
2 ’ 4

B nt1 + B n 1
:N< 2h/2n 1 2(2’“*2)/2 - ) (S.4.19)

’ on+2

Given that Z(™ and B have same distribution, we conclude by com-
paring (S.4.18) and (S.4.19) that Z(+1) and Bt also have same dis-

tribution.
f) We have

P( sup 2" — 2" 2 ¢,
tel0,1]

o (n+1) (n)
- P( k:o,{r,l.?j)‘g'ﬂ—l |Z(2k+1>/2n+1 - Z(2k+l)/2n+l| > 577,)

(n+1) (n)
< U {12500 e — 25k el 2 0}
k=0,1,...,.2n—1
2" —1 ( )
n+1) (n
< Z P(|Z(2k+1)/2"+l = Zigpyry o] 2 n)
k=0
n+1 n
- ZWLP(\ZLQM): - Zi/%nﬂ\ >e,)
250+ 20,
=2"p | |z05H - % >e
g) Since
AR A
n+1 0 1/2n n
Z53ih = % +N(0,1/272) = 20 0+ N(0,1/27+2),
78
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we have

P ( sup 12 = 27| 2 en> < 2P(Z50 — 2l = &)
t€(0,

Zn + 2,
=2"P (|20} - % >en
=2"P (|N(0,1/2"2)| > &)

2n/2

<
T e V21

where we applied the bound of Question (a) to the Gaussian random
variable

2 gnt1
_577,2

Z(") + Z(")

n+1 o/2m 1/2m
AYASIR % ~ N(0,1/2"+2).

h) We have

Nad

ZP(”Z(n+1) _ Z(n)HoC > 2—71/4) _ Z[P < sup ‘Zt(n+1) _ an)‘ > En>

n>0 n>0 t€[0,1]
271,/2

<
"0 EnV 2T

1 14n/2
A
V27 S0

2 5nt1
—€5,2

since

3(n+1)/4,—21H(+1/2
. 2 ( )/ e _ 3/4 . 721«#%/2(\/571) o
lim ——————— 77— =2 lim e =0.
n—00 93n/4g—214n/ n—00

Hence the Borel-Cantelli lemma shows that
IP’(HZ<"+1) - Z(")Hoo > 274 for infinitely many n) =0,
therefore we have
1P>(||Z("+1) — Z s < 274 except for finitely many n) = 1.

i) The result of Question (h) shows that with probability one we have

lim [|Z® - Z@| = lim
,q—> 00 P.q—00

p—1
Z Zn+1) _ 7(n)
=q

P
oo
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p—1

< (n+1) _ ()

< Jm 3120 - 26

< li Zzm+D _ 70

< Jlim ; I |

=0,
hence the sequence (Z(">)n>0 is Cauchy in Cy([0, 1]) for the || - ||oc norm.
Since Cy([0,1]) is a complete space for the || - ||oo norm, this implies that,

with probability one, the sequence (Z(),,>¢ admits a limit in Co([0,1]).
j) 1. By construction we have Z(()") = 0 for all n € N, hence Z; =
lim,, 00 ZO") =0, almost surely.

2. The sample trajectories ¢ — Z; are continuous, because the limit Z
belongs to Cy([0, 1]) with probability 1.

3. The result of Question (e) shows that for any fixed m > 1, the sequences
Zfl - Ztr): Zt? - Zt17 e Ztm - Zt'm,—l

and
Btl _Bi4)7Bi2 _Btl""7Bt'm_ - Btm—l

have same distribution when the t} s are dyadic rationals of the form
ty = i,/2", k = 0,1,...,n. This property extends to any sequence
to,t1,...,tm of real numbers by approximation of each t;, > 0 by a
sequence (i )nen such that t = lim,_, 4,,/2" and taking the limit as
n tends to infinity.

4. By a similar argument as in the above point 3, one can show that for
any 0 < s < t, Z; — Zs has the Gaussian distribution N(0,¢ — s).

Problem 4.21

a) We have
E Q7] = Y B [(Biryn — Bu-yr/m)’]
k=1
(T T
=> <kﬁ — (k- ”Z)
k=1
=T, n>1.
b) We have
80
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n

E [( §Z1>)2] =E (Z(BkT/n - B(k—l)T/n)2>

k=1

Z (Bir/n — Ba—1yr/n)*(Birjn — Bu—1yrn)?
ki=1

n

= E[(Brr/n — Br-1yr/n)"]

k=1
+2 )" E[(Bir/n — Bu—nyr/n)’] E [(Biryn — Ba—1yr/m)’]
1<k<l<n
n
=3 (kT/n—(k—1)T/n)?
k=1
+2 )" (kT/n— (k= 1)T/n)(T/n — (1 - 1)T/n)
1<k<i<n
2 _ 2
= 3Ty ne- DT
n n
2
=T%+ 2, n>1,
hence
272
var [Q] = E[(@1)"] - (B[Y]) ==~ nz1L
¢) We have

QY = T[[3200) = B [(QF — EBIQY)?]
Var [Qgﬁ")}

2)T?
_ n(n +2 ) _ T2
n
_or
==
hence )
Jim [lQ7” - T2y = A —— =0,
showing that
Jim Q7 =
in L2(92).
d) We have
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n

1 n
> (Biryn = Bemtyrjn)Be—iyr/n = 5 Y Biayn = Bl vyrym
k=1 k=1

1 n
) Z(me — Be—1)1/n)(Brr/n — Bi—1)1/n)
k=1

1
= 5((3’1')2 - (Bo)?)
1 n
3 Z(BkT/n = Be—1yr/n)(Brr/m — Be—1)7/n)
=1
1 2 (n)
5((BT) -Qr’),

which converges to ((Br)? —T)/2 in L?(£2) as n tends to infinity, hence

’ BydB; = lim. " (Brr/n — Bk—1y1/n)Bk—1y1/n
0
k=1

_(Br)?-T
O

e) We have

E[QW] = Y B [(Bu-y2r/m — Bu-vyr/n)’]
k=1

M=

((k —1/2)T/n — (k — 1)T/n)

n>1.

|

Next, we have

n 2
E[(Q)] =F ( (Bik—1/2y1/n — B(kl)T/n)2>
k=1

n
=E Z (Be=1/27/n — Buem1yr/n)*(Biryn — Ba—1yr/n)*

k=1
= Z]E [(B—1/2)7/n — Buo—1yr/n)"]
k=1
+2 > E[(Bg1/ar/m — Bue-rm)’] B [(Ba-1/zyr/m — Ba-1yr/m)’]
1<k<i<n

82
https://personal.ntu.edu.sg/nprivault/indext.html June 17, 2024


https://personal.ntu.edu.sg/nprivault/indext.html

Introduction to Stochastic Finance with Market Examples, Second Edition

=3 ((k—1/2)T/n— (k- 1)T/n)?
k=1
+2 Y ((k=1/2)T/n— (k= 1)T/n)((l - 1/2)T/n — (I - 1)T/n)

1<k<i<n
T2 —1)T?
_ 3T n(n - T
4n 4n?
n(n+2)7?
= ez n > 1.

Finally, we find

10 — /2|22 = E [(QF — EIQY))?]

= Var [65(77)]

_ n(n+2)T? _ 22

T 4n? 4
T2

=50

hence
2

o) 2 o T
Jim Q7" = T/2[[72() = lim o— =0,

n—o0 2n

showing that

1!

im O —
50T =
in L2(92).
f) We have

n

Z (Berjn — B—1yr/n) Bi—1/2)7/n
k=1

= Z (Bir/n — Be—1/2)1/n) Bl—1/2)7/n
=1
n

+ Z (Be—1/2)7/n — Be—1y1/n) Blle—1/2)Tn
k=1
1 & 2 2
3 Z Biir/n = Ble—1/2)1/n
k=1
1 n
3 Z (Brr/n — Bi—1/27/n) (Ber/n — Bh—1/2)1/n)
k=1

+
M| =
(]

B(2k—1/2)T/n - B(zk—l)T/n

=
Il
—
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1
+5 2 (Bu-1/27/n = Bie—yr/n) (Bie—1/2y7/m = Bis-1yr/n)

1 171,

= §(BT)2 -3 Z (Bir/n — B—12)7/n) (Ber/n — Bk—1/2y1/n)
k=1

1 n
+5 Z (Bo=1/2)7/n = Biim1yr/n) (Bh—1/2)7/n — Bi—1y1/n)
k=1

which converges to ((Br)? — T +T)/2 = (Br)?/2 in L?(£2) as n tends to
infinity, hence

n

T . B 2
L ByodB; = lim kZl(BkT/n = Be—1)T/n)Bk—1/2)T/n = ( 2T) ,

see Section 2.4 of Mikosch (1998) for further details on the Stratonovich
integral.

g) We have

E Q7] = > B [(Bu-ayr/n — Bu-1yr/)’]

=Y (k= a)T/n— (k- 1)T/n)
k=1
= (1 — Oé)g, n>1.
Next, we have

n

2
E [(~¥l))2] =E (Z(B(k—a)T/n - B(k—l)T/n)2>

k=1

> (Be—ayr/n = Ba—1yr/n)*(Bira — Bu-1yr/n)’
k=1

n

Z [(Bir—ayr/n — Ba—1yryn)*]

+2 Y E[(Bg-ayr/n — Bo—1yr/n)*] B [(Bi—ayr/m — Bi—iyr/n)?]
1<k<i<n

=3 ((k—a)T/n— (k—1)T/n)
k=1

+2 Z (k—a)T/n—(k—1)T/n)((—a)T/n—(1—-1)T/n)

1<k<I<n
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T2 n(n —1)T?
=3(1-a)’—+(1-a)P?——"F"—
31-a2l e
yn(n+2)T?
—

=(l1-a)

n>1.
n

Finally we find

1Y — (1= a)T/2/220) = E[(QF —E[QW])%]

= Var [@4]
=(1- a)27n(n 222)T2 —(1—a)’T?
=2(1— a)zT—Z,

n
hence
= T2
Tim [|QF = (1= )Ty = (1—)* lim — =0.

n—oo N

Next, we have

Z BkT/n - k 1)T/n)B(k7a)T/n
k=1

n

_Z(BkT/n Bk—a)T/n)Bi— cx)T/n+Z (k—a)T/n = Be—1y1/n) Bk—a)T/n
k=1 k=1
n

1
Z BkT/n - k O)T/n T 5 Z(BkT/n = Br—ayr/n)(Brr/m — Bk—a)T/n)
k=1

T3 Z B(Zk—a)T/n - B(Qk:—l)T/n
k=1
n

1
T3 Z(B(k—a)T/n = Be—1)7/n)(Bk=a)1/n — Bk=1)7/n)
k=1

1 n
- 5 Z BkT/n - B(kfa)T/n)(BkT/n - B(kfa)T/n)
k=1

T35 Z(B(k—a)T/n = Be—1)1/n)(Bk—)1/n — Bk=1)1/n)>
k=1

which converges to

(Br)? —aT+(1—a)T _ (Br)*+ (1 —-2a)T
2 N 2
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in L%(§2) as n tends to infinity, hence

T " ) n
fo Biod"By = lim kz:(BkT/n = B—1y1/n)Bk—ayT/n
=1

(Br)? + (1 —2a)T
T B

In particular we find

T " (Br)*+T
0 . T
fo Biod By = 7}3& ;(BkT/n — Be—1yr/n)Brr/m = g

and we note that

T 1/ T T
JO BiodB, = ; (JO B.dB; + JO B, o dlBt> .

h) We have

86

k=1
— 72 g "D g, T
n—oo  2n? n—oo n
T2
=5

which does not depend on a € [0,1]< hence the stochastic phenomenon
of the previous questions does not occur when approximating the deter-

ministic integral JoT tdt = T?/2 by Riemann sums.

In quantitative finance we choose to use the Itd integral (which corre-

sponds to the choice a = 1) because it is suitable for the modeling of
market returns as

ds, S -5

?t ~ % = pAt + cAB; = pAt + (Byyar — Bi)o

t t

or

dSy ~ Spyar — Sp = uSt At + 05, ABy, = S At + 0 Sy (Birae — By),
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based on the value S; at the the left endpoint of the discretized time

interval [t,t + At].

Chapter 5

Exercise 5.1 For all x € R, we have

P(Sr <z) = ]P(SUBUBT+(”_U2/2)T <)

2
:P<UBT+<H*?>T<IOE;S>

cr{ors 2oz (%))

J(log(ﬂ"/so) (u— 02/2)T)/0 /ey
27T

flog(z/sn) (n— UZ/Z)T)/(U\F) _s2p dz
V2r

=2 (o (o5 - (- 3)7));

where - P
o) = (" e’yz/ziy, z e R,
(@) J*DO 27T

denotes the standard Gaussian cumulative distribution function. After differ-
entiation with respect to z, we find the lognormal probability density function

fa) = =
19} J‘(log(z/so) (n— 02/2)T)/0 —y2/(27) dy
= ox V2T

et ()0
)

_ L et Trosa/50)? (20°T)

xoV 21T
where 1
2
o(y) =9'(y) = \/T—WC vz, y ER,

denotes the standard Gaussian probability density function.

x>0,
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Exercise 5.2
a) We have

1 o?
——5(dS;)? = rdt + 0dB, — —dt, t>0.

1
dlog § = 5-dS, — 257 5

b) We have f(t) = f(0)e“ (continuous-time interest rate compounding), and
Sy = SpetBr—ott/2rt 4>

(geometric Brownian motion).
¢) Those quantities can be directly computed from the expression of S; as a
function of the A/(0,t) random variable B;. Namely, we have
E[S] = E [SoeaBpa%/zwt]
_ Soefo2t/2+rt E [eaBt]
— SUCN,
where we used the Gaussian moment generating function (MGF) formula,

i.e.
E [CUBL} — Cagt/2

for the normal random variable B; ~ N(0,t), t > 0. Similarly, we have
IE[S?] D) [Sge2oBt—a2t+2rt]

_ 5307021‘4»27% E [020Bl}

= S22 >0,
d) We note that from the stochastic differential equation
t t
Se=So+r | Sids+o | S.dB.,

the function u(t) := IE[S,;] satisfies the Ordinary Differential Equation

(ODE) v/(t) = ru(t) with u(0) = Sy and solution u(t) = E[S;] = Spe".

On the other hand, by the Itd formula we have

dS? = 28,dS; + (dSy)? = 2rS2dt + 02S2dt + 2052dB,;,
hence letting v(t) = IE [S?] and taking expectations on both sides of
2 a2, 0. (te2 2 (P a2, t 2
52 = 82 +2r jo S2du + o jo S2du + 20 jo S2dB,,

we find
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v(t) =B [S]
t
=824 (2r+0)E U sgdu] +20E U S2dB, }
0
2 2y (! 2
=S+ @2r+o )fo E [S2] du
t
=82+ (2r +0?) fo v(u)du,
hence v(t) := IE [S?] satisfies the ordinary differential equation
V(1) = (02 + 20,
with v(0) = S2 and solution
v(t) =B [57] = Sgel 2",
which recovers

Var[S] = E [S7] — (E[S])?
= v(t) — u?(t)

2
— Sge(ﬂ +2r)t 536271

= 82 (et — 1), t>0.

Exercise 5.3 Using the bivariate It formula (4.26), we find

of 0
45 v = 2 (5, vas, + a—f(st,mdyt
19%f 10 02
oL sy + ;s @+ L vas v

= Y s v+ os,am) + —f<st, ) (¥t + nYid¥)
o282 2 f PY2
9 6 (SL7 YL) 2

0?
on 2(SL Yy)dt + ponS, Yy —=— / (St, Yy)dt.

Oxdy

Exercise 5.4 Taking expectations on both sides of (5.24) shows that
T
E[Sr] = C(So,7.T) + E Uo ct,TdBt] = C(So,m,T),

hence

C(SU, r, T) = IE[ST]
— E[SnerT+aBT—02T/2]
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_ Soc"T"’sz E[e”57]
_ SoerT—JQT/2+172T/2
— S()CTT,
where we used the moment generating function
E[enBT] — e021‘/2
of the Gaussian random variable Br ~ N(0,T). On the other hand, the

discounted asset price X; := e~ "'S, satisfies dX; = oX;dB;, which shows
that

T
Xr = Xo + UL X,dB,;.

Multiplying both sides by ¢’” shows that
rT T rT rT T (T—t)r
Sp=eTSo+o [ eTXidB = So+0 [T S,dB,,

which recovers the relation C(So,r,T) = Spe'”, and shows that (;r =
aelT=978, t € [0,T].

Exercise 5.5

a) We have S; = f(X;), t > 0, where f(z) = Spe” and (X;)scr, is the Ito
process given by

t t
X; = fo osdBs + IU usds, t>0,
or in differential form
dXt = G'tdBt -+ utdt, t> 07
hence
dSy = df (Xy)
1
= f(Xy)dX, + gf//(Xt)(dXt)z
1
50
1
= SqueXtdt + SyoeXtdB, + §Sgatzex‘dt

= u f'(X)dt + or f'(X1)dBy + ~o2 f/(X,)dt

1
= uSydt + 0,5, dB; + EofStdt.

b) The process (S¢)¢cr, satisfies the stochastic differential equation
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1,
dSL =|w+ 50'3 Stdt + ULSLdBL‘

Exercise 5.6

a) We have IE[S;] = 1 because the expected value of the Itd stochastic integral
is zero by Relation (4.17) in Proposition 4.21. Regarding the variance,
using the It6 isometry (4.16), we have

2
Var[$;] = 0? E {(fot ef’Bs—azsﬂst)

= 0’E Uof ”B-:*”Qs/z)z ds}
L.
pe jt B[22 ds
=o? jt T E [€27P4] ds

t 2 2
= UZI e e *ds

(e
(e

2,
=02 | e %ds

b) Taking f(z) = logz, we have
dlog(Sy) = df (St)
= (S0 + 3"()(dS)?

1
_ Uf/(SL)CaBﬁa?L/det + ingu(st)cfzafh—a?tdt

2
— 1 aBt—U2t/2dB _ o 2UB¢—02tdf S.5.20
S,,e f 7251?6 2 (S.5.20)

¢) We check that letting Z; := e”Bf"’Qtﬂ, t > 0, we have
o2
log Z; = 0B; — d*t/2, and dlogZ; = 0dB; — ?dt‘
On the other hand, we also have

2 2
g ag 2 ag b 2
dB, — dt = eUB;—O’ t/QdB _ eZUBt—O' tdt
7ePt T Z tT 272 '
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showing by (S.5.20) that the equation
2
7 _ 9 oBi—0%t/2 0~ 20B,—o%t
dlog Z; = Z° 12dB, — 272 dt

is satisfied. By uniqueness of solutions to (S.5.20) we obtain
log S; = log Z; = 0 B; — 0%t/2,

and we conclude that S; = Z, = e?Be=o"t/2 ¢ > ().

Exercise 5.7

a) Leveraging with a factor 8 : 1 means that when the fund value is F}, the
amount &Sy = [F; is actually invested on the risky asset priced S;. In
this case, the fund value F} at time ¢ > 0 decomposes into the portfolio

F; F;
Fy = &St + Ay :ﬂfsz*(ﬁfl)fAu t >0,
¢ ¢

with ft = BFL/St and n = 7(5 - I)Ft/At, t> 0.
b) We have

dFt = ftng + 7]tdAt
—sbigs, st
= ﬂStdSt (B8 1)AtdAt
F
= B=LdS, — (3 — 1)rF,dt
Sy

= BF,(rdt + 0dBy) — (8 — 1)rEdt
= rFydt + foFydBy, t>0.

The above equation shows that the volatility So of the fund is 8 times
the volatility of the index. On the other hand, the risk-free rate r remains

the same.
¢) By Proposition 5.15 we have

F = FoCﬂUBLJr”’ﬁz"zt/2
= FO(CUBHr”/ﬁ—ﬁa?tn)ﬂ
= FO(eUBt+rt7¢72t/2—(1—1/ﬁ)rt7(3,1)02t/2)ﬁ
=F, (eUB‘+”_”2t/2)Be—(ﬁ—l)”—ﬁ(ﬁ—l)a?t/‘z
= (SperBrtri=o®t/2) P e (B-1yri=p(p=1)0%/2
= sfe—(B—l)vvt—5(5—1)02t/27 £>0.
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Exercise 5.8
a) For t € [0,7] and i = 1,2 we have
E (5] =B [s{er ot ot
— S((Ji)eutfo?t/‘z E [eongi)]
- S[(]i)eut—aft/ﬂtvft/?
= Séi)e”t.

b) For all t € [0,T] and ¢ = 1,2, we have

B [(8)7] = B (5§ emernwit ot
_ (S[(]i))262,ut—0‘ft E [ezn,wf”]

(S((Ji))202pt,faft+2zrft

_ (Séi))262yt+ﬂ?t7
hence
Var [s"] = B[(s")"] - (E [s{"])
_ (S[(Ji))262ut+a?t _ (S(()i))zeQ“t
= (S§7) et (e7it — 1), te[0,T], i=1,2.
¢) We have

Var [sz) — Sfl)} = Var [S,m] + Var [S,@] — 2Cov (Sgl), S,@)
with
E [S,ﬁl)St(z)} -E [S(()nséz)ezuumwf’Lnft/zwzwjzbagt/z}
_ S(()l)S[(JZ)eZut—a?t/Q—agt/Z]E [eolwt(l>+52W:2)]

1
_ Sél)S((JQ)QZ/Lth%t/Zfagf,/2 exp <§]E (o Wt(l) 4 ath(Q))ZD ,

with

E (oW + 02 W?)?’] = E[(0:W))?] +2E [0 W oo W] + E [(02W,”))]
oft + 2poioat + o3t

hence
E [St(l)st(z)} _ Sél)sé2)02ut+palagt’

and
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Cov (5, 5) = B [SV57] - [5] E [57] = 575 ctcrmiori—1),
and therefore

Var [St@) — St(l)]
= (Sél))ZeMt(e”?t -1)+ (S(()Q))zez“t(e"gt —-1)— 2Sé1)582)e2“t(ep”1”2t -1)
_ eQ;l,t((S((Jl))Zeaft + (S(()2>)Zea§t - QSél)SéZ)epmazt - (S(()Z) _ S(()l))Z).

Exercise 5.9 Letting X; := f(£)e”B:="t/2 and noting the relation
de?Bi="t/2 _ Uf(t)e"B*’UQt/QdBt, t>0,
see Proposition 5.15 and Relation (5.22) with u = 0, we have
dX, = "B 2 £ (1) dt + f(t)de Bt/
= 7B 2 P () dt 4 o f ()" P 2dB,
= ') Xidt + 0 X dB;

f@®)
= h(t)Xtdt + O'AXVLdBt7

hence 4 '
alogf(t) = 10 =

h(t),
which shows that
log f(t) = log (0) + f; h(s)ds,
and
X = f(t)e"B"”2‘/2
= f(0) exp <j0t h(s)ds + o B, — f’;t>

t o2
= Xgexp <fo h(s)ds + oB; — 72&) , t>0.

Exercise 5.10

a) We have
St, = BXt
=eXo 4 JAt useX*dBs + J,t veeXsds + l JAt uZeXeds
0o ° S0 Jo 0 2Jo ¢
t t 2
= %o 4 UIO eXSdBS + Vfo eXeds + % fo eXods
94
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=Sy +o jot SsdBs + Vjot Ssds + %2 f; Ssds.

b) Let 7 > 0. The process (S¢)icr, satisfies the stochastic differential equa-
tion
dSy = rSydt + 0S,dB,

when r = v + 02/2.
¢) We have
Var[X;] = Var[(Br — By)o] = 0? Var[Br — B)] = (T — t)o*, t€[0,T].

d) Let the process (Si)icr, be defined by S; = Spe?P+F¥¢ t > 0. Using the
time splitting decomposition

Sy = Stsl — S’te(BT—Bt)U-%—uT7
Sy

we have

P(Sp > K | Sy = ) = P(SyePr=Blot(T=0v i | 5, — 1)
= ]P(IO(BT*BL)U+(T*UV > K)
= P(ePr=B07 5 e~ (T=0v /)

Br — B, 1 o )
=P —L> ——log (Ke (T-9
<\/T7t ST o8 (Ke /7)

—1-® (102; (KCUE/T;“”/%)>
. (log (ch/i””/z))
B log(z/K) + vt

-0 (L),

where 7 =T —t.

Problem 5.11 (Exercise 4.19 continued).

a) The option payoff is (Br — K) at maturity.

b) We can ignore what happens between two crossings as every crossing resets
the portfolio to its state right before the previous crossing. Based on this,
It is clear that every of the four possible scenarios will lead to a portfolio
value (Br — K)* at maturity:

i) If Byp < 1 and By < 1 we issue the option for free and finish with an
empty portfolio and zero payoff.
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ii) If By < 1 and By > 1 we issue the option for free and finish with
one AUD and one SGD to refund, which yields the payoff By — 1 =
(Br—1)*.

iii) If By > 1 and Br < 1 we purchase one AUD and borrow one SGD
at the start, however the AUD will be sold and the SGD refunded
before maturity, resulting into an empty portfolio and zero payoft.

iv) If By > 1 and By > 1 we purchase one AUD and borrow one SGD
right before maturity, which yields the payoff By — 1 = (By — 1)™.

Therefore we are hedging the option in all cases. Note that P(By = K) =0
so the case By = 1 can be ignored with probability one.

Since the portfolio strategy is to hold AU$1 when B; > K and to and
borrow SG$1 when B; > K, we let

& = Lg,o0)(Br) and 1 := —1(k o0)(Bt), t € 0,77],

which is called a stop-loss/start-gain strategy.

ot
Noting that JO nsdAs = 0 because A; = Ay is constant, t € [0, 7], we find
by the Itd-Tanaka formula (4.48) that

13 t T
J, medAs+ [ &dBy = | L) (Bi)dB:
1
= (Br - K)* —(By - K)* — §£{§>T].
Question (d) shows that
-t t 1
(Br — K)* = (By — K)* + JO ned Ay + fO &dBs+ 5L .
i.e. the initial premium (By — K)* plus the sum of portfolio profits and
losses is not sufficient to cover the terminal payoff (By — K)*, and that

we fall short of this by the positive amount %L‘{gﬂ > 0. Therefore the
portfolio allocation (&;,7:)¢c(o,) is not self-financing.

Additional comments:

The stop-loss/start-gain strategy described here is difficult to implement in
practice because it would require infinitely many transactions when Brownian
motion crosses the level K, as illustrated in Figure S.16.
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+ ))\ .M.A.M,
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.5 1

-1 -0.5 o o
()b

Fig. S.16: Brownian crossings of level 1.*

The arbitrage-free price of the option can in fact be computed as the expected
discounted option payoff

= C—(T*L)T IE*[(BT _ K)+ |]:t]
— (Tt E*(Br — Bi +x — K)* | Filu=p,
= o (T-OrE* [(Br —Bi+x— K)ﬂz:B:

- - d
= e (T-0r foo (y+ B — K)+e’y2/<2<1 - N (;{ o)
— 00 T —
dy

—(r=tyr [ _ —y2/(2(T—1))
¢ IK—BL (y+ Bi = Ke (T — 1)
_ @ty [ —v2/er-n)__ W
= e ye ————

J‘K—Bz Y /27(T — 1)

+(By — K)o (T=0r [ om /(1) &y

- VaRT—1)

_ =Tty [ 22 dy
¢ f(K*Bc)/\/T*tye V2T
; dy
B, — K)e—@Tbr [~ 22 Y
+H(By = K)e I(K—Bt)/\/iT—te Vor
—(T—t)r oo
_ e [_6#/2}
V2T (K—By)/VT—t
B, — K
+(B; — K *<T*f>T¢< d )
(B = K)e T—1
e—(T—t)T

o (K=B?/(2(T~1))

Ve
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+(B; — K)e~ T8¢ <

= g(t7 BL)7

Bt7K>
Tt

where the function

e~ (T=t)r 2 r— K
L) = —(K—x)*/(2(T~t)) —K)e (T-0rg tel0,T
glt.) o= e +Ha-K)e —= ). telo),
solves the Black-Scholes heat equation
g dg 10%g
itx A —ZZ(t ) =
g (L) T 7 (62) + 5o (6 2)

with terminal condition g(T',z) = (z — K)*. The Delta gives the amount to
be invested in AUD at time ¢ and is given by

g
&= %(t By)
e—(T—t)r N

—(K_B ~(K=B)?*/(2(T—1)

( 2 (T —1)°

—(T—t)r
(B — K)ie—wt—m?/(zmm fe T g (Bt - K>
NeiED) T 1

_ Of(Tft)r@ Bt - K
(T—1)

= h’(t~ BL)7
with
r— K

h(t,z) == e~ T07® (
T—t

), te[0,7),

and h(T,z) = Lix,o0) (7).

“Ww v

o 0.1 0.2 0.3 0.4 o.5 o.6 0.7 o.8 0.9 1

Fig. S.17: Brownian path started at Bo > 1.
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o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fig. S.18: Risk-neutral pricing of the FX option by 7 (B¢) = g(t, Bt) vs stop-loss/start-
gain pricing.

Lk, ) (Be)
h(t,By)

o o.1 0.2 0.3 o.a o.s o.6 0.7 0.8 o.9 1

Fig. S.19: Delta hedging of the FX option by & = h(t, B;) vs the stop-loss/start-gain
strategy.

The “one or nothing” stop-loss/start-gain strategy is not self-financing be-
cause in practice there is an impossibility to buy/sell the AUD at exactly
SGD1.00 to the existence of an order book that generates a gap between
bid/ask prices as in the sample of Figure S.20 with 383.16964 < 384.07141.

Order Book (XBT/USD)
Buying Selling
[voume + | rrce S il veome
©0.868 $383.16964 $384.07141 6.0
1.731 $382.5001 $384.07142 3.6
1.942 $382.5 $384.93987 1.01
©0.020 $382.01074 $384.95984 1.0
9.175 $381.77' $384.95986 1.0
13.079 $380.79 $384.95988 1.01
2.220 $380.4864 $385.04889 20.352
22.736 $379.80742 $385.99981 21.723
0.115 $379.61141 $386.81846 22.145
21.804 $378.98301 $386.9714 0.02
8.320 $378.95708 $387.70357 19.811

Fig. S.20: Bitcoin XBT/USD order book.
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The existence of the order book will force buying and selling within a certain
range [K — e, K + €], typically resulting into selling lower than K = 1.00 and
buying higher than K = 1.00. This potentially results into a trading loss that
can be proportional to the time

L({tel0,T] : K—e< B, <K +¢})
spent by the exchange rate (B;)iepo, 7 within the range [K — ¢, K +¢].

The It6-Tanaka formula (4.48)
+ + r L.k
(Br — K)* = (By — K)* + jo Lixoo) (BB + 5L85 .

precisely shows that the trading loss equals half the local time ,C{éﬂ spent
by (Bt)iejo,r) at the level K. When ¢ is small we have

1 1
5£{5,T] ~ Eé({t €[0,T] : K—e< B, <K +¢}),
therefore the trading loss is proportional to the time spent by Brownian

motion (Bt)ier, within the interval (K — ¢, K + ¢), with proportionality
coefficient 1/(4¢).

o 005 o1 o1 02
Fig. S.21: Time spent by Brownian motion within the range (K — ¢, K + ¢).

More generally, one could show that there is no self-financing (buy and hold)
portfolio that can remain constant over time intervals, and that the self-
financing portfolio has to be constantly re-adjusted in time as illustrated
in Figure S.19. This invalidates the stop-loss/start-gain strategy as a self-
financing portfolio strategy.

Chapter 6

Exercise 6.1

100
https://personal.ntu.edu.sg/nprivault/indext.html June 17, 2024


https://personal.ntu.edu.sg/nprivault/indext.html

Introduction to Stochastic Finance with Market Examples, Second Edition

a) By the Ito formula, we have

dg dg 10%g
dVy = dg(t,B;) = E(t,Bt)dt + %(t,Bt)dBt + §ﬁ(t,Bt)dt‘ (S.6.21)
Consider a hedging portfolio with value V; = n;A; + & By, satisfying the
self-financing condition

dVy = mqidAy + §dB, = §dBy, > 0. (S.6.22)

By respective identification of the terms in dB; and dt in (S.6.21) and
(S.6.22) we get

0= @(t, By)dt +

- J(t, By,

1%
2 Oz
_ 9
&dBy = 67(15, By)dBy,
hence
10%g

dg
= E(t’Bt’) + iw(% By),

_ 9
&= a(tht)v

and

Jg
ot

197
— (t. Be) + J(tht%

0=
2 Oz

99
=—=(¢t,B
&t 81:( y Bi),
hence the function g(t,z) satisfies the heat equation

Jg
ot

—(t,z) + l@(t z), x>0, (8.6.23)

0= 2 002

with terminal condition g(T,x) = 22, and &; is given by the partial deriva-
tive

dg
== > 0.
Et az(t7Bt)7 t>0

b) In order to solve (S.6.23) we substitute a solution of the form g(t,z) =
22 + f(t) in to the partial differential equation, which yields 1+ f’(¢) = 0
with the terminal condition f(7") = 0. Therefore we have f(T'—t) = T —t,
and

g(t,z) =2>+ f(t) =2+ T —t, 0<t<T.
¢) By (6.3), we have
101
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0
& =&(B) = a—i(t,Bt) =2B, 0<t<T,

which recovers the value of §; found page 163 in the power option example.
We also have

mAy =mAo = g(t,By) — &By =T —t — B, 0<t<T.

Exercise 6.2 By the It6 formula, we have
dVy = dg(t, St) (S.6.24)

_dg g
-5 29(t,8,)dt + Bla — Sf)a

By respective identification of the terms in dB; and dt in (6.36) and (S.6.24)
we get

(t, S¢)dt + UZSt(,) 2(1& St)dt+a\/§ (t,S:)dB;.

rg(t, Sy)dt + B(a — Sp)&edt — r&pSydt

0y dg
= % 994, 8yt + Bla — St)a (t, Sp)dt + UZSta 2(1& Sy)dt,

o&i\/ StdBy =0 St%(t7st)d3m
hence

ra(t.5) + Bl — 806 165 = 2 (1.5 + o — 59 21,50 + 025,70 1.5,).

ot
99
& =5, (15,
and 99 o2
rg(t, Si) = 165, = o 94,8, + g%nd 91,5,
0
&= ag (t, Se)s
hence the function g(t, z) satisfies the PDE

rg(t,z) = g?(t x) +rrgg (t,z) + (r T—(f z), x>0,

and &, is given by the partial derivative

dg

Et:87

(t.S), t>o0.

Exercise 6.3
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a) Let V; := &St +n:A; denote the hedging portfolio value at time ¢ € [0, 7.
Since the dividend yield 4.5; per share is continuously reinvested in the
portfolio, the portfolio change dV; decomposes as

dVy = mdAy +&dS; 4+ 0&:Sdt
S———— N——

trading profit and loss dividend payout

ripArdt + & (1 — 0)Sidt + 0SydBy) + 66,8, dt

ropArdt + & (puSidt + 0S1dBy)

= rVidt + (1 — )& Sedt + 0€.51d By, t>0.

b) By Itd’s formula we have
dg(t, S¢) = (t Sp)dt + (p— 5)St (t Sy)dt

% dg
+7 252 o 2(t Sy)dt + oS, 22 (¢, 8,)dB,,

o0z

hence by identification of the terms in dB; and dt in the expressions of
dV; and dg(t, St), we get

13}
S = 89 (¢, S),
and we derive the Black-Scholes PDE with dividend
9y dg 1, ,9%
rg(t,x) = E(t,x) +(r— 6)1%(@@ +goe @(tx) (S.6.25)
¢) In order to solve (S.6.25) we note that, letting f(t,z) := e(T=9g(t, z) and
substituting g(t,2) = e~ (T=9% f(¢, z) into the PDE (S.6.25), we have
rpt) = of) + L ta) - 922 (1) + Lo 0L 1),

hence f(t,z) := eT="9g(t, x), satisfies the standard Black-Scholes PDE
with interest rate r — §, i.e. we have

_of of 1, ,0%f
(r=208)f(t,x) = E(t,w) +(r— 5)1%(@3@) + Pl (t, ),
with same terminal condition f(T,z) = g(T,z) = (z — K)*, hence we
have
f(t,z) =Bl(z, K,0,7 — 6, T — t)
= 2@ (d}(T — 1)) — Ke~"=DT=0¢(d% (T — 1)),
where 5o
BT — 1) = log(z/K)+ (r— 6 £0°/2)(T — t)A

oyl —1
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Consequently, the pricing function of the European call option with divi-
dend rate ¢ is

glt,z) =" T f (1, 2)
= e’(T’f’)‘SBl(ac7 K,o,r—0,T —t)
= 2e~T=p(d (T — 1)) — Ke ™ T=D"®(d’ (T - 1)), 0<t<T.

We also have

g(t,z) = Bl(xe’(T”’)‘s7 K,o,r, T — t)
= e’(Tft)‘sBl(x, KeT=9 5 v T — t), 0<t<T.

d) As in Proposition 6.4, we have

&= %(m S;) = e TP (d’ (T — 1)), 0<t<T.

Exercise 6.4

a) We check that g.(t,0) = 0, as when 2 = 0 we have d4 (T'—t) = d_(T—t) =
—oo for all t € [0,T). On the other hand, we have

+o00, x > K,
. = lmd (T — ) — K
th/n%dJr(T t) th/rr%d (T —1) 0, =z ,
—o0, < K,

which allows us to recover the boundary condition

9e(T, ) }gggc(t,x)

2P(+00) - KP(+o0) =0 — K, z>K

— :O’ =K :(IfK)+

K
2

|8

2P(—00) — KPH(—00) =0, r < K
at t = T. Regarding the Delta of the European call option, we find

P(+o0) =1, z>K

I
|
.
I
=

. 1
Jim &(d (T = 1) = | 2(0) = 5,
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see Figure 6.5. Similarly, we can check that

o2
+o0, >,
lim d_(T —t o?
Tgnoo 7( 7)7 0’ TZ?’
— r < 12
00, < 5
and limp_, o d4 (T — t) = 400, hence
lim Bl(z, K,o,r,T —t)
T— 00
=z lim ¢(d (T —t)) - lim (e"TI"®(d_(T —t)))
T—o0 T—o00
=z, t>0.

b) We check that g,(t,0) = Ke~(T=9" and g,(t,00) = 0 as when z = 0 we

have dy (T —t) = d_(T — t) = —oo and as x tends to infinity we have
di(T —t) =d_(T —t) = +oo for all ¢t € [0,T). On the other hand, we
have

KP(+o00) —axP(+o0) =K -z, <K

go(T,2) = =0, e=K o= (K-2)"

| =

il

2
KP(—00) — xP(—00) =0, x> K

at t = T. Regarding the Delta of the European put option, we find

P(—00) =0, x>K
~lim P(—d (T~ 1) = ¢ ~0(0) = =5, ==K

—P(+o0) =—1, 2 < K

see Figure 6.11. Similarly, we can check that
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+oo, >
Jmdm-n=o =7,

o
—o0, r<—_—,

and limp_, o d4 (T — t) = 400, hence

lim Bly(z, K,0,7,T —t) =0, t>0.
T—00

Exercise 6.5 (Exercise 3.14 continued).

a) Substituting g(z,t) = 22f(t) in (6.37), we find f'(t) = —(r + o2)f(t),
hence
F(t) = (0)em U = f(T)el T,
hence g(z,t) = f(T)z2e+o)(T=t) = z2e(r+o*)(T=1) dyue to the terminal
condition g(z,T) = z2.

b) We have & = %g(st,t) = 28,e(rHeT=0 ang

m= Ai (9(S0,t) — €50)

1 r+o? - rto? B
= (SR gsielret i)
2
B 7Sie(T72t)r+(T7t)”2’ te0,7].
Ap

Exercise 6.6
a) Counting approximately 46 days to maturity, we have

(r—o®/2)(T —t) + log(S:/K)

oVT —t
~(0.04377 — (0.9)2/2)(46/365) + log(17.2/36.08)
- 0.91/46/365

d_(T —t) =

= —2.461179058,

and
di (T —t)=d_(T —t) +0.94/46/365 = —2.14167602.

From the standard Gaussian cumulative distribution table we get

B(do (T — 1)) = $(—2.14) = 0.0161098
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b)

o
=

June 17, 2024

and
P(d_(T —t)) = ¢(—2.46) = 0.00692406,

hence

F(t,S1) = Si®(d (T — ) — Ke™T="d(d_(T — 1))
=17.2 x 0.0161098 — 36.08 x ¢~ 0-04377x46/365 () 00692406
= HKS$ 0.028642744.

For comparison, running the corresponding Black-Scholes ‘R script of Fig-
ure 6.20 yields

BSCall(17.2,36.08,0.04377,46/365, 0.9) = 0.02864235.
We have

= %(t, S4) = B(dy (T — 1)) = $(—2.14) = 0.0161098,  (S.6.26)

hence one should only hold a fractional quantity equal to 16.10 units in
the risky asset in order to hedge 1000 such call options when o = 0.90.
From the curve it turns out that when f(t,S;) = 10 x 0.023 = HK$ 0.23,
the volatility o is approximately equal to o = 122%.

This approximate value of implied volatility can be found under the col-
umn “Implied Volatility (IV.)” on this set of market data from the Hong
Kong Stock Exchange:

Updated: 6 November 2008

Basic Data
DW Issuer UL Call DW Listing  Maturity Strike Entitle-
Code ™ /Put Type (D-M-Y) (D-M-Y) ¢&%  ment
vy ik Ratio”
01897 FB 00066 Call Standard 18-12-2007 23-12-2008 36.08 10
Market Data

Total 0/S Delta IV. Day Day Closing T/0 uL
Issue (%) (%) (%) High Low Price # ('000) Price
size O O D () (9) (%) (%)

138,000,000 16.43 0.780 125.375 0.000 0.000 0.023 0 17.200

Fig. S.22: Market data for the warrant #01897 on the MTR Corporation.
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Remark: a typical value for the volatility in standard market conditions
would be around 20%. The observed volatility value o = 1.22 per year is
actually quite high.

Exercise 6.7

a) We find h(z) =2 — K.
b) Letting g(¢,x), the PDE rewrites as

(x — a(t))r = —d(t) +rz,
hence a(t) = a(0)e™ and g(t,z) = x — a(0)e™. The final condition
g(T,z)=h(z)=2- K

yields a(0) = Ke™™" and g(t,z) = x — Ke~ (=",
¢) We have
9g
=_—=(t,5) =1,
& 3.10( 5 t) ,
hence

— — — Ke(T=t)r _
= Vi — &S _ g(t, S) — S, _ Sy — Ke Sy — _Ke T,
Ay Ay Ay

Note that we could also have directly used the identification

Vi =g(Sit) =S — Ke ™" =5, — Ke T A, = &S, + m Ay,

which immediately yields & =1 and 7, = —Ke "7

d) It suffices to take K = 0, which shows that ¢(¢,z) =z, §& =1 and n, = 0.

Exercise 6.8
a) We develop two approaches.

(i) By financial intuition. We need to replicate a fixed amount of $1 at
maturity 7', without risk. For this there is no need to invest in the
stock. Simply invest g(t,S) := e~ (T=9" at time ¢ € [0,7] and at
maturity T you will have g(T, S) = eT=97g(t, S;) = $1.

(ii) By analysis and the Black-Scholes PDE. Given the hint, we try plug-
ging a solution of the form g(t,z) = f(¢), not depending on the vari-
able z, into the Black-Scholes PDE (6.38). Given that here we have

dg B 0%g
%(tam) =0, 922

we find that the Black-Scholes PDE reduces to rf(t) = f/(¢) with
the terminal condition f(T') = g¢(T,z) = 1. This equation has

(a)=0, and  Dta) =)
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for solution f(t) = e~ (T=%" and this is also the unique solution
g(t,z) = f(t) = e=(T=Y" of the Black-Scholes PDE (6.38) with ter-
minal condition g(T,z) = 1.

b) We develop two approaches.

(i) By financial intuition. Since the terminal payoff $1 is risk-free we do
not need to invest in the risky asset, hence we should keep & = 0.
Our portfolio value at time ¢ becomes

Vi=g(t,S) = eI = ¢S, + Ay = Ay

with A, = e", so that we find 7, = e~"T, ¢ € [0,T]. This portfolio
strategy remains constant over time, hence it is clearly self-financing.

(ii) By analysis. The Black-Scholes theory of Proposition 6.1 tells us that

~ 99, oy
gt = Bx(fT) - 07

and
Vi = &S Vi e (T-Hr

N = = — = =e

Ay Ay ert

Exercise 6.9 Log contracts.

a) Substituting the function g(z,t) := f(t) + logz in the PDE (6.39), we

have )
, o
0=7f (f) +7r— o
hence )
=10~ (=5 ).

2
with f(0) = (7’7 %) T in order to match the terminal condition

g(x,T) := logz, hence we have

>(T7t)+logx, x> 0.

g(xz,t) = <r7 %2

b) Substituting the function
o2
h(z,t) == u(t)g(z,t) = u(t) ((r — 7) (T —t) +log x)

in the PDE (6.39), we find v (t) = ru(t), hence u(t) = u(0)e" = e~ (T=t)7
with «(T') = 1, and we conclude to
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h(z,t) = u(t)g(z,t) = e~ TO7 <<r - %2> (T —t) +log x) ,

x> 0,te0,T]
¢) We have
on b
= —(t, = <t<T
& =5 (t,5) 5 0 0<t<T
and

N = Ait(h(t; S,) = &St)

e—T'T 0.2
=4 <<r7 7) (T7t)+10g9671>7

Exercise 6.10 Binary options.
a) From Proposition 6.1, the function Cy(¢, z) solves the Black-Scholes PDE
0Cy 1 5 ,0%Cy

aC,
rCqy(t,z) = a—td(t,x) + rxg(t,x) T30t 5 (t, ),

Cd(Tvx) = ]I[Koo)(x)
b) We can check by direct differentiation that the Black-Scholes PDE is

satisfied by the function Cy(t,x), together with the terminal condition
Cy(T, ) = 1[k,00)(x) as t tends to T

Exercise 6.11

a) By (4.35) we have
_ o ot b (t—s)a
St = Soe + 0 [ et=dB,.

b) By the self-financing condition (5.8) we have

dVy = md Ay + £dS;
= rngArdt + @& Sidt + 0&:dBy
= rVidt + (o — 1)&Sedt + 0&4d By, (S.6.27)

t > 0. Rewriting (6.41) under the form of an It process
t 13
S, =S+ JO veds + jo ugdBs, t>0,
with
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ur =0, and v =aS, t>0,

the application of It8’s formula Theorem 4.24 to V; = C(¢, S;) shows that

dC(t, 5)) 7vf‘;c(t St)dt-&-ufgc

aC
+67(t’ Sy)dt + *\U:\Qﬁ(tv St)dt

2

(t. 8,)dB;

c ac
S5 (&, S)dt + 0 5= (t,S,)dB.
(S.6.28)

Identifying the terms in dB; and dt in (S.6.27) and (S.6.28) above, we get

ocC oC 0% 9%C
rC(t,S;) = E(t,St) +7'Sta(t,5’t) = o (t,St),
ocC
&= %(tyst%

hence the function C(¢, z) satisfies the usual Black-Scholes PDE

rC(t,x) = Baf(t L)+r1—(t 1)+1 zgf(t) z>0, 0<t<T,
(S.6.29)
with the terminal condition C(T,z) = e*, z > 0.

Based on (6.42), we compute

N

%f(t, ) = (r T ah'(t) + %h(t)h’(t)) C(t,z),
ac

%(t,w) = h(t)C(t,x)

02C )

gz (h2) = (h(1)°C(t, ),

hence the substitution of (6.42) into the Black-Scholes PDE (S.6.29) yields
the ordinary differential equation

2 2
o () + ;—h’(t)h(t) + rah(t) + %(h(t))z =0, >0, 0<t<T,
r
which reduces to the ordinary differential equation h'(t) 4+ rh(t) = 0 with

terminal condition A(T) = 1 and solution h(t) = (=97 t € [0, T], which
yields

2
O(t,z) = exp (—(T —t)r + zeT=07 4 %(eﬂT-W - 1)) .
T
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d) We have

ac _ 2 i
& = E(t,st) = exp (StC(T Oy %(OZ(T Or _ 1)) .

Exercise 6.12
a) Noting that ¢(z) = &'(2) = (27)~1/2e=*"/2, we have the

%(5, d) = Sp(d+oVT) — Ke ™ p(d)

_ S larovr) 2 K o a2

V2T V2T
_ S e—d2/2—aﬁd—a2T/2_ K e—rTe—d2/2
V2T V2 ’

hence the vanishing of %(5, d.(S)) at d = d.(S) yields

S K
e—dZ(S)/2—a\/Td*(S)—02T/2 _ e—rTe—df(s)/z -0,

V2 V2
1 K T — 02T/2
i.e. do(S) = 08(S5/K) +\/TT T/ . We can also check that

o

h O (5 —(as)4ovT) 2 _ K o _a2(s))2

o 59 = 55 (ﬁ B )
S 2 K 2

= —(d.(S) + ovVT) 2= —(d.(5)+0vT) 2y K §)erTe )2

(d.(8) +oVT) e a8 e

K

d,(S)e T —d2(8)/2

= —(d(S) + J\/T) LQe’TTefdi(S)/2 +
V2r

K 2
= —oVT—=cTe /2 <
7 V2T ’

hence the function d — h(S,d) := SP(d + U\/T) — Ke™"T¢(d) admits a
mazimum at d = d,(S), and

h(S, du(S)) = SB(d.(S) + oVT) — Ke "' d(d.(S))

_ log(S/K) + (r+a°/2)T\ . _, log(S/K) + (r — 02/2)T
B S ) R G ey

is the Black-Scholes call option price.
b) Since %(S, d.(S)) =0, we find

Oh

d
A= Eh(& d(9)) = 35

(S,d.(5)) + d;(S)%(S, d.(5))
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= B(d(S) + oVT) =& <1og(S/K) +rT+ UQT/2> .

oVT

Exercise 6.13

a) When o > 0 we have

‘?)“l’; = 2@ (d (T — t))%@(T —t) — Ke= T/ (d_(T — t))a—id,(T —1)
=2¢'(d (T — t))a%d+(T —t)
—Ke=T=07¢/ (4, (T — t))elT—Hr+los(=/ K>%d,(T —t)
— o® (A (T — t))%(dJr(T ) d (T 1)
= o8 (A (T~ 1) (VT )

VT =t (dy (T — 1)),
where we used the fact that
1 2
& (d_(T —t)) = ——e (@-(T-0)7/2
(-1 1) = =

1
= —e
V2

— (d+(T _ t))C(T—t)y'Jr]og(z/K)A

(d—(T—1))? /2+(T—t)r+log(z/K)

Relation (6.43) can be obtained from the equalities

(d(T = 1)) = (d_(T —1))°
= (d4(T =) +d(T — 1)) (d+(T —t) —d—(T — 1))
=2r(T —t) +2log %

Due to the call-put parity relation (6.23), the Black-Scholes call and put
Vega are identical, i.e.

8913 99 /
— == =aVT —tP'(ds (T —1)).
oo a0 °* (d( )
The Black-Scholes European call and put prices are increasing functions
of the volatility parameter o > 0.
b) We have

09c
or

=2 (d (T — t))%@(T — 1) — Ke=T=97¢/ (d_(T — t))%d, (T —1t)

113
June 17, 2024 https://personal.ntu.edu.sg/nprivault/indext.html


https://personal.ntu.edu.sg/nprivault/indext.html

Solutions Manual

+(T = t)Ke~T=D"g(d_(T — 1))
= 0@ (A (T 1)) 2y (7 1)

—Ke T/ (d, (T — t))e(T— 1) +log(=/ ) %d_(T —1)

T —t)Ke " T=Y"¢(d_(T —t))

= 2 (d, (T — t))g(d+(T —t)—d_(T —t)) + (T — ) Ke"T=I"®(d_(T — 1))
= @' (dy (T — D)5, ( VT —t) + (T — t)Ke~"=070(d_(T — t))
= (T —t)Ke TV qﬁ(d,(T —1)),
where we used the fact that

1 2
F(d_(T — 1)) = ——e - (T-0)*/2
V2r

L (o (1) /2T t)r-Hlog(a/ K)
V2T
_ @,(d+ (T _ t))O(T—t)rHog(z/K) .

The same relationship is used to simplify the formulas of the Black-Scholes
Delta and Vega. We note that the Black-Scholes European call price is an
increasing function of the interest rate parameter r.

Regarding put option prices gp(t,«), the call-put parity relation (6.23)
yields

% = 6—7( —(z— Ke’T(T”’)))
= (T —t)Ke ™ T=9"®(d_(T —t)) — (T — t) Ke "(T—1
= (T —t)Ke ™ T=9(@(d_(T —t)) — 1)
= —(T-t)Ke " T=V"¢(—d_(T —t)),

therefore the Black-Scholes European call price is a decreasing function
of the interest rate parameter r.

Exercise 6.14
a) Given that

*77"N_GN71 *7(7]\]—1”]\771
pr=—"—=- and ¢=—"—""""=7°,
by —an 2 by —an 2

Relation (3.14) reads
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(ta) = %E(t + TN, 2(1 + +T/N)(1 — o /T/N))
+%T)(t +T/N,z(1+rT/N)(1+0+/T/N)).

After letting AT := T/N and applying Taylor’s formula at the second
order we obtain

(v(t+AT z(1+rAT — oV AT)) —4(t,2))

T2

+%( (t+AT z(1 +T‘AT+U\/E)) —9(t,z)) + o(AT)
% ( (t I)“rl(TAT*O' AT)—(t x)
+%(TAT70 AT) o 2(t z) +o(AT)>

+% < (t x) +:L‘(7”AT+0‘\/E) ( x)

%(TATJrU\/i)Za U(t z) + o(AT)) + o(AT)

—ar®

oo z2 20%0
pr (t,z) + rxAT%(t,x) + ?(U AT) @(t7 z) + o(AT),
which shows that
v o7 ,? T, | o(AT)
dt(t:r)Jrrxd (t,z)+=x ?ﬁ(’ ) ——AT

hence as N tends to infinity (or as AT tends to 0) we find*

v v o ,0%
0= alg(tx)erva (tx)Jr— az(tl)
showing that the function v(t,z) := eT~1"%(t, x) solves the classical
Black-Scholes PDE

2
ro(t,z) = 81)(t x)+ uca—(t )+ — (T 26 Y

- S (t)

b) Similarly, we have

v(t,(1+bn)z) —v(t, (1 +an)z)
z(by —an)

6@ =

* The notation o(AT) is used to represent any function of AT such that
limar—0 0(AT) /AT = 0.
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v (t, (1+r/N)(1+ odT/N)x) —v (t, (1+7/N)(1— o\/T/N)x)
B 2x(1+1/N)o\/T/N

- %(t@%

as N tends to infinity.

Problem 6.15

a) When the risk-free rate is r = 0 the two possible returns are (5 —4)/4 =
25% and (2 —4)/4 = —50%. Under the risk-neutral probability measure
given by P*(S; =5) = (4—2)/(5—2) =2/3 and P*(S; =2) = (5—4)/(5—
2) = 1/3 the expected return is 2 x 25%/3 — 50%/3 = 0%. In general the
expected return can be shown to be equal to the risk-free rate r.

The two possible returns become (3x5—4—2x4)/4 = 75% and (3x2—4—
2 x 4)/4 = —150%. Under the risk-neutral probability measure given by
P*(S1 =5)=(4-2)/(5—2) =2/3and P*(S1 =2) = (5—4)/(5—-2) =1/3
the expected return is 2x75%/3—150%/3 = 0%. Similarly to Question (a),
the expected return can be shown to be equal to the risk-free rate » when
r 0.

We decompose the amount F} invested in one unit of the fund as

b

=

N

C
F= ph - (B-1)F,
———

Purchased/sold  Borrowed/saved

meaning that we invest the amount SF; in the risky asset S;, and bor-
row/save the amount —(3 — 1)F; from/on the saving account.
d) We have

F;
=&6Si+ A = ﬁgtst (6 - 1) At7 t>0,
t

with & = F;/S; and s = —(8 — 1)F /A, t > 0.

e) We have
dFy = §dS; + nyd Ay
= ﬁBdSt — (8- 1)—dAt
St
Fy
= ﬁs—dS,, (B=1)rFdt (S.6.30)
t

= BF(rdt + odBy;) — (8 — 1)rFydt
= rFdt+ o F;dBy, t>0.

By (S.6.30), the return of the fund F; is 8 times the return of the risky
asset Sy, up to the cost of borrowing (8 — 1)r per unit of time.
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f) The discounted fund value (e7"*F});cr, is a martingale under the risk-
neutral probability measure P* as we have

d(e " F) = foe " FydB;, t>0.

g) We have
F, = FOOﬁUBg+'r't—[3202t/2
and 5
Stﬁ _ (SoeoBHrrtfozt/Z) _ FoeﬁaB,+ﬁrt—Bozt/27
hence

F = Stﬁe*(5*1)?“75*/3(5*1)172i/27 t>0.

Note that when 8 = 0 we have F; = e™, i.e. in this case the fund F}
coincides with the money market account.
h) We have

e~ T B [(Fr — K)* | F)
B log(Fo/K) + (r + %% /2)(T — 1)
=he < |BlovT —t )
ket (108(F/EK) + (r — 820 /2)(T ~ 1)
Kertre ( BlovT —1 > ’

tel0,T).
i) We have
& (log(Ft/K) + (r+ §%0%/2)(T - t))
|BlovT —t
o <log(5fe(51>”5(51)"2t/2 JK) + (r + 8202/2)(T — t))

|BloVT —t

_ g 10805/ /K) — (8~ V)rt = (5 = )o*t/2 + (r+ 5?0 /2)(T ~ t))

BlovT —t
0 (log(StH [(KelB-UrT—(T/2-0(-D8%)) 4 (T — ¢)Br 4 (T — t) o /2>
BlovT —t
& (log(Sr,/Ks(t)) +(r+0?/2)(T - t))
ovVT -1 '
if 8> 0, with Kp(t) := K1/8e(B-10T/8=(T/2-)0%)

j) When 8 < 0 we find that the Delta of the call option on Fr with strike
price K is

0<t<T,
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® <1Og(Fz/K) +(r+p20%/2)(T - t))

BlovT 1
_ 5 [ 108(S/Kp) + (T —)Br + (T —t)B0°/2
|BlovT —t
_ o los(St/Ks(0) + (r + 0%/2)(T ~ 1)
= ( T ) , 0<t<T,

which coincides, up to a negative sign, with the Delta of the put option
on Sy with strike price Ky (t) := K/Pe(f—1N0T/5-(T/2= t)o?)

Chapter 7

Exercise 7.1 (Exercise 6.1 continued). Since r = 0 we have P = P* and

tBt)— *[BE | F)

E* [(Br — Bi+ By)* | i)
7]E*[(BTth+x ]JE B
=E" [(Br — B)* + 22(Br — By) +2°] _p,
= E* [(Br - B:)?] + 22 E*[By — B/] + B?
=B?4+T—t, 0<t<T,

B

hence &, is given by the partial derivative

Et:ggtBt)72Bt 0<t<T,
with
_g(t,By) — By
L
0
_ B}+(T—-t)—2B}
= S
_ _ 2
(C-0-B
A

Exercise 7.2 Since Br ~ N(0,T), we have

E[$(S1)] = I [¢(Spe?BrHr=o/2T)]
1 00 2 5
= \/?Jioo ¢(Soe<ry+(r—n /2)T)e—y /(QT)dy
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1 s 2 2 2y d
— (]5(1')87((0 /2—7r)T+logx)*/(20°T) &
Jif .
= j z)g(z)dz,

under the change of variable

T = S'geg'”(r"’z/QW7 with dx = USoe"y“T’””Q)Tdy = oxdy,

i.e.
279 _
_ (62/2 —r)T + log(x/So) and dy = @7
a axr
where
L —((e*/2-")T+log(x/50))* /(20°T)

9(z) = ———

@) oV 2ro2T

is the lognormal probability density function with location parameter (r —
02/2)T +log Sy and scale parameter ov/T.

Exercise 7.3

a) By the Ito formula, we have
dSP = pSP~tds, + ( )s” 245, « dS,
= pSP (rSudt + 0S1dB;) + 2 (p PP =1) 6p2(,.6, 41 4+ #S,dBy) - (rSydt + oS,dBy)
= prS¥dt + opSPdB; + o> ( 1) SPat
= (pT‘ + UQ@) SPdt + opSYdB,.

b) By the Girsanov Theorem 7.3, letting

sim L (- w20,

the drifted process
B,:=B,+vt, 0<t<T,

is a standard (centered) Brownian motion under the probability measure
Q defined by

dQ(w) = exp <—VBT - %T) dP(w).

Therefore, the differential of (S7)¢cr, can be written as
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-1
sy — (p?” + 02%) SPdt + opSPdB,
= (r + pov) SYdt + opSYdB,
= rSPdt + opS?(dB; + vdt)
rSPdt + opSPdB,,

hence the discounted process S; := e TSP satisfies dS; = opS,dB;, and
(St)ter, is a martingale under the probability measure Q.

Exercise 7.4 We have

E*[¢(pSt, + ¢51,)] < E*[pd(St,) + 96(ST,)] since ¢ is convex,
=pE"[¢(S1,)] + ¢ E"[¢(S1,)]
=pE*[¢(E*[St, | Fr.))] + ¢ E* [¢(S1,)] because (St)ier, is a martingale,

<pE[E*[¢(S,) | Fr]] + ¢ E"[6(ST,)] by Jensen’s inequality,
=pE"[¢(S1,)] + ¢ E"[$(S1,)] by the tower property,
=E"[¢(ST,)], because p+¢q =1,

see Exercise 13.7 for an extension to arbitrary summations.

Remark: This kind of technique can provide an upper price estimate from
Black-Scholes when the actual option price is difficult to compute: here the
closed-form computation would involve a double integration of the form

E*[¢(pSt, + ¢S7,)] = E* [¢ (psoeaBTl—ole/Z + qSUeaBT2—02T2/2)}
B [(;5 (SoeoBTlfaﬁn/z (p+ qe<BT2meo—(Tz—Tl)n?/Z))}

_ % Jf; J:c & (Soeazfazn/z <p n qeg%(TrTl;UZ/z))
e/ (T~ 2y -my)) 4Ty

V(T — Ty)
dxdy

VTi(To — T1)
1

2 L(w)ew ¢ Speo (p+gery—(T2=T1)o%/2) > Koo T1/2)
(SUCarfaZTl/Q(p+qcay—(T2—T1)(72/2) - K)

e’/ (T~ (-1 __drdy

VTi(To = T1)

Xe—.’nz/(QTl )=y (2(T2—T1))
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Exercise 7.5

a) The European call option price C(K) := e™"T IE*[(Sy — K)*] decreases
with the strike price K, because the option payoff (St — K)* decreases
and the expectation operator preserves the ordering of random variables.

b) The European put option price C(K) := e~"T E*[(K — Sr)*] increases
with the strike price K, because the option payoff (K — S7)" increases
and the expectation operator preserves the ordering of random variables.

Exercise 7.6

a) Using Jensen’s inequality and the martingale property of the discounted
asset price process (e7"S;);er, under the risk-neutral probability mea-
sure P*, we have

e—(T—t)r E* [(ST _ K)+ |]'—t] 2 e—(T—t)r(]E*[ST _K ‘ ]:t])+
— o (T=t)r (e(T—t)rSt _ K)+
= (S — Ke™™9")"  0<t<T.

Black-Scholes European call price
Lower bound

100
Underlying (Hks) 80 =

20 15
Time to maturity T-t

Fig. S.23: Lower bound vs Black-Scholes call price.
In terms of the break-even price defined as
BEP, := K + ¢~ T=9"E*[(Sp — K)t | F,
we obtain the bound
BEP; > K + (S, — Ke~(T=97) ",
b) Similarly, by Jensen’s inequality and the martingale property, we find

e—(T—t)r ]E*[(K _ ST)+ |-7'—t] Z e—(T—t)r(]E*[K _ ST ‘ ]:t])+
— e—(T—t)r (K _ e(T—t)rSt)+
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= (Ke ™97 —5)" o0o<t<T

Black-Scholes European put price
Lower bound

Underlying (HK$)
80

1o -
Time to maturity T-t

20

Fig. S.24: Lower bound vs Black-Scholes put option price.

We may also use the fact that a convex function of the martingale
(e"St)ter , under the risk-neutral probability measure P* is a submartingale,
showing that

ert E*[(e—rTK _ e—TTST)Jr | ]:f] > ert(e—rTK _ e—rtSt)+
= (KT —8)", 0<t<T.

In terms of the break-even price defined as
BEP; := K — e =9 E*[(Sr — K)* | Fil,
we obtain the bound

BEP, < K — (Ke (™07 —5,)".

Exercise 7.7

a)

(i) The bull spread option can be realized by purchasing one European
call option with strike price Ky and by short selling (or issuing) one
European call option with strike price Ks, because the bull spread
payoff function can be written as

T (z— K1)" — (z — Ky)T.

see https://optioncreator.com/st3ce7z.
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150
(x-Kq)*
-(x-K3)*
100 -
50 -
o
L) L)
' '
50 ] s ] )
o 100 50 200
K1 o ®S

(=)o)

Fig. S.25: Bull spread option as a combination of call and put options.*

(ii) The bear spread option can be realized by purchasing one European
put option with strike price Ky and by short selling (or issuing) one
European put option with strike price K, because the bear spread
payoff function can be written as

rr— — (K —2)T + (K — )7,

see https://optioncreator.com/stmomsb.

“(Ky-x)+
(Kz-x)*
100 - -
50 -
(o0 o T
' '
' '
50 1 L 1 o
o 50 100 150 200
Ky s K2

(=)o)

Fig. S.26: Bear spread option as a combination of call and put options.

b) (i) The bull spread option can be priced at time ¢ € [0,T) using the
Black-Scholes formula as

* The animation works in Acrobat Reader on the entire pdf file.
 The animation works in Acrobat Reader on the entire pdf file.
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BI(S;, K1,0,7,T —t) — BI(St, Ko, 0,7, T — t).

(ii) The bear spread option can be priced at time ¢ € [0,T) using the
Black-Scholes formula as

BI(S,, Ka,0,7,T —t) — BI(S,, K1, 0,7, T — t).

Exercise 7.8

a) The payoff of the long box spread option is given in terms of K, and K»
as

(2—K1) T —(K1—2) " —(2—K2) " +(Ka—2)" = 2— K1 —(2—K>3) = Ko— K.

b) By standard absence of arbitrage, the long box spread option payoff is
priced (K3 — K1)/(1 4 r)Y~F at times k =0,1,..., N.

¢) From Table S.6 below, we check that the strike prices suitable for a long
box spread option on the Hang Seng Index (HSI) are K; = 25,000 and
Ko = 25,200.

Basic Data Market Data

|Standard| 12-11-2020|28-05-2021 -[24600f 100 400,000,000 5.11|(0.001)[33.268|
17535] UB |HSI| Put [Standard|13-11-2020|28-05-2021 -[24600] 10000]300,000,000[22.07[(0.001)[29.507]  HKD|0.025/0.017] 0.023] 132]
17589] CS |HSI| Put [Standard|13-11-2020|28-05-2021 9500[425,000,000] 8.61/(0.001)[30.838]  HKD|0.033]0.028] 0.033] 80|
18242 UB_ |HSI| Put [Standard|19-11-2020[28-05-2021 9500[300,000,000[18.51((0.001)[29.028]  HKD|0.030/0.023] 0.029| 265|

18606 SG |HSI| Put 11-2020|29-06-2021 10000{300,000,000| 8.01(0.002)[30.968| HKD|0.054/0.042| 0.053] 459
19399| HT [HSI| Put 1 1 10000[400,000,000] 0.06{(0.002)[32.190| HKD|0.000[0.000]  0.061 0l
19485 Bl [HSI[ Put 12 1 10000[150,000,000[21.41((0.002)[28.154] _ HKD|0.0440.037]_0.044] 59|
22857 VT |HsI[Put 2-202 2021 8000| 80,000,000[22.45{(0.002)[30.90: HKD|0.065(0.043] 0.0641,165|
26601 BI |HsI[Call 12 2021 11000[150,000,000] 0.00[ 0.018[25.347]  HKD|0.390[0.360 0.370| 84|
[27489] BP |Hsl| Call [Standard|18-09-2020[29-06-2021 7500 80,000,000] 2.95[ 0.009[28.392  HKD|0.590[0.540] _0.540] 6
28231] HS [HSI|Call [Standard| 1 7500[200,000,000 0.00 0. 012T24 897| HKD|0.000|0.000] 0.570] 0]

Table S.6: Call and put options on the Hang Seng Index (HSI).

d) Based on the data provided, we note that the long box spread can be
realized in two ways.

i) Using the put option issued by BI (BOCI Asia Ltd.) at 0.044.

In this case, the box spread option represents a short position priced
0.540 x7,500 —0.064 x8,000 —0.370 x11,000 +0.044 x10,000 = —92
~—~— —— —— ——

Long call Short put Short call Long put

index points, or —92 x $50 = —$4, 600 on 02 March 2021.

Note that according to Table 7.2, option prices are quoted in index
points (to be multiplied by the relevant option/warrant entitlement
ratio), and every index point is worth $50.
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ii) Using the put option issued by HT (Haitong Securities) at 0.061.

In this case, the box spread option represents a long position priced

0.540 x7,500 —0.044 x8,000 —0.370 x11,000 40.061 x10,000 = +78
~—~— S~——
Long call Short put Short call Long put

index points, or 78 x $50 = $3,900 on 02 March 2021.

e) As the option built in di) represents a short position paying $4, 600 today
with an additional $50 x (K3 — K1) = 200 = $10,000 payoff at maturity
on June 29, I would definitely enter this position.

As for the option built in dii) it is less profitable because it costs $3, 900,
however it is still profitable taking into account the $10,000 payoff at
maturity on June 29.

By the way, the put option at 0.061 has zero turnover (T/O).

In the early 2019 Robinhood incident, a member of the Reddit community
/r/WallStreetBets realized a loss of more than $57,000 on $5,000 principal
by attempting a box spread. This was due to the use of American call and
put options that may be exercised by their holders at any time, instead
of European options with fixed maturity time N. Robinhood subsequently
announced that investors on the platform would no longer be able to open
box spreads, a policy that remains in place as of early 2021

Remark. Searching for arbitrage opportunities via the existence of profitable
long box spreads is a way to test the efficiency of the market (Billingsley and
Chance (1985)). The data used for this test in Table 7.1 was in fact modified
market data. The original 02 March 2021 data is displayed in Table S.7, and
shows that the call option with strike price Ky = 25,200 was actually not
available for trading (N/A) at that time, with 0% outstanding quantity and
zero turnover (T/0).

Basic Data Market Data
DW [issuerfUL Call] DW [ Listing | Maturity | Strike [Strike[Entitle Total [ OIS [Delta| IV. [Trading [ Day [ Day [Closing| TIO

Code| 4 |4 put| Type | (D-M-Y) | (D-M-Y) Currencyl 4 | ment | Issue | (%) | (%) | (%) [Currency|High|Low| Price ((000)
v al a - a a Ration| Size | A& | A | 4

18606 SG |HSI| Put |Standard|23-11-2020[29-06-2021. -[25088] 10000300,000,000] 8.01[(0.002)[30.968|  HKD|0.054/0.042| 0.053 459
19399 HT |HSI| Put [Standard02-12-202029-06-2021] -[25200] 10000]400,000,000] 0.06((0.002)[32.190| _ HKD|0.000/0.000| 0.061 0
19485 BI |HSI Put [Standard03-12-2020[29-06-2021 /25200 10000[150,000,000121.41[(0.002)[28.154|  HKD|0.044/0.037| 0.044] 59
22857] VT _|HSI| Put [Standard|27-02-2020/29-06-2021 -[25000]8000] 80,000,00022.45((0.002)[30.90: HKD|0.065(0.043] 0.064|1,165
26601 Bl |HSI| Call |Standard|28-12-2020[29-06-2021 -[25200]_11000[150,000,000] 0.00| i | hxdo.oooo.000] WA 9
27489 BP |HSI| Call [Standard|18-09-2020[29-06-2021 -[25000] 7500/ 80,000,000/ 2.95| E | HKD[0:590/0.590 0540 6
26231 HS |HSI| Call[Standard[30-09-2020/29-06-2021 -|25118] 75001200,000,000 0.00| 0.012[24.897|  HKD|0.000/0.000] 0570 0O

Table S.7: Original call/put options on the Hang Seng Index (HSI) as of 02/03/2021.

Exercise 7.9
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a) The payoff function can be written as

(.77 — K1)+ —+ (.T - K2)+ - 2(.7,’ — (Kl + Kg)/2)+
= (z —50)" + (z — 150)" — 2(z — 100) ™, (8.7.31)

see also https://optioncreator.com/stnurzg.

150 -
(x-K1)F+(x-Kp)*
-2(xK1/2-Ko/2)*+
100 =
1
1
1
50 - i =
1
1
1
[} ' -
' [
' 1
50 H . ! ;
(o] 50 100 150 200
Ky sr K>

(=)o)

Fig. S.27: Butterfly option as a combination of call options.*

Hence the butterfly option can be realized by:

1. purchasing one call option with strike price K7 = 50, and

2. purchasing one call option with strike price Ko = 150, and

3. issuing (or selling) two call options with strike price (K;+K2)/2 = 100.
b) From (S.7.31), the long call butterfly option can be priced at time ¢ € [0,7")

using the Black-Scholes call formula as

BI(S;, K1, 0,7, T—t)+B1(St, K2, 0,7, T—t)—2Bl(S;, (K1+K>2) /2, 0,7, T—t).

¢) For example, in the discrete-time Cox-Ross-Rubinstein (Cox et al. (1979))
model, denoting by ¢(z) the payoff function, the self-financing replicating

payoff C'= ¢(Sn) is given as in Proposition 3.10 by

v [o(2+ DT, (0 + By) = 0(2(1+ @) T 0a(1+ Ry) )|

Gl b—a) 1+ V1S,

* The animation works in Acrobat Reader.
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with = S;_1. Therefore, & (z) will be positive (holding) when x = S;_;
is sufficiently below (K7 +K»)/2, and & (z) will be negative (short selling)
when z = S;_; is sufficiently above (K7 + K3)/2.

, 0000 0000
~0ohNONMD O~

10
ime to maturity T-t

5

Underlying price

Fig. S.28: Delta of a butterfly option with strike prices K1 = 50 and K2 = 150.

Exercise 7.10
a) We have

C,=c T E* Sy — K | F
— o (T-0)r IE*[ST | 7] = Ke—(T-t)r
— "t E* [efTTST | ]:t] _ Kef(Tft)T
= et — Ke (T-tr

=8, — Ke (T,

We can check that the function g(z,t) = 22— Ke~(T=9" satisfies the Black-
Scholes PDE

0 0 o? ,06?
’I"g(it,t) = 87?(1‘725) + T‘Taii(zvt) + ?Izaia;g(zvt)

with terminal condition g(z,T) = z— K, since dg(x,t)/dt = —rKe~ (Tt
and Og(z,t)/0z = 1.

b) We simply take & =1 and 1, = —Ke™"T in order to have

=

Ct = étSt + nte” = St - I(ei(Tit)T7 0 <t< T.
Note again that this hedging strategy is constant over time, and the rela-
tion & = 0g(St, t)/0x for the option Delta, cf. (S.6.26), is satisfied.

Exercise 7.11 Option pricing with dividends (Exercise 6.3 continued).

a) Let P* denote the probability measure under which the process (Et)th N
defined by
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FZ" 0t 1 aB,

(o2

dB, =

is a standard Brownian motion. Under absence of arbitrage the asset price
process (S;):er, has the dynamics

dSt = (M — 5)Stdt + G'StdBt
= (r — 6)8,dt + 0S,dB;,

and the discounted asset price process (§L),,€R+ = (e7"S)1er. satisfies
dS, = —68,dt + 05,dB,.

Assuming that the dividend yield §.5; per share is continuously reinvested
in the portfolio, the self-financing portfolio condition
dVy = mdA +&dS,  + 06.Sdt
Trading profit and loss ~ Dividend payout
rAsdt + & ((r — 8)Sidt + 05,dBy) + 66t
= rnAydt + &(rSydt + 05,dBy)
= rVidt + 0£,8:dB,, > 0.

In other words, no arbitrage is induced by the dividend payout. This yields

AV = d (e7"'V;)
= —re "V,dt + e "tdV,
= ot " S,dB,
= Ufr,gtdﬁr,
= &(dS, + 6S,dt),  t>0.

Therefore, we have
~ ~ t  ~
Vi=Vo= [ av,
o~
=0 j() gusudBu

j: €.dS, + 5j0t Sudu,  t>0.

Here, the asset price process (e%‘S;);er , with added dividend yield satis-
fies the equation

d(e’S,) = re’S,dt + e’ S,dB,,
and after discount, the process (e7 e’ S;)ier, = (e”""ILS,)er, is a

martingale under P*.
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b)

N

C

d

=

We have
~ ~ t ~ o~
Vi=Vo+o [ €S.dB.,  t>0,

which is a martingale under P* from Proposition 7.1, hence
V.=E'[Vr | F]
= "TE* [Vr | F]
= "TE*[C | F,
which implies
Vi=eW,=e TO'E*[C | F], 0<t<T.

After discounting the payoff (S — K)* at the continuously compounded
interest rate r, we obtain

V,=e TOE (S — K)V | ]
— o (T [(Soeo§7+(7'—6—o2/2)T _ K)+ ‘ ]_-t]
_ e—(T*i)&(ef(Tft)(r—(S)E*[(Soe0§1v+(T76—z72/2)T _ K)+ ‘ ft])
= T=99B)(z, K, 0,r — 6, T — t)
=e T (5,0(d(T — 1)) — Ke=T=D0=0¢(d (T —1)))
= e T=8,@(dl (T —t)) — Ke T’ (T~ 1)), 0<t<T,

where
_log(S¢/K) + (r—6+0%/2)(T —t)
(T —t) = oTVT—T
and
(T — 1) = log(S:/K) + (r — 6 — 02 /2)(T — t).

lo|V/T —t

We also have

g(t,z) = Bl(ace’“"t)‘s, K,or,T — t)
=e T8l (z, KelT ™ o1, T — 1), 0<t<T.

In view of the pricing formula
Vi, = e T 5,0(d° (T — t)) — Ke™T=970(d (T - 1)),
the Delta of the option is identified as

& = e T=p(d% (T - 1)), 0<t<T,
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which recovers the result of Exercise 6.3-(d).

Exercise 7.12 We start by pricing the “inner” at-the-money option with payoff
(St, — St,)* and strike price K = St, at time T} as

e*(Tz*T:)r E* [(ST2 _ ST1)+ |]:TJ
P <(7“ +0%/2)(T —Th) + 103(5T1/5T1)>
n oo —Th
— S e~ (T2=T1)rg (T - UQ/Q)(TQ - Tl) + 1Og(STI /STI)
ne O'\/TQ - T1

2/2 X —02%/2
— S <# T T1> — Spe TG (% T T T1> 7

where we applied (7.24) with T' = T5, t = T1, and K = St,. As a consequence,
the forward start option can be priced as

O*(Tlft)T E* [07(7127711)7‘ E* [(STg _ ST1)+ I]:TJ ‘]:t}

— C—(Tlft)r
2 2 _ 42 2
x E* |:ST1¢ (%\/TQ - T1> - Spe” (T (%\/ T, — Tl) ’ ]:t:|
_ C*(T1*L>T

2 .2
% (45 (M /T27T1> _ o (T=Ti)rg <ﬁ«/T27T1>>]E*[STI | Fi
o o
. 2 _ 2
=S, (45 (M /T, *T1> _ e (Ta=Ti)rg (M‘ /Ty ,T]>)7
o

o

0<t<Ty.

Exercise 7.13 From the Black-Scholes formula we have

o= (=T 1) g [( ST, —K>+ Fr } ¢ ((T+02/2)(Tk —Ti—1) —10gK>

Ty—1 o/Ty — Th—1

Ko~ (Te-Ti_1)rg ((T —02/2) (T — Ti—1) — 108K> .

oI — Ti—1
]:Tk1:|:|
130
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="

o/Tr — Th1
_Ko ((TUZ/Q)(Tk —Ti-1) IOgKﬂ

oT—Ti)rgs <(7“ +02/2)(Tx — Ty—1) — log K>

o/Ty, — Th—1

T ((r +0%/2)(Th ~ Ti) — 1ogK>

oI — T
_K® ((7‘0'2/2)(Tk 7Tk,1) logK> )

o/ T — Ti—1
Hence, the cliquet option can be priced at time t = Ty = 0 as

ZGTTHE*[( T —K) }
k=1 5

Th-1

v <eml¢<<r+az/z>mTkl)logK)
k=1

(J'\/Tk - Tk—l
e T <<r — /2T — Ty ) ~ log K)) .

o/ T —Th—1

Exercise 7.14 (Exercise 6.9 continued). We have
C(t,S) = " T E* [log St | F]

P 2
= e T * [log St + (Bp — By)o + <r - %) (T-1) | ft]

2
= T og §; + ¢~ (T-O" (r - %) (T—-1t), 0<t<T.

Exercise 7.15 (Exercise 6.5 continued).

a) By (5.20), for all ¢ € [0,T], we have
C(t,S) = e T B[S | F

e T-r R [ysj

) :

St

57

s

]:t:|
St

_ e—(T—t)rSt2 E [GZ(BT—Bi)o—(T—t)02+2(T—t)r]

]:t:|
2
— e—(T—t)T's?]E |:ST:|
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—(T—t)7'S;2C—(T—t)a2+2(T—t)r E [02(BTth>a]

— SR+ (T)

where we used the Gaussian moment generating function (MGF) formula,
i.e.
E [e:)(u—pr,,)a] _ eZ(T—t)g2
for the normal random variable By — B, ~ N'(0,T —t), 0 < ¢t <T.
For all t € [0,T7], we have

oC

67 (t’ a;)\m:St = QSte(T+Uz)(T7t)7
-

& =

&8, = 252770 = 901, 8y),

and
C(t,S) — &S, —rt ‘
N = M — € (SQ (r+u— WT—t) 2536(T+02)(T—t))
At AO
= 757'526172(T7t)+(T—2t)T
Ao ’
ie.
Ay
iy = =S} LT T IHI0r g2 TOHT 0 (1 5,),

As for the self-financing condition, we have

dC’(t7St) _ d(SZ (r+gz)(T—t))

—(r+02)e (r40?)(T— t)Sth+e(r+ﬂ NT-t) g (52)

—(r 4 0%)er TN T=D62q¢ 1 o +o)(T=0) (25,48, 4 o2 52dt)
—relmt N T=D 824 4 9G,6r+e )T -1 g,

and
S
&S, +mdA, = 25,70 4s, frA A (T—0+T-207 4. gt
= 28, NT=0 G, — p G2 (T—DHT—r gy,

which recovers dC(t,S;) = £:dS; + nidA;, i.e. the portfolio strategy is
self-financing.

Exercise 7.16 (Exercise 6.11 continued).
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a)

b)

The discounted process X; := e~"*S, satisfies
dX; = (o — r)Xidt + 0e”"*dBs,

which is a martingale when o = r by Proposition 7.1, as in this case it be-
comes a stochastic integral with respect to a standard Brownian motion.
This fact can be recovered by directly computing the conditional expecta-
tion IE[X; | F,] and showing it is equal to X. By (4.35), see Exercise 6.11,
we have

_ at ¢ (t—s)a
Sy = Soe +of0e dB,,

hence .
X, = ~"dBs, t>0,
t S() +o jO e P 0
and

E[X,|F]=E [So +o Jot e "B,

]-'S]
= B[Sy + 0B Uot e TudB, ) FS}

=Sy +clE {L‘; e "dB,

t
fs} +oE U e dB, | ]-'S}
— s —ru t —Tru
=So+o [ e B, +0E U e "dB,
S
=Sy+o jo e "dB,
= Xq, 0<s<t.
We rewrite the stochastic differential equation satisfied by (S¢)ier, as
dS; = aSdt + 0dB; = rSydt + 0dBy,

where a“_r
Sidt + dBy,

[

dgt =

which allows us to rewrite (4.35), by taking a := —r therein, as
_ ot b n ) gt b =B
S;=¢e (50 + afo e "dB, ) = Spe™ + UIO e dB;. (S.7.32)

Taking

in the Girsanov Theorem 7.3, the process (ﬁt)teR . isastandard Brownian
motion under the probability measure P, defined by
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P, T 1
o 1= exD (7 _[0 W dB; — 5]() wtdt>

1
= exp ( dBt7§<a

and (X;)er, is a martingale under P,.

2
T T
> fo Sfdt),

c¢) Using (S.7.32) under the risk-neutral probability measure P*, we have

C(t, Sf) = ei(Tit)rIEa[eXp(ST) | ]:f]

— e TR, {exp< TTSOJrUJ TR, ) ‘ ]-‘,}
— o (T—t)r E, [exp (erTSO to jo e(T—u)rdgu + UL e(T—“)"'déu) ‘ ]:t:|
T —t)r + o7~ t)75t> E, {exp (U JfT e<T*U)Td]§u> ’ Ji}

(-

( —t)r+ o7 m&) o {exp (O’ LT eu;”)rdgu)}
= ( —tyr +el’- m&) exp ( 22 LT eZ(T*“)Tdu>

(-

= exp T—t)r+ eT=trg, 4 = (eQ(T”’)’ — 1)), 0<t<T.
4
d) We have
oC a? .
_9v _ (T—t)yr | 9 2(T—t)r _ )
& . (t,S¢) = exp (Stc + i (e 1)
and
_ C(t,5) = &S;
K
t
—(T—t)r 2
_¢ (r-tyr 4 97 2Tty _
A (Ste + (e 1))
S, _ o2 o)
7A—tt exp (Ste(T o 4 E(e%T R 1))
e) We have

2
dC(t,8) = re” =Y exp (Ste(Tft’)T + Z—T(eQ(Tft)" — 1))dt
2
e i
—rSyexp (Ste(T U Zr(QQ(T Or _ 1))dt

2 (T—t) (T—t) o’ 2(T—t)
e exp (Ste + E(e - 1))dt
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2
+exp (Ste(Tft)’ + Z—(CZ(T")V' - 1))(15}
T
2
42 e(T 07 exp (Ste(T—t)r + L(EQ(T—t)T _ 1))02(#
2 4r
2
=re T exp (Ste(Tft)T + Z—(eQ(T’t)T - 1))dt
r
2
—rS; exp (Ste(T_t)" + Z—(eQ(T_t)T — l))dt + &:dS;.
r

On the other hand, we have
&dSy +mid Ay = €dS,
2
+re”T=I7 exp (Ste(T_t)"' + Z—(e2<T—t)" - 1))dt
r

2
—rS; exp (Ste(T’t)r + %(emT*t)r - 1))dt7

showing that
dC(t,Sy) = &dS; + nid Ay,

and confirming that the strategy (&;,m):er, is self-financing.

Exercise 7.17

a) Using (S.7.32) under the risk-neutral probability measure P*, we have
C(t,S) = e’(T’t)T]E (S| f,]

2
— (T g, TTSO+0 e(T wraB > ‘]_-t}

T . 2
— e (T [, ( TS, +g T4, +0L e<T‘“)"dBu> ‘ ]:t:|

— e—(T—t)r]E TTS()-‘"O' (T u)rdB ) ’ -7:t:|

N T N
200~ (T=Hr (eTTSO to [O e(T”")TdBu) E., Ut TV 4B, ‘ ]-]}
T N2
(1)’ 5]
T—tyr [ T b ) T—t)r LI PA b
= (T-0)r (e’ So—&-rfj el _”)’dBu> + o2 T |, <I el _”)’dBu>
0 ¢

2 el
— e—(T—t)T’ (eT'TSO + O.J:e(T—u)'r'déu> + 0'28_(T_t)" LI ez(T—u)‘r'du

+0’ e —(T— t)r]Ea
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2
(T t)rSQ 5 (O(T t)r 707(T7t)r)
T

=eT-trg2 o 0<t<T.

)

2 sinh((T" — t)r)

b) We find

& = ?)—C(t, Sy) =270, 0<t<T.
r

Exercise 7.18 (Exercise 5.8 continued, see Proposition 4.1 in Carmona and
Durrleman (2003)). Letting o := E*[S7] = " (SéZ) - Sél)) and

2 := Var* [552) - S(l)]
02”((5(%1))200 (S(Q)) 2s(1)5(2 Cpmazt (S(()Q) _ 51[()1))2)7

we approximate

—rt o0
TR (Sp — K] & — —(@=a)®/(20%) g
(57— £)7] W.Lm
j K)e~(e=a)?/@2n*) gy
\/27”7
)2/(2n2) (z—a)?/(2n* Vdx

ﬁf S =1

—rt Ke™ Tt
—z2/2
e dx
\/271' I(K a)/n V2T f(K—a)/W
—rt

ne —z2/2 —rt < K- 0‘)
——|e — (K —a)e " —
V2m [ ](K—a)/n ( ) n

—rt

T (K= _ (K _ o)ed (,K*a)
Var ¢ (K= age 7

Remark: We note that the expected value E*[¢(S7 — K)| can be exactly
computed from

(x+ a)e’z *2qy —

E[o(Sr)] = E* [o(S7) — $1)] = [ [ é(z — y)¢1(0)a(y)dady,

where

1 —(r—02/2)T +1 50))2
oi(x) = L <7( (r—o?/ ;gg; og(2/S0)) )

is the lognormal probability density function of S (i), ¢ = 1,2. In particular,
we have
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Efo(Sr)] = B [o(S - ${)] = [~ 6(2)p(2)dz,

o(z) = f:o o1(z + y)p2(y)dydy

= IOO o~ (= (r=01/2)T+log((z+y)/50))*/ (201 T) ~(~(r—05 /2)T+log(y/ 50))* / (205T)
0

dy
%9
2nTo109(z + y)y

is the probability density function of St.

16F | ]
14}
12}

1l
0.8}
0.6
04}
0.2}

Gaussian PDF ——
__Integral formula )
-1 -0.5 0 0.5 1
z

Fig. S.29: Gaussian approximation of spread probability density function.

0.12 T T

Integral‘ evaluatioh
0.1 Monte Carlo estimation
Gaussian approximation

0 0.2 0.4 0.6 0.8 1

Fig. S.30: Gaussian approximation of spread option prices.

Exercise 7.19 (Exercise 6.2 continued). If C' is a contingent claim payoff of
the form C' = ¢(Sr) such that (&, 7¢):ejo,77 hedges the claim payoff C, the
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arbitrage-free price of the claim payoff C' at time ¢ € [0, 7] is given by
m(X) =V, =e "I E[¢(S) | F], 0<t<T,

where IE* denotes expectation under the risk-neutral measure P*. Hence,
from the noncentral Chi square probability density function

fr—i(z)

2[3 2[3(.T+7‘t67’8(T7t)) o a@/g2,1/2
o2 (1 — e—AT=0) “P\ T o2 (1 = o-AT-0) e BT

4B/ riwe—B(T=1t) )

X 2ap/or-t <U(1_m>)

of St given Sy, x > 0, we find
g(t,5r) = e " TV E (S7) | Fi)

2Be~r(T=1) o0 T aB/a®=1/2 25<w+ste*;“(f i)))
- - [, 2(1—e™ t))
02(1 _ e—ﬁ(Tft)) jg (z) <Ste—@(T—‘)> ¢

4B~/ 1Se=A(T-1) )
dx

X apjert <,,(1_m>)

0 <t < T, under the Feller condition 2a8 > o2.

Exercise 7.20

a) We have
0 7]
U= —o*2fta),  Laa)=of,),
and o7
5 2(1‘ ) = o?f(t,x),
hence

ds, = df (¢, By)

_or of
= 5 (6 B)dt + 5 (1, B)dB, + §W

_ (r - %#) F(t, B)dt + o f(t, B)dB, + %ﬁf(t, By)dt

=rf(t,B:)dt + o f(t, B;)dB;
= T‘Stdt + O'St,dBt.

(t By)dt
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b) We have

E [e”P7 | 7] = E [ePr= B89 | 7]
= P[P8 | F]
=B R [e(BT’B")”}

_ eaBt+02(T—t)/2v

¢) We have

E[Sr | Fi] = E [e?Br+7T-o"T/2 | F]
— o T-o"T/2 g [eaBT |]_—t]
_ e’rT—UZT/2e(7Bt+02(T—f,)/2
— o T+oBi—a%t/2
_ C(T—L)T+UB¢+TL—U2L/2

=eTtrg,  0<t<T
d) We have

Vi = e T-OT B[O | F]
= T-D"E[Sy — K | F
= e TO"E[Sy | Fi] —e T E[K | F]
=8, —e (T-Org, 0<t<T.
e) We take & =1 and n, = —Ke "7 /Ay, t € [0,T].

f) We find
Ve = E[C | Ff] = C.

Exercise 7.21 Binary options. (Exercise 6.10 continued).
a) By definition of the indicator (or step) functions ik ) and ljg g we
have
1 ifz>K, 1 ifz <K,
]1[](,00)(.’1,‘) = resp. Lo k] (z) =
0 ifxr <K, 0 ife> K,

which shows the claimed result by the definition of Cj, and Pj.
b) We have
71',,(0},) = eiﬂ‘it)TIE[Cb | .7:f]
= Ci(Tit)'r E [H[K,oo)(ST) ‘ St]
= e T=0P(Sp > K | Sy)
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= Cb(t, St).
¢) We have m(Ch) = Cy(t, St), where

Cylt,z) = T=P(Sp > K | Sy =)

_ o @—trg (1= o?/2)(T —t) + log(S;/K)
= o ( o1 —t >
= T@ (d_(T - 1)),

with )
o) (=D 1) +loa(S,/ )
ovyT —1
d) The price of this modified contract with payoff

Co = ]1[K,oo) (ST) + a]l[U,K)(ST)

is given by

7(Ca) = " T E [L1x,00) (S7) + alljo,5) (ST) | St]

=e TP(Sp > K | Sp) + ae” T IR(Sy < K | Sy)

= T"B(S > K | S,) + ac” T (1~ B(Sp > K | 5,))

= ae=T=D7e=(T=0r 1 (1 _ o)P(Sy > K | Sb)

=ae” " 4 (1 - )~ "7g <(T T Ao /2t log(St/K)> '

oyl —t

200

100
Time to maturity T-t

50
0 Underlying (HK$)

0
Fig. S.31: Price of a binary call option.
e) We note that

Tix,00) (ST) + L1057 (ST) = L[0,00) (ST)5
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almost surely since P(Sp = K) = 0, hence
T(Cy) + 1 (Py) = e T=O"B[Cy, | Fo] + e~ T B[P, | F
= e T E[C, + By | Fi
=" T E [1x,00)(S) + Lpo,x (S7) | F]
= ¢ T B [1g o) (57) | F]
=e O E[1 | 7]
—e T 0<t<T.
f) We have
m(Py) = e (T=0r _ 7t (Ch)
— (Tt _ o~ (Tt g ((

T —t)r — (T — t)o?/2 + log(x/K)>
oVT —t

= e~ T=07(1 — @(d_(T — 1))

= e T @(—d_(T —1)).

g) We have
&= 500
e 9 g <(T —tr — (T —t)o*/2 + 10g($/K)>
Oz ovVT -t z=S;
o (Tt 1 o (A (T—1))*/2
oSi\/2(T - t)m
> 0.

The Black-Scholes hedging strategy of such a call option does not involve
short selling because & > 0 at all times ¢, cf. Figure S.32 which represents
the risky investment in the hedging portfolio of a binary call option.
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3
25
Time to maturity T-t

160 180

120 140

1
80 underlying (HK$)

0 40

Fig. S.32: Risky hedging portfolio value for a binary call option.

Figure S.33 presents the risk-free hedging portfolio value for a binary call
option.

—= " 160

Fig. S.33: Risk-free hedging portfolio value for a binary call option.

h) Here, we have

&= %Zb (t,S)
_ e_(T_‘)"E@ (_ (T —t)yr — (T —t)o?/2 + log(i/K))
ox U\/ﬁ =5}
C e L @@y
o\/2(T —t)wS;
< 0.

The Black-Scholes hedging strategy of such a put option does involve short
selling because & < 0 for all ¢.
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Exercise 7.22 Applying Itd’s formula to (e7"¢(S;))icr, and using the fact
that the expectation of the stochastic integral with respect to (By)ier, is
zero, cf. Relation (4.17), we have

Clz,T) = [e7""¢(Sr) | So = ] (S.7.33)
o) -1 [ e otsgarner [} e s (S0

T / 1 T =T //
+a’jo eS¢/ (S;)dB; + 3 jo e "ty (St)oz(St)dt ‘ So = x]
T T
= o) —rE U e H(S, )t ‘ So = :c] +rE U e LS, (Sy)dt ‘ Sp = m}
0 0
1 T
+5 B UO e "¢ (Sy)o* (Sy)dt ( S = T}
T T
= ¢(z) - jo re " E [¢(S:) | So = x]dt + TIO e IE [S1¢/(S)) | So = x]dt
1T
+5 J, €T E[9"(S)0%(8)) | So = alt,
hence, by differentiation with respect to 7" we find
Thetay = %(C’TT]EM(ST) | So = x])
=—re"TE [6(ST) So = =] + re” T [Srd/ (Sr) | So = 2]
1
+5¢ T B[ (Sr)0>(Sr) | So = a].

Problem 7.23 Chooser options.

a) We take conditional expectations in the equality
(S —K)" — (K- Sp)t=Sr - K
to find

C(t, S, K, T) — P(t,5;, K, T)

= TTE(Sr — K)T | F] —e” TN E (K — S1)T | F]
= T E Sy — K | F

=e IO B[Sy | F] — Ke™ (0"

=85, —Ke T 0<t<T.

b) The price this contract at time ¢ € [0,T] can be written as

e~ T B* [P(T, Sp, K, U) | Fi
— O [ S (K = )" | Fr] | 7]
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=e UO"E" [(K - Sp)" | ]
= P(tyShK?U)'
¢) From the call-put parity (7.47) the payoff of this contract can be written
as
max(P(T, Sy, K,U),C(T, Sy, K,U))
= max(P(T, St, K,U), P(T, 57, K,U) + Sy — Ke~(U=1))
= P(T, St, K,U) + max(Sy — Ke~ W=7 (),
d) The contract of Question (c) is priced at any time ¢ € [0,T] as
e~ T B* [max(P(T, Sr, K, U), O(T, Sr, K, U)) | Fi]
=e IO E* [P(T,Sr, K,U) | F]
e (T=0r B [maX(ST — Ke=@=Dr 0y ft]
= T B e~ W=D B* (K — Sy)T | Fr] | Fi
+e~ T B* [max (7 — Ke~ W=7, 0) | 7]
= U B (K — Su)* | F)
4o (T-Dr g+ [max (ST — Kef(U’T)ﬁO) | ]-'t]
= P(t, S, K,U) + C(t, S, Ke~ V=D T). (S.7.34)

10
’ 6 140
12
ime to maturity T-t 4 2 60 80 100 0

40
0 0 20 Underlying
Fig. S.34: Black-Scholes price of the maximum chooser option.

e) By (S.7.34) and Relation (6.3) in Proposition 6.1 we have

& = %(t,st,Ke_(U‘T)',T) + g—];(t,St,K, U)
& <log(e(U*T)TSt/K) +(r+02/2)(T - t))
B oyl —t
v <7log(St/K) +(r+02/2)(U - t))
ovU —t
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& <10g(St/K) + (U —t)r+ (T—t)02/2>
B o/T —1t
& <_log(St/K) + (r+02/2)(U—t))
oJU -t '

0 40 60 Underlying

Fig. S.35: Delta of the maximum chooser option.

f) From the call-put parity (7.47) the payoff of this contract can be written
as
min(P(T, St, K, U), C(T, St, K, U))
= min (C(T, St, K,U) — St + Ke~ W=D O(T, Sy, K, U))
= C(T, S, K,U) + min(—Sr + Ke~ =1 ()
= CO(T, St, K,U) — max(Sy — Ke~W=T)7 0).
g) The contract of Question (f) is priced at any time ¢ € [0,7] as

e~ =" E* [min (P(T, Sr, K,U),C(T, Sr, K,U)) | 7]
= e =" B*[C(T, Sr, K, U) | Fi]
—e~ =" B* [max (Sp — Ke=@=17 0) | 7]
— e—(T—t)r E*[e—(U—T)r E*[(SU o K)+ |]:T] ‘]‘-t]
—e~ (Tt [max (Sr — Ke~W-T)r, 0) | 7
=e WO"E" [(Sy — K)T | ]
—e~(T-Or > [max (ST — Ke~W-T)r, 0) | ]-'t]
=C(t, S, K,U) - C(t,S, Ke~ =D T). (8.7.35)
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oRNWRUON®

6

4 140

120
80 100

40

0 9 20 Underlying

Fig. S.36: Black-Scholes price of the minimum chooser option.

h) By (S.7.35) and Relation (6.3) in Proposition 6.1 we have

—
=

& = %(t,ShK, U) - %(t,st,Ke—<U—T>T,T)
_(log(S1/K) + (r+0%/2)(U —t)
=2 < ovU —t )
» (log(e(U’T)TSt/K) +(r+02/2)(T - t))
oVT —1t

o (S oo 1)

oVU —t
» <log(5t/K) + U —-t)r+ (Tft)02/2> .

oyl —1t

Time to maturity T-t w0 100 120
40

0 9 20 Underlying

Fig. S.37: Delta of the minimum chooser option.

Such a contract is priced as the sum of a European call and a European put
option with maturity U, and is priced at time ¢ € [0,7] as P(t, S, K,U)+
C(t, St, K, U). Its hedging strategy is the sum of the hedging strategies of
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Questions (e) and (h), i.e.

B log(S:/K) + (r+ a?/2)(U — t)
& _¢< ovT —t >
_ <710g(5t/K) +(r+0%/2)(U - t))

oVT —t
— 9 <log(5t/K)+(r+02/2)(U—t)> 1

oV —t
j) When U = T, the contracts of Questions (c), (f) and (i) have the respective
payoffs
. max((ST — K)Jr, (K - ST)+) = ‘ST - I{l7
e min((St — K)™, (K —Sr)*) =0, and
. (ST*I()Jr#*(I(*ST)Jr = |ST7K‘,
where |St — K| is known as the payoff of a straddle option.
Problem 7.24

a) The self-financing condition reads

dVy = ned Ay + &dS;
= T'?]tAtdt + u&Stdt + O'ftStdBt
= rVidt + (@ — )& Sedt + 0£,.S1d By,
hence

T T
Ve = Vot [ (Vi (n—r)&Sdt +o [ &S,dB,

T T
=Vi+ Jf (rVs + (1 — 1)&,Ss)ds + aL €,8,dDB,.
b) The portfolio value V; rewrites as
T —r T
Vi=vr— | (7'V5+u 77rs>dsfj 7B,
t o t

= Vp—r LT Vids — LT r.dB,.

¢) We have

V= Vi — TLT Vids — LT msdBs,

hence
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dV, = rVidt + mdB,,
and after discounting we find

AV = —re "Vydt 4+ ¢ "V,
= —re "Widt 4+ e " (rVidt + wtdét)
= e’”mdﬁt,
which shows that "
‘77“ =W+ JU ein‘ﬂ'tdé\t,

after integration in ¢ € [0, 7.

d) We have
dVy = du(t, S)
8 Ou du
l 0%u
2538 Q(f,St)dt. (S.7.36)
e) By matching the Itd formula (S.7.36) term by term to the BSDE (7.50)

we find that V; = u(t, S¢) satisfies the PDE

du 1226

%(t,z)w@(t,xwr o)+ f (t o u(t, @’“ ol L>>

f) In this case we have

2

(?)t (t, x)Jru:rg (t,z)+ 10 x %(t x) —ru(t,z) — (ufr)x%(tw) =0,

which recovers the Black-Scholes PDE

ou ou 1 5 0%u
ru(t,z) = E(t,x) + rxa—x(t,x) + -0’ ﬁ(t z).

g) In the Black-Scholes model the Delta of the European call option is given

by

(= ((r+02/2)(T — 1) +10g(St/K)>
: T 1 ’
hence

(r+0?/2)(T —t) + log(S;/K)
oVT —t

h) Replacing the self-financing condition with

Wt:05t5t203t¢< ), 0<t<T.
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dVy = md Ay + &dSy — vSe(&) " dt
= rnApdt 4 p&Sydt + 0§SidBy — 7Sy (&) dt
= rVidt + (u — )& Sedt — vS(&) ™ dt + 0£4S1d By,

we get the BSDE
T T
Vi=Vr— J; (rVe + (p—r)ms +y(ms) ") ds — L msdBs.
i) In this case we have

ft,x,u,2) = —ru— H 7z7'yz

and the BSDE reads
dVy = ru(t, Sp)dt + (p — r)&Spdt — vSe (&)~ dt + 0&,.S:dBs.
j) We find the nonlinear PDE

5 _
%(t,w) + Tz%(t, z)+ %0212%(@1‘) — yox (%(t, m)) = ru(t, x),
(S.7.37)

with the terminal condition u(7T,z) = g(z).

k) The self-financing condition reads

Na¥

Vi = 11,50y Aedt + Ry, oy Apmydt + S,
= rAmdt + (R — 1)1y, <oy Aunedt + £,dS;
= rVidt — rSi&dt — (R — r) (e Ar) ~dt + &,dS,
=rVidt + (pp — r)Si&edt — (R — r)(Vy — &Se) ~dt + 0&.5:d By,

which yields the BSDE
T T
Ve=Vr— [ (Ve + (n=r)m = (R=7)(Vy = £5,) ) ds — | m.dB.,

hence we have

_ (p=r)
ft,z,u,2) = —ru— B

z
z+( r)(u .
and the nonlinear PDE

ou ou 1, ,0%u ou _
E(tﬁ)‘*‘/‘%(tﬁ)*‘iam ﬁ(t,x)-i-f tvmvu(tﬂx)va-m.%(tvx) =0

rewrites as
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ou

ou 1 ou B
E(t,x +r£(t,x)+ o’x —(t x) = ru(t,x)+(r—R) (u(t,x) 790%(15,1))

1) The sum of profits and losses of the portfolio (&, 7)ier, is

T T T T
v0+f0 ntdAt+fU €.dS; = v0+f0 dw+j0 v,
= Vi 4+ Ur — Up
>VT:C,

hence the corresponding portfolio strategy superhedging the claim payoff
Vr=2C.

Exercise 7.25 Girsanov Theorem. For all n > 1, let
o = Lipeel—nn} ¥t 0<t<T.

Since (d;, )te (0,7] is a bounded process it satisfies the Novikov integrability
condition (7.11), hence for all n > 1 and random variable F' € L!(£2) we have

Em:EV@+£wmﬁm<J¢wB J(WW@L
which yields
Eﬂ:£&EP%B+£w@M%W<kfwww I(“WWQ]
2B {1%%&%2” (B.+ J wivds) o (— [ wan, 3 | (ws'”)st)}

B - T 1 0T 2
- E [F (BA T JO wsds) exp (7 JO ¥odB, — 5 JU () dsﬂ 7
where we applied Fatou’s Lemma.*

Problem 7.26
a) We have

Cov(dSy/ Sy, dM; /M)

Var[dM, /M,]
_ Cov((r 4+ a)dt + B(dM; /My — rdt) + o5dWy, pdt + opdBy)
B Var[pdt + oardBy]

* Ellimp— oo Fn] < limp—oo E[Fy,] for any sequence (Fy)nen of nonnegative random
variables, provided that the limits exist, see MH4100 Real Analysis II.
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Cov ((’r + a)dt + B(udt + opdBy — rdt) + ogdWy, pdt + (TMdBt)
- Var[udt + oprdBy]
_ Cov (ﬂonBt + ogdWy, aMdBt)
Var[opdBy]
Cov (BoydBy,ordBy) + Cov (05dWy, oardBy)
Var[cr;\,det]
Cov (ﬂaMdBt, aMdBf,)
- Var[ondBy)
Cov (O'MdBt, (TMdBt)
- Var[o s dBy]

= 0.
b) We have

dM,
r+a)Sdt+ 8 < ]\/j:
r+ a)Stdt + BS; (pndt + oprdBy — rdt) + 055 dW,
r+a+ B(p—r))Sidt + S, (ﬂU}udBt + anWt)

BondB; 4 osdW;
r+a+ B(pn—r))Sidt + S/ B202, + oh—————.
M TOg B3, 1 0%

dS, =

— T‘> Stdt + USStth

—~ o~ o~ —

Now, we have

BodBy + osdW, ’ _ (BondB,)? + BoniosdB; - AW, + (05dW;)”
VB3 + 0% - Bof + 0%
~ B203,(dBy)? + 0% (dW,)?
B 202, + 0%
_ B%0%dt+ okdt
T B203, + 02
= dt.

By the characterization of Brownian motion as the only continuous mar-
tingale whose quadratic variation is dt, it follows that the process (Z;)icr,
defined by

_ BowdB, + o5dW,

VB3, + 0%
is a standard Brownian motion, see e.g. Theorem 7.36 page 203 of Kle-
baner (2005). Hence, we have

dZy

Sy = (r+ a+ B(u — ) Sidt + S (BordB; + o5d W)
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= (r+a+B(p—r))Sidt + Se\/ 03, + 0%dZ;.

In what follows we assume that 3 is allowed to depend locally on the state
of the benchmark market index on My, as B(My), t € R.

c) We take
dB; = dB, + "= Lat (S.7.38)
oM
and o
AW} = dW; + —dt (S.7.39)
os
in order to have
dM,
L. pdt + oppdBy = rdt + opdBy,
My
s, M, (8.7.40)

d
5 (r + a)dt + B(M;) x < A 7'dt> +osdW;

= (7’ + a)dt + 0’]\45(]\@)(13: + ogdW;
= rdt + o B(M,)dB] + osd W

d) By the Girsanov theorem, (B;)¢cpo,1] is a standard Brownian motion un-
der the probability measure P; defined by its Radon-Nikodym density

P}, por ()
—exp (-, -y
ap P ( o T 202, )

and (W )iejo,r) is a standard Brownian motion under the probability
measure Pj, defined by its Radon-Nikodym density

AP* 2
¥ —oxp (- Liwr - 25T,
os 205

We conclude that (B} )icjo,r) and (W )iecjo,r) are independent standard
Brownian motions under the probability measure P* defined by its Radon-
Nikodym density

dP*  dPy  dPyy w—r a (p—r)? a?
- —oxp (P - Sy BT @)
P~ dp < ap P ( o T o T T 202, 202

Indeed, for any sequence tg =0 <t; < --- < t,_1 <t, =T we have

e e e LaYP
B [f(Bf, — Bi,.....Bi. — B )] :]E{ﬁf(Bh BB B

tpn—1

=B [f(Bl, - Bl B, ~ Bi,_)
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—r —7r)2 2
« exp <,# LS et o R PR %Tﬂ
oM 20%, og 20%

v . . p=r (p—r)?
=E [f(Btl - B;,...,Bf —B; |)exp <7 BTfTJZWT

OM
a a?
x IE |exp 70—SWT7ET

and similarly for (W;").ej0,17-

e) By (S.7.40), the discounted price processes

N

(Si)ier, == (€' St)ier, and  (My)ier, = (¢ 7"'M;)ier,

satisfy . .
dM, = op MdBy,

dS, = onB(M,)S,dB; + 055, dW;,

hence by the Girsanov theorem of Question (d) the discounted two-
dimensional process (75;,]%&) teR, is a martingale under the probability
measure P*, showing that P* is a risk-neutral probability measure. There-
fore, by Theorem 6.8 the market made of S; and M; is without arbitrage
opportunities due to the existence of a risk-neutral probability measure
P*.

The self-financing condition for the portfolio strategy (&, e, 7t )iefo, )
reads

-
=

Netdt Avtdt + EerarStdr + Crrat Mitar, = MeAevar + §eSevar + GeMiyar

which yields
Atyardns + Spyard€s + My aiGe = 0,

dAy« dny + dSy « d& + dMy « d¢p + Apdny + Spd&s + Myd( = 0,
hence
dVy = ned A + £:d St + Ced My
+Aidn + dny - dAy + Spd&y + d€y + dSp + MydGy + dG; + dM,

= nedAs + £:dSt + Cd M
=0.
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g) By the self-financing condition we have

Vi = df(t, Sy, My)

= &dSy + GedM; + nd Ay

= & (rSidt + op (M) SedB; + 05S:dW;) + Co(rMidt + oa MydBy) + i Agdt
= r&Sedt + op B(My) €S dB) + 058 SedW, + rMydt + o0 MidB] + rip Agdt
= 1r&Sedt + g Aedt + 056 SedW + r¢Mydt + (o B(My)ELSy + on G My)dB]

= rVidt + o5& SedW, + (op B(M2)ESt + on (e My )dB; . (S.7.41)

On the other hand, by the It6 formula for two state variables, we have

df (¢, Sy, My) = %(t,st, My)dt + ?(t Sy, My)dS, + ;%(t Sp, My)(dSy)?

10 d
+ —(t Sy, My)dM; + 76—£(t Sy, My)(dM;)? + aTafy(t,St,Mt)dSt - dM,
_of

k- (t, S, M) (rSidt + o B(M;)SidBf + 058 dW;")
+1ﬁ(r Sy, My) (03, 8%(M;)S? + 0%5%)dt
28 5 (L o1, M )(oy t)9r T g0y )at
* lazf 2 2
+ a—y(t, Sy, My)(rMydt + o3 MydBy) + 56—3/2(@ Sy, My)o3 M2dt

ELt, 8y, My)dt + gf

(t, Sy, My)dt

82
+ sz\lstjwtﬁ(]\/[t)a g

= Z—{(t, St,Mt)dt-&-rSt (f Sy, My)dt + o1 B(M;) S, gf (t, Si, My)dB;
2
058 O 0,50 Myaw; + L0 5, )03, 87 (M) S0t + %57

) )
+ tha—;(t, Sy, My)dt + (fM]Wta—;(t, Sy, My)dB;

102
+ §a—£(t, S¢, My)o2 MEdt 4 03,S: M, B(My)

_of of
= Gy (b SuMd -+ Mg

1 2 f
+ 7012‘,,Mfa—y2(t, Sy, My)dt + 5034/32(]%)53@(@ Sy, My)dt

02
g g (t, Sy, My)dt

(t St, ]\/{t)dt + T’St(;f(t St7 ]\/It)dt

2

+ 10252&(25 Sy, My)dt) + oS, My B(My) 0 (t, Sy, My)dt
9 St 81‘2 ) Pty t Mt t t 81‘8:[/ ) Pty t
of of "
ouB(M:) Sy (8, S,,M,)JrUM]Wta (t, S, M,) ) dB; (S.7.42)

+ Usstg%(t, Sh ]\/It)dWZ
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By identification of the terms in dt in (S.7.41) and (S.7.42), we find

rf(t, Sy, My) = g(t,St, M) + rSt%(t, Sty My)

ot
2 2 52 20 f
+*(O'S+O'Mﬂ (Mt))St—(t Sy, My)

2
% f
+th (t Sy, My) + aMMfa >

—_

82f
(t,Se, My) +chSt]V[tﬂ(M't) Dy

which yields the PDE

rft z,y) (S.7.43)

2
= S tay Lt o S0k + W) 3L ()

of 1 0% f
sy 40,0 + 308 L ,0.0) + oAy ) o (12,0,
with the terminal condition
f(Tz,y) = h(z,y), =y>0.
By identification of terms in dB; and dW;* in (S.7.41) and (S.7.42), we
find of
%(tastyj\/[t)

h

Nasd

& =

and

7] 7]
Uj\fiﬂ(]\/[t)stl(t, St, ]Wt)JFUMAMtafz(t, St, My) = o B(My)&sSe+opGe My,

ox

hence Bf
Gt = a9y

and by the relation V; = &Sy + (¢ M + m Ay we find

—=(t, S¢, My),

_ Vi — &S — My
Ay

R AR AR VAR YAC AR
= Y . 0<t<T
Aoerf

=

When the option payoff depends only on St we can look for a solution of
(S.7.43) of the form f(¢,z), in which case (S.7.43) simplifies to

15) 0 ?
O (1) 4 72 0L 1,,9) + 502034 3820 S L (1),

S O (S.7.44)
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When (M) = B is a constant, (S.7.44) becomes the Black-Scholes PDE
with squared volatility parameter

o2 =0k + o382

When the option is the European call option with strike price K on St,
its solution is given by the Black-Scholes function

ft,z) =Bl(z,K,0,7, T — t)
20(dy (T — 1)) — Ke™T=9"®(d_(T - t)),

with s ) o -
do(T—t) = log(z/K) + (r TU(‘UST-&-_:Mﬁ )/2)(T t)7
d_(T - 1) = @K+ (r Ta(f? +_rrtMﬂ (T —t)
and
& = %(t’ Sty My) = @(d+(T —1)),
with

m = _Aﬁfe*T-f)"@(d,(T —t) = —Aﬁoe—T"gb(d,(T —-1), 0<t<T.

=

Similarly to Question (i), when the option is the European put option
with strike price K on Sp, its solution is given by the Black-Scholes put
price function

i

J(t2) = Ke~ T @(—d_(T ~ 1)) — 2d( — d (T~ 1),

with oF
G = a—{/(t, Sp, My) = —®(— dy (T — 1)), 0<t<T.
and

K
Tlt=A*e_T"@(—df(T_t))’ 0<t<T.
0

Remark. By the answer to Question (b) we have

dSy = (r+a+B(p—7))Sdt + S\ /8203, + o2dZ,

where (Z;)icr, is a standard Brownian motion, hence the answers to
Questions (i) and j can be recovered from the pricing relation
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f(t.S) =e T E [¢(Sr) | F),  0<t<T.

Problem 7.27

1) a) It suffices tolet 7, := T', n > 1. Then, the sequence (7,,),>1 clearly sat-
isfies Conditions (v)—(vi), and the process (M-, at)ecjo,r) = (Mt)eefo,1]
is a (true) martingale under P.
b) Applying
i) the local martingale property to a suitable sequence (7,,),>1 of
stopping times, and
ii) Fatou’s lemma to the non-negative sequence (M, a¢)n>1,
we have

E[M, | F]=E [nlij;o Mz, | Fs]
< liminf E[M,, a¢ | Fs)
n—00
= liminf M, s
n—00

= lim M,
n—ro0

=M,, 0<s<t<T,

which shows that (M;);ejo,r) is a supermartingale.

c) Since (Mt)iefo,r) is a supermartingale by Question (1b), for any ¢ €
[0,T) we have E[Mp | F] — M; < 0 a.s., and there exists ¢ € [0,7]
such that E[E[My | F;] — M,] < 0, otherwise we would have IE[Mr |
Fi]=M; =0 a.s. forallt € [0,T], and (M,);c[o,r) would be a martingale
by the tower property.” Therefore, using again the tower property, we
find

E[My — My = E[E[My | 3] — Mo) < E[E[My | Ft] — M] <O0.
d) We have

C(0, Mp) — P(0, My) = e " T E[(e"T My — K)* — (K — T M) ¥
=E[(Mr —e"TK)t — (e7"TK — Mr)T]
= E[Mr — e "TK]
< E[Mg) —e"TK,
showing that the call-put parity relation C(0,My) — P(0,M,) =
E[My] — e "' K is not satisfied.
2) a) The stochastic differential equation can be rewritten as dS; = o(t, S¢)dB;

where o(t,z) = x/V/T —t, t € [0,T — €], satisfies the global Lipschitz
condition

* If M, = B[Mr | Fi] for all t € [0,4] then My = B[Mr | ] = B[E[My | Fi | F] =
E[My | F],0<s<t<T.
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lo(t,z) —o(t,y)| =

z,y € R.

-y ) \rfy
VT 1|~ T—c¢

Hence by e.g. Theorem V-7 in Protter (2004) this stochastic differential
equation admits unique (strong) solution such that

S, = Sb+f 0<t<T—e

T LRl

Next, we have

1 t ds
5= Soexp<f - 1)

= Log L
= Syexp — ZOgT—t

t t  dBg
= - — <t<T-—e.
Sor/1 Texp(jo T—s)’ 0<t<T—¢

b) We have Sp = 0, as can be checked from the graphs of Question (d)
below.
Consider the stopping times

N

C

%;:<<1—1>T>Ahﬂﬁ€[&71:\&\Z”L n=1
n

for all n > 1 the stopped process (S-, at)iejo,r) i given by

n

Tn At Su

VI —u

0 <t < T, and the process (Ljo,r,](4)Su/VT — t)o<u<r,at IS square
integrable as

(1-1/m)T
[I Ty, 7.ﬁ](u) du] <E {f Ty, Tﬂ](u)

hence by Proposition 8.1 the stopped process (S, at)tecjo,] is a (true)
martingale under P for all n > 1, and therefore (S;)cpo,7) is a local
martingale on [0,7]. Finally, we note that since 0 = E[St] # So, the
process (St)iefo,r7 is not a martingale.

The following code solves the stochastic differential equation dS; =
StdB;/+/1 —t by the Euler scheme.

t
ST”/\t So +J dB, = So + JU ]l[O,Tn] (u)

du

d

=

1 N=10000; t <- 0:N; dt <- 1.0/N;

dB <- rnorm(N,mean=0,sd=sqrt(dt));S <- rep(0,N+1);S[1]=1.0

for (k in 2:(N-1)){S[k]=S[k-1]+S[k-1]*dB[k]/sqrt(1-k*dt)}

plot(t*dt, S, xlab = "t", ylab = "", type = "1", ylim = c(0,1.056¥max(S)), col = "blue",
xaxs = "i", yaxs = "i",cex.axis=1.6,cex.lab=1.8)
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o U T U T

0.0 0.2 0.4 0.6 0.8
t

Fig. S.38: Sample path of dS; = S;dB:/v/1 —t.

3) a) The following code solves the stochastic differential equation dS; =
S?dB; by the Euler scheme.

1 | N=10000; t <- 0:N; dt <- 1.0/N;

2 | dB <- rnorm(N+1,mean=0,sd=sqrt(dt));S <- rep(0,N+1);S[1]=1.0

for (k in 2:(N+1)){S[k]=S[k-1]+S[k-1]"2*dB[k]}

1 | plot(t*dt, S, xlab = ylab type = "1", ylim = c(1.05%min(8),1.05*max(S)), col
= "blue", xaxs = "i", yaxs = "i",cex.axis=1.6,cex.lab=1.8)

N

0.0 0.2 0.4 0.6 0.8
t

Fig. S.39: Sample path of dS; = SZdB;.
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0.0 0.2 0.4 0.6 0.8 1.0
t

Fig. S.40: Sample path of dS; = S?dB;.
b) With the change of variable y = 1/x and dy = —dx/x?, we have

E[ST] = IOOQ zor(z)de

(e (LMY o (S

o Sy (y — 1/S0)* < Sp (y +1/50)°
by Ao ( ) =, VorT P o )¢
2

S e ()
= —F——exp | — 7 - ———eX
J=1/So /27T P 2t v 1/So /27T P 2T v

_ (= 50w (N gy [ S e (LY

- J—wsom NoTs p( 2 ) dy -L/<s0ﬁ> Vor p( 2 > dy
= So®(1/(SoVT)) — So®(—1/(SoV'T))

= So(1 = 28(=1/(SoVT))).

¢) We have

ElSr] = 25 <¢ (Sif) - %>

— 25, (jl/(suﬁ) 2/2 dx J 2?2 dT dx )

1/(SoVT) _ 2 d
[ 0 e /2 X

0o V2T
_ Qfl/f (/50?2 %
0 Vor®

hence by the dominated convergence theorem we have
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1/VT
lim E[S7] = lim 2 / e_(y/s")2/2—dy
Sp—r00 Sp—ro0 0 V2T
:2jl/ﬁ lim o’(y/SD)Z/Z—dy
0 Sp—o00 2T
B f]/ﬁl dy
T Jo V2
_JZ
Voo

d) With the change of variable y = 1/x and dy = —dx /22, we have

E[(Sr — K)*] = fj"(m — K)*or(x)dz

=i 7 2 (o () g (WY )

jl/K So < - (7('y *21T/50)2> —exp C%)) dy

1/K y (y—1/50)* (y +1/S))
—KSp j ‘ <cxp <7 = | —exp| ————"— ) | dy
0 V2T 2T 2T ’
J-I/K—I/So So ( ) Jl/K-H/So ( y? > J
= ex exp [ — 2
“yse er ¥ 1/50 Vot P\ et
‘1/K—=1/S0 y + 1/S, y?
—K Sy Jil/&) 727rT exp <7ﬁ dy
1/K+1/50 y —1/Sp Y
KS, — —=—]d
+ 0 J1/sU 27T exp ( 2T Y

(gt chr)-selC 21

e (Klf Solf> ol (S[);\/T)

+KS°‘F“°<KiF Soi/>> KS"\F“’(K\F Solf)

e <%ﬁ B Solﬁ> TR <_ Solﬁ>
() s
-5 (zvr - vr) ~ 5 (“svr)

o (Klf Solf> ouP (S[);\/T)
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+Ks°f*°<Kf Solf> KSO\F“’(KI Sif)

iyt sin)

sty i) el
(gt gin) 5ol

+Ks°f“0<Kf Sif) KSOIW(Kf &jﬁ)

o () ke (e )
SoVT KT KVT  SyWT)’
where ¢(z) := ¢=* /y/27 is the standard normal probability density
function, see Relation (2.1.2) in Jacquier (2017).
e) We have
E[(Sr — K)*] < E[S7]
_ QJ’”ﬁe—(y/su)?/‘z dy

0 V2T
1/VT
<o (VT
0 V2T
2
< .
~— VT

Fig. S.41: “Infogrames” stock price curve.

Problem 7.28
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a) Relation (7.54) can be checked to hold first on the event A,, and then

on its complement A¢,. Taking the Q-expectation on both sides of (7.54)
yields

(o] ona [ -2)enno]

i.e.
EQ{3g@ﬂAa7147QE@DH&;J]ZE©{%g@lAflﬂ*ambpﬂA*H
ie.

2P(Ay) — 1 — a(2Q(Ay) — 1) > 2P(A) — 1 — a(2Q(4) — 1),
which shows that
P(Aq) = P(4) > a(Q(4a) — Q(4)),

allowing us to conclude to P(A,) — P(A) > 0 since a > 0.

b) We check that dQ*/dP* > 0 since C' > 0, and

=

(@) = [, 4
dQ* *
= Jo ap v

C
:kEM@W

e[S

_ Ep-[C]
T B[O
=1.

In the next questions we consider a nonnegative contingent claim payoff
C > 0 with maturity T > 0, priced e "7 IEp-[C] at time 0 under the risk-
neutral measure P*.

Budget constraint. We assume that no more than a certain fraction

B € (0,1] of the claim price e™T Ep-[C] is available to construct the
initial hedging portfolio V{ at time 0.

Since a self-financing portfolio process (V;)scr, started at Vo = Be " Ep [C]
may not able to hedge the claim C' when 5 < 1, we will attempt to max-
imize the probability P(Vp > C) of successful hedging.
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For this, given A an event we consider the portfolio process (‘/tA)te[OyT]
hedging the claim C1 4, priced V' = e™"7 Ep-[C1 4] at time 0, and such
that V4 = C1, at maturity 7.

Using the probability measure Q*, we rewrite the condition (7.56) as

d@*} _ Ep[C14]
dP* |~ TEp-[C]

Q*(A) = Eqg-[1a] = Ep- |:]1A < B,

Q" (4) <Q*(4s) = 5.

By the Neyman-Pearson Lemma, for any event A, the inequality Q*(A4) <
Q*(An) = B implies P(A) < P(A,), which shows that the event A = A,
realizes the maximum under the required condition.

The obvious inequality is

P(A,) <P(Cla, > C) =P(Vi > C).

In the other direction, we note that the event B, := {Cls, > C} =
{qul“ > C'} satisfies (7.56), as

e Epe [VFe] = e Ep- [Clp, ]
= e Ep- [Clicn,, >c)]
=e¢ T Ep: [Cla,]
= Be~"T Ep.[C],

where the last equality Ep- [C]lAQ] = S Ep+[C] follows from Q*(A,) =
and the definition (7.55) of Q*.

Therefore, by the result of Question (c) we have
P(C1a, > C) =P(Vil* > C) = P(Ba) < P(Aq).
This hedging strategy starts from the initial amount
Vit = e T Ep. [C1a,] = BT Ep.[C],
and it satisfies
P(Vi* > C) =P(Cla, > C) =P(A,)

which is the maximum hedging probability under the constraint (7.56).
We have

2
Sp = Spe?BArt=oT 2 = a7 = GpePr, t > 0.
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g) We have

h) We have

i) We have

P/ > C) = P(AL)
dP
d@* >
dIP’ dQ

> i)

- aL)
Ep-[C]

(aC < ]E]p* [C])

(S — K)" < Ep-[C]/a)

(Sr— K <IE]p* [C]/e)

(57 < K + Ep+[C]/a)

(SoePr < K + Ep-[C]/a)

(Br < log(K + Ep-[C]/at))

<log(K+]E]p* [C’]/a)) '

VT

=P

2,
~

Il
=
/\g\/\
b4

L e | |
& SRR B R RSN N
d

_ Ep- [C]
exp (VIO (P(Vy' = €))) -

Ep[Cla,] = Ep-[(St — K)"14,]

June 17, 2024

= B [(S7 ~ K)* 3y (i By 01/}

i
= Ep- [(CBT - K) ]I{BT<log(K+]E]p* [C’]/a)}]

jl()p,(K{»Ew /a>/f( B K)0722/2£
(log K)/VT Vor
flog(KJrIE /a)/f zz/Qdigj

(log K)/VT Vor
B jlog<K+le*[c1/a)/ﬁ etz 4

(log K)/v/T Vor

f“’g("*E“ VOINT 1o -1y2/2_d2_

(log K) /T Vor

K ((log(K + Ep-[C]/a)) — $(log K))
f 1/VT+log(K+IEp« [C)/a) /VT o122z 4T

1+log K) /T Vor
—K(®(log(K + Ep-[C]/a)) — P(log K))
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*\/E<€P< 1+10g(K+IEp*[C/a> ( 1+logK>>

A )

e T Ep-[C14,]

o <¢ <log(K +\]/ETD»*[C]/a)> 7@ (10\%(» .

j) i) We have d4(T) =1, d_(T) = 0, hence by the Black-Scholes formula
we find

hence

Ep- (ST — K)*] = VeSo®(dy(T)) — K&(d_(T))
= 1.64872 x 0.84134 — 1/2
= 0.88713,

and

e T Ep-[(Sy — K)*] = So@(d4 (T)) — Ke T"®(d_(T))
= 0.84134 — 0.60653/2
= 0.53807.

ii) By the result of Question (h), we have

Ep-[C]
e (21 (B(Vi" 2 0))) — K
_ 0.88714
~ exp (971(0.9)) — 1
o 88714
el28 _

o =

= 0.34165.

iii) By the result of Question (i), we find

¢ T Ep-[C1a,] = (&(~1 + log(K + Ep-[C]/a)) — &(~1 + log K))
—Ke™V2(9(log(K + Ep[C]/a)) — (log K))
= (#(—1 +log(1 + Ep- [C]/a)) — &(~1))
—e7!/2((log(1 + Ep-[C] /) — (0))
= (P(—1 +log(1 + 0.88713/0.34165)) — &(—1))
e™1/2(P(log(3.596604712)) — H(0))
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= (9(0.27999) — &(—1))

—0.60653 x ($(1.279990265) — &(0))
= (0.61026 — 0.158655) — 0.60653 x (0.899726 — 0.5)
= 0.20915.

In addition, we find

e " TEp-[C1a,]  0.20915
e "TTEp-[C] ~ 0.53807

B= = 37.53%.

Chapter 8

Exercise 8.1 We need to compute the average

1 T 1 (T 1T
TE UO Utdt] =7 jo ElvJdt = fo u(t)dt,

where u(t) := E[v;]. Taking expectation on both sides of the equation

t t
vy = vy — /\fo (vs —m)ds + njo \/UsdBs,
we find
u(t) = Efv]

t t
=1 [vg — A fo (vs —m)ds + njo \/Est]

t

=v9o— AE UO (vs — m)ds]
t
=y — )\jo (E[vs] — m)ds
w0 A [ (u(s) —m)ds,  £>0
=0 Io (u(s) —m)ds, >0,
hence by differentiation with respect to ¢t € R we find the ordinary differential

equation

' (t) = Am — du(t),

cf. e.g. Exercise 4.18-(b). This equation can be rewritten as
(Mu(t)) = AeMu(t) + X' (t) = Ame,

which can be integrated as
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eMu(t) = <u(0) +Am j(: e“ds>

= E[vg] + m(eM — 1)
= meM + Efu] —m teRy,

from which we conclude that
u(t) = m + (Blvg] — m)e™™, teRy,
and
1 T 1 0T
FE Uo vtdt} = ?L u(t)dt
_ JT (m + (E[vo] — m)e*)dt
T Jo
_ Efvo] —m (T _y,
=m+ — 7 Jo e Mdt

1— e—/\T

=m+ (E[vg] —m) ST

Exercise 8.2
a) By e.g. Exercise 4.18-(b), we have
E[ve] = E[vgle ™ +m(1 —e™), teRy,

hence

which yields
LT —t —At
VSr =B+ fo (Blvole ™ + m(1 — e~ *))dt
1 T
=6+ 7 f (Efvole™™ + m(1 — e™*))dt

T
=B+m+ = (]E[vo} —-m) jo e Mdt
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AT 1
=B+ m+ (E[v] —m) T

Note that if the process (v;)scr, is started in the gamma stationary dis-
tribution then we have IE[vg] = E[v¢] = m, t € R, and the variance swap
rate VS = 3+ m becomes independent of the time 7T'.
b) The stochastic differential equation do; = aotdBt(Q) is solved as
()
or = oge B 70&/27 teRy,

hence we have

VSp = ]EU(;[%(dSt)Z}
E UOT 5 (005:dB") ]

E UO det}
el
e

M e | ar

Nl S N

ﬂ\c? ’ﬂ\&

2
_ %0 Te—a t+2a’t gy

T

2 T p
90 a’t
=— e™ 'dt
T

- aQT( -1
Exercise 8.3

a) Taking © = R} ;- and zo = IE [Rj 1], we have

LT B[R] (R -E[R D?
Ror ~ /I [R2 0.7 0T _ 10T 0L, (S.8.45)
. ) (B R])

provided that Rg ; is sufficiently close to IE [Rj ).
b) Taking expectations on both sides of (S.8.45), we find

E[R,] ~E[R,] B[R, - ER,])’]

2y/E [Ri 7] 8(E[RZ ;)"

E*[Ror] = /I [R2 ;] +
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E[(R3; - E[R])’]
s(E[R2,])"
Var [R%A’T}
S(E R ,])""*

provided that RZ ;. is sufficiently close to IE [R ;].

=/E [R(Q),T] -

=4/E [R(Z),T] -

Exercise 8.4 We have

E [i <log sin )T —E [LT <10g %’)2 dNt}
-E UUT (ZNL_)QdNt]

= A[ [(Zn,.)

— 2
= A_[O (n? + 62)dt
=\? +8T.

Exercise 8.5
a) We have S; = SpeoBi=att/2+rt 4 ¢ R,.
b) Letting S; := e "5, t € Ry, we have Sy = Spe?Br=o"T/2 and dS, =
0S1dBy, hence
_ T .
Sr="So+o [ S,

and
e TS eirTST ST ST
2E* log =2FE* |25
{ So TS, ] S0 %5,
¥ gf, o?T
—2F <1+0—f SOdBt> <UBT - T)
e
=2E* |0Bp — — | + 202 E* idBt - o’TE* édB,
S() 0 SO
2 | (T T
0T +20°E deB,,jO 2
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Sy

S dt

= —02T + 20> f ]E*{

T
= 02T 1 252 f dt
0
—0?T + 20°T
= o?T.

Alternatively, we could also write
877‘TST eirTST ST ST
2" 1 =2E* log
{ Se TS, ] S, 85,

—oF* [eaBdezTﬂ log e”BT*UZT/Z]

2
— o [c”BT*‘”T/? <UBT - —UQTH

_ QUe—JQT/z E* [BTQJBT} _ O2TTE* [eUBT—JQT/Z]

aJ
=20¢ 7 T/28 E* [ "BT] —o?T
_ ZUG—GQT/ZOQEUZT/Z — 02T

o

_ 20_2T6702T/2602T/2 _ 2T

= o?T.

Exercise 8.6

a) By the Itd formula, we have

ST T dSt 1 Ut
log — =1 — 1 = A
og S og St — log Sp o 5, 3 Jo 52 —dt.

b) By (8.47) we have

* r 2 _ * TLSt
E UU otde| Fi| =28 | [ S

St
Fi| —2E* |log —
t} { 55

|

« |y St
_2f —+2r —t)—2E {logs—o

]

c) At time ¢ € [0,T] we check that

dSu
Li+e (T-0r 3, 2 64+ 2 *TT< 05 +(T—z‘)r—1> Ay
- - t dS,
_ _ —(T—t)r —(T—-t)r u
=L +2r(T —t)e +2e fo 5.
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-V
d) By (8.48) we have

t
wi=d <Lt +2r(T = t)e” 07 4 96T [ d%)

= dL; — 2re”T707dt 4 202(T — t)e= T at
s, ds,

2 —(T—t)r 20U It + % —(T—t)r #9t
Here jo 5, 5,

. 2 .
—dL —(T —t)rids 9 —rT
t+e S, t + 2e 03,

+ (T —t)r— 1) dA,

with dA; = re™dt, hence the portfolio is self-financing.

Exercise 8.7 By second differentiation of the moment generating function
(8.9), we find the two expressions

5r\? S 5r\?
E* [R,] = 4E* Kbg %) +2log Fﬂ =4 Kbg FZ) ]4]E* [R27],

and
Sr S\ 2 Sr
log 2T ) —21
T <<OgF> %8 T

Sr(, S .
T <1og %) } —4E" [R 7]

E* [R) ] = 4E*

=4E"

Chapter 9

Exercise 9.1

ocC 8f x
a) We have %(T7t7 z,K) = <T7t7?> and

R LU )
0
() )

%C(T ta K)— — BC(T t,x, K),

hence
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1 K o
(Z—C(T— te, K)=-C(T—t,z,K)— ——(T t,x, K).
T x

9°C 1 0°f z
b) We have &2(T — t,2,K) = 255 (T —¢, —) and

K 022 K
0%C
W(T—L%K)
oz df T x Of x x? f T
n K28z<T tK>+K2dz (T tK)JrKi"B <T t’K)
2 0% f x
-~ 52 (Tt %)
2% 0°C
=~ ——(T- K
KQZ?x?( te, K),
hence
0*C K? 9%C
— (T —t,2,K) = — —= (T — K).
Tt K) = S 8 (T — 1,2, K)
¢) Noting that
oC C
— (T -t,z,K) = —— (T — K
(T = 10, K) = — S (T = 1,2, K),
we can rewrite the Black-Scholes PDE as
ocC
T— K)y=——(T—-t,z,K
PO(T ~ b2, K) = = S(T = b2, K)

+rx<%C(T th)fEa—C(Tft K))

222 K2 92C
P FaKQ(Tit#EyKL
i.e.
ocC ocC o?2? K? 9°C
a—T(Tft,x,K) = 7TK87K(T7t7I’K) + 3 ?E)KZ(Tft,:r,K).
Remarks:

1. Using the Black-Scholes Greek Gamma expression

PC o wK) = — @, (T 1)
Oz? o oayT—1 -+ )
_ ! o= (@4 (T=)/2
oxy/2m(T —t) '
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we can recover the lognormal probability density function ¢r(y) of geo-
metric Brownian motion St as follows:

or(K) = T~ f>r‘9 T 1K)
T—t)r ‘T 6 c ,
( » K2 or z(T_twL:K)
_ &O—ww—t)ﬁ/z
K2,\/2n(T —t)
_ 1 o (A (T—1))?/2
oK\/2n(T —t)
_ 1 ox _((7’—02/2)(T—t) -l-log(a:/K))2
oK \/27(T —t) 2(T — t)o? ’

knowing that

— (e A t)>2
2 ol VT — 1

- 1 <10g(I/K) +(r+a?/2)(T —t)
2 lo|VT 1

= —%(d+(T—t))2 +(T = t)r +log %

f%(d,(Tft))z

2
z

T — log —

> +( t)rJrogK

which can be obtained from the relation
(de(T = )" = (d-(T = 1))*
= (AT — 1) +d_(T — 1)) ((de(T — 1) — d_(T — 1))
= 2(T —t) + 2log %

2. Using the expressions of the Black-Scholes Greeks Delta and Theta we can
also recover

zg—g(T t,z, K) +1"K§IC((T—t,m,K)
KZSKC;(Tft,x,K)
oC 1 x 0C
- 27E(T7t,x,K)+rK (—C(Tft,x,K) — ?%(Tft,a,KO
2(; S(T*t,.’lj,K)
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20® (A (T — 1))/ (2VT = t) + rKe™ T=9"®(d_(T — t))
22 (dy (T —t))/(xo VT — 1)
rC(T —t,x, K) —ra®(dy (T —t))
229 (dy (T — 1)) /(xoVT —t)

=2

Exercise 9.2 We have

o~ (K—5S0)*/(2T)

oC
— (S0, K, T) = —(K — S
O (50 1, ) = ~(K — 5
K-Sy K-Sy K-Sy
o[- _
(7)) e ()
K-S,
- (- ,
( VT )
and
802 1 2
So. K.T) = —(K—=50)"/(2T)
8K2( 0, £, ) \/ﬁe ’

which is the Gaussian probability density function of Sp = Sy + Br. We also
have

ac 1 g2 (K—50)?% [T _(j_sgy2
7= — (K—=50)*/(2T) _ 0 L o~ (K=80)7/(2T)
OT(SU’K’T) 2 QﬂTe 272 o’
LK =S80 (K-S
273/2 VT )
_ b (k-sy?/en)
2V27T
10C?
:iﬁ(soJﬂT),
hence
acM aCcM oCM
ot 27(1511/)'*‘27”9071/(@3/) QW(t,y) 1 1
a(t,y - 28201”@ ) - 28201”(75 )7 vl
v e by v by

and the equation satisfied by (S;):er, is
St i
dS; = Sio(t, S)dBy = WdBt = sign (S;)dB; = dWy,
t

175
June 17, 2024 https://personal.ntu.edu.sg/nprivault/indext.html


https://personal.ntu.edu.sg/nprivault/indext.html

Solutions Manual

where dW; := sign (S;)dBy is also a standard Brownian motion by the Lévy
characterization theorem, o (t,y) = 1/y, and Sy = Sp+ B;. Indeed, as in Quiz
2 of FE8815, the price of the call option in the Bachelier model is given by

C(So, K,T) = E[(St — K)*]
= IE[(SO + Br — K)+]

= [F @S- K)e—=/@n 4
K—So 2nT
_ (™ —o?)2r)_dT dx _g o—z?/2r) 4T dx
K—5o e V2orT - (K 0) jK So 21T
T ) [eS] 00 2 dy
— ] | et/ (2D) —y°/2
27 { ¢ ]K—SU (K- J(K So0)/VT V2
T 2 K — S
— ] e (K=80)°/(2T) _ _ _ 0
Vaze (K 50)45( v >
Exercise 9.3
a) We have
M,
9 C(K S,r7) = (K S, Giap (K), 7, 7) + Ol (K )%(K, S, Gimp (K), 7, 7).
b) We have
ocC oC
aK(K S, Cimp (K),7,7) +(7,mp(K) (K S, Oimp (K),7,7) <0,
which shows that
g[i(l{ S, Oimp (K), 7, T)
o-i,mp(K) < - oC
B — (K, S, Oimp(K),7,7)
c) We have
oP oP
- . >
E)K(K S, Cimp (K),7,7) +J,mp(K) e (K, S, Oimp(K),r,7) >0,
which shows that
or — (K, S, 0imp(K),7,7)
imp = 8P
B — (K, S, Oimp(K), 7, 7)

Exercise 9.4
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a) We have
K+S
Uimp(K> S) =~ Oloc ( B >
K+8 ?
:UoJrﬁ( ;r *So>
_ s 2
—0'0+Z(K—(250—S)) .
bl ®

100 150 200 0 50 100 150 200
s s

(a) At the money K = Sp. (b) Out of the money K > So.

Fig. S.42: Implied vs local volatility.

b) We find
4 BI(S, K, T, K,S 9Bl K, T, K, S
as( ( O'Imp( ), )) o (T Ulmp( )s ) _s
0 imp OBI
BSP % (w K, T o T)o:a,,,,p(K,S)
= Al - 50— 9)),
where .
A=m (2, K, T, 0imp(K, 8),7) ¢

is the Black-Scholes Delta and

0Bl

v= B (S K, T, o, T)a:o,mp(K,S)

is the Black-Scholes Vega, cf. §2.2 of Hagan et al. (2002).
Exercise 9.5 We take t = 0 for simplicity. We start by showing that for every

A > 0, we have
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%]E [exp (AIUTdet) - 1] = % <.[0FD P(r, K)K2 o +j O(r,K)———

By Lemma 8.2, we have

%]E [CXp (Aﬂofdt) - 1] = %]E K%})m - 1] . A>O.

Using Relation (9.18), i.e
M oM

o-(K)=e a7 (r,y) =e a7 (7,9),

we have

%]E {exp (AJOT afdt) - 1] - %]E [(%)p 7 1}

1
= )\Fé)x B [S‘[r)/\ 7F0p/\}

1 oo
- s (i)
1 "
v (J KM (K)dK+] KP (K)dKng’*)

8%pP

- 1 r ~Fo A rr ((° Px 0%C
= 557 <e ) P o (r K)AK +e JFK

OK?

dK
K?2-px

(r,K)dK — Sé’*) .

Next, integrating by parts over the intervals [0, Fy] and [Fp, 00) and using the

boundary conditions

oP

P(1,0) = C(r,00) =0, K

with the relation

oPrP oC

ax\ )~ oK

and the call-put parity

—((n,K)—e""=0

P(T,Fg) — C(T,Fg) = S(] — F(]QTT =0
as boundary conditions, we find
1 T,
Y E {exp (/\JO atdt> — 1]
opP

_ 1 T QP 8P T Fo pa—124
,/\ng< S o (T ) = pae'™ [ KM (KK
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’I‘TSP)\

0 8K(T Fo) PAEMJ KPr~ 190

o (7 KK sg*)

T

e Fo JoP oo ocC
= -y —— PA—127 pA—17"
Nve <L KMo, K)dK-s—fFo Ko, K)dK>

p)\e”— -1 Fy .
R (SS* P(T,Fo)+(px—1)jO KM 72P(r, K)dK

—SPTIC( Fo) + (= 1) [ KM 2C(r K)dK )

— F
_ ”*(j’;—m”e" <f " KP2p(r, K)dK + [“ KP20(r, K)dK)
0

27 [ (Fo dK
:Sg (Io (TK)K? m+j CTK)K2 m)
277 [ (Fo s dK
- ( [ P ) 5 [T ot ) 25 m).

Finally, taking

>

pri=py =1/2—+/1/442)

and letting A tend to zero, we find
el = el 0 L)
:lfb%qe;: (L)F P(r, K)K2 =+, o K)K(iKm>

— e (L P E) L +j ot K)‘Z)

Exercise 9.6 (Exercise 8.7 continued). Taking ¢(z) = (log(z/Fp))? with
y = Fy, we have

¢ (x) = %logFiO and ¢ (z) = 5—2 (1 — log Fi()) ,
hence
Sr\? )
<l°g f) = ¢(Fo) + (St — Fo)¢'(Fo)
0
[ )7 Gz + [ (Sr - 2) 0 ()
- ZIU (K — Sp)* (1 ~log &= ) ‘;g

-‘rQL:O(ST - K)*t (1 — log K> dK

Fy) K*
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Therefore, we have

B [<1og ?)2} - 2f0F° E*[(K — Sﬂﬂ% + 2.[;C E*[(ST — K)+]ﬁ

0 K?
K dK K dK
_ * + _ * _ +
2 [ B (K ~ 5r) Jlog =7z 2 [ E((Sr - K) J1og =7z
K dK K dK
_ * 2 _ rT - - _ rT
= E* [R},] -2 JO P(T, K)log Ty = 2 JFU C(T, K)log ez
and
. 4 o Fo dK IO dK
E* [RL,] = 8e jo P(T,K) (log ? o8 j C(T, K) logF T
(S.9.46)

Alternatively, taking ¢(z) = (z/Fp)(log(x/Fy))? with y = Fy, we have

2
#(@) = ~ <10g£> + 2l
Iy 0 0 0

F F F{
and 5 ) 5
) = log X+ 2 = % (14log =
@) = R R TR o T8 )
hence

Therefore, we have

)

Fo 2 K
_ _ +
= [ "EIK - 51) 1% (1 +log Fo> dK

*00 2 K
— K)t—— _
+J ) E[(Sr — K)T] X <1+log 0>dK.,

and

. 8 K\ dK
E* [R} 7] = = Tfo P(T,K) <1+logfo> i

K
8 o1 (™ K\ dK * [p2
e JFU P(T, K) (1 + log E) — AE R ]

Exercise 9.7
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a) We have
00 @ VT _ g HT 0 VT _ gTHT
Jy e )
0 xptl 0 P+l
1 e v® —e k2] 1 oo —pe @ 4 peHr
e Y i
P 0

p pJo o

I (e B =z —p
= fo e x da:—&-pfo e M~ Pdx

dx

uf — vP
B ra—p).

b) Taking v =0 and u = Ry 7, we find

* _ P * o —_A\R2 dX
E [Rt.T] = m E |:fo (l —e t‘T) W:|
dX\

=m0 B

see § 3.1 in Friz and Gatheral (2005) with p =1/2.
¢) Letting pf :=1/24 /1/4 — 2), we have

* P e % [ —AR2 dA
E*[R.z] = mjo (1 o))

+
_r oo (et | (ST ) _dA
“Ta-p) Jo (1 ¢ I {(s(J) A

+
p LR Sp\P | dA
=7 I
i E { <F0> AT
T Ir(1-p)Jo Fy Artl
P o St dX
F(lf ) L/SIE |:1 ,/?Oexp <i V8 —1llog ) i
T 50\ ax
T p+1  I(1-p)Jo R Aptl
P «| [Sr dA
Ta=p) L/BIE 7 cos ( V8A —1llog ) il
_ P /8 p «
- F(l _ /J) E [¢A(ST)] )\p+1 F(l _ P) E [w(ST)] s
where
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we have

¢&($):*P,\7A¢ and  ¢§(x) = —px(py —1)— =2\

hence with y := Fj we have ¢,(y) =0 and

E*[¢x(S7)]
d:
=E (ST—FO)——2)\I (K — sp)+ & dK—zAj (Sr— K)*
Fy P
0 0
+ :t -
F Py —2 -2
= "B (K - 5p) )R dK + [ (ST - )5 K
0 FUA Fo FI'
rT F e}
o <j P(T KK 2K + [ C(T, K)Kpf*24K> .
Fé)A 0 Fo

Taking now

T 1 T dA
P(z) = L/s (1 —4 /F()COS <§\/8)\ —1log F())) T

we have
’ _ 1 had T d\
90 = =g Jpees (385 Tow ) s
1 o K X
3T fw sin (5\/8)\ “Tlog E) VB =105

which converges provided that p > 1/2, while ¢”(z) cannot be written as

a converging integral but can be estimated numerically from v’ (z). Hence,
we have

E*[R;,7]

peT'T
I'(1-p)

1/8 2 dA
- = pf—2 pF—2
<[ v (jo P(T, K)K dK+f C(T, K)K" dK) o

+j P(T, K" (K)dK +j o, K)w”(K)dK>
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library(quantmod)

today <- as.Date(Sys.Date(), format="%Y-%m-%d"); getSymbols("~"SPX", src = "yahoo")

lastBusDay=last(row.names(as.data.frame(Ad(SPX))))

S0 = as.vector(tail(Ad(SPX),1)); T = 30/365;r=0.02;F0 = SO*exp(r+T)

maturity<- as.Date("2021-07-07", format="%Y-%m-%d") # Choose a maturity in 30 days

SPX.OPTS <- getOptionChain("~SPX", maturity)

Call <- as.data.frame(SPX.OPTS$calls); Put <- as.data.frame(SPX.OPTS$puts)

Call_OTM <- Call[Call$Strike>F0,];Call_OTM$dif = c(min(Call_OTM$Strike)-FO0,
diff(Call_OTM$Strike))

Put_OTM <-Put[Put$Strike<F0,];Put_ OTM$dif = c(diff(Put_ OTM$Strike),
FO-max(Put_OTM$Strike))

pl <- function(lambda){return( 1/2+sqrt(1/4-2xlambda ))}; rho=0.9

gl <- function(x){ fl1 <- function(lambda){ - cos ( 0.5*sqrt(lambda*8-1)*log
(x/F0))/lambda”(rho+1)/sqrt(x*F0)/2}; return(f1)}

g2 <- function(x){ £2 <- function(lambda){ sin ( 0.5*sqrt(lambda*8-1)*log
(x/F0))/lambda~(rho+1)/sqrt(lambda*8-1)/sqrt(x*F0)/2}; return(f2)}

g3 <- function (x) { integrate(gl(x), lower=0.125, upper=Inf,stop.on.error = FALSE)$value}

g4 <- function (x) { if (x>F0) {integrate(g2(x), lower=0.125, upper=1000000,stop.on.error =
FALSE)$value} else {integrate(g2(x), lower=0.125, upper=100000,stop.on.error =
FALSE)$value}}

eps=1;psi2nd <- function(x){(g3(x+eps)+g4(x+eps)-g3(x)-g4(x))/eps}

f <- function(lambda){ return (2*(sum(Put_OTM$Last*Put_OTM$Strike**(pl(lambda)-2)
*Put_ OTM$dif)) +sum(Call_OTM$Last *Call_OTMS$Strike**(pl(lambda)-2)
*Call_OTM$dif)/FO**pl(lambda)/lambda**rho)}

(sum(Put_ OTM$Last*as.numeric(lapply(Put_ OTM$Strike,psi2nd)) *Put_OTM$dif)
+sum(Call_ OTM$Last*as.numeric(lapply(Call_OTMS$Strike,psi2nd))
*Call_OTM$dif)+integrate(Vectorize(f), lower=0,
upper=0.125)$value)*rho*exp(r*T)/gamma(l-rho)

Chapter 10

Exercise 10.1

a) By differentiating (10.2) with respect to T', we find

o (T) = 2B(r, < T)

aT
f2i1P>(W > a)
“Egr VT

T a

2 6 oo 2
_ v —y*/2

T3 0T Japyr® W
=2 /e 7o, (8.10.47)

V2rT3

b) By differentiating (10.13) with respect to T', we find
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(1) = B < T)

8
= —o7P

d
T
d
S or

(fa 2 T)

IP’(XO < a)

d5<a—uT

VT

)

I
\V2rT

a 1
JF —
(2\/ 2nT3 V21T
= 0 eeum/er)
278

J
2;1117@
+e o

> Cf(uf

> eZ;La—(a+;LT)2/(2T)

(=7

uT)?/(2T)

)

T >0.

¢) By differentiating (10.15) with respect to T', for z > Sy we find

E]P’(%a <T)

o+, (T) = aT
17}

=P 2 T)

= —iﬂ»(MO <z)

ar
g (Fe AT et
. (%>1—2r/a %4& <7(r - 02/235% log(x/So)>
_ lz%ir;) oxp <— 12T((r — o2/2)T — log(w/Sg))z) , T >0,

which can also be recovered from (S.10.47) by taking a := log(So/z)/o
and p = r/o — 0/2. Similarly, when 0 < z < Sy we can differentiate

(10.18) in Corollary 10.8 to find

Op

a7 (fs <T)

o+, (T) =

0
= 8—T]P’(mOT < L)
0

—(r —0?/2)T + log(z/So)
=7 ( °

)

(r —o?/2)T + log(x/So)

ovT
S 1-2r/c?
(%)
or

0
x

745(
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_ log(So/2) 1 ) ,
= TS exp *202T((7’ —0?/2)T —log(x/S0))*), T >0,
which yields

o llosS/o)l
er (1) = oV2rT3 <

for all > 0.

_QUlzT((T —0%/2)T — log(z/SO))2> , T>0,

Exercise 10.2

a) We use Relation (10.14) and the integration by parts identity

J.OOO V' (2)u(z)dz = u(+o00)v(400) — u(0)v(0) — J:O v(2)u(2)dz

with

U(y)zqﬁ(L\/%T/U) and v/(y) = 2Lyl

which satisfy

1 .
W (y) = _WQ—WWT/JV/@T) and  v(y) = ye2/7 — iezuy/a_’

we have
E W, =cE W, + ut
[,,233’;] | = g 0ve s
_ f ye—(l/ uT/o)? (Zl)dy_Zﬂf yEQMy/o'@ <7y 7HT/0'> dy
N VT
—(y—nT/o)?/(2T) R
N7 f ye dy — fo v (y)uly)dy

— o1 ] 2 [T ye—w—nT/0)?/(2T) g, _ <
,a\/;fo ye dy O'U(+OO)U(+OO)+0’u(0)’l}(0)+afo o (y)v(y)dy

2 " 00 2 O'2 \/T
— o] = —(y—nT/0)?/2T) g, _ T [ _H
NaT JO ve dy 2;143 ( o >

e/ o= (+uT/o)*/2T) gy, 4

2
g o °° 2uy/o—(y+uT/0)?/(2T)
— e d
V2rT fo 2uN 27T IU 4

2 =) 2
— g4/ —(y—uT/0)*/(2T)
g 7rTf0 ye dy V2rT Jo

2
2% T +7j°° e~ (W=nT/0)?/(2T) g
24 o 2N/ 27T 0

~(=T/0)?/(2T) g

Y
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E— f = g (vmnT/0)/(2T) gy (T
V2rT Jo 20 o
2 o0
+2;L\/027TT jo et/ e dy
o 2
| gt PN ren g, _ T T
V2rT Y =uT/o o 20 o
_T (T ev/eD
+2;m/ 2nT I*MT/G ¢ dy
%} - 2 o)
__0 f e/ gy | wT'+o /(ZM)j eV /CT) gy _ T
VorT J-ur/o VorT uT/o 2u o

; o 2
o [,Te*yz/(QT)] + uTd M\F M\F _%% ,ﬁ
21T —uT/o QM o 2u o

, 2
:Uw/le’“ T/2 4 MT+ P “\/7 _ % ,ﬁ .
2m 20 o 24 o

As o tends to zero, we find
. pTP(+00) = uT if >0,
E {max Wt}

t€[0,T) pTd(—oc0) =0 if u<0.

Joa ()= ()

2 g0 o
) n o I;\/T“/ efyz/2dy.

We also have

E [ max Wt} =04/ Zef“’zT/2 + ul'd <
t€[0,T] 2
= \/QTe“T/QJrqui<

Hence, as u tends to zero we find

— T VT
. _ —uT/2 I
E [trerf&)}] Wt} o\ 3¢ + uTe < ) o\ 5 + o(u), [w— 0],

and for 4 = 0 and o = 1 we recover the average maximum of standard
Brownian motion

Do

SRRIE

2uN/2m =T/

)

E { max W;

2T
t€[0,7]

s

which represents two times the expected maximum
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E[max(Wr,0)] = \/ﬁj max(y, 0)e™"/ @) gy
= -y /(2T)dy
! [,Te—qﬂ/(m]”
2rT 0
r
2m

b) By part (a) the identity in distribution (—=W})ier, = (Wy)ier, , we have
E | min W, E W, + pt
Lg[lolg"] t] o { II[llIl]( L+ /U)]
=-E LIEI%&)";](_Wt - /Lt/()’):|

=-oE Lg[l&);](Wt - ut/a)}

<o (e 2) o (FET) - 2o (1),

In particular, as o tends to zero, we find

N pTP(400) = uT if <0,
E [ min Wt} =

t€[0,T) pTd(—oc0) =0 if u>0.

Exercise 10.3
a) We have S; = Spe”Vt, t € R,.

b) We have
E[S7] = So E [¢777] = Spe” T/2.
c) We have
P(max WtZa)*QJ —e?/(2T) 2L , a>0,
t€[0,T] V2rT
and J
a 2 T
P Wy<a)|=2| e @ /T _—_, >0,
(apgwisa) =affeen g o

hence the probability density function ¢ of nfa)qc‘] Wy is given by
teo,

2 _a2
pla) = \/ ﬁe ) /<2T>]1[010o>(a)7 a € R.
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d) We have

200
E[M{]=5SE {exp <O’ max Wtﬂ =5 JO e’ p(z)dx

t€[0,T]

250 ([ ou—a?/(2T) 250 O (i oTy? 2

_ o7 dr — I o~ (@=0T)?/(2T)+0°T/2 4.
VorT fo V2no?T

25() 2T/2 oo —"2/(2T) 250 27 /9 _,.2
= ——¢° e ” dz = S 2y

T J‘*UT V2T j a\f
=25 02T/2J"‘F —2*/2 4y
= 2Sp¢e? T/Q@(af)
= 2E[S7]®(aVT).

Remarks:
(i) From the inequality
0< ]E[(WT — oT)*]
2
(z—oT) e ™ /CNdy
\/271'T f
= z—oT)e —*/(2T) gy
T Ao
T oo 2
- —2?/(2T) g, _ 9 —2%/(2T) g
xe x e x
V21T -LT V2T LTT

_ 1 © —22/2 o T/2

7\/27T£T L€ dr — mf dx
T 2 oo

— ) |emwt/2 _ _

“Vor {C ‘ }a\/T UTQ;( U\FT)

T

7072
= EC T/QfJT(17¢(0\/T)),
we get -
B(oVT) 21— QT
oV 2m
hence

E[M{] = 2507 T/2® (/T
—o2T)2
2 e
> 28pe” /2 (1 - )
ov2nT

efJQT/‘z
=2E[S 1-—
[57] ( o 27rT>
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2 1
=928, (712 — )
°< ov/2rT

(ii) We observe that the ratio between the expected gains by selling at
the maximum and selling at time T is given by 2¢(c/T), which
cannot be greater than 2.

2 ~

2 ©(oT1/?) - '

1.5

ratio
R

0.5 | =

time T

Fig. S.43: Average return by selling at the maximum wvs selling at maturity.

e) By a symmetry argument, we have

(i W< a) =P (= max (-W) <o)

te[0,T] te[0,T]

:IP)<7 max Wt§a>
te[0,T]

:]P’(max Wy > 7a>

te[0,T]
_ gf°° eat/en 4T
—a 21T

i.e. the probability density function ¢ of II[III% ] W, is given by
tefo,

2 _,
o(a) = el ¢ /(QT)]l(—oc,o](a)7 a€R.

f) We have

E[mUT] =Sy E |exp (0 min W;
tel0,7)
0
:SOJ; e o(x)dr

_ 250 0 cx—x?/(2T)
= Vot e
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0 2 2
_ —(@—oT)?/(2T) 40T /2,4
= e i
V21T j
25y oo°T/2 J""T 0 /2T) g,

21T o0
_ 25 602T/2j "‘F —2?/2 g0
V2T —o0

= QSOC"ZT/zé( — U\/T)
= 2E[S7)o( - oVT).
Remarks:
(i) From the inequality

0 < B[(—oT — Wr)*]

1 R 2
= — (=0T —a)Te ™™ /gy
V2rT f,oo
1 —oT 2 P
=—— (0T +2)e™ /D gy
V2T j,oo

—oT

e—zmm de —

L IidT ze~ /D) gy

— \/ﬂj U\F —2%/2 g0 \/7f VT e 20y
= —oTd(- U\/T) + \/;r [0722/2] :;ﬁ
~oT®(—oVT) + \/: —o*T/2,

we get
e T/ @( —a\/T) < U\/ﬁ7 hence E [mo] < p

(ii) The ratio between the expected gains by maturity 7' vs selling at the
minimum is given by 2&( — ov/T), which is at most 1 and tends to
0 as o and T tend to infinity.
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2 1 T 1 T 1 1 L =]

2 ®(-0TV/2) ——

2 ®(OTV2) ———
1.5 -

k=l

] * E
0.5 =
o L L L L n T —_—
o 0.5 1 1.5 2 2.5 3 3.5 4

time T

Fig. S.44: Average returns by selling at the minimum vs selling at maturity.
(iii) Given that E [M{] = 2E[S7]®(ocvT), we find the bound
2E[S7)®( — oVT) < E[S7] < 2E[S7]8(oVT),
with equality if 0 = 0 or T'= 0. We also have
2E[Sr] — E [MJ] = 2¢7 7/2(1 - &(0V/T))
= 26"2T/2¢( —oVT)
=E [mUT}7
hence we have
E [mj]+E [M{] = 2E[Sz], or E[Sr]-E[mf] = E [Mj]-E[Sr],

and
250

oV 2T

2TE[Sr] — <E[M]] <2E[S7].
Exercise 10.4 (Exercise 10.3 continued).

a) Regarding call option prices we have, assuming K > Sy,

te[0,T]

+

E [(JWOT —K)T =S E |:<exp (0’ max Wt> —K) :|
= I:O(Sge” — K)"o(x)dx

2 o0 2

= o ) (e ) e

2 o0 ox —z%/(2T
T VT -Lflloguqso) (Soe7® = )™/ 0d
25

\I‘OC
T /27T Jotlos(K/S0)

en‘m—acz/(ZT)dz
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—a?/(27)
\/QﬂTJ o1 log(K/S0) de
250

- \/QWTJ =1 log(K/S0)

—(x—aT)Z/(ZT)+a2T/2dI

0—1:2/(2T>dx

\/271'T j ~*log(K/So)
_ 250 CJQT/QI =%/ 2T) g,
271-T oT+o~1log(K/So)

~a®/@T) gy

\/27rT f ~!log(K/So)
= 250e” T/ (o VT + o log(So /K ) /VT)
—2K® (0  log(Sy/K)/VT).

When K < Sy, by “completion of the square” and use of the Gaussian
cumulative distribution function ¢(-), we find

E[( mu S0 K) | =B [ max 50— K]

=5 5,5 - B

=1 [ max St] - K
t€[0,7)

=S E {exp (O’ max W,)] - K
te[0,T]

-5 j°° 7 o(z)de — K

=50 ), e e(@)de
28 gou—a?/(21)

- 7= 2?/(2T) gy
V2rT IO

250 (% —(e-0T)?/(2T)+0"T/2
= e W7 “ dr — K
VorT fo
_ 25 o1 [ e ey _ i
T oT

= 2S0€”2T/245(Uf) —
—QSe”T/2< (—0\/7)>
= 2E[S7]®(oVT) —

hence

TR [(ME - K)'] = 2508(0VT) — Ke o 7/,
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Recall that when r = 02 /2 the price of the finite expiration American call
option price is the Black-Scholes price with maturity T, with

Blcau(So, K, a,r, T)
= So®(oVT + 0 log(So/K)/VT) — K™ T/?® (0 log(So/ K)/VT)

250 (0T + 0~ og(So/K) /VT) — 2Ke="T/20 (0~ og(So/ K) /VT)
if K > Sp,

A

250 (oV/T) — Ke='T/2
if K < Sp.

2XB10311(S(),K,U,7“,T) iszSg,

250 (oV/T) — Ke o' T/2 if K < Sy,

= max (2 % Bloan(So, K, 0,7, T), 2508 (0V/T) — Ke*UZT”) .

—— Upper bound

price
10
!

00
|

Fig. S.45: Black-Scholes call price upper bound with S = 1.

b) Regarding put option prices we have, assuming Sy > K,

E[(K-m§)'] =SE {(Ke"p (" &4 W‘>”

t€[0,T]

= IOOO(K — Soe?®) Y o(x)dr

_ 2 0 ox\ 1 —x?/(2T)
= 7ot .LOC (K — 50e7) e dx
2 o~ " log(K/5So) 2
— _ ox\ ,—z°/(2T)
= 7o) (= Soe)e T
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o~ log(K/So)
SURIR0) —a?/21) g,

25p oL log(K/So)
\/ 2nT
—1

j log(K/So) 712/(2T)d:v

00177:1;2/(2T) dz

\/27rT
B 250 f " log( K/SU> ~(@=oT)?/(2T) 40T /2 g,
7110g<K/Sn)
—a2/27) g
\/ 27T f
B 250 7T/2 J'—0T+a ! log(K/So) 022/ 1) gy
27T -0

— 2K®(—0 " log (So/K)/VT)
~250¢” T2 ( — oV/'T — 0~ log(S0/ K)/VT),

with —o2T/2 T+ _ —o2T)2
e E[(K-md)"] = Ke —2500( - oVT)

if Sop < K. Therefore we deduce the bounds
Blpys (SO: Ky a,r, T)
= Ke 7" TR2¢( - 0 og(So/K) /NT) — So®( — oVT — 0~ log(So/K) /VT)

< American put option price

2Ke"’2T/2@( — o og(So/K)/VT) = 25,0( — oV/T — 0~ 1og(So/K)/VT)
it Sy > K,

Ke o'T/? —28,¢(~ovT)  if Sy <K,
2><B1put(507K70',7‘,T) IfS()zK,
Ke=o'T/2 28,0 ( — oVT) if Sy < K,

max (2 x Blpy (So, K, 0,7, T), Ke—o'T/2 _ 280®( — U\/T))

for the finite expiration American put option price when r = 02/2.
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—— Upper bound
—— Black—Scholes put price

. _—

pice

Fig. S.46: Black-Scholes put price upper bound with So = 1.

Exercise 10.5 (Exercise 10.4 continued).

a) Using the expression

(z) \/ —Te (@=nT)*/(2T) 4 96217 (%) , ¢ <0.

of the probability density function of the minimum

X = W, W, t
0 tg[lolr;] té‘[‘&“]( ¢+ ut)

of drifted Brownian motion Wt = Wy + ut over t € [0,T] given in Propo-
sition 10.7, we find

E { min St] =5 ffoo e’ _r(z)dr

te[0,T)
) 2
=S, Jmem /ﬁe%z—wﬁ/(mdz

0 T
+2u.Sp j, TP <%> dx

_25 4 27 /2— ”UTQ((/L—U)f) flLSO ( ,U‘\/7)

Q/J,SO

2H - gezJZT/2—;mT¢((M _ G)\/T),

with p:=r/0 — /2, which yields
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E [ min St} =S (1 - i) @ <#ﬁ>

t€[0,T7] 2r

o1 2 (),

See Exercise 12.1-(b) for the computation of IE [IIlinte[O,l] St} when r = 0.
b) When Sy < K, we have

E[(K— min 5)'] = B[k~ min 5]

:K—IE{ min St]

te[0,T)

(Do
ST <1+§>¢<7#ﬁ>.

Next, when Sy > K we have, using the probability density function

LPXVZ"(-'L'),

(k- 50 - [0 5 g )

0
= f,oc (K- Soe”")JrgonnT(x)dx

= So /lT [ (1 = spere) e an) gy
s —o0
+ 2ux T+ :U'T
+2usoj (K — Soeo®) e 45( T )d.L
(r—c*/2)T + 1og(so/K>>
— Ko (-
( oVT

K ( S ) e <(r - Uz/Q)fleog(K/SO))

S, (1 _ 5) (%)72”02 & <<T - ”2/2>UT } lOg(K/So)>

et (1 7)o (AT st/ 1))

In Figure S.47, using a finite expiration American put option pricer from
the ‘R fOptions package, we plot the graph of American put option price
vs (S.10.48)-(S.10.49), together with the European put option price, ac-
cording to the following ‘R code.
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—— Upper bound
American put price
—— Black—Scholes put price

Price

oo os 10 1s 2.0

Fig. S.47: “Optimal exercise” put price upper bound with So = 1.

dl <- function(S,K,r,T,sig) {return((log(S/K)+(r+sig~2/2)*T)/(sig*sqrt(T))}

2 | d2 <- function(8,K,r,T,sig) {return(di(S, K, r, T, sig) - sig * sqrt(T)}

BSPut <- function(S, K, r, T, sig){return(K*exp(-r+T) * pnorm(-d2(S, K, r, T, sig)) -
S*pnorm(-d1(S, K, r, T, sig)))}

Optimal_Put_ Option <- function(S,K,r,T,sig){

if (r==0) {if (8>=K) {return(K+*pnorm(d1(K,S,0,T,sig))-S*(1+sig*sigxT/2
+log(S/K))*pnorm(-d1(S,K,0,T,sig))
+S*sigxsqrt(T/(2+pi))*exp(-d1(8,K,0,T,sig)*d1(S,K,0,T,sig) /(2*sig*sigT)))}

6 | else {return(K-2*S*(1+sig*sig*T/4)*pnorm(-sig*sqrt(T)/2)
+Sxsigxsqrt(T/(2*pi))*exp(-sigxsigxT/8))}}

else {if (S>=K) {return(K*pnorm(-d2(S,K,r, T sig))
+K*(S/K)**(1-2+r/sig/sig)*pnorm(d2(X,S,r,T,sig))
-2xS*exp(r*T)*pnorm(-d1(8,K,r, T,sig))
-S#*(1-sigksig/2/1)*(S/K)**(-2+1r/sig/sig) *pnorm(d1(K,S,r,T,sig))
+S*exp(r*T)*(1-sigxsig/2/r)*pnorm(-d1(S,K,r,T,sig) D}

& | else {return(K-S*(1-sig*sig/2/r)*pnorm((r-sig*sig/2)*sqrt(T)/sig)
-S*(1+sig*sig/2/r)*pnorm(-(r+sig*sig/2)*sqrt(T)/sig))}}}

r=0.5;sig=1;S=1;T=1

library(fOptions)

curve(BAWAmericanApproxOption("p",S,x,T,r,b=0,sig,title = NULL, description =
NULL)@price, from=0.01, to=2 , xlab="K", lwd = 3, ylim=c(0,1),ylab="",col="orange")

2 | par(new=TRUE)

curve(BSPut(S,x,r,T,sig), from=0, to=2 , xlab="K", lwd = 3, ylim=c(0,1),
ylab="Price",col="blue")

par(new=TRUE)

curve(Optimal_Put_ Option(S,x,r,T,sig), from=0, to=2 , xlab="K", lwd = 3,
ylim=c(0,1),ylab="",col="red")

6 | grid Qty = 5)

legend(.0,1.0,legend=c("Upper bound","American put price","Black-Scholes put
price"),col=c("red","orange", "blue"), lty=1:1, cex=1.)

¢) When r =0 and Sy < K, we find

+ o’T ovT /T 2
— i — _ _ o“T/8
E [(K tén[(in] St> ] K—-28, <1 + 1 ) [ 2 +0Sy o e .

(S.10.48)
Next, when r = 0 and Sy > K, we find

E [(K - min st) +] = K& (%\Zﬁ%) (S.10.49)
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SO a T> < UQT/2+10g(SO/K)>
“So(14+10g20 4+ T2 ) (T /2T 0800/
< BxK T2 o T

4 Soot | L e T/ 21080/ K))?/(20°T)
27

From the above ‘R code we can check that when r ~ 0 the price of the
finite expiration American put option coincides with the price of the stan-
dard European put option, as noted in Proposition 15.9.

Exercise 10.6

a) We have
P(re >t) = P(X; >a)
o0
= [ ox.(@)da
—.J2 f“ /@y oy >0
mtdy . ’
b) We have
()= 4P <)
Pra T a Ta =
d (oo
= 2 | ex(@)da
0o 72
\/71‘/ 3/2j A ACOF N \/7 3/2J’ ‘Lto @?/(2t) g
- —3/2 e w?/(2t) —a?/(2t) 2?/(20) g
2\/; ( L dx + ae +J d.L)
=L ety psg
2mt3
¢) We have
—27 _ [ -2
E[(ra) 2] = [ ¢ %pn, ()t
_ @ L —7/2 —a?/(2t)
= t e dt
\/ 2T I
4 —a’z” /de
2T [
by the change of variable z = ¢t~ /2, e 22 = 1/t, t = z~2, and
dt = 2z 3dx.
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Remark: We have

a

Var

Er,] = J:O 171270/ 2D gy = oo,

Exercise 10.7 Starting from the probability density function

1 /2 (2a—b)2 Ty
S‘O)/(\(T"X/T(a?b) = ]l{uZmax(b,O)}T ﬁ(Za - b)cﬂb (2a=b)"/@T)—p"T/2

of the drifted Brownian motion WT = Wrp + T and its maximum )A(g =
n;a)%] Wy, we take p:= r/o — o /2 and let the functions f and g be defined
teo,

as

1 1
fley) = -log = and g(z,y) =~ log o,
[oa So g So

with the Jacobian

of of L,

ox Oy — 1
el =0 =] 1=

29 09| |0 | oy

Or Oy 7Y

z,y > 0, which yields the joint density

eup s (@ y) = (@ Y)legr 5, (f(@9). 9(z,y))
1, (2 (0 ™ Newo (Proe Y~ 1 (102 22) _ 2T
= o3y wEmaxwSo | p \ 08 g P 08 G T o \ B g, ) T g

of Sy and its maximum MJ = max,efo,r] S¢ over ¢t € [0,T], z,y > 0.

Chapter 11

Exercise 11.1 Barrier options.

a) By (11.26) and (12.15) we find
o= (1) (2 (3)
(-2 (3) e () o (2)
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B () (e ()

e (Yo (; (o (;;))2) ,

0< 8 <B,0<t<T, cf also Exercise 7.1-(iz) of Shreve (2004) and
Figure 11.11 above. At maturity for t = T we find {7 = Lg, 5 (ST)-
b) We find

P(Yr < a and Wy > b) = P(Wr < 2a — D), a<b<O,

hence

7 ( b)_d]P(YTgaandWTgb)__d]P’(YTgaandWsz)
Yr,Wr 8, 0) = dadb - dadb ’

a,b € R, satisfies

[ 2 b—2a) _ig,_
fYTyWT(a’7b) = ﬁ]l(foc,miu(o,b)](a)( T )e (2a-b)?/(2T)

2 (b=20) _@a-py/en)

T T a < min(0,b),
s

0, a > min(0,b).

1 2 —u? ub—(2a—b)?
vaTﬁ/T(a’ b) = ]]-(—oo,min(O‘b)](a)T /ﬁ(b72a)e 2T /24pb—(2a—b)? /(2T)

% lT(b - 2&)07”27“/2“‘1’7(2“4’)2/(27“), a < min(0,b),
_ ™

0, a > min(0,b).

d) The function g(t,z) is given by the Relations (11.10) and (11.11) above.

Exercise 11.2

a) By Corollary 10.8, the probability density function of the minimum
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WLOAT - 361[1&121_] Sres
with S, = B is given by
_ 1 (=(r — 0?/2) At +log(z/B))?
pmi (@) = oAy &P (’ 20247
L1 <B>1*2T/"Ze ( ((T_UZ/Q)ATHog(z/B))?)
S il xp [ —
oxV2m AT \ @ P 202 AT
1(2r B\'"¥/ (r —o0?/2)Ar + log(z/B)
(o) (2 ® 7
T \o oV At

0 < x < B, see also Proposition 10.7 for the probability density function of
the minimum of the drifted Brownian motion Wy = Wi+ put over ¢ € [0, 7.
Hence, we have

B[( g 5= )" | 5] = [ 0= 10 100

(1 ;Lj) 7 (- (24 5) Var) + o (EBE L 02/2)AT>
B <1 n ;j) i <7log(B/K) +(r+ 02/2)47)

oV AT
o? r o
B <1*§>¢((;*§> Var)
o (K\* log(B/K) — (r — 0%/2)Ar
BT (% o(- _K,
* 2r (B) ( oV AT )
with r > 0.

b) When r = 0, we find

IE[( min ST+S*K)+‘]:7} :B<2+%2AT>¢(*E\/E)

s€[0,A7] 2
o2 B log(B/K) + % Ar log(B/K) — Z- Ar
-B(l1+—-Ar+log— || ——"—F—=2— | + KO | —— =2 —.
( 277 s K> < oV AT oV AT
b oBV AT(e’”2A7/8 - e’dim) - K.

Vor

¢) By the solution of Exercise 10.1-(c), the probability density function of
Tp is given by

_ |log(So/B)| ( 1
= ————"—exp| —

O — oy (= 0%/~ 0B(B/S0)?) . >0
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d) We have
—AT -7 : +
e E [e ]I[O’T](T)<te[7{lﬂl-lfAr] Sy — K) ]

=4 E {57”1[03“] (NE Kte[gifAT] S K)+ ‘ ]:TH

e MR [CfrT]l[O’T] (7—)] E [(te[';,Iﬂl'iEA‘r] Sy — K)+ ) .7-'7'}7

where IE [(minte[T,TJrAT] S — K)
and

+
‘ ]-'T] is given by Questions (a)-(b),

T
E [C’TT]I[U)T](T)] = jo e "o, (v)de

_ SO —TrTT 1 _ 1 _ 2 _ 2

= log§ fo e amexp( m((r o’ /2)x —log(B/So))” | dz
So log(B/So)(r — 02/2 — \/(r — 02/2)? + 2ro?)

= logﬁ exp 2

XITA—l—fﬂp<—Z$;@AKT—UH@2+%W2—bgBﬂ%»?dw

0 oV2mad
5 <log(B/Sg)(r —0%/2—\/(r—02/2)2 + 2r02)>

x J;)T o /2171.1.3 exp (7 2cr12w (x\/m - log(B/So))2> dx

_ (B ) (r—gz/2f (T*02/2)2+27‘o‘2)/02 . <10g(B/S()) _T (7" — 02/2)2 + 27»02)

So oVT
N <E> (r—02/2+\/ (r—a2/2)2+2r02)/02 5 log(B/Sg) +T /(7. _ 0.2/2)2 + 2ro2
So ovT '

where the last identity follows from Proposition 10.4 and the relation

=P(7%, <T)
T
= | en(@)dz

1 T a 2
it —(a—pz)*/(2z)
5 JO Trwi‘e de, T >0.
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with a := log(B/Sy) /o, for a Brownian motion with drift p = /(r — 62/2)% + 2ro?/o,
see Exercise 10.1-(b).

Exercise 11.3 Barrier forward contracts.

a) Up-and-in barrier long forward contract. We have

eI E[C | Fl=e T E |(Sy - K) 1 Fi

max S, > B
0<u<T

=1 (S — Ke=(T=97) 1 o(t,St),

max S, > B max S, < B
0<u<t 0<u<t

(S.11.50)
where the function

o(t,x) == 20 (61" (x/B)) — Ke~ 9" (67~ (2/B))
+B(B/z)*/ & (~617"(B/x))
~Kem 0 (Ba) 4207 ¢ (—5T(Bx))

solves the Black-Scholes PDE with the terminal condition

s = (=54 ()" (5-5)) i

as in the proof of Proposition 11.3. Note that only the values of ¢(t,z)
with z € [0, B] are used for pricing.
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Fig. S.48: Price of the up-and-in long forward contract with K = 60 < B = 80.
As for the hedging strategy, we find

_0¢ (5Tt L 6T w/By2
ft - ax(tv St) = (6+ (117/3)) + me +

1

x\ 21

—t 2
Kem(Tm0r=OE /B0 = 2 (B a) 201" 0 (~6 (B )

1 2 T —t 2
+ B/z 1+2r/c e—(5+ (B/x))"/2
Vo /o)

Q20008 - gyt (545

K 2 (T —t)r—(6T (B /2))* /2
_ (B/x)%"/u e (T—t)yr—(6_""(
Bv2rw

=3 (6T (¢/B)) - %(B/x)1+2r/”2@ (~6T~4(B/x)

1 T—t 2 B T—t 2
+ L kB (et @By | B @i/ /2)
- K/B) ( :

K - —1)r T 02 -
_E(l —2r/c?)e”T=9"(B/2)> /7" ® (=6T7"(B/x)),
since by (12.22) we have

eI B/m)?*/2 _ o1 (T=1) (5 g)2r/0% o= (61" (@/B))* /2

and 6T—i B 2 2 2 JT—! B 2
o 0T @/BY?/2 _ o (T=) (B gy2r/o? o= (1 (B/2)?/2,
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Fig. S.49: Delta of the up-and-in long forward contract with X = 60 < B = 80.

b) Up-and-out barrier long forward contract. We have

T RC | Rl = TR | (S - K) 1 F
max S, < B
0<u<T

=1 o(t,Sy), (S.11.51)

max S, < B
0<u<t

where the function

o(t,z) == a0 (=61 (z/B)) — Ke~T=97¢ (—67!(z/B))
~B(B/z)*/7"® (~6T4(B/x))
+Ke 0 (Ba) 27 (5T (Ba))

solves the Black-Scholes PDE with the terminal condition

o1, = o= K170 (2)77 (=05 1o

Note that only the values of ¢(t,z) with 2 € [B, 00) are used for pricing.
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Fig. S.50: Price of the up-and-out long forward contract with K = 60 < B = 80.

As for the hedging strategy, we find

_9 B (_gTt _ L T2
£t— 8x(tvst)_¢( 6+ (Z/B)) me *

—(T—t)yr—(6T (= 2 2r r/o? -
Ke (T-0r—=(62""(«/B)) /2+§(B/x)1+2/ 45(_51" t(B/x))

x\/27m
1 2 T—t 2
_ (B/x)l“T/“ e~ (637 (B/x)7/2
V2T
K(1-2r/o0?
+ ( BT/U )e—(T—t)7-(B/x)2T/a2¢(_63"71,(B/z))
+BK2 (B/z)2r/" 6= (T=0r—6T " (B/2)? /2
V 4T
_ 2r /o2 _
=@ (-7 "(z/B)) + ;(B/ac)”r2 /7@ (~6171(B/x))
_ L et t@myre - LB -7 @/ B))? 2
2m 2m x

o6 w2z LK 6T /B2
B2 V2r x

+%(1 —2r/0%)e” T (B/2)*/" & (~67~!(B/x))

+

= & (<51 B)) + 2y (B) 17 @ (<5 (B/x))

1 _(sT—t 2 B . sT—t B))2/2
L gy (et wmr Bt armyy
Vor x
K o B\ B
K (20 -0 (B o571t (B
g (1) (3) e (o (3)):
by (12.22).

206
https://personal.ntu.edu.sg/nprivault/indext.html June 17, 2024


https://personal.ntu.edu.sg/nprivault/indext.html

Introduction to Stochastic Finance with Market Examples, Second Edition

> 70
Underlying

Time in days

Fig. S.51: Delta of the up-and-out long forward contract price with K = 60 < B = 80.

¢) Down-and-in barrier long forward contract. We have

T EC | Rl = TUE [(Sr - K)1 Fi
min S, < B
0<u<T
=1 (Sy — Ke=T=97y 41 o(t, St)

min S, < B min S, > B
0<u<t 0<u<t

(S.11.52)
where the function

o(t,x) := 2 (~61H(x/B)) — Ke~ "¢ (67~ (2/B))
+B(B/x)*" & (T4 (B/x))
~Ke 70 (Ba) 4207 (577 (Ba))

solves the Black-Scholes PDE with the terminal condition

2r /o2
o(T,x)=|z— K+ (g) (B 796%) Ljo,5)(%).
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Fig. S.52: Price of the down-and-in long forward contract with K = 60 < B = 80.

As for the hedging strategy, we find

& =205

_ 2r /o2 _
& (=017 (z/B)) +§(B/x)1+2/ ® (6174(B/2))
(1- K/B) (e—w?‘(w/snﬂz n Ee—@—wr—(&?‘(z/mf/2)
T

(1—2r/0)e” =07 (B/2)>/7" & (674 (B/x)) .

’Eé%‘;;zéé‘:‘::“llll’
0.6
0.5
0.4 X
0¥

0.3 XX
0.2 ’Q’
0.1 “Q“. )

RN

Nttt 80

120 140 1o
180 2 o0 Underlying

Time in days
Fig. S.53: Delta of the down-and-in long forward contract with K = 60 < B = 80.

d) Down-and-out barrier long forward contract. We have

e T E[C | F]l=c T E [(Sy — K)1 ‘ Fi

min S, > B
0<u<T
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=1 o(t, Sy) (S.11.53)

min S, > B
0<u<t

where the function

o8 (2 () T (5)
~B(/ap e (70 (2))

solves the Black-Scholes PDE with the terminal condition

(o) (&) s

Note that ¢(t, z) above coincides with the price of (11.11) of the standard
down-and-out barrier call option in the case K < B, cf. Exercise 11.1-(d).

I
=
|
>
=
o)
3

o(T’ )

Fig. S.54: Price of the down-and-out long forward contract with K = 60 < B = 80.

As for the hedging strategy, we find

%(ta St)
@ (577 (5)) = 25 (Bla)' 7 (57 (/)

1 (1 E) (e—(61*’<z/5>>2/2 N Ee—a—m—(ai*(z/B))?/Z)
B T

&

+
V2T

K % B\*/7" B
0 et —(T-t)r [ 2 T—t [ 2
(- m)e () e (e (D)):
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Fig. S.55: Delta of the down-and-out long forward contract with X = 60 < B = 80.

e) Up-and-in barrier short forward contract. The price of the up-and-in bar-
rier short forward contract is identical to (S.11.50) with a negative sign.

f) Up-and-out barrier short forward contract. The price of the up-and-out
barrier short forward contract is identical to (S.11.51) with a negative
sign. Note that ¢(t,z) coincides with the price of (11.8) of the standard
up-and-out barrier put option in the case B < K.

=

Down-and-in barrier short forward contract. The price of the down-and-in
barrier short forward contract is identical to (S.11.52) with a negative sign.

g

h) Down-and-out barrier short forward contract. The price of the down-and-
out barrier short forward contract is identical to (S.11.53) with a negative
sign.

Exercise 11.4 When B < K, we find

Vegadown—and-out-call

N Kl B G CVI DI
27
4r (S, 1-2r/c?
6

B B B s
iy Tt [ 2 K —(T—t)’r@ T—t ( 2 1 i
(st <5+ (Kst» ¢ - &g, %8B
—ar 0'2
_1/T—t%2 <é>1 n B sy,
2w Sy \ B

When B > K, we find

Vegadown—and-out-call

T—t
_ St T (s K2 (5 _ 1) 8/B) | ) o vT=E
V2r B o
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dr (S 1-2/7 g2 7t (B —(T—t)r v [ B St
7;<§> <St (6 St>>7Ke 710 Sy ))10g3
T—t
;W% —(657(St/B))? /2 <<IB( _ 1) <6(B/St) +T > T > .
Vv t

The corresponding formulas for the down-and-in call option can be obtained

from the parity relation (11.2) and the value Si4/ %ef(‘szﬂ(s‘/m)z/? of the
Black-Scholes Vega, see Table 6.1.

Exercise 11.5 We have
E'(C) = B [Lisrr) Ly <))
=E"|1 ~ 1 ~r
{Soe VT >K} ™ (556" %0 <B}
= f_m Lvu ]I{S()EUUZK}n{SgeU”SB}dP()?(/]T <z, Wr <y)
= jfoc L\/O ]l{soewzx}ﬂ{soemgB}f)?T,VT,T(L y)dzdy

1 /2 jo‘llogm/so)
T 7l J—co

oo 2 2
Jyvo ]l{sue"yEK}l(Soe”SB}@x —y)e /3y Gem) /(2T)dxdy

. o :
/ r log(B/50) r’ log(B/%)(Qx _ y)eﬂfT/Zﬂwf(QT*y)z/(2T>d$dy
~1log(K/So) Jyvo ’

if B> Sy (otherwise the option price is 0), with u =r/0 — /2 and y V0 =
max(y,0). Next, letting a =y V0 and b = 0~ log(B/Sy), we have

b 1
2z(y—z)/T _ 2b(y—b)/T
L(?x—y)e dchfQ(l—e ),

hence, letting ¢ = o~ ! log(K/Sp), we have

2
E*[C) = e » T/2 HY—Y 2/(2T) 1 — e20(=0)/T\q,
l mf ( )y
— o HT/2 ny—y*/(2T) g,
¢ V2rT L ¢ dy

e HT/2-20%/T  elnt2/T) =4/ 2T) gy,

=l

Using the relation

1 b2 2 —c+~T —b+T
=y /CT) gy — " T/2 <¢< ) ,¢< ,
75T - Y VT VT
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we find

E*[C] = E* [(ST -K)" ]1{1\1533}]
() <)

o H2T/2=20 [T+ (u+2b/T)*T /2 < <7°+ “+2b/T)T> ] <7b+ ('u\/%%/T)T>>
J(f(%)) ()

_ o HPT/2-20* T+ (u+2b/T)°T/2 <¢ (5 <KBSO>> [ <6, (%))) )

0 < z < B. Given the relation

we get

e
(o () o ()
(5) 7 (= () (= ()

Exercise 11.6
a) For 2 = B and t € [0, T] we check that

9(t,B) = B (qs <6£‘t <§>> A Cri (1))>
i (o (51 () “a ot )
(o (2) w0
Yo (T-0r ¢ <¢ (5?” <§>) — o (I (1))>

=0,

and the function g(¢,z) is extended to @ > B by letting
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g(t,x) =0, x> B.
b) For = K and t =T, we find
+oo ifs>1,
62(s) = =00 X Lpsc1y + 00 X Lgngy =4 0 ifs=1,
—oo ifs<1,
hence when z < K < B we have
9(T,z) = & (¢ (—o00) — & (~o0))
—K (@ (-00) = @ (-x))

B <§>2r/62 (@ (+00) — & (+0))

o (B)" @ am0) a0
-0,

¢) when K <z < B, we get

Finally, for z > B we obtain
9(T,K) =z (P (+00) — P (+00))
—K (P (4+00) — D (+0))
2r /o2
5(2) " @) - 2(-0)

K (%)/ (& (~00) & (~o0)
=0.
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Exercise 11.7

a) The price at time ¢ € [0, 7] of the European knock-out call option is given
by

EKOC, = o0 B" [(Sp — K) ls,em | F].  0<t<T.

%0
80
70
60
s0
a0

20
10

Fig. S.56: Payoff function of the European knock-out call option.
Using the relation
Sy = SyelT-Or+(Br=B)o—(T—1)s?/2. 0<t<T,

we have

e~ (IO ¥ [(ST — K)+]1{ST<B} ‘]:t]

= o (Tt g [( (T=t)r+(Br-B.)o—(T—t)0>/2 _K)*

1 S y ]
{ae(T=0r+(Br-Bpa—(T-na2/2<py | 4 g,
— o (T=t)r o= [(em(z)+X _ K)+1{e’"(m>+X§B}}x:St’ 0<t<T

where )

m(z) = (T —t)r — %(T —t)+logz

and
X := (Br — B))o =~ N(0,(T - t)o?)

under P*. Next, as in Lemma 7.7 we note that if X is a centered Gaussian
random variable with variance v > 0 and B > K, for any m € R we have

E (" — K) Liansx<py]

(C o _ K)+ﬂ{em+r§3}0722/(2”2>d.’£

1 0o
:Tmf "

m+log B 9 o
m+m _ K)e—ac /(2v >dI
\/27ru2 f

m+logK
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m+log B 2 2 m-+log B o 9
PR /(2v )dI J e ® /(2v )dI
«/27(—1/2 f m+log K \/27”)2 m+log K
emtv 2 m—lo —m-+lo, v
_emt N HoEB (v-2)?/(20%) g, _ f< HoeB)/v w2y
V2mu2 m+log K V21 J(—m+log K) /v
m+v2/2

oV /27 gy

v —m+log B
= Vo -
—K(®((m — log K)/v) — &((m — log B) /v))

_ gmtvi/e (B(v+ (m —log K)/v) — ®(v+ (m — log B) /v))
—K (&((m — log K)/v) — &((m — log B)/v)).

Hence, the price of the European knock-out call option is given, if B > K,
by

v2—m+log K

EKOC; = e~ "= E* [(Sr — K)*1(s,<p} | 7]
_ o= (T gm(S)+o>(T—1)/2 (45 <U n m(St) — 10gK> _ 3 (U 4 m(Ss) — log K))

v v

_ Ko (T-0r <¢ (m(st) ; log K) _ & <m(5’t) ; logB>>

ey ((Tft)r+ (Tft)02/2+log(St/K)>

oyl —1
(T —t)yr+ (T —t)o?/2 +log(S:/B)
—5® ( oT —t )
- =g (L0 (0 =002 o510
oyl —1
—@—tyrgy (T = t)r — (T — t)0*/2 +log(5:/B)
+ Ke~ (T 45< S T =1 )

0<t<T,with EKOC;, =0if B<K.

= 90
80

“70

Underlying

Time to maturity (days) 40

o 50

Fig. S.57: Price map of the European knock-out call option.
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b) By computations similar to part (a) we find that, if B < K,

EKIP, = Ko~ T-rg <_ (T —t)yr — (T —t)o?/2+ log(St/B))

oyl —t
S _(T—t)r+(T—t)a2/2+10g(St/B)
¢ oVT —t '
o = w0 = 200

Fig. S.58: Payoff function of the European knock-in put option.
When B > K, we find the Black-Scholes put option price
EKIP, = e~ T=9"E* [(K — S7)* 1isp<n | Fi
— o~ (T—t)r = [(K _ ST)+ | ]_-t]
_ Ke—(T-0rg <7 (T —t)r = (T —t)o?/2 + log(St/K)>

oyl —t
s (7 (T—t)r+ (T - t)02/2+log(St/K)>
oyl —t ’
0<t<T.

35 -
30
25
20
15
10
5

s

60
Underlying 70 80 90 o 40

80
Time to maturity (days)

Fig. S.59: Price map of the European knock-in put option.
¢) Using the in-out parity relation

EKOC, + EKIC; = ¢ (T-9" E*[(Sy — K)* | 7]
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B (T —t)r + (T — t)o? /2 +log(S:/K)
_Stqs< —U7, )
—(T—tyr (T—t)r—(T—t)02/2+log(5t/K)
—Ke ( 95< —= ) ,

which is the price of the European call put option with strike price K,

the price at time ¢ € [0, 7] of the European knock-in call option is given,
if B> K, as

EKIC, = e """ " [(Sy — K) " 1(s,55) | Fi]
Ces <(T —ir+ (T —t)o?/2+ log(St/B)>
- It

ovT —1t
Ko @-Drg ((T —t)r — (T —t)o*/2 + 10%(5t/3)>
oVT —t ’
0<t<T

K x

Fig. S.60: Payoff function of the European knock-in call option.

When B < K, we find the Black-Scholes call option price

EKIC; = """ E* [(Sr — K)* 1{s;5p} | i
_(T t)r [(ST _ + }]:t}
50 <( — )+ (T —t)o%/2 + IOg(St/K)>

oyl —1
g (L= 0% 2 gt/
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90
80

120 70

Underlying

Time to maturity (days) o 50

Fig. S.61: Price map of the European knock-in call option.

d) Using the in-out parity relation
EKOP; + EKIP, = e~ T=9" E*[(K — S)* | F],

which is the price of the European put option with strike price K, we find
that the price at time ¢ € [0,T] of the European knock-in put option is
given, if B < K, as
EKOP; = e """ E* [(K — S1) T 1(s,55} | i)
= T E* (K - S7)F | F] — EKIP,
_ Ke—(T-trg (_ (T —t)yr — (T —t)o*/2+ 10g(5t/K)>

ovT —t
_5 (_ (T—t)r+ (T —t)o?/2+ log(St/K)>
¢ oyl —t
(T —t)r+ (T —t)o?/2+ log(St/B)>
St —
o ( oyl —t
Ko (Ttrg <7 (T—tyr — (T —t)o/2+ log(st/3)>
oyl —t '

Fig. S.62: Payoff function of the European knock-out put option.

When B > K, we have
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EKIP; = e~ T E* [(K — S7)Tlisromy | 2] =0.

12
10

90
80

LONBO®

Underlying

Time to maturity (days) o 50

Fig. S.63: Price map of the European knock-out put option.
In addition, by the results of Questions (d) and (c) we can verify the call-put
parity relation

EKIC, — EKIP, = """ B [(Sr — K)1{s,>5} | Fi]
((T —tr + (T —t)o?/2+ log(St/B)>
=50

oVT —t
M=ty (T =) = (T = 1)o*/2 + 10g(st/B)>
Ke !15< VT I .
Chapter 12

Exercise 12.1

a) This probability density function is given by

R B e R (ﬂ) a0
7T \/?

b) We have

E [ min St} =S E { min e”Bi_U%/Q}
te[0,T] te[0,T]

=5 E [67‘7 maxte[o,r](Bngat/‘z)]

00 2 2 —Tr — JT/2
=9 —ox —(z—0T/2)%/(2T) _ T d
0 fo ¢ ( V T ¢ VT *
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2S() oo 7( + T/2)2/(2T) o0 <7I 7JT/2>
= rre dr — S, S| ——— | d
mfo ¢ o = o | JT ’

25 (® /e 950 (% —(e+oT/2)?/(2T)

= e " dr — — ze T dx

V2T IUT/Q V2T fo

28 (% -x/eD) oS [ —a?/(2T)

= e " dr — x—oT/2)e™™ dx

VorT IU‘T/Q \V2rT fo'T/Q( / )

T 2
= 25y(1 + 02T /4)B(—oVT/2) — SOU\/Te’” /8, (S.12.54)
s

1 !
0.9
0.8
0.7
0.6

£ os N

0.4
0.3
0.2
0.1

° o 10 20 30 40 50

time T

Fig. S.64: Expected minimum of geometric Brownian motion over [0, 7.

¢) We have
+
]E|:<K_ min St> } =]E{K— min St:|
te[0,7] te[0,T)
2
=K-2S5p <2 <1 + ﬂ) & <_a\ﬁ> — TeU2T/8> )
4 2 V 2r

—— Upper bound
—— Black—Scholes put price

24 : : : :
1.0 1.2 14 16 1.8 2.0

K

Fig. S.65: Black-Scholes put price upper bound with So = 1.
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The derivative with respect to time is given by

d 0’2T a 2
— S| = —45— 2) — 28 (1+—— —oT/8
S ] ot (1 T)
O'So e—azT/8 S()G’ 56702T/8
87T 8 2
2 2
_ Soo & _U@ _ Soo o—T/8 1+3UT .
2 2 2rT 4
° R
-0.2 //
gz -oa K/
é -0.6
-0.8
- o 5 10 15 20 25 30 35 40 a5 50
time T

Fig. S.66: Time derivative of the expected minimum of geometric Brownian motion.

On the other hand, when r > 0 we have

2r/o? +
* —t t [oa mg _ m,
w1 =i (0 () -5 (5) o (7 ()
(T—t) ? T— S
+SL6 (1“!’;)@( 6+ <7n0>)

When 7 tends to 0, this minimum tends to

i (BTG LY g (oS T2

1 S, mt\ 2/ m
2 : (T—t)r _sT—t t _ 0 T—t 0
+o= Sy limy 2 (e 45( 0% (mB)) <St> ¢<6_ (Sz)) '
where
S, mt N2 mh
(T—tyrg [ sT—t [ Ot 0 Tt 0
o ( ? ( O <mg>> < S, ) ? (‘L < S, ))

<(1 +(T =) (—log(st/mo);\r/%?Tm + rT>

= lim —
r—0 2r
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mt (ot 2 ”
_ <1+ﬁlogﬂ>¢<log(mo/&) o T/2+IT>>

o? St oVT
_1 T7t+310g% & ~log(St/mf) + 0°T/2
2 o2 Sy oVT
1 —(log(St/mb)+0>T/2+47T) /(o VT
+ lim (j B/ mo) kL2 OVE) 22,
r—0 r\/g
7 j(f log(S¢/mb)—o>T/24+T) /(o V/T) e’y2/2dy>
¢ t 2
_1 T7t+zlog@ o _log(Si/mp) +0°T/2
2 o? St oVT
(—log(Ss/mb)—o?T/24+T) /(o VT)
lim —— J ¥ ’ eV 2y
0 r/8m J(— IOg(St/mo) 02T /2—rT)/(oV'T)
1 1 2T/2
——(T—t+ 710g & _ log(Si/my) +0°T/2
2 S oVT
,Le*((log(sc/7"'8)+02T/2)/(Uﬁ))2/2
oV2m ’

hence

log(S;/m§) — O'ZT/2> ey (710g(5t/m6) + aZT/2>

(=5 o
+% <(T —t)o® + 2log ”;—6) @ @W)

,Usf,/z o~ (108(S4 /mi)+0>T/2)/(aV/T))? /2,

In particular, when T tends to infinity we find that

lim M =0 r>0.
Tooo IE* [ST ‘ ]:(] ’ -

When ¢ = 0 we have Sy = m{), and we recover
2T VT [T _,
E* [mo} =2 <So + —) 3 (—0’) — oSy Z o1/,
2 2m

Exercise 12.2
a) By (S.12.54), we have

E | max S; :IE[eﬂmaxte[o,T](Br*”f/Q)]
te[0,7]
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—SE [C—<—a> maxtg[o,ﬂ<Bl—<—a>t/2>]

= 2S0(1 + 02T /4)B(oV/T/2) + Sooy | ——e= 7 /8,

1.9

1.8

1.7

1.6

3 1.5

s 1.4

1.3

1.2

1.1

1

o 0.1 0.2 0.3 0.4 0.5
time T
Fig. S.67: Expected maximum of geometric Brownian motion over [0, 7.
b) We have
Bi—o?t/2 * Bi—o2t/2
IE | Sy max €77t - K =IE |Sy max e 7*77 - K
te[0,T] te[0,T)]
2
o°T T T :
=25 (14+— )@ oI + Sooy) o TS K.
4 2 2m
N
o~
—— Upper bound

—— Black-Scholes call price

Fig. S.68: Black-Scholes call price upper bound with Sp = 1.

The derivative with respect to time is given by

B Spa? VT Soo _g2p 32T
. = S |lot— |+ e T/8 (1 .
ar Lgﬁ’ﬁ S ‘} 2 (U 2 ) " et Ty
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10 -

s .

2 _
B
£

S a =

2 | .

—
o
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time T

Fig. S.69: Time derivative of the expected maximum of geometric Brownian motion.

Note that when r > 0 we have

* — St —t)r o’ i St
E* [M] | F] = M{® (—5? i (ﬁé» + SpelT=1) <1+;>¢<5$ ¢ <J7[g
0% ([ M\ oy [ M
—S— (52 o672,
i () o0 (§))

When r tends to 0, this maximum tends to

log(S;/M¢) — O'QT/2> (log(St/JV[é) + UQT/2>
Mip | ——=Y0 7 T L g (0] T/
0 ( ovT ! VT

1 s M2 M
29, (T-t)yrgp [ 57—t t _ 0 & g7t 0
oS i 5 (e o S, “\s)))
where
1 s M\ M
: (T—t)r T—t t _ 0 _sT—t 0
}13})27“ (e ¢<6+ <]W(§>> <3t> ¢< & (St)>

log (34 +°—2T+TT
- g(M@) 2
= l% ? (1 —+ (T — t)?”)ds g\/T

St oT
Mé) <log(St JME) + U2T/2>

0 ) ( M/P0/ T E 272
St oVT
T 1 <f(log(Sf/MS)+62T/2+TT)/(0\/T) o

im

r—=0 /871 —oco
B I(log(St/JLIS)JrUZT/Z—rT)/(Uﬁ) e’y2/2dy>

X ot . t 2 _
- (1 . 2121og%> v <log(St/]WO) +02T/2 TT>>
o

1 2
:§<T7t+§10g

—y2/2dy
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1 2 M log (S /ME) + o>T/2
= (T—-t+ Slog3t ) o | =0~ — 1%
2 < * o2 8 S > < oVT >

. (log(S¢/M{§)+0>T/247T) /(aVT)
+ lim —— f
=0 p+/8 J(log(S¢/ME)+02T/2—rT)/(aV/T)

¢ It 2
_ % <T . ilog];[ >¢P <log(St/A[0) +o T/2>

e_y2/2dy

oVT
+£e—((log(Si/Mé)+U2T/2)/(U\/T))2/2
o\ 2T

hence
log(S;/M¢) — (72T/2> <log(St/]V[t) +02T/2
E (MR =M | -——="70 = 210 ) 45 (| 200 - — T/
[ o | t} 0 < T + 5t T

S B M} log(S: /M) + 02T/2
+3 (T —t)o? + 2log S, >¢<—U\/T

408, 210—<<log(sL/Mé>+n2T/2)/<oﬁ>>2/2.
Yy

In particular, when T tends to infinity we find that
o?
; E* [Afg|ft} B 1+; if r >0,
Tl—r>noo E*[ST I ]:t] -

+00 if r =0.

When t = 0 we have Sy = M), and we recover
2T vT T
E* [M]] =2 (so + T) P <02> + asm/zfe—agT/S.
T

Exercise 12.3
a) We have

2 dﬂf
P B;<al]=2 e /T 2 <0
(ﬁlﬁ r= “) I Vo T

i.e. the probability density function ¢ of sup B is given by
t€[0,T]

b) We have
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E [ min SL} =S E {exp (a min BL>}
te[0,T] €[0,7]

250 17,):2/(27«) 230 T 2
o do = (z—0T)?/(2T)+0o T/2 0
j V2ro?T j
275060 T/2 j"’T o=@/ (2T) g — 250 eﬁT/zj "‘F —a?/2
2T - V2
= 250" 720 ( — oVT) = 2 E[Sr] (1 — ¢(oVT)),

o) —oo

hence

E [ST - min st} — E[S7] - E Lg[l(}%] St} = E[S7] - 2 E[S7] (1 p (mﬁ))

= E[Sy] (2@ (aﬁ) _ 1) — 2567172 (@(aﬁ) B %)
and

T2 [ST -, min st} =S, (2@(0 T) 71) = 50(172¢(70\/T>).

Remark: We note that the price of the lookback option converges to Sy
as T' goes to infinity.

2 (0(GTH2)-1) =’

0.6 -

Price

0.4 4

Time T

Fig. S.70: Lookback call option price as a function of 7' with So = 1.

Exercise 12.4 We have
E* [e7 1<y Liag s, 21}

LA I e st )yt
[

K
eirtf(T,ST,MT) (ty z, y)dﬁdydt
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for T > 1, and B* [e™ " 1prcmy iz —s, >3] = 01f T € [0,1].

Exercise 12.5
a) i) The boundary condition (12.3a) is explained by the fact that
F(£,0,y) =" T [M{ = S| S, =0, Mg =y]
= e IO B* [M§ — S7| S, =0, M =1]
=e T E* [M{| My =y] —e T E*[Sr | S = 0]
— ye—(T—t)r7
since IE*[Sp | S; = 0] = 0 as S; = 0 implies St = 0 from the relation
St = SteG(BT*Bt)Jr(#*ffz/Q)(T*f)’ 0<t<T.

ii) The boundary condition (12.3b), i.e.

0
a%(tay)y:z =0, 0<az<y,

is illustrated in the following Figure S.71, see also Figure 12.3.

80 -

60 -

a0

Lookback put price

20 -

a0 5=60 80
y=Mb

Fig. S.71: Graph of the lookback put option price (2D) with S; = 60.

iii) Condition (12.3c) follows from the fact that
f(T,2,y) =" [MJ — Sr|Sr =2, M{ =y] =y —uz.
b) i) The boundary condition (12.14a) is explained by the fact that

ft,2,0) = e T E* [Sp —m | S, =z, mf = 0]
= (T-0r > [ST | Sy =z, mh= 0}
= T-9"E*[Sp | S; = 2]
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= (T=0ry, x> 0.

ii) Condition (12.14b) follows from the fact that

f(T,z,y) =E" [STfmg}ST:x, mg:y] =z —y.

We have
[t z,2) =2C(T - t),

with

C(r) =1-e7""9(57(1))

_ <1 n %) B(-67(1)) + e*”g—ré(ﬁ(l)% >0,

hence
——(t,z,x) =C(T —t) 0<t<1
9/ k) k) - bl bl

while we also have

%(t,x,y)y:z =0, 0<z<y,

see also Figure 12.8.

Chapter 13

Exercise 13.1 We have

E [ LT Stdt] - LT E[S,]dt

T

— SOI E[errBf+rt—02t/2]dt
T .

- Soj et 2 e Bt

T
_ rt
= So [ etdt
T _ T
=5, 0<7<T,
T

and

E {(LT Stdt> 1 =) UTT Sydt LT Sudu}
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T T
=B U | SuSLdtdu]
T ru
= 2j j E[S,S;|dtdu
_ 253 IT j" E[CUBuJrrufazu/QCUBL+tha2t/2]dtdu
— 253 IT ju Crufazu/2+rtfa2t/2 ]E[CUBU+UBL]dth
T T

— 253 IT C(T'*UZ/Q)’IL Iu C(7'7<72/2)t E[CUBU+<7BL]dtdu

T T

— 252 IT olr=0?/2)u f“ o=/t (2Bt (Bu=B0) gy

T T

— 282 IT o(r=0?/2)u f“ o=/t (627 Be] e Bu=B0)|dtdy

T T

— 252 IT olr=0?/2)u f“ o(r=0? /20t 20%t 0 (=) /2 gy o,

T T

=282 IT e [T et dtdu
T T

2 X
_ z‘i(j JT (e(2r+zr2)u _ eru,e(r+<72)7')du
a rJT
(0%+2r)T _ (52 1 9p\erT+(o*+7)T 2 (a2 +2r)T
=25§re (c%+2r)e + (0% +71)e C0<r<T

(62 +7)(02 4 2r)r

Exercise 13.2

a) The integral ‘fOT rsds has a centered Gaussian distribution with variance

E {(LT rsds> T - 0’E UOT IOT BSBtdsdt}

=2 fOT fOT E[B, By]dsdt
=02 fOT fOT min(s, t)dsdt
=202 LT fof sdsdt

=02 fOT t2dt

e
it

b) Since the integral fOT rsds is a random variable with probability density

1 07312/(27#3)

o) = 73
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we have

T +
o [(L’ o= H) } - eirTf (z — k) p(x)dz
—rT .
e N R
T o
T o 2
E L/\/W(Q”W —K)e™" 2dy
—rT 2 3 .
\/Tij wo 2y _ RLJ .
W /N5 F o /T

T SITB [ -
- Ver {e L/\/ ZT% \/Tr P/ oI/

—IZ/de

e T (7’2T3/3 —3k2/(20°T%) e

=—— %" 7/<;—17¢/<; 273 /3
2 —rT
= —UQTge’S’g/(QGQTK) — lﬁe D | —k 3 .
6m V2T o273

Exercise 13.3 We have

(% fOTS“du—ff>+ ‘]—',} o (T=0r { f Sudu — K ‘ ]:f}

= (T=0r { J Sdu‘]—'t]fne (T=t)r

e—(T—t)r E

o (Tt U Sydu ‘ ff:| +e (T t)r U S.du ‘ ]-',} G

o= (T=t)7 f Sydu+ e (T~ z)y U S, du‘ t] e (T-0)F

—(T t)r —(T—-t)r _ —(T—-t)r
f Sydu +e TL E[S, | F]du — ke
= (T f Sydu+e (T~ f Sty — e~ (T—0"

S
—(T—t)r —(T—t)r Pt ru e (T=t)r
=e 7I Sudu + e T fo e"du — ke

o (T—0r f S“du+e—(T t)r St( (T-tyr _q 1)— e (T—0)r
1—e (T t)r

e (T-0r f Su du-‘rStT —K,e_(T_t)T,

t € [0,7], cf. Geman and Yor (1993) page 361. We check that the function
fta,y) =e T (y/T — k) + 2(1 — e T=97) /(+T) satisfies the PDE
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of
Oy

(ta) 472 (ta) + 02020 L 0,

7]
) = Fitry) +o o 5

t,z > 0, and the boundary conditions f(t,0,y) = e~ T="(y/T — &),
0<t<T,yeRy and f(T,z,y) = y/T — K, z,y € Ry. However, the

condition lim,_,_o f(t,z,y) = 0 is not satisfied because we need to take
y > 0 in the above calculation.

Exercise 13.4
a) We have

1 (T
—(T—t)r |p* | = _
e E [T jo Sdu K‘]—‘t}

1 T
_ o (T=t)yr x|
S E [Tjo Sydu

B - retror

—(T—t)r . o
_ Ci * , _ —(T—t)r
= E UU Sydu ]-‘t] U Sydu| F, }
(T—t)r e~ (T-t)r .1
_ € * _ —(T—t)r
= 7I Syudu + —7 L E*[S, | Fi]du — Ke
e—(T—t)r e~ (T—t)r p
— (u—t)r _ —(T—t)r
— fo Sydu + 7T L D" G, dy — Ke
(T—t)r T 7
= Cij S, du+St L e"dy — Ke~(T—0r
e —(T—-t)r

Sy
J Sudu + 7(1 - e’(T"’)T) — Ke~ 0,
b) Using the relation

(z-K)"—(K-2)t=2-K, K,z eR,

1 (T +
<fj0 SudufK> }}}
T +
s o [(K;fo Sudu> E}
1 (T + 1 (T +
_ —(T—=t)r yp* - _ _ o
e E [(Tjo Syydu K) <K TJO Sudu>

1 T
_ o~ (T=t)r x| = _
e E {T fo S.du K‘}‘t}

we have

Ct,K)— P(t,K) = T-0" E*

|
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e Si (-0 _ oo (T—)r -
= Sdu+ T( —e ) — Ke . (S.13.55)

c) Any self-financing portfolio strategy (&)scr, with price process (V;)ier,
has to satisfy the equation

dVy = nudAy + §,dS,
= rneApdt + p&eSedt + 0&:S:d By
= rVidt + (M — T)éLSLdt + UfLSLdB“ te R+.

On the other hand, by part (a) we have

(T—t)r
vy =d (L f Syds + ST( —e (T=tr) Ke_<T_t)T>

r t e~ (T=t)r S,
_ " —(T-t)r _ Pt —(T—t)r
=Te [0 Sedsdt + ~—5—Sudt — e dt
1— —(T—-t)r
erT dSy — rKe= (=074
_ o (T=t)r

T _r-pr [t 1—-e _ —(T=t)r
= 7 j Sedsdt + ————dS, — rKe dt

1—e (T0r —(T—t)r
= Vidt + ————dS, — S(1—e )dt

1— C—(T—t)r
= rVidt + T((u —r)Sidt + 0SdBy),

hence (1)
1 . 07 —1)r
=" t T
Et T s € [07 ]7

which can be recovered by differentiating the pricing function
e—(T—t)r

Teri 1*67(T7t) ) Ke™ (T=t)r

rT (
t
in (S.13.55) with respect to z = Sy, with y = jo S.du. We also have

(T—t)r
w:eif Syds + €8, — Ke=@=07 e [0,T].

d) The following code yields $7.906436 for the price of the long forward
contract.

T=1;t=63/252;r=0.0209;K=80;dt=1/252;S=as.numeric(last(futures));
exp(-(T-t)*r)*sum(futures)*dt/ T+S*(1-exp(-(T-t)*r))/ (r*T)-K*exp(-(T-t)*r)
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Exercise 13.5 The geometric mean price G satisfies

1 T 1 ot 1 (T
G = exp <T jo log Sudu> = exp <T jo log S, du + T J; log Sudu>

1 pt T—1t 1 T Su
= exp (T jﬂ log S, du + log S + T L log Edu)

T—t

1 ot
= exp (? L log S, du + log St

+% LT(r(u — 1)+ (By — B))o — (u— t)gz/Q)du>

T—t

1 ot
= exp (T jo log Sy du + log S
1 (Tt ) o (T
+? L (ru — o*u/2)du + ?L (Bu — Bt)du)

~ 1 ¢t (T —t)? o (T
_ (T—)/T _ 2 _
(St) exp ( fo log Sudu + 2 (r—o°/2)+ L (By Bt)du>

T

where L B, du is centered Gaussian with conditional variance
T 2 T 2

<L Budu> ‘ ]-}} =E [(L (B, — B,,)du> ]—‘t}

- {(LT(BH - Bt)du>2:|
-E {( IOH(BH - Bt)du> 2} - L” L” E (B, B,] dsdu

=2 J;)T_t J;)u sdsdu = J;)T_t u?du = %

E

Hence, letting

1ot T—t (T —t)? 9 o (T
m.—?fologsudu—&- T log S + 5T (r—o°/2), X.—TL B,du,

and v2 = (T — t)o?/3, we find

—(T—t)r o 1T *
e E (exp <T ([O log Sudu> - K> ‘ Fi
2

_ _(r— 1t (T —t)? o
_ (T—t)/T o~ (T—t)r _ 2 _
= (Sy) e exp (T jo log Sy du + T (2r—o%) + 5 (T t))
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(T—t)/T .
(T —t)o?/3+ % fg log Sy, du + log S‘T + %(T —02/2)

xP
o/ (T —1)/3
t S(T-0/T e )
_KeT-trg 7 Jo 10g Sudu + log Z—— + (7"2779@ —02/2)
o/ (T'=t)/3 '

0<t<T.Incaset=0, we get

T +
e "TE* {(exp <% fo log Sudu> — K)
_ e T 0)/2g <10g(So/K) +T(r + 02/6>/2>
o\/T/3
ke <log(50 /K) +T(r = 02/2) /2> _

/T3

Exercise 13.6 Under the above condition we have, taking ¢t € [, T],
1 T +
<ﬁ | rods K) Ft]
1 T +
(Af+ﬁj‘t ’I"Sd87K>

1 T
=e (T E* {At + J reds — K ’ ]-"t}
T Jt

o= (T=t)r [

— (T

T —
—(T—t)r

T
e~ T=07(A, — K) + eTﬁ]E* {L rsds

g

T e~ (T=0r o1
=T = K) 4 e [ Bl | Flds, e [nT),

where
E*rs | Fi] = vie” DA (1 — e~ (570, 0<s<t,
hence
(LT i . LT i
E (T_TL rsds—K> ’]-'t]_]E (At+T7—7-L rsds—K> ]-'t]
1 T .
:At—K-l'Ti_TLE[Tﬂft]ds
1 T
_ _ —(s—t)A _ a—(s=t)x
=M - K+ T L (ree +m(l—e ))ds
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(T—t)r
= A — K+ rt m)f 7)‘Sd9+'m(T—f)67
T—t _y, T—-1t
:At—K+(rt—m)T_Tfo e )‘ds—&-mT_T
1—e (T-0A T—t
:AthJFW(T‘t*m)JrWLTf

Exercise 13.7 This question extends Exercise 7.4 to n > 3. If (Sy)¢er, is a
martingale then for any convex payoff function ¢ we can write

E [(f7 (ST] + n + 5, )} <E* [¢(ST‘) + -+ ¢(5m,) since ¢ is convex,

_ B[Sz -+ B [9(57, )]

E o8[S, | Fr D] +--- + B [¢(E"[ST, | Fr,])]
n
E"[E"[¢(Sr,) | Frll+--- + E[E[¢(57,) | Fr,]]

because (St)ier, is a martingale,

by Jensen’s inequality,
= B9 )+ + B [¢(Sr,)] by the tower property,

= E"[¢(51,)].

On the other hand, if (St)th+ is only a submartingale then the above ar-
gument still applies to a convex non-decreasing payoff function ¢ such as

o) =z~ F)*
Exercise 13.8 Taking t € [, T, under the condition

1 t
A= L Syds > K,

we have

.

(Tt g+ 1 ‘TSd K *
] (o

= TO7E* | (A +LJTSdst : Fi
EI A Pl ¢
— o (T {At+ f Sde—K‘J-}}
—(T— t)r
:ef<T—t>r(AﬁK)+e U Sds L]

*(T*W T
_ o (T=t)r B e *
o (A = K) 4+~ [ B[S, | Filds
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—(T=t)r .1
_ —(T=t)r _ e (s—t)r
=e (A — K)+ S; T L e ds
—(T—t)r 7y
_ o (T=t)r _ e TS
e (A = K) + St JO "*ds
—(T—t)r A K S e—(T—t)r (T—t)r 1
=€ ( t )+ t(T*T)’r‘(e - )
1— ef(Tft)r

=e Ty —K)+ S, telrnT].

Exercise 13.9 The Asian option price can be written as

1 (T *
<ffo Sudu7K>

= Sbh(ty UL) = Stg(t7 ZL)~,

O—r(T—t) ]E*

Ft} = SE[(Ur)* | U]

which shows that
g(t, Zt) = h(t, th)7

and it remains to use the relation
1— —(T—t)r
Uy = eriT +e T8z, t e 0,7
Exercise 13.10

i) By change of variable. We note that Z, = o (T-H77, where

1 /1 ¢t 1 /A
=— | = L — =<\ 5= <t<
%= <Tf0 Sdu K) S (T K), 0<t<T,

and the pricing function ¢(¢, Z;) satisfies the Rogers-Shi PDE

99 1o\ 12,20%,
6t(t,z)+<T rz) az(t,z)JrQo z 6z2(t,z)70.

Letting Z := e~z and §(t, 2) := g(t,e@D7Z) = g(t,2) = g(t,e"T=972),
we note that
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Dit2) = gt T02)
= gt (t e~ (Tt ) +re’”’”%%(t,e’(T’t)Tz)
= Bn 4B,
gz( 2) = e-(T=tr gz (t,e~(T-0r ):e—<T—t>rr%g(t@7
%(t, 2) = e’2<T’t)Tg—zg(t,e’(T’t)rz) e 2T-0)r gzg (t,2),

hence

Ozg(t,z)Jr (%77%) —(t z)+ U z %(t z)

- ag(t %) +rz (t )+ <f - rz) e <T—f>"'0—;(t,zj

1 L0%G
+2Jzzze—2 T—t)r 79(25’5)

- ‘99@ ~)+7 ~(T- ﬂrag(r ~)+%sz Tg’(t 2),

and the (simpler) PDE
(t v+f (T~ ')Tag(t “3+ S22 g(mz) —0.

ii) Using the It6 formula. Given that

dZy = d(e~ T~ 7,)
=re T Z,dt + e~ T-7qz,
=rZdt +e T4z,
and
dS; = rSydt + 0S;dBy,

under the risk-neutral probability measure P*, an application of Ité’s
formula to the discounted portfolio price leads to

d(efrtstg(t, Zt))
=e " (= rg(t, Z)dt + §(t, Z)dS, + S,dg(t, Z;) + dS; - dg(t, Z:))

—e <77SLg(t Z)it+ (1, Z)as, + 5.2 1 Zyar+ 5,22, ZL)dZ,)
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+; (Stg ~(t, Zt)(dz)2+dst-dy(t,z)>

=e” (ﬂ”S,g(t Zy)dt + (¢, Z,)ds,+stg (t,Z)dt

+7'ZtSt %

5. (1, Z,)dt + Sre= T~ “Tg (t, Zt)dZt>

1 ~ -
e (Stg (1, 2,)(4Z:) + dS, - da (1. zt)>

—e <77"St§(t, Zy)dt +78:g(t, Zs)dt + 08:§(t, Z;)dB; + thSt% (t, Zt)dt>

4ot (ef(Tft)rStZt (7T+U ) g

S (¢ Z2)dt

1 Jg

. = o 0T
e T Sta—g (t, Z:)dt — (Te_(T_t>TStZta—g (t, Zt)dBt>

+e—"f< 222&2—@ Zy)dt — rIZStZtg (¢, Zt)dt>

. g _ g, =~ 0%g
— e TtS, (67(25 Zt)+f (T—t)r 5 (t,Zt)-&- 02238 2(f Zt)>d

JFSt,eiTt (G’:Cj(t, Zt) - UZ% (t, Zt)> dBt

Since the discounted portfolio price process is a martingale under the
risk-neutral probability measure P*, the sum of components in dt should
vanish in the above expression, which yields

9g
ot
and the PDE

(t.2) + =0 51, 2) 1 L2220

T 9z {5 (tZ) =0,

(t“)-i—— (T~ t>rag(t~)+ 5077 Tg(m—o

under the terminal condition g(7,z) =27, Z € R.

Exercise 13.11
a) When A;/T > K we have
1— e—(T—t)r

A
f(t, Sp, Ag) = e~ T70" <7t - K> + St T

see Exercise 13.8.
b) When A;/T > K we have
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1— ef(Tft)r
rT

=

A
and mAt—e(Tt (%—K), 0<t<T.

¢) At maturity we have f(T, S, Ar) = (Ar/T — K)*, hence &7 = 0 and

e T Ap Ar +
o (T B K) Tar>rr) = (7 B K) '

d) By Proposition 13.12 we have

&ZS%(f(t,St,At)* (%7[() gz (t SiL (ﬂ7K>>>

where the function g(t, z) satisfies f(¢,z,y) = zg(t, (y/T — K)/z)) and

nrAr = Ar

1— e—(T—t)r

t, _ —(T—t)r ,
g(t,z) = ze + T

z >0,

and solves the PDE
g 1 5 5,0%
E(t,z) + (? 7rz> E(t,z) +507% ﬁ(t 2) =0,
under the terminal condition g(T,2) = 2T, hence letting
Jg
o (T—-t)yrY9
h(t,z) :=e Ep (t,2),
we have
.09 _ 1 g 1 8%g
(T—-t)yrY9 (T-t)r [ = _ Yy 2.2Y 5 _
e 6t(t7z)+e <T T)B (t, Z)+2 z 22(t7z) 0,

with h(t,z) =1, z > 0, hence

2

9% g (1 9%
(T tyr Y9 (T tyryd (T—t)r _
at0: 1)~ 52 (b7 +e (T ”) 522(t?)

82
+02zeT- t)ra (t,z) + e(T t)razzz ‘Z(t,z) =0

or
oh 12O 1220,
at(t,z)—‘,— <T+(U 7)2) 8Z(t,z)—!—Qa* z aZz(t,z)—O

with the terminal condition 2 (T, z) = L;.50}. On the other hand, we have

n = Ait (f(t, S, Ar) = &:St)
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1 At 89 1 At

T A <*7K> 92 (t T<77K>>

e~ (T=0r /7, 1 (A
—T<?*K)’ (t 5(?4{))‘

Exercise 13.12 Asian options with dividends. When reinvesting dividends,
the portfolio self-financing condition reads

dV, = mdA +§dS, +  64Sdt
——
Trading profit and loss ~ Dividend payout
e Aedt + & (1 — 6)Sidt + 0SidBy) + 5&,Sdt
ropArdt + & (puSdt + 0S:dBy)
=rVidt + (1 — )& Sidt + 0€,.5,d By, teRy.

On the other hand, by It&’s formula we have

dgs(t, St, A¢)

9 P g
9” St i, Ar)dt + a% (t, S, Ay)d Ay + (1 — 5)5,,%(7:, Sy, Ay)dt

1

o2 b
So7S? ag; (t, St,/lt)dt-&-rfSt%(t,St,At)dBt

a P
9548y, Ay)dt + Stai;(t7 Sy, Ag)dt + (11— )8,

96
2 (t, Sy, Ay)dt
a (7157 t)

0
ox

23,2 % 934,50, Ar)dt + as,aa (t,Si, Ay)dB,,

hence by identification of the terms in dB; and dt in the expressions of dV;

and dgs(t, S;), we get

2]
&= 0% (t, S, Av),

and we derive the Black-Scholes PDE with dividend
dgs 1o}
rgalts 2,) = G (12,0) + 0 (12,9) (8.13.56)

995 12 20%s
Hr = O)a 5 (b w,y) + St S (b y).

Defining f(t, x,y) := eT=9gs(t,z,y) and substituting
gs(t,w,y) = T f(t,,y)

in (S.13.56) yields the equation
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P y) = 076w, ) +y 0L (t v)+ D ita,)

2
+(r—9d)x gftxy)Jr ngé(txy)
0,
(= 0)f(t2,) = G t0) +y 5 (2,0)
2
+(r—0)x gf(tly)Jrl 2 g];(t:ry)

whose solution f(¢,z,y) is the Asian option pricing function with modified
interest rate » — ¢ and no dividends, under the terminal condition

F(T,2,y) = gs(T,x,y) = (% —K)+

Therefore the Asian option price gs(¢,St, A;) with dividend rate § can be
recovered from the relation

g(;(t, Z, y) = C(Tit)éf(tv zvy)v te [07T]a T,y > 0.
Note that we can also define
h(t, 2, y) = g5 (t,2e°T =D y)

and substituting
g5(t,,y) = h(t, 2”@V y)

in (S.13.56) yields the equation
() = o5 t) + G (t)

oh 1 9%h
+rz a(tzy)+72282(t1y)

whose solution h(t,z,y) is the Asian option pricing function with interest

rate r and no dividends, under the terminal condition

WT,2,y) = gs(T,z,y) = (% - K)+

Finally, the Asian option price gs(t, St, A;) with dividend rate 6 can be also
recovered from the relation

gs(t,,y) = h(t,ze” T ), t€(0,T], z,y > 0.
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Chapter 14

Exercise 14.1

a)

b)

N

C

d

=

The process ((2 — Bi)1)ier, is a convex function 2 — (2 — z)* of the
Brownian martingale (By);er, , hence it is a submartingale by Proposi-
tion 14.4-(a).

Taking o := 1 and p := ¢%/2 > 0, the process e can be written as

2 2
eBt _ eaB,, ot/24put _ e;u,err]_?t o t/27 te R+7

hence it is a submartingale as the driftless geometric Brownian motion
e7B:=7"t/2 i5 3 martingale.

When ¢t > 0, the question “is v > t?” cannot be answered at time ¢
without waiting to know the value of Bg; at time 2t > ¢. Therefore v is
not a stopping time.

For any ¢ € Ry, the question “is 7 > ¢7” can be answered based on the
observation of the paths of (Bs)o<s<¢ and of the (deterministic) curve
(es/2 + ases/z)ggsgt up to the time ¢. Therefore 7 is a stopping time.
Since 7 is a stopping time and ((3153_‘/2)“5]]2{4r is a martingale, the Stopping

Time Theorem 14.7 shows that (eBMT_(tM)/Q)

and, in particular, its expected value*

ter, 1S also a martingale

E [eB¢A¢7(t/\T)/2:| ) [eBnAT—<O/\7)/2] ) [63070/2} -1
is constantly equal to 1 for all ¢ > 0. This shows that

E [ 7% = E [lim eBw—(Mf)/?]

t—o0
= lim E [eB’M’(MT)/Q]
=1
Next, we note that e~ = (a4 B7)e™/? at time 7, hence a+ 7 = e8—7/2
and
a+ BE[r] = Ela+ fr] = E [eP /%] =1,

ie. Elr] =(1—-a)/s.

Remark: This argument also recovers IE[7] = 0 when o = 1, however it

fails when (o > 1 and > 0) and when (a < 1 and § < 0), because 7 is
not a.s. finite (P(7 < 0o) < 1) in those cases.

Exercise 14.2 Stopping times.

* We let t A 7 := min(t, 7).
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a) When 0 < ¢ < 1 the question “is v > t?” cannot be answered at time ¢
without waiting to know the value of B; at time 1. Therefore v is not a
stopping time.

For any t € R4, the question “is 7 > ?” can be answered based on the
observation of the paths of (Bs)o<s<: and of the (deterministic) curve
(ae’s/g)oqq up to the time t. Therefore 7 is a stopping time.

Since 7 is a stopping time and (Bt)ter, is a martingale, the Stopping
Time Theorem 14.7 shows that (eBMT’(t”)ﬂ)tE]R+ is also a martingale

b

=

and in particular its expected value

E [eBM,—(t/\T)/Z} -E [BBMﬁ(om)/z] ) [eBU’U/Z} -1
is constantly equal to 1 for all ¢. This shows that

E [eBT’T/Q] =E [lim eB*“’(MWz} = lim E [eB*“’(”\W?] =1.

t—o0 t—o0
Next, we note that we have eB = ae™7/2 at time 7, hence
—T B,—71/2 . -7 1
aE[e" | =E[e? 2] =1, de E[e7]==-<1
o

Remark: This argument fails when o < 1 because in that case 7 is not
a.s. finite.

For any t € R4, the question “is 7 > t?” can be answered based on the
observation of the paths of (Bg)o<s<: and of the (deterministic) curve
(1 + as)o<s<t up to the time ¢. Therefore 7 is a stopping time.

o
~

Since 7 is a stopping time and (B;)icr, is a martingale, the Stopping
Time Theorem 14.7 shows that (BZ,, — (t A T))ier, is also a martingale
and in particular its expected value
E[B},, — (tA7)] = B[Bj,, — (0A7)] = E[Bj - 0] =0
is constantly equal to O for all ¢. This shows that
2 _ : 2 _ — 1 - =
(B2~ ] = B [lim (B2, - (tA7)] = lim E[(B, - (tA7)] =0.
Next, we note that B2 = 1 + a1 at time 7, hence
1+ aE[r] = E[l + ar] = E[B?] - E[r] =0,

]E[T}:lia.

Remark: This argument is valid whenever a < 1 and yields E[r] = 400
when a = 1, however it fails when o > 1 because in that case 7 is not a.s.
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finite.

Exercise 14.3

a) By the Stopping Time Theorem 14.7, for all n > 0 we have
1=F {e\/ﬁBnm—MnAn)}
) {e\/ﬂBTLAnﬂ(nAn)l{n <n}] T E [E@BTL/W*T(TL/\”)]_{TLZTL}
B[, B[]
= VIR [ Ly ] B [T R ]
The first term above converges to

VIR [e ]= VIR [e™"]

—rTL ]1{7'7‘<oo}

as n tends to infinity, by dominated or monotone convergence and the fact
that » > 0. The second term can be bounded as

0< E [eﬁB”—Tn]l{TLG}] < e ™ E [eLﬁ]]-{TLZn}jI < efrneL\/ﬂ’

which tends to 0 as n tends to infinity because r > 0. Therefore we have

1= lim E [emB*L’\"’T(T"Am] =elVT R [c’”'-]

n—00

which yields IE [e’”L} = e LV for any r > 0. When r < 0 we could in
fact show that IE [e’”’“} = +o00.
In order to maximize the quantity

b

=

E [eiTTL BTL} =1 [eiTTL BTL]I{TL<00}]
=LIE [e_TTL]l{TL<00}]
— LE [e—TTL}
= LC’L\/ﬁ7

we differentiate

%(LE—L\/?) — e V2 _ [ \/ore— V2 — 0,

which yields the optimal level L* = 1/+/2r.

This shows that when the value of r is “large” the better strategy is to
opt for a “small gain” at the level L* = 1/4/2r rather than to wait for a
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longer time.

Exercise 14.4 See e.g. Theorem 6.16 page 161 of Klebaner (2005). By the Ito
formula, we have

£(B) —7J f"(By)ds
= 7B + [ 5 BB+ [ P (Bds — 3 [ 5 (B)ds
= £(Bo)+ |, (BB,

hence the process (X;);cr, is a martingale. By the Stopping Time Theo-
rem 14.7 we have

f(z) = E[Xq | Bo = 2]
=E[X x| By = 1]

TAL "
= E[f( TM)|BO—:L]77]E J, FBds | Bo=ax
=E[f(B-at) | Bo = 2]+ E[r At | By =z,
since f”(y) = —2 for all y € R. We note that, by dominated convergence,
E[7 | By = z] :IELle(T/\tHBO:x]
oo
= lim E[r At| By = z]
t—o0

< |[f(@)[+ max |f(y)|
y€Ela,b]

< 00,

hence [E[7] < co and therefore P(7 < c0) = 1, allowing us to write lim—, oo (7A
t) = 7 < oo with probability P(7 < co) = 1. Next, we have

f(z) = lim E[f(B-at) | Bo=z] + lim E[rAt| By = 1]
t—o0
hm f(Brat) | Bo 7:10] +E [hm (TAt)|Bo==x

= B[f ( )| Bo = 2] + Elr | By = 1]
=]E[7"Bg=fl}],

since f”(z) = —2 and f(a) = f(b) = 0 with B, € {a,b}.

Remarks.

i) The above exchanges between lim; o, and the expectation operator
E[ - | By = z] is justified by the dominated convergence theorem, since
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|f(Brad)l < max [f(y)],  t€Ry.
y€[a,b]

ii) The function f(z) can be determined by searching for a quadratic solu-
tion of the form f(z) = a+ Bz +vx?, which shows that f”(z) = 2y = —2

hence v = —1, and
fla) =a+ fa—ad®>=0,
fb)y=a+pb—b =0,
hence a = —ab and 8 = a + b. Therefore, we have

E[r | By =2] = f(z) = —ab+ (a + bz — 2° = (x — a)(b — z).

Exercise 14.5 We use the Stopping Time Theorem 14.7 and the fact that
2

(e7Bi=t/2), cr, 15 amartingale for all o € R. By the stopping time theorem,

for all n > 0 we have

1=FE [errB.,_Anfn"z(‘r/\n)/Q]
- E [eaB.,Anfo-z(r/\n)/2]1{T<n}} +E [eaBTAnfg7(7—/\n)/2]1{T2n}}
2 2 e
—E [eUBT—U T/z]l{r<n}] +E [eaBn—a "/Z]l{TEn}]
= E [Ty FE [P 2 ] (S14.57)

Under the condition 62 > 203 we have 0 < eoBT=0"1/2 < 1, hence by domi-
nated or monotone convergence we find

lim B o772 ] = Bl ] = B[ ),

n—0o00

and the first term in (S.14.57) converges to
LD [67(02/2—013)7]1{7_<DC}} — e’ E [67(02/27019)7]

as n tends to infinity. In what follows we use the solutions o4 = 34+/3% + 2r
of the equation r = 02/2 — o8 with oy > 0 and o_ < 0, and we distinguish
two cases.

a) If @ > 0, we have B, < a+ ffn, n < 7, hence the second term above can
be bounded as

0 < B [e7+Brnod /2y )]
< e—nni/Z E [eﬂa++ﬁ6+n]l{7-2n}]

< eaa+—nai /2+Boin
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Qo4 —Trn
EX ,

which tends to 0 as n tends to infinity. Therefore, we have

1= lim E [emBMnfoi(fAn)/Z] — ¢+ R [e—(ai/z—ﬁu)r}’
n—o00

which yields

E [e—rT] -k [e—(ai/Z—ﬂoJr)T]
— o0+

— e—aﬁfa\/ﬂzﬁ»%‘
— e—aﬁ—|u¢\\/ B2+2r
s

with

. - e 2P if § >0,
B(7 < +00) = Bll{rcoo)] = T I [1(rcope™ ] = {1 i 5 <0.

s v

(a)a=1,8=05 (b)a=1,5=-05

Fig. S.72: Hitting times of a straight line started at o < 0.

b) If @ <0, we have B,, > a + ffn, n < 7, hence the second term above can
be bounded as

0<E [Co,annaimﬂ{TZn}]
< e—nﬁi/Z E [earr,+/3n,rr, ]]'{TZTL}:I < eaa,—nai/2+ﬂna,

ao_—rn
=e s

which tends to 0 as n tends to infinity. Therefore, we have

1= lim E [CJ,BTA,LfaE(T/\n)/Q} — 0% - E [07(03/27,30,)7}’
n—00

which yields

E [e—rﬂ'} - E [ef(ai/Qfﬂa,)T} — a0
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— o~ @Btay/Brt2r
_ efrw?fky\\/ ‘32#»27‘7

with
. —rr 1 if >0,
]P)(T < +OO) = IE[H{7<00}] = }L%IE []1{7<oc}e ] = {0—2045‘ if 8 <0.
i T A BTN
(a) a=-1,3=05 (b)) a=-1,=-05

Fig. S.73: Hitting times of a straight line started at a < 0.

Exercise 14.6

a) Letting Ap := 0,
Apy1 = Ap + E[Z\/In+1 - M, I ]:n]7 n >0,

and
N, =M, — A,, n €N, (S.14.58)

we have

(i) for all n € N,

E[Nnt1 | Fo] = E[Mpi1 — Ansa | Fo]
=E[M,41 — A, — E[M,41 — M, | F,] | Fnl
= E[A/InJrl - Ay ‘ ]:n] - ]E[]E[]\/[7l+1 - M, | fn] | ]:n]
=E[M,t1 — Ap | Fo] — E[M,y1 — M, | F]
= -E[A, | 7] + E[M, | F)]
=M, — A,
= N,

hence (Ny,)nen is a martingale with respect to (Fp,)nen-
(if) We have

Ans1 — Ay = E[Myi1 — M, | Fp)
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= E[My1 | Fo] — E[M, | F)
=E[Mps1 | Fa] - M, >0, neN,

since (M, )nen is a submartingale.
(iii) By induction we have

An = An—l + ]E[]\/ITL - A{n—l ‘ ]:n—l]a n > 17

which is JF,,_i-measurable provided that A, is F,_j-measurable,
n>1.
(iv) This property is obtained by construction in (S.14.58).

b) For all bounded stopping times o and 7 such that o < 7 a.s., we have

E[M,] = E[N,] + E[4,]
< E[N,] + E[A,]
= E[N,] + E[A,]
— E[M,),

by (14.7), since (M, )nen is a martingale and (A, )nen is non-decreasing.

Chapter 15

Exercise 15.1 The option payoffs at immediate exercise are given as follows:

(K—-82)t=0
* é&’
B (K - S1)* =0.05
=2 *
P 7 *%
(K —Sp)" =03 (K — S2)t =0.17

\w

Q*Q% p*ﬁ‘lf

(K —8)* =035
-

/

)
(K — S5)* = 0.44

On the other hand, the expected payoffs are given by:
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(K—-S82)t=0
__—
E[(K - S2)" | S1=12]=0.17/3
(K — S2)t =0.17
E‘[(K - S2)T | S =0.9] =0.26

(K — 8p)* = 0.44
Consequently, at time ¢ = 1 we would exercise immediately if S; = 0.9, and
wait if S7 = 1.2. At time ¢ = 0 with Sy = 1 the initial value of the option is

(0.34/340.35)/3 = 1.39/9 ~ 0.154 < 0.25 so we would exercise immediately
as well.

Exercise 15.2
a) Taking f(z) :== C2~2"/%° we have
1 2r? : o2r
rof(z) + gazxzf”(g;) = _C?afi’r/v2 +or (1 + P) L2/

= Cra= /7"

= T‘f(:lj)7

and the condition lim,_,~ f(z) = 0 is satisfied since r > 0.
b) The conditions f(L*) = K — L* and f'(L*) = —1 read

C(L*)—Zr/oz - K — L*,

2’!‘ oy —1— o2
720(1’) 1-2r/ :717

i.e. ,
C(L*)—2r/a —K—L*
2r . N
(K -L) =17,
hence
« _ 2rK
T 2r+ 02
Ko [ 2K\ o oapk N\
T r+ 02\ 2r + 02 T 2r \ 21 + 02 ’
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Exercise 15.3

a) This an American put option with strike price considered at Sy > L*,
hence by Propositions 15.2 and 15.4 the price of this option is

SO —2r/c?

K—-LE"[e™ | =(K-L") | — .

(- ) o] = (- 1) (1)
b) This an American put option with strike price K and immediately exer-
cised at Sy < L*, hence by Propositions 15.2 and 15.4 the price of this
option is K — Sy. N
This is an American call option with strike price 2K — K exercised at the
optimal level L* = K, hence by Equation (15.23) the price of this option
is

N

C

(L*— @R~ K)E* [ ] = (R — (2K — K)E" [e 7] = (K - f{)%

In conclusion, the pricing function is obtained by pasting together the
pricing functions of American call and put options.

Price function s
Payoff function s

0 2KK K L* K 200

Fig. S.74: American butterfly payoff and price functions.

Exercise 15.4

a) Given the value

7]

%BSP(I, T)= 7¢(7d+($, T))

of the Delta of the Black-Scholes put option, see Proposition 6.7, the

smooth fit condition states that at @ = S*, the left derivative of (15.31),
which is

(S*)Zr/az

pl+2r/o?”

d J \—2r/0® _ g0
%Bsp(x,T)wLa%(x/S) =—-P(—dy(z,T))+

x > S*, should match the right derivative of (15.32), which is —1, hence

2ra

—1=—0(=d (5", T)) (571

o2
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which yields

. 025" N a25* N
ot = T 0 aa st 1) = Tl (57, 1),
and
2( gx\142r/0?
BS,(z,T) + %@(@(s*,n), x> 8%,
flz,T) ~ 2ra?r/e
K —z, r < S*.

Note that at maturity (7" = 0 here) we have d(S*,0) = —oo since S* <
K, hence @(d4(5*,0)) =0 and f(z,0) = K — z as expected.
Equating (15.31) to (15.32) at © = S* yields the equation

K — 5" =BS,(z,T)+ o,
S* o? .
t% <1 + ?> D(d(S*,T)),

which can be used to determine the value of S*, and then the correspond-
ing value of a. The proposed strategy is to exercise the put option as soon
as the underlying asset price reaches the critical level S*.

1=e"T®(—d_(S*,T))

Option price

o } L L J
85 90 95 100 105

U =857 s =873

Underlying x

Fig. S.75: Perpetual vs finite expiration American put option price.

The plot in Figure S.75 yields a finite expiration critical price S* = 87.3
which is expectedly higher than the perpetual critical price L* = 85.71,
with K = 100, 0 = 10%, and r = 3%. The perpetual price, however,
appears higher than the finite expiration price.

In Figure S.76 we plot the graph of a Barone-Adesi and Whaley (1987)
approximation, together with the European put option price, using the
R fOptions package. Note that this approximation is valid only for certain
parameter ranges.
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r=0.1;sig=0.15;T=0.5;K=100;library(ragtop)

2 | library(fOptions);payoff <- function(x){return(max(K-x,0))};vpayoff <- Vectorize(payoff)

par(new=TRUE)

curve(vpayoff, from==85, to=120, xlab="", lwd = 3, ylim=c(0,10),ylab="",col="red")

par(new=TRUE)

6 | curve(blackscholes(callput=-1, x, K, r, T, sig, 0)$Price, from==85, to=120, xlab="", lwd = 3,
ylim=c(0,10),ylab="",col="orange")

par(new=TRUE)

8 | curve(BAWAmericanApproxOption("p",x,K,T,r,b=0,sig,title = NULL, description =
NULL)@price, from=85, to=120 , xlab="Underlying asset price", lwd =
3,ylim=c(0,10),ylab="",col="blue")

grid (Ity = 5);legend(105,9.5,legend=c(" Approximation","European payoff","Black-Scholes
put"),col=c("blue","red","orange") lty=1:1, cex=1.)

ss o0 os 100 10s 110 11s 120

Underlying asset price

Fig. S.76: American put price approximation.

Exercise 15.5

a) We have
e ifZ=1,
Te =

+ooif Z =0.
b) First, we note that

{0, 92} if t =0,
Fi=
(0,2,{2=0},{Z=1}}ift>0.

Next, we have
{1 >0} ={Z =0},

hence
{7e >0} ¢ Fo = {0, 02},

and therefore 79 is not an (F;);cr, -stopping time.
c) i) Fort=0 we have {7. > 0} ={Z =0} U{Z =1} = {2, hence
{1e >0} € Fo = {0, 22}.
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ii) For 0 <t < € we have {7. >t} = 2, hence

{re >t} e F, ={0,2,{Z =0},{Z =1}}.
ili) For ¢t > e we have {r. >t} = {Z = 0}, hence

{re >ty e Fu ={0,2,{Z =0},{Z =1}}.
Therefore 7. is an (F):er, -stopping time when € > 0.

Note that here the filtration (F;);er, is not right-continuous, as

(0,2} = Fo # For = [ | Fe = {0,2,{Z = 0},{Z = 1}}.

t>0

Exercise 15.6

a) This intrinsic payoff is k — Sp.
b) We note that the process (Z;)icr, defined as

g\
7, = Ot e—(r—é))\t+)\02t/2—)\202t/2
So
_ (e(r—s)twﬁi—a?t/z)Ae—(r—(s)/\t+/\a2t/2—/\2a2t/2
_ exaﬁrxzazt/z’ t>0,

is a geometric Brownian motion without drift, hence a martingale, under

the risk-neutral probability measure P*.
¢) The parameter A should satisfy the equation

r=(r—8)A— U;A(l - ),

Na2/2 4+ Ar — 8 —a?/2) —r =0.
This equation admits two solutions

—(r—6-02/2) £ \/(r =0 — 02/2)2 + 4rc2/2

Ay =

52
d) We have
A
(A—) St —rt
<Z = |4
0 <So> e
B <é)/\,
=%,
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< Ak 0<t<
=5 s = TL,

since A < 0 and Sy > L for t € [0, 7z).

e) By the Stopping Time Theorem 14.7 we have
E*[Z,;. ] =E"[Z)] =1,
which rewrites as
S\ ; Ny
B (2 o= (r=9r=2e?/2422%0% /)7 | _ 4
So ’
or, given the relation S,, = L,
L A SV X X2 2 2
LY g [e ((r=8)A—Ao2 /24220 /2)TL] -1
So ’
i.e. N
- So
]E* —rTL] — =20 R
= (%)
provided that we choose A such that
—((r =&)X= Xo?/2+ N202/2) = —r, (S.15.59)
i.e.
\e —(r—6-02/2) £ \/(r =0 —02/2)2 + 4rc?/2
= p ,
and we choose the negative solution
 —(r=6—-02/2)—\/(r — 6 — 0%/2)> + 4r0?/2
A= e
since So/L = /L > 1 and the expectation IE* [e™""%] < 1 is lower than
lasr>0.
f) This follows from (15.9) and the fact that » > 0. Using the fact that

S,, = L < K when 7y, < 00, we find

B [er (K = 8,0t | o= o] =B [e (K = 5,0 U,y | S0 =4
—E {e*m (K = L)1 (s, <0 ‘ So = x}
— (K= L)E" [ L, <0y | S0 =]

= (K - L)E* {c*m

50:33]‘
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Next, noting that 7, = 0 if Sp < L, for all L € (0, K') we have
E* o7 (K - S;,)* | So = ]
K —z, O0<zx<L,
E [e’”L(KfL)Jr | So = 1} , x>1L.

{Kac7 O<z<L,

(K-L)E[e™ | Sy=z], z>L.
K —z, O<z<L,

= " —(T—a—02/2)—\/m
(KfL)<E> . , z>L

g) In order to compute L* we observe that, geometrically, the slope of © —
fo(z) = (K — L)(z/L)*- at x = L* is equal to —1, i.e.

/ *\ _ 7 (L*)/\771 _
fL*(L )*/\—(K L ) (L*))‘* =-1
hence N
A(K—-L*)=L* or L*:)\ 71K<K.

Equivalently we may recover the value of L* from the optimality condition

) (3)" st (3) =

at L = L*, hence

T\A- A g—A_—1 _
(Z) A_(K — L)z* L =0
hence N 1
L* = — =
1— A T—1/A_ "
and

1 K 1-A
LG(OI.DK) [ ( MEN A \1-1/x_

h) For z > L we have
s\ A
for(@) = (K = 1) (£5)
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:<K_A K) (Qil{)
() ()

()
-(5) (=)

_ (%)L (%)L 1_KL_ (S.15.60)

i) Let us check that the relation

fr-(z) > (K —2)* (S.15.61)

holds. For all x < K we have

fre(@) — (K —2) = (%)*’ (A‘Aj 1)L K oK

A
N\~ (A —1 1 T
K((K) (T) 1)\+K_1>'
Hence it suffices to take K = 1 and to show that for all

A <zx<l1
1ot

L =

we have

A A — 1\
— —1>0.
17)\_( I ) +x—-12>0

Equality to 0 holds for z = A_/(A_ —1). By differentiation of this relation
we get

fr(e) = (1 —2) =

Ao
fro(@)—(1—a) =2 <A‘A: 1) : _1A_ +1

A_—1
=g 1 (7)\7)\_1> +1

>0,
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hence the function fr«(x) — (1 — z) is non-decreasing and the inequality
holds throughout the interval [A_/(A_ — 1), K].

On the other hand, using (S.15.59) it can be checked by hand that fr«
given by (S.15.60) satisfies the equality

1
(r—8)azfr.(z)+ 502332 1o(x) =rfr(x) (5.15.62)
forz > L* = )\;K In case
DV
Al
<z<L'= K< K
0<zx< N < K,

we have
fro(@) =K —z= (K —a)",

hence the relation
1, .
(rf20 @) = (= S)fie () = 502 0)) (o) = (1 = 2)) =0
always holds. On the other hand, in that case we also have

(r—98)zfr.(z)+ %sz2 r(z) =—(r—9d)z,

and to conclude we need to show that

(r— 8)afl. (z) + %UZIZ (@) < rfpe(a) = r(K —2),  (S.15.63)

which is true if
ox <rK.

Indeed, by (S.15.59) we have

(r==0)A=r+A_(A\_—1)%/2

2 'r,
hence N
T —1sh
since A_ < 0, which yields
dr < OL*<d{——K <rK.
Ao —1

j) By Itd’s formula and the relation
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dS, = (r — 8)8,dt + 05,dB,
we have
d(fr-(S0) = —re™ "t fr-(Sp)dt + e "tdf 1 (S;)

2
= —re " fue (St + €7 1 (S1)dSy + Toe TS (Sh)

2
= e7m5 <*7”fL* (Sf) + (T‘ - 6)Sff£* (Sf) + %SLZ Z* (Sf)) dt
e oS, f1.(S)dBy,
and from Equations (S.15.62) and (S.15.63) we have
! 1 2 2 !
(r = D)afi (o) + 30°5* . (2) < i (),
hence

t— e " fr(S)

is a supermartingale.

k) By the supermartingale property of

Na¥

t—s e " fr.(Sh),
for all stopping times 7 we have
fr+(So) = E* [e7"7 fr-(S;) | So] =2 E* [e77(K — 5,)% | So],
by (S.15.61), hence

fre(So) >  sup B [e7(K -8t | 5.

T stopping time

1

=

The stopped process
t— e "L f (Senr, )

is a martingale since it has vanishing drift up to time 7« by (S.15.62), and
it is constant after time 77+, hence by the Stopping Time Theorem 14.7
we find

Fre(So) = B [e*" Fr-(Ss,.) ‘ So]

=B [ (L") | So]

=B [T — 8y, )t ‘ S0

< swp E* [e*”(}(— St ‘ 50] .

T stopping time
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m) By combining the above results and conditioning at time ¢ instead of time
0 we deduce that
fir(S1) = B [ 0(K — 8,0 | 8]

K-S, 0<S5 < K

Ao
PUEERAL

A — I\ g\ A
=t >
(=) () semw

for all ¢t € Ry, where

- =inf{fu>t : S, <L}

We note that the perpetual put option price does not depend on the value
of t > 0.

Exercise 15.7
a) We have
. _ —\)o? aAz— 252
Zt(A) Z(St)/\e—t((7 S)A=A(1-N)o?/2) =(So)’\e)‘ Bi—A t/27

which is a driftless geometric Brownian motion, and therefore a martingale
under P*.

b) The condition is 7 = (r — §)A — A(1 — X\)o?/2, with solutions
N = §—r+0o2/2— \/(5;7“-'1-0'2/2)2-‘1-21"0'2 <o,
o
\ §—r+02/2+ /(6 —r+02/2)2 + 2ro2
=

o2 -

o
~

Due to the inequality
(M) Ap ot At
0< 7, = (S)Me " < LM,

which holds because Ay > 0 and S; < L, 0 < t < 71, we note that since

limy o0 Z,Q*) =0, we have

LHE [ =B [(85) e Loy | = BT 25 14, o)
—E [ lim 2 M] Jim B [Z07)]
= B (23] = (S0).
Therefore, we have
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E* [e7(S;, — K) | So =2] = E*[(Sr, — K)e "™ 1, o0y | So = 2]
=(L-K)E*[e7™ 1{;, <o} | So = 2]
=(L-K)E " [e7" | S =]

T\ M
—(L-K (7) ,
- (%
when Sy = z > L. In order to maximize

sup E* [e7H(K —S-,)T | So=1],
Le(0,K)

we differentiate L —s (L — K) (z/L)** with respect to L, to find

<£>/\+ — A (L= K)zM LM =0,

L
hence
o A K
TN -1 1-1/ay
and
1 K 1=A4
sup E*[e™" (K —-8;,)" | So =2 :—<7> ™
Le(0,K) [ ( 7] So ] A \1-1/X4

We note that as § N\, 0 we have Ay \, 1 and L} oo, and since

1-A4 _
<L> = exp <(/\+ —1)log )\)T+K1> =1,

1—1/A;

we find that the perpetual American call option price without dividend
(6=0)is Sp = a.

Exercise 15.8
a) By the definition (15.36) of S1(t) and S2(t) we have
- S\
7, = rt
=m0 (2
— e—rtsl(t)asz(t)l—u
_ Sl(0)0152(0)l—oze(ozol+(1—o¢)¢72)Wt—agt/Z7

which is a martingale when

02 = (a0 + (1 — a)ow)?,
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aoy + (1 — a)og = too,

which yields either o = 0 or

since 0 < 01 < 09.
b) We have

E [e7" (S1 (1) — Sa(rr))T] = E [e7" ™ (LSa(71) — S2(11)) "]
=(L-1D)TE[e"™8,(r)]. (S.15.64)

¢) Since 7y, At is a bounded stopping time we can write

$5(0) (228%)& ) [e*T“L“)sQ(TL A ) (%ﬂ (S.15.65)

< () ] 0 (3 1

We have

S\
e " Sy (1) (éé;) L sey e S5(t) L0y 5y < e " Sa(t) LY,

hence by a uniform integrability argument,

) —r Si#)\*"

rt —
S T [e Sa(t) (Sg(t) Lo =0,
and letting ¢ go to infinity in (S.15.65) shows that

0 (48 -5l () -mie s

since Sy(71)/S2(r) = L/L = 1. The conclusion

B o (Su(rn) = $alr)*] = (0= )L5:0) (23] (5.15.60)

then follows by an application of (S.15.64).
d) Inorder to maximize (S.15.66) as a function of L we consider the derivative

17} <L71> i_a(L—l)L"“*l:O,

oL\ L~ ) Ie

which vanishes for
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and we substitute L in (S.15.66) with the value of L*.
e) In addition to 7 = 03/2 it is sufficient to let S1(0) = x and o7 = 0 which
yields a = 2, L* = 2, and we find

1 K\ 2
—rT _ +1 — n
T stupsplilrlljg timeE [e (H SQ(T)) ] SQ(O) <2) ’

which coincides with the result of Proposition 15.4.

Exercise 15.9

a) It suffices to check the sign of the quantity
A =1 (A 4+2r/0?), (S.15.67)

in (15.38), which is positive when A € (—o00, —2r/0]U[1, 00), and negative
when —2r/c2 < A< 1.

b) The sign of (S.15.67) is positive when A € (—o0,1] U [—2r/0?, 00), and
negative when 1 < A < —2r/02.

¢) By the Stopping Time Theorem 14.7, for any n > 0 we have

> = E [e’T(T"A">Z.£i)/\n | So= x]

=E [Ziﬁ)]l{n@} | So = «T] +e {Zﬁ*)lmw} | So=2
> E” [CiTTL(STL))\]l{TL<n} ‘ SU = .’E]
=L E* 67 Lir,<ny | So =]

By the results of Questions (a)-(b), the process (Zt()‘))te]Ra+ is a martin-

gale when A € {1,—2r0%/2}. Next, letting n to infinity, by monotone
convergence we find

T max(1,—2r/02)
A (f) 2L,
E* [e7" ™ {7, <00} | So =] < (E) <
L S 2
o\ min(1,—2r/c%)
(Z) , O0<z<L.

d) We note that P*(7;, < c0) = 1 by (14.15), hence if —0%/2 < r < 0 we
have

E* [eiTTL (K - STL)+]1{TL<DO} ‘ SO = T]

(K - L) (%)_W’ x>,
=(K-L)E*[e" |S=1] <

(K—L)%, 0O<z<L.
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Similarly, if »r < —0?/2 we have

E* [e_rn‘ (K - STL)+]1{TL<OQ} | So = 7}}

(K—L)E" [e7"™ | Sy = 2]
(K -L)F, 2> L,

IN

—2r/a?

(KfL)<£> . O<az<L.
L
e) This follows by noting that (K — L)(z/L) = (K/L — 1)z increases to oo

when L tends to zero.

f) If —0%/2 < r < 0 we have

E* [077‘71‘ (STL - K)+1{7L<oo} ‘ So = x}
=(L-K)E" [e7™ i, <o) | So = 2]

T\ —2r/c?
(L-K) <Z> . >,
(LfK)%, 0<z<L.

If r < —0?/2 we have

E* [077‘71‘(5711 - K)+1{7L<00} ‘ SO = :C}
=(L-EK)E" [e7 ™ 1, <o0) | So = 2]
= K)%, x> L,

IN

(L-K) (%)72”02 , O<z<L.

g) This follows by noting that for fixed z > 0, the quantity (L — K)z/L =
(1 — K/L)z increases to  when L tends to infinity.

Exercise 15.10 Perpetual American binary options.

a) Similarly, for x > K, immediate exercise is the optimal strategy and
we have C{™(t,2) = 1. When o < K the optimal exercise level of the
perpetual American binary call option is L* = K with the optimal exercise
time 7, and by e.g. (4.4.22) page 135 we have

CA™(t, 1) = sup E* [e’(T’t)T]l{STEK} | Sy = x]
>t
T stopping time

- E* [e—(TK—t)T | St — 17]

=%, r < K.
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1.2 =

0.8 —

0.6 -

0.4 =

American binary put price

0.2 | -

o L L L
o 50 100 150 200 250

Underlying x

Fig. S.77: Perpetual American binary put price map with K = 100.

b) For z < K, immediate exercise is the optimal strategy and we have
PA™(t,x) = 1. When > K the optimal exercise level of the perpet-
ual American binary put option is L* = K with the optimal exercise time
Tk, and by e.g. (4.4.11) page 125 we have

me(t,z) = sup E* [e’(T”’)TIL{STSK} |St = x]

>t
7 stopping time

=E* [e_(”"_t)r | S = 1:]

N

1.4 -

1.2 -

0.8 -

0.6 - =

American binary call price

0.4 -

0.2 -

o 50 100 150 200
Underlying x

Fig. S.78: Perpetual American binary call price map with K = 100.

Exercise 15.11 Finite expiration American binary options.
a) The optimal strategy is as follows:

(i) if S; > K, then exercise immediately.
(i) if Sy < K, then wait.

b) The optimal strategy is as follows:
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(i) if S¢ > K, then wait.
(ii) if Sy < K, exercise immediately.

¢) Based on the answers to Question (a) we set
Ci™(t,T,K) =1, 0<t<T,
and
C™(T,T,z) = 0, 0<z<K.

d) Based on the answers to Question (b), we set
P4, T K) =1, 0<t<T,

and
PM(T, T, z) =0, x> K.

Starting from S; < K, the maximum possible payoff is clearly reached
as soon as S; hits the level K before the expiration date T', hence the
discounted optimal payoff of the option is e~"(Tx =1 T <T}-

From Relation (10.13), we find that the first hitting time 7, of the level a
by a p-drifted Brownian motion (W, + pu)ucr, satisfies

P(r, <u) =9 <a ;gu) —e?ragp (%) , u >0,

and by differentiation with respect to u this yields the probability density
function

e

Ny

f

Na

9 P, < u) 4
= P(r, <u) = ——
Ou V2mrud

of the first hitting time of level a by Brownian motion with drift . Given
the relation

fr () elemm0Y @ gy ) (u)

Sy = SteaWu,Lf(uft)az/QJr(uft)r _ Ste(Wu,LJr(uft)u)a’ u>t,

with pp = r/0 — 0/2, we find that (Su)ue[t,00) hits the level K at a time
T =t + 74, such that

—o2 .
STK — SteUWTﬂ 0 Ta/2+7Ta _ Ste(WT“ +uTa)o _ K

i

1 K
a=W;, +urg = —log .
ag St
Therefore, the probability density function of the first hitting time 75 of
level K after time ¢ by (Su)ueft,c0) IS given by
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P G GO CIC 0 I
27(s —t)3
with
1 < 02> 1, K
pi=—(r—— and a:= —log—,
o 2 o T

given that S; = x. Hence, for € (0, K) we have

Am(t T I) _ [ 7T(TK7t)1{TK<T} ‘ St :I}

_ f et 0 (a—(s-0m)?/ (1) g
71'(9 —t)3
T—t a 2
_ —rs —(a—ps)*/(25) g
= e e s
jo V2ms3

Tt log(K 1 2 K\’
f 08( /r) exp | —rs — — (— (r - U—) s+ log—) ds
oV 2rs3 20%s 2 T

(I

5 IOT_t %cxp < 2(7125 (j: <7' + %2> s+ log i()?) ds
N )W oV 2y
_ %45 ((r + 02/2)21:/# log( >

N (;;)—27"/02 o (—('r +02/227(\7;%+ l()g;(m/K)) . 0<z<K,

where

1 o? K
- (+ IV T 1) +log
Y+ am( <T+ 2)( )+ng>’

and we used the decomposition

K 1 o? K 1 o? K
log—=-(|r+—=)s+log— |+ -|—(r+ 5 )s+log— .
x 2 2 x 2 2 T

We check that
CI™(T,T,K) = ¢(0) + (0) =

and

2r/o?
Cf"‘(T,T,x):;; oo)+<K) B(-00) =0, x<K,
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since t = T', which is consistent with the answers to Question (c).

In addition, as T" tends to infinity we have

lim C&Am(t,T,LL') =2 lim & <(7 +o?/(T — 1) + log(z/K)>

o/T —1t
x N\ —2r/c? — 2 —
N <i> "1 i @ (r+0°/2)(T —t) + log(z/K)
K T5o00 oVT —t
= % 0<z<K,

which is consistent with the answer to Question (a) of Exercise 15.10.

1.4 - =

0.8 —

0.6 -

0.4 - -

American binary call price

0.2 | -

o 50 100 150 200
Underlying x

Fig. S.79: Finite expiration American binary call price map with K = 100.

=

Starting from S; > K, the maximum possible payoff is clearly reached
as soon as S; hits the level K before the expiration date T', hence the
discounted optimal payoff of the option is e="(7% ’t)]l{TK<T}.

h) Using the notation and answer to Question (f), for > K we find

g

P4, T, ) [c "t)]l{TK<T} | S¢ = 2]
— J‘Tﬁt o TS a —(a—ps)?/2s) ds
0

Tt log(z/K) 1 o2 z\?
Xfo mexp ~ 3525 F 7’+7 s—HOg? ds

1 z oo 2 1 x 2r/o® oo 2
- -v*/2g (7) -v*/2g
L, ¢ v+ Vor \K Lw ¢ Y
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_ s <—("‘+02/2)(T—t) —log(w/K)>

K oVT —t
Jr(%>727v/024§<(7,+g2/2)f7T;tztflog(:L'/K)>7 o> K,

with

_ < <+02)(T t)+1lo 1)
Y4 = r+ — — — .
o= T\ 2 *K
We check that
P T, T, K) = (0) + 6(0) = 1,
and

—2r/a?
PAMT,T,2) = 2 (—00) + () '

e P (—o0) =0, 0<z <K,

since t = T, which is consistent with the answers to Question (c).

In addition, as T" tends to infinity we have

— 0.2 _ _
Jim P, Tyw) = %Tlgmm¢< (r+ /237(5% log(w/K)>
T\ —2r/c? . (’f‘ + 02/2)(T _ t) _ log(x/K)
() e ( VTt )

K

which is consistent with the answer to Question (b) of Exercise 15.10

1.4 T=5 -

1.2 =

0.8 =

0.6 |- -

0.4 |- =

American binary put price

0.2 + -

o 50 100 150 200 250
Underlying x

Fig. S.80: Finite expiration American binary put price map with K = 100.

i) The call-put parity does not hold for American binary options since for
x € (0,K) we have
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CA™(t, Ty ) + PR (¢, T,x) = 1+ %4‘; <("' + 02/2)2T ;tj+ 10%‘(1'/1())

Jr<%)*2r/0 ¢<7(r+0 /227(\/1:715)+10g(3:/1()>

while for x > K we find

CP™(,T,x) + PP (¢, T,z) = 1 + %45 <7(r i 02/237(3%7 10g($/K)>
x\~2/0" [ (r+02/2)(T —t) —log(z/K)
() e < NT—1 > '

K

Exercise 15.12 American forward Contracts.

a) For all (bounded) stopping times 7 € [t,T], since the discounted asset

price process (Su)ug[t_oo) = (ef("ft)"Su)ue[t,oo) is a martingale and the

stopped process (gmu)ug[t o) = (ef(Tm‘*t)r Au)uelt,oo) 15 also a mar-
tingale by the Stopping Time Theorem 14.7, we have

E* [C*W*”(K—ST) ‘ ft} —KE [0 | ] —E [e 7008, | F
=KE* [ | F] —E" [Soar | F)
=KE* [ | F] - Sone
=KE [ Y| F] -5,
=KE [e7") | R] - S,

and the above quantity is clearly maximized by taking 7 = ¢. Hence we

have

f(t,S:) = sup E* [e_r(T_t)(K - S;) { .7-}} =K -5,

t<T<T
T stopping time

and the optimal strategy is to exercise immediately (or to avoid purchasing
the option) at time ¢ and price K due to the effect of time value of money
when 7 > 0.

b) Similarly to the above, we have

=

E* [ (S, —K) | ] =B [e7"0S, | /] - KE* [ | 7]
=S —KE [e""7 | R,

since T € [t,T] is bounded and (e~""S})¢cr, is a martingale. As the above
quantity is clearly maximized by taking 7 = T, we have
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f(t,S) = sup E* [c""(T’t)(ST -K)|F]=85- Sl ¢
ssr

and the optimal strategy is to wait until the maturity time 7" in order to
exercise at price K, due to the effect of time value of money when r > 0.
Regarding the perpetual American long forward contract, since the dis-
counted asset price process (Su)ue[t,oo) = (e*”’t)rSu)ue[tyoo) is a mar-
tingale, by the Stopping Time Theorem 14.7, for all stopping times 7 > ¢
we have*,

o
~

=

e (S, —K) | B =B [0S, | B - KE [0 | A
[Sr | F] - KE [0 | F]

<5, t>0.

On the other hand, for all fixed T > 0 we have

E [T Sy - K) | ] =e "I DE Sy | F] - e "I DE K | F]
=8 —e T VK tel0,T],

hence

(Se—eTTIK) < swp BT [eUT(S —K) [ F] <S5, Tt
t>T
T stopping time

and letting 7" — oo we get

Sy = lim (S; —e "TYK)

T— o0
< ap B -K) |F
S A;‘;ﬁoppmg time
hence we have
ft8) = swp o B[S, - K) | F] =5,

T stopping time

and the optimal strategy 7% = +o0 is to wait indefinitely.

Regarding the perpetual American short forward contract, we have

* Using Fatou’s Lemma.
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f(t,8) = sup  E*[e7"TT(K - S;) | R
“'2", time

< sup E* [e’T(T’t)(K - ST | ]ﬂ
>t
7 stopping time
= fr-(Se)s (S.15.68)
with 9
-
* = K< K
2r + o2 <

as defined in (15.12). On the other hand, for 7 = 77 we have
(K = S,) = (K L) = (K — L)*
since 0 < L* = 2Kr/(2r + 02) < K, hence
fre(8) = E [e T (K — 5, )t | R

=E* [ TN(K - S,,.) | A
< sup E* [e’“’"’)(K -5 | ]-'L]

>t
T stopping time

= f(t: St),
which, together with (S.15.68), shows that
f(t8) = fr-(S),

i.e. the perpetual American short forward contract has same price and
exercise strategy as the perpetual American put option.

Exercise 15.13

a) We have
” B2 o2
Y, = Cfrt(soortJraB‘ o t/2) 2r/o
_ 5527'/‘72efrt72r2t/02+2r§,/a+rt
.
— 50*27“/0' leBi/a—(Qr/o)%/Q’ t>0,
and ~
Zy = e "8, = Spe?BimoTt/2, t>0,

which are both martingales under P* because they are standard geometric
Brownian motions with respective volatilities o and 2r/o.

b) Since (Y;)ier, and (Z;)er, are both martingales and 77, is a stopping
time, we have

272
https://personal.ntu.edu.sg/nprivault/indext.html June 17, 2024


https://personal.ntu.edu.sg/nprivault/indext.html

Introduction to Stochastic Finance with Market Examples, Second Edition

Sg2r/02 _ E*[YY()}
= ]E*[YTL] ‘
- E [e—rTL ST—LQT/UZ}
— E* [077'7';‘ L*Zr/az}
_ L—Z'r/n'2 E* [e—rﬂ'LL
hence

B = (7) "

if Sy =« > L (note that in this case Y;, s remains bounded by L’Zr/”z),
and

So =E*[Zy) = E*[Z,, ] =" [e7" S, | =E* [e7"™" L] = LIE* [e7"™],

hence "
IE* —rr] — 2
) = 2
if Sy = = < L. Note that in this case Z, o; remains bounded by L.
c) We find

E[e™™ (K ~5,)| So=xa] = (K- L)E"[e7"™ | 5o = z]
K-L

T 7 0<zx<L,
= (S.15.69)
T —2r/o?
-0 (= > L.
(K — L) ( L) , z>L

d) We check that when L > z, the maximum value of (S.15.69) is K —x, and
that it is reached at L* := x. On the other hand, when L < z, (S.15.69)
can be maximized using L* := 2rK/(2r+0?) as in the perpetual American
put option setting.

e) The stopping strategy 77 would be suboptimal in comparison with the
perpetual American put option stopping strategy, see Exercise 15.12-(c).

Exercise 15.14

a) The option payoff equals (k — ;)P if S; < L.
b) We have

F1(80) = B [0 (s = 5,,) ) | A
= E* [e’T(TL*t)((H — L)ty | ]:t]

= (k— L)PE* [e*”“*” \ ft} .
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c) We have
fr(z) =E* [ofr(”‘*t)(n -8 )" | Fi = .L:|
(k — )P, 0<z< L,
= N (S.15.70)
(k—L)? <E> ,o > L.

d
d) By the differentiation %(H — )P = —p(k — )P~ we find

) gy (g)”””z_p(ﬁ_L)p—l (g)/ ,

oL
Of.
hence the condition fi- (@) = 0 reads
oL |a=L~
2r . 2r
UQL*(K—L)—p—O or L:WH<H.

e) By (S.15.70) the price can be computed as
(k= Si)P, 0< S, <L*

—2r/c?
Sy > L7,

i

f(t,80) = fr-(S) = po’i \" (29 +po® S
<2r+p02> ( 2r K)

using (14.13) as in the proof of Proposition 15.4, since the process
W e T (S), ut,

is a nonnegative supermartingale.

Exercise 15.15
a) The option payoff is k — (S¢)P.

b) We have
F1(80) =B [0 (= (5, )7) | Fi]
=E* [ (= (g — LP) ‘ ]:t]
= (k= LP)E" [0 | 7]
¢) We have
274
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frlw) =B [0 (e = (S,,)7) | 8, = o]

K—aP, 0<ax<L,
= —2r/a?
(k — LP) (%) x> L.
d) We have
Ly 2 BN € i
fr- (L") = *ﬁ(’f* (L") )W = —p(L")",
i.e. 9
r * *
Sk (L)) = p(L),
or "
2 P
L= (ﬁ) < (k)7 (S.15.71)

Remark: We may also compute L* by maximizing L — fr(z) for all
fixed z. The derivative df(x)/OL can be computed as

ofi(z) _ 0

= (e (57

L 2r/a? 2 L 2r/o?
— _prpt <7> + 2L (k- LP) (—) ,
T a T

and equating 0 (z)/0L to 0 at L = L* yields
* p—1 2r * -1 LX) =0
L)+ (L) (k= (L)) =0,

which recovers (S.15.71).

e) We have
/{*(St)p, 0<S,5§L)k7
fr-(Se) = —2r/0®
oy (S8) 72717 .
= (L) Py 2 L
Kk — (Sp)P, 0< Sy <L*

2 2 2
TS (L s 2
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H*(St)p, 0< S <L¥
= 2 2 gpy —2r/(po?)
POk 2r 4+ po© 5§
_poR (TP o S, > L*,
2r + po? ( 2r K SRz B

however we cannot conclude as in Exercise 15.14-(e) since the process
ur—r e fra(Sy), u>t,

does not remain nonnegative when p > 1, so that (14.13) cannot be applied
as in the proof of Proposition 15.4.

Chapter 16

Exercise 16.1

a) We have

s X,

= (3)

_ Xo (o—n)Bi—(o%—n?)t/2
N (e )

%(0 — el Bt =2,
0

Xo 2 (0 —n)Bi—(a? =)t/
— p)2elemmBi=(a dt
TN, (o =n)%e

Xo (0> — n2)e(a—n)B,—(02—n2)t/2dt

N
X, e 9 Xt X 2
=N (0 —n?)dt + N, (o0 —n)dBy; + 3N, (o —n)“dt

X Xy
= Ntn(a ”)dHNt(U n)dB;

X
= ﬁz(a —n)(dBy — ndt)

X, ~ ~ o~
=(oc— n)ﬁtde = (0 — n)X,dB,,
t

where dét = dB; — ndt is a standard Brownian motion under P.
b) By change of numéraire, we have

~ [N,

E[(X7 — ANp)t] =1 N—T(XT —ANp)*| = NoE[(Xr — N)*].
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Next, by the result of Question (a), X, is a driftless geometric Brownian
motion with volatility o — n under P, hence we have

log(Xo/A) | aVT log(Xo/N) VT

by the Black-Scholes formula with zero interest rate and volatility param-

E[(Xr—N*] = Xo® <

eter ¢ = g — 1. By multiplication by Ny and the relation X, = NO)A(O we
conclude to (16.36), i.e.
E [(X7 — ANp)] = NoE[(X7 — M)*]
= NoXo®(dy) — ANoP(d™)
= Xo®P(d4) — ANo@(d™).

¢) We have 0 =0 — 1.

Exercise 16.2
a) By the Girsanov Theorem 16.7, the processes

L

@), 150 _ g5
S§2>ds‘ -dBY = dBM —npdt,

- 1
dBY = 4B — ﬁtht.dBt“’ =dB" -

and

b

=@ ds® . aB® = aB® — ndt
t

- 1
dB® = dB® — N dB® = dB®

are both standard Brownian motions (and martingales) under P,.
b) We have

s &) @) _ (2 2
0 oBY—nB® —(a?—n*)t/2

2 2 2 .2
x <adB,F” + %dt —pdB® + %dt - %dt - Unpdt)
~ 30 (rdB) - naB?).

277
June 17, 2024 https://personal.ntu.edu.sg/nprivault/indext.html


https://personal.ntu.edu.sg/nprivault/indext.html

Solutions Manual

¢) We note that the driftless geometric Brownian motion (§t(1)),,gR can be
written as

d8M = 38Waw,,
where (ﬁ/\t)teR is a standard Brownian motion under @2. In order to de-
termine & we note that
G2dt = G2dW, - dW,
as” s
TS
= (0dB" —naB?) - (caB — naB)

= (0% +n* — 20mp)dt,

hence 52 = o2 + 7% — 20mp. We conclude by applying the change of
numéraire formula

T (55 - A5P) ] = SPB[(S - 3)]

and the Black-Scholes formula to the the driftless geometric Brownian

motion (§t(1))tE]R'

Exercise 16.3 We have Ny = P(t,T) and from (17.25) and the relations
P(t,T) = F(t,r:) and P(t,S) = G(t,r:) we find

dP(t,S) 0.,

m =ridt + o (t, rt)% log G(t,r¢)dWr,

AN, _dP(t,T) N

N, T PT) rydt + o (t, ”)Bx log F'(t,r¢)dW;.

By the Girsanov Theorem (16.12) we also have

— N
AWy = dWy — « dWy = dW, — o (t, rt) log F(t,ry)dt
hence
% = rtdt+02(t,7t)60 log F'(t, rt) log G(t,r)dt+o(t, rt) logG(t n)th

Using the relation P(t,.S) = G(t,r) we can also write

dP(t,S) = r,P(t, S)dt+02(t,rt)% log F(t, rt)%G(t, rt)dt-&-a(t,rt)%G(t,rt)th.
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Exercise 16.4 Forward contract. Taking N; := P(¢,T), t € [0,T], we have

E* |:exp <, LT T‘Sd8> (P(T,S) — ‘]:t:| = Nt,]E {% ‘ ]:t:|
~ [(P(T,8) - K)
=Pt,T)E {P(T ’]'—f:|
= P(t, )E[P(T,$) - K | Fi]
= P(t, )E[P(T, S )| F] - KP(,T)
- e, TB| L g i) | a} - KP(t,T)
— P e~ kP T)

= P(t,8) — KP(t,T),

since

P(t,T) P(t5)
N,  P(t,T)

is a martingale under the forward measure P. The corresponding (static)
hedging strategy is given by buying one bond with maturity S and by short
selling K units of the bond with maturity 7.

Remark: The above result can also be obtained by a direct argument using
the tower property of conditional expectations:

E [eX}_) <f LT mds) (P(T,8) — (ft]

—E o <— LT rsds> <1E* [exp (— fT Tsds> ’fT} = ) ’J-'t]
—E :cxp <7 LT rsds,‘) E* [oxp (7 st rsds> K ‘ ]-‘T} ‘Ft]
:]E* {exp (7 LS r,;dS) — Kexp <7 LT mis) | IT} | }}}
=B |exp <— LS TSdS) ~ Kexp (— LT Tsds> ’J-'t]

= P(t,8)— KP(t,T),  tel0,T].

*

*

=

Exercise 16.5

a) We choose N; := S; as numéraire because this allows us to write the
option payoff as (St (St —K))* = Np(Sr— K)*. In this case, the forward
measure P satisfies
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@ _ —TT& — —T‘TSl
dP Ny Sy’
or .
dPIE _ e—(T—:)r& — o (T—t) ST 0<t<T.
dP| £, N St -~

b) By the change of numéraire formula of Proposition 16.5, the option price
becomes

e~ T E* [(Sr(Sr — K)T| F] = E* [e" "9 "Np(Sr — K)*| F]
NE[(Sr — K)*| F]

SE[(Sr - K)T|R].  (S.16.72)

c¢) In order to compute (S.16.72) it remains to determine the dynamics of
(St)ter, under P. Since S; = Soe"B‘Jr”"’z"/Q, we have

@ — e—rT& — eaBT—GQT/Z7
dP So
hence by the Girsanov Theorem 7.3, E,, := By —ot is a standard Brownian
motion under P, with
Sy = SoerT+rrBT—02T/2
_ Soe(r+02)T+U§T—o‘2T/2
— §,erte)T=0+(Br-Bo~(T-00%/2 (<4< T
d) According to the above, (S.16.72) becomes
e T E* [(Sp(Sr — K)) | F] = SSE[(Sr - K) 1| F]
_ St]E[(SOCrT+02T+aBT—UZT/2 _ K)+| Fi)
= SB[(Syer+oT=0+(Br-Boo—(T-0a*/2 _ )+ £
= ST+ )BYS, K r+02,0,T —t), 0<t<T,
since the Black-Scholes formula with interest rate  + o2 reads
C*(T*O(HUZ)]E[(StC(Hoz)(T*t)+(§r—E)a—(T—t)a?/z B K)+|]_.t]
=BI(S;, K,r + 0% 0,T —t), 0<t<T.
Remarks:

i) The option price can be rewritten using other Black-Scholes parametriza-
tions, such as for example
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i)

June 17, 2024

SiBI(S;e T+ K 0,0, T — 1),

or

SpeT=00+eIBI(S,, K™ (T-00+7%) 0 6. T — 1),

however we prefer to choose the simplest possibility.
Deflated (or forward) processes such as S;/Ny =1 or

e—(T—t)r

N, E* [(Sr(St — K)T| 7] =

E[(Sr - K)*| 7,

are martingales under the forward measure P.
This option can also be priced via an integral calculation instead of using

change of numéraire, as follows:

e~ T E*[Sp(Sp — K)T | F]

— o~ (T-t)r g [Ste(T—t)rJr(BT—Bf)a—(T—t)az/Q

X(StC(T—t)r+(BT7B¢)07(T7t)02/2 _

K)*| R

0<t<T,

_ Ste—(T—t)rrz/Z E* [(Ste(T—t)r+2(BT—B,,)a—(T—t)n‘z/Q _ Ke(BT—Bt)0)+‘ ]_—t]

_ Ste—(T—t)a2/2 E* [(xe(T—t)7'+2(BT—B:)ﬂ—(T—t)02/2 _ Ke(BT—Bi)U)-%—}

= Se” (T—t)o?/2 E* [( z)+2X

where X ~ N(0,v?) with v? = (T
)o?/2 + log . Next, we note that

m+2X X\t 1
S
em+2w

1
- A /27”)2 j—7n+log K

- KeX)T]

em+2m

=S’

—t)o? and m(x) = (T

— Kew)e’”z/uﬁ)dz

7Ke‘”)

=S¢
0<t<T,

—t)r— (T —

+6712/(2U2)dI

em
21—12/(2'02)(1 _ K .'E—(EQ/(Z‘U2)d
oY j m+log K * V2mv2 f—m+logK ¢ v
m v ’U2
_ o S P e . Gl [ om (V=) /(20%) g
o m+log K 2T —m+log K
m+2v . v?/2 -
= j e/ (20%) g Ko/ f e /20 gy
oY 2v2—m+log K V2mu2 J—v2—m+log K
_emt” o2/2g Ko/ o—/2
2 L 2v2—m+log K) /v T 2 j (—v2—m-+log K)/v *
—log K , — log K
— M2 <2v + mzosh ) ~ Kev'/2g <7) + m—oeh ) s
v v
hence
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e T=0r | [Sy(Sy — K) | F
_ Stcf(Tft)02/2 E* [(Cm(z)+2X _ KCX)+]

x=>S¢
_ @2 Tttty [ (L =) +0%) + (T = 1)0®/2 + log(5/K)
T+ >¢< Tk )
(T —t)(r+0%) — (T —t)0%/2 +1log(S;/K)
—KSt@< o IT =1 >

= ST D+IBYS, K r + 02,0, T —t), 0<t<T.

Exercise 16.6
a) Knowing that S, = Sge?W:+7t=9"t/2 we check that the discounted
numeéraire process
e—Tth — Sne—(n—l)no2t/2—nrt
b= O

nf 2 (i — 2 _
_ Sg.enUng»nM, no t/Qe (n—1)no?t/2—nrt

— Socmrwt7(na)2t/27 0<t< T7
is a martingale under P*, and

d@ —rT Np S% —no?T—nrT noWy—(no)?T/2
= L _Er i — . S.16.73
aP No  Sp° ¢ ( )

b) From Equation (S.16.73) and the Girsanov theorem, the process W, =
W, — ont is a standard Brownian motion under P, and we have
St — Soe'rt+r7W,—(72t/2
_ SOeTHrU(ﬁ\/Hrnat)—azt/Q

— SUC(7‘+n02)t+aV/I>L+02t/27 t>0.

¢) We have

T B* [Sh 1 (spsiy | F2) = B [em TS 15,51 |
_ e(nfl)nazT/QJr(nfl)rT E* [NTIL{ST>K} |]:t]

= e("fl)"”zT/H(”*l)rTNL]E[]I{STZK} | 7]

_ e(n—1)nﬂ2T/2+(n—1)rTNt@(ST >K|F)
— (n=)ne T2+ (=T Ny (10g(5t/K) + (r+(n—1/2)0*)(T - t))
oyl —t

_ S;n,e(n—1)71,(72(T—t)/2+(71,—1)r(T—f,)¢ (10g(St/K) + (T‘ + (n — 1/2)02)(T — t)> ,
) ovVT —t
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0<t<T,n>0.
d) The power call option with payoff (S — K™)T is priced at time ¢ € [0, 7
as

o= (T=0)r = [(S% - Kn)+ }]_-t}
— Sre(n=Dnet (T /2+(-1r(T-0)g, (log(S,,/K) +(r+(n—1/2)0*)(T - t))

oyT —1
et (SESLIO L0 /2T - 0),
ovVT —t

Exercise 16.7 Bond options.

a) Ito’s formula yields

1) = e € - ) i — ¢

_Pws) o
= ) (O = 0)dW, (S.16.74)

where (/W\t)thR , is a standard Brownian motion under P by the Girsanov
Theorem 7.3.

b) From (S.16.74) or (19.7) we have
P(t,S) _ P(0,95) tSi T b S 2
pa1) = o) O Uy (6 =TT S il ) ~ ) )
hence
P(u,S) _ P(S) USiy AT 1 S( TrN2 0
JﬁmT)_P@JUmp<L(C($ ¢(s))dW, I‘C —¢)lds ),
t € [0,u], and for w = T this yields

_ P95 T s S( T/ |2
Pr,5) = gt e [ (€6 - a5 [T - o) as).
since P(T,T) = 1. Let P denote the forward measure associated to the
numeéraire
Ny :=P(tT), 0<t<T.
c) Forall S > T > 0 we have

E [67 T Tst(P(T_’ S) — K)+‘ ]:t]
(B (-4 00 -cTo) ) | ]
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= P(t, T)E[(X+m¢T5) — k)| 7],
where X is a centered Gaussian random variable with variance
2
W2(t, T, S) j |¢5(s) = " (s)[2ds

given Fy, and

P(t,S)
P(,T)

m(t, T, S) = —%1} (t,T,5) + log

Recall that when X is a centered Gaussian random variable with variance
, the expectation of (e™+X — K)* is given, as in the standard Black-
Scholeb formula, by

E[(e™™X — K)t] = ™25 (v + (m — log K) /v) — K&((m — log K) /v),

where

P(z) = jjoo 9_92/2%, z €R,

denotes the Gaussian cumulative distribution function and for simplicity
of notation we dropped the indices ¢,7,.S in m(t, T, S) and v3(¢, T, S).

Consequently we have

E [e’ §reds (p(T, §) — K)*\ ]-'t]

= P(t,9)d (% + % log %) ~ KP(t,T)® (% + %log %) .

The self-financing hedging strategy that hedges the bond option is ob-
tained by holding a (possibly fractional) quantity

v P(t,S)
D= l
( 2 K P(t,T) )
of the bond with maturity S, and by shorting a quantity

P(t,S)
Ko (*5 + —log 7KP(1&,T)>

d

=

of the bond with maturity 7.

Exercise 16.8

a) The process
67”52 (t) = 52(0)602wt+(#7r)t
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is a martingale if
1
r—p= 50%.
b) We note that
e—T'tXt — e—rte(T'—u)t—oft/Zsl (t)
_ e—rte(ng—a,?)t/Qsl (t)

— efuLfaft/QSl (t)
— Sl (O)Q;Lt—aft/QealWH—,ut

_ Sl(o)eth—n—ftﬁ
is a martingale, where
X, = e(r'—u)t—aft/le(t) — eloi—oDt/2g, ).

¢) By (16.38) we have

elor— 02)We—(01—02)* t/l

X@t) = %
_ oloi—aty2S1(t)
Sa(t)
_ 51 (0) (02—0‘1 t/2+4(o1—02)Wy
52(0)
_ (0) 02—01 )t/24(01—02) Witoa(o1—02)t
52(0)°
_ (0) elor— 02)Witoao1t—(02+07)t/2
5,(0)°
S1(0)
0°

T S5(0

where

/W\t = Wt - G'Qt

is a standard Brownian motion under the forward measure P defined by

T N
— ol reds VT
e NO
o7 2(T)
S2(0)

—TTEGZWT+”T

5%

=e
— e22Wr+(u=—r)T
eUQWT—ﬂgt/2
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d) Given that X; = e(@2=7D/25, (1) and X (t) = X¢/N; = X1/S(t), we have

e TE[(S1(T) — £S2(T)) ] = e " T B[(e~ @2 =DT/2 X — 1S5 (T)) )
= e T (3= NT2 B[(Xp — rel®2=oDT/2G,(T))H]
— 52(0)C*(ff§*vf)T/2]E[(f(T _ pelod—oi)T/2 )]
— 52(0) az—dl)T/ZIE[(X e (01— O'Z)WT (01—02)%T/2 _ KP(UZ O'I)T/Z) }
= Sy(0)e™ (T2 NT/2(X @), (T, Xo) — rel"2=oDT/260 (T, X))
= §,(0)e~ E-NT2 X109 (T, Xy)
—kS5(0)e” 02—51)T/2e(02—01)T/2¢U (T, XO)
= Xoe~ E-oNT2¢9 (T, X) — k55(0)8° (T, Xo)
= 8(0)e~ (@3 =oDT/2g0 (T, Xy) — 1S5(0)8° (T, Xo),

where
0 B log(z/k) (01— 02)? = (03 — 0})
oTn) = 0 ([ g T
logla/r) o1 >0
¢<|01—02|ﬁ+ 1\/:7>, 1> 09,
_log(z/k) <o
@<|01702|\/T ! T>? e v
and
o _ log(z/k) _(01*02)2 + (03 — oi)
@(T’”)*@(wlwwﬁ oo )
log(z/k)
@<m+02ﬁ>, o1 > 02,
_log(z/r) <o
¢<\araalx/T 2ﬁ>, 1 < 03,

if o1 # 09. In case 01 = 09, we find
e ME[(S1(T) = £S2(T))*] = e T E[SI(T)(1 — £55(0)/51(0)) ]
= (1 - #52(0)/51(0) e " B[S\ (T)]
= (51(0) — £52(0)) L (s, (0)>x55(0)} -
Exercise 16.9 We have
& B (L gy | R = @08 (Ry > | R)
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— o~ (T=t)rpx (RtC(WT—Wc)a+(7'—7'[)(T—t)—(Tft)a2/2 >k | Rt)

— o~ (T—t)rpx (Ie(WT—W,,)U+(r—rf)(T—t)—(T—t)02/2 > ,{)

=Ry
_ g (=)L =) = (T — t)0®/2 — log(r/Ry)
=e e < oyl —t ) ’

after applying the hint provided, with
7= (T —to? and p:=(r—r)T—t)— (T —1t)o>/2.

Remark: Binary options are often proposed at the money, i.e. kK = Ry, with
a short time to maturity, for example the small value

T —t ~ 30 seconds = 0.000000951 = 9.51 x 10~7 year !,

in which case we have

_pf
e T E" [Lpyny | Re) = e T7070 ((T ;- %) T t)

~ ¢(0)
1

5
Taking for example r — f = 0.02 = 2% and ¢ = 0.3 = 30%, we have

_f 02 0.
(T 0’ 75> \/Tft:<00 03) 9.51 x 10~7 = —0.000081279

2 03 2

and

e T B* [Lppsny | Re] = =T =979(—0.000081279)
— e—r><04000000951 % 0.499968

0.49996801

1

3
with » = 0.02 = 2%.

Exercise 16.10

a) It suffices to check that the definition of (W}¥);cr, implies the correlation
identity dW;° « dW}N = pdt by Ttd’s calculus.
b) We let

5. =/ (05)? = 2p0f0F + (oF)?

and
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X UsfpaN s oy
AW = LT aWwE — /1 — p2dW, t>0,
o

O
which defines a standard Brownian motion under P* due to the definition
of (’7\3.

Exercise 16.11

a) We have & = /(0)2 — 2poRoS + (oF)2.
b) Letting X; = e "X, = (@S, /R, t > 0, we have

e R
e L o [()}T _ e(a—r)TK>+ ‘]__t}

reor (T (LT 1, S

E*

- EN VT —1 KR,
2
pela-ITp (r—a—0o%/2)(T —1t) 1 ) Sy ))
e ( VT —1 YT =1 ®RR,
_ 52 _

=&e(r-a)<T_t)¢<(r a+@AT-8 1 St>

Ry VT —t oVvT —t KRr

2
BTSSR A
VT —t oVvT —t ~ KRy

hence the price of the quanto option is

+
—(T—t)r g |:<sz _ n) ‘}-t]
T

2
:ée—a(T—t)¢<(r_ai_0 /2)(T_f) + = 1 10 St )
Rt ovT —t O'\/T—, I'CRt

2
o@D (r—a—o°/2)(T - t) L, i)
e < eV MEN =

Chapter 17

Exercise 17.1

a) We have

b @ . —bt (* bs
dry = rode™" + Zd(l bt) +od < bt fo e st>
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t t
= —broe "dt + aettdt + oe"d [0 b*dB, + o [O P dB,de
t
= —broe Ytdt + ae " dt + oce e dB, — (rbfo e’ dB,e " dt
t
= —broe~tdt + ae~ttdt + 0dB; — ob jo P dB,edt

= —broe”"dt + ae~tdt + 0dB; — b (rt —roe % — %(1 - efbt)) dt
= (a — b7t)dt -+ O'dBt7

which shows that r; solves (17.46).
b) We note that

b, @ —b b (—u)b
Tt = Tro€ t+g(1*e t)*‘ro'foe(t )dBu
_ ,roefbse—(tfs)b + %e—(t—s)b(l _ e—bs)
s t
+%(1 _ ef(tfs)b> + o_ef(tfs)b IO 67(37“')1’6131‘ + Ujg ef(tfu)deu
(=) QY —(t—s)b b (t—u)b
=re +b(1 e )+0Lc dB,, 0<s<t.

Hence, assuming that r; has the A'(a/b,o%/(2b)) distribution, the distri-
bution of r; is Gaussian with mean

E[r]

e (= || + %(1 _ e(t—s)b)

_ Ee—(t—s)b + %(1 _ e(t—s)b)

SARSES

and variance
t
Var[r,] = Var [’rsc’(t’s)b + E(1 —elt=9?) 4 crj 0’“"“)”(134
b s
t
= Var {rSe’a*S)b +o f e’“’“)deu}
t
= Var [rse’(t’5>b} + Var |:O' f e’(t’“)deu}
t
= e 2= Var [r,] + o® Var U o’("“)"dBu}
£l
_ C—2(t—s)baj o2 It o—2(t—wb gy,
2b s

2 t—s
_ o2(t-sp 7 2 —2bu
e b +o jo e du
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Exercise 17.2
a) The zero-coupon bond price P(¢,T') in the Vasicek model is given by

log P(t,T) = A(T —t) + rC(T — t), 0<t<T,

where 1
C(T —1t):= —g(l - e_(T_t)b)7
and
4ab — 302 o2 —2ab
AT —t):= pTE (T 1)
o —ab iy _ T 2m-p << 15.17.75)
+ 3 e — @e <t <7S.17.

Since limy_,oo C(T — t)/(T — t) = 0 and

lim A(T —t)/(T —t) = (02 — 2ab)/(2b?),

T— o0
we find
_ logP(t,T)  ¢?>—2ab _a o
ST T T T e b o
b) We have
P@t.T) _
og POT) log P(t,T) —log P(0,T)
= A(T —t) — A(T) +m.C(T — t) — roC(T)
0% — 2ab o?—ab o?
_ (1= 07 _(T—t)b
TR < TR >
JetT fi _ o® —ab _ Q(l _ e—(T—t)b) + T—O(l _ ebe)
4b b b b ’
hence
Pt,T) (a o? TT—To Tt —To
Jim 1 A P - ot
8P, 1)~ b T 2 b T
and*

* The log function is continuous on (0, c0).
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PT) | (remro)/btt(a/b—0/(26%)) _ o~ (re—ro) [b+rct
P(0,7) ’

lim 1
i, log

which shows that the yield of the long-bond return is the asymptotic bond
yield 7.

Remark: By Relations (17.32)-(17.34), the Vasicek bond price P(t,T) can
be rewritten in terms of the asymptotic bond yield r, as

P(t,T) = e*(Tft)Ter(n—rm)C(T—t)—azcz(Tft,)/(zu;)7 0<t<T,

see e.g. Relation (3.12) in Brody et al. (2018).

Exercise 17.3 An estimator of ¢ can be obtained from the orthogonality
relation

n—1 n—1
ST ((Fuyy — adt — (1= bAG)F, ) — o2 At(7,)27) = 02 Y (7) > ((Z1) — At)
1=0 =0

~ 0,

which is due to the independence of ¢;, and Z;, I =0,...,n — 1, and yields

n—1

37 (Fuyy — adt — (1 - bA),)?

~2 _ 1=0
g n—1
At Z(Ftt)}y
=0

Regarding the estimation of 7, we can combine the above relation with the
second orthogonality relation

n—1
Z ((7:1,¢+1 —aAt — (1 - bAt)FLt)L) B GzAt(ﬁl)z’y)ﬂl
1=0

n—1

=0? ) (7)1 ((2)* - At)
=0

~ 0,

cf. § 2.2 of Faff and Gray (2006). One may also attempt to minimize the

residual
n—1

. 2
> ((ftm —aAt — (1 - bA)F,)" ~ UzAt(ﬁl)Qw)
1=0

by equating the following derivatives to zero, as
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9 n—1 B 3 } 9
% Z (7'tlJrl —alAt—(1— bAt)’rt,)2 — JQAt('rt,)QA')
=0

= —4do Z 71,)?7 (Feyy, — adt — (1 — bAt)er) — a2 At(7y,)?)

=0,
hence
n—1 n—1
Z(T“ (Fiyyy — @t — (1 — bAf)rtl) -0 Atz (7)Y =0,
1=0
which yields
n—1 5
> )P (Fryyy — adt — (1= bAL)F,)
52 = 1= — . (S.17.76)
At ()M
1=0

We also have

8 n—1 ~ L } 9
% Z ((th+1 —alAt—(1— bAt‘)T,g,,)2 - UZAt(rt,)}y)
1=0
n—1
= —402 At Z(r,l 7”n+1 —alt — (1 = bA)T, )2 - UQAt(r“tl)ZV) log 74,
=0

=0,

which yields

Z(r,l (Fryyy —alt — (1 — bAt)rfl) log 74,

6_\2

n—1

At Z(i’t, Y log 7,
1=0

, (S.17.77)

and shows that v can be estimated by matching Relations (S.17.76) and
(S.17.77), i.e.
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n—1

ST (F)? (Foyy — adt — (1 bAY), )
=0

n—1

Z (’Ftt )47

=0

n—1

> (70)% (Feryy — adt — (1 - bAL),) log iy,
=0

n—1
> () log iy,
=0

Remarks.
i) Estimators of @ and b can be obtained by minimizing the residual

n—1

3" (s — adt — (1 - bA),)?
=0

as in the Vasicek (1977) model, i.e. from the equations

n—1
D (Ftyy — adt — (1= bAt),) =0
=0
and
n—1
D (Frpy — aAt — (1= bAL)F,) 74, = 0.
=0

ii) Instead of using the (generalised) method of moments, parameter esti-
mation for stochastic differential equations can be achieved by maximum
likelihood estimation, see e.g. Lindstrom (2007) and references therein.

Exercise 17.4
a) We have 1, = 9 + at + 0By, and

F(t,ry) = F(t,ro + at + 0By),

hence by Proposition 17.2 the PDE satisfied by F(t,x) is
oF oF 1 ,0°F
—xF(t,x) + E(t, x) + a%(t7 x) + Pid @(t7 x) =0, (S.17.78)

with terminal condition F(T,z) = 1.
b) Using the relation r; = 79 + at + 0B, and the fact that the stochastic

T
integral L (T — s)dBg is independent of F;, we have
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Flt,r) = E* {exp <7 LT rsds> ‘ a}
—E* {exp (—ro(T 1) - af sds — o—f B ds) ‘]—}}

— E |:C—ro(T—t,)*a(T27t2)/2 exp <7(T —t)oB, — UJ; (T - s)st> ‘]_-{l
= oo (T—)—a(T*—t*)/2—(T—H)o B: [* [exp <7U IT(T - s)st> ‘]‘7]
t

= o ro(T=8)=a(T=t)(T+1)/2~(T—t)o By g+ {exp (_U LT(T _ s)dB5>]

o? (T
exp (—(T —t)re —a(T —1)%/2 + > L (T - s)zds>
exp (7(T —t)ry —a(T —1)2/2 4 (T — t)302/6) ,

hence F(t,x) = exp (—(T — t)z — a(T — t)2/2 + (T — )02 /6).

Note that the PDE (S.17.78) can also be solved by looking for a solution of
the form F(t,z) = eAT=9+2C(T=1) 'in which case one would find A(s) =
—as?/2 +02s%/6 and C(s) = —s.

c) We check that the function F(t,z) of Question (b) satisfies the PDE
(S.17.78) of Question (a), since F(T,z) =1 and

—xF(t,z) + <x+a(T7t)f —(T -1 )F(t z) —a(T —t)F(t,x)
o2
+5 (T - t)2F(t,x) = 0.
Exercise 17.5
t
a) We check from (17.51) and the differentiation rule djo fuw)du = f(t)dt
that

1
dry = afd (st J S—du) 1 1odS,

— af8S,d [ 5 du+a5f 5 dudS: + rods,
= [)’ df+ [)’f —dud—st + rodS;
= afdt + (ry — 7’05})? + 7rodS;

t

dSt
St
afdt + ri(—pdt + odBy)

afdt +ri——
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= Bla—r)dt +odB,,  t>0.
b) Taking pu(t,z) := B(a — x) and o(t,x) = ox, by [to’s formula we have
d (e_ 5 "stP(t,T)> = —re o APt TVt + e~ I T4 qP(t T)
=—reh redS (¢ ey )dt + e o redsqp (e, 1)
=—rehi redS (¢ oy )dt + e Jors dng(t re)(p(t, re)dt + o(t,r)dBy)
e Joreds (%H(t, rt)ng(t, ) + %—Ij(t, m) dt
=e ks TstU(t,rt)aa—i(t, ry)dBy

¢ OF 1 O’°F OF
4 dorsds (7rtF(t,rt) + plt,ry)— o2 (t, 1) + =02 (t, 1) = 92 5 (tre) + E(t rt)> dt.

2
(S8.17.79)
Given that ¢ —3 e~ Jo 7sds P(¢ T) is a martingale, the above expression
(S.17.79) should only contain terms in dB; and all terms in dt should
vanish inside (S.17.79). This leads us to the identities

F(t,T‘t)

B oF 1, O°F oF
= M(tﬂ”t)%(tﬂ"t) T30 (tﬂ"t)w(tﬂ“t) + E(tﬁt) (S.17.80a)

+ t F
d (0’ I “‘“P(t,T)) — o g ) 2L 4 dB, (8.17.80)
oz
and in particular to the bond pricing PDE

zF(t,x):ﬂ(a—T) (t z) + 1027“ Zl( )+%(f,x).

Exercise 17.6
a) Applying the Itd formula
() = (r)dre+ 5 ) e
to the function f(x) = 227 with
fl@)=(2-7)2""" and f"(z)=(2-7)(1 -7z,
we have
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dR, = dr?™"
= df (1)
1 .
= f'(re)dry + *f"("t)(dT't)z
= F'r) ((Br7 ™" + ary)dt + ory/2dBy) dr, +
1, _
5]”(73) ((ﬁrf’ + ary)dt + JTZ'/ZdBt)
2
= f'(r) ((Bry ™" + ar)dt + crr:/det)drt + %f”(rt)r?dt
2
= (2 =) 7 ((Br] 7" + ar)dt + ar7/2dBt) + 0—(2 — (1 = y)rfr; dt
=@2-B+arf M)dt+ —(2 V(A = y)dt + o2 — y)ry"?dB,
=(2-7) (/3 n 7(1 )+ aRt)dt + (2 7)o/RudB.
We conclude that the process R; = 7";2 ~7 follows the CIR equation
dRy = b(a — Ry)dt +1+/RdB;
with initial condition Ry = ro 7 and coefficients
1 a?
b=(2-7a, a=_|B+(1-7)7 ), and 7=(2-7)0
b) By Itd’s formula and the relation P(t,T) = F(t,r:), t € [0,7], we have

d (e Bt P(t,T)) = —rie B P(,T)dt + e~ T aP(t, T)
= —rpe” J TSP (4 ) dt + e o AP (8,7
= —re o B E (1 r)dt + e o "Sds%j(t, r)dt + e 1o "'°d5%(t, re)dry
1 a F

+edore d* Sz (tr)dr)’®

= —relo “‘“F(t, ro)dt + e 1o “’dé (t r)(Bry U+ ary)dt + or) 2 dBy)
. OF 1 62F

e dorede (—(t, )+ 500 oy (m)) dt

—e Jo s ds —(t Tt)dBt

. —(1— OF
+ e Jorads (ﬂ",,F(t,n) + (Bry a-m an)%(t,rt)
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+ %(727 2—F(t ) + aF(t m) (S.17.81)

Given that t — e~ Jo 7sds P(¢ T) is a martingale, the above expression
(S.17.81) should only contain terms in dB; and all terms in dt should
vanish inside (S.17.81). This leads to the identities

L O*F OF
R () = (Br O @) SE 4 ) + S0t S () + (e

t t aF
d (e’ Jorsds pyy, T)) =oe b T*dsr7/2%(t, 7¢)dBy,

and to the PDE

Flt,z) = (t ) + (B~ +ax) (t x)+—2 325(7:,95)

Exercise 17.7

a) The discounted bond prices process e o rsds P (¢, r,) is a martingale, and
we have

d <e’ Jo ”dSF(t,rt))
[ rads oF 029
=e Jo T —p F(t,7)dt + E(t,r,ﬁ)dt + (t re)dry + — 7 a2 (t 7)) (drt)?

. oF dF
= e Jorsds <7rtF(iE7 ry)dt + E(t,n)dt + %(t, r)(—arydt + U\/ﬁdBt)>

rods 29°F

-5
“+re Jo 2 9r a2

(t Tt)dt

hence F(t,z) satisfies the affine PDE

oF oF a2 0’°F
—xF(t,z) + E(t7 x) — ax%(t, x) + I?T( ,¢)=0. (S.17.83)

b) Plugging F(t,z) = eAT=9+2C(T=t) into the PDE (S.17.83) shows that
2
AT +2C(T 1) (—z — AT =) — 2C'(T — t) — azC(T — ) + %czq - t)>
=0.

Taking successively z = 0 and x = 1 in the above relation then yields the
two equations
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AT —t)=0,

2
—1-C(T —1t) —aC(T — 1) + ‘%02(T —t)=0.

Remark: The initial condition A(0) = 0 shows that A(s) = 1, and it can
be shown from the condition C(0) = 0 that

2(1 — (T-1)
S 2y + (a+y)(@ T — 1)

C(T - 1) teo,T),

with v = Va2 + 202, see e.g. Eq. (3.25) page 66 of Brigo and Mercurio
(2006).

Exercise 17.8

a) The payoff of the convertible bond is given by max(aS,, P(7,T)).
b) We have

max(aSy, P(1,T)) = P(1,T
= P(r,T
=P(r,T
=P(r,T

Las, <P} + @Srlias, >p(rm)}
+(aS; = P(1,T))L{as,>P(+.1))}

+ (aS; — P(1,T))*

+a(S; — P(1,T) /)™,

—_ = — —

where the latter European call option payoff has the strike price K :=
P(1,T)/a.

From the Markov property applied at time ¢ € [0, 7], we will write the
corporate bond price as a function C(¢,S;,r:) of the underlying asset
price and interest rate, hence we have

¢

N

Ot Sevr) =B [e” 170 max(a,, P(r 1) | 7]
The martingale property follows from the equalities
e loredsC(t, Sy ) = e Joreds ¥ [e_ K7t max(aSy, P(r, ) ‘ ft]
—E [e’ Jo 7o max(aS,, P(r,T)) ‘ ]-'t] .
d) We have

d (e rto0(t, 5, 70))

—re” Jo redsC(t, Sy, )dt + e Jo ”dsaa—f(t7 Sy, ry)dt
+e— b Tsds%(t, Sty 1) (rSedt + UStdBfl))
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¢ o .0C
e Jo wd*—(t, Sy, 1) (7t 7e)dt + (¢, Sp)dBP)

rods 02 20°C rads 10°C
+e” IO ads St2 022 (t St,n)dtJre IO d ﬂz(t 7"02 8 B (t Stﬂ”t)d
—JltT ds 820
+poSin(t,ry)e”Jo " M(t, Sy, ry)dt. (S.17.84)

The martingale property of (e_ I rsdsC(t, Sy, Tt))tenh shows that the sum

of terms in factor of d¢ vanishes in the above Relation (S.17.84), which
yields the PDE

oC ocC oC
0=—yC(t,z,y) + W(t’ z,y)dt + ry%(t-, z,y) +(t, y)afy(t, z,y)

2
+ T2 ) 4P 0), @yfu,z,ywmn@,u;ga ),
with the terminal condition

C(r,z,y) = max(az, F(1,y)), where F(r,7.)=P(r,T)

is the bond pricing function.
e) The convertible bond can be priced as

E* {e7 Joreds max(aS,, P(r,T)) ‘]—'t}
—E" [ WP T) | B ol [ B (s, - PrT) o)t | R
= P(t,T) + aP(t,T)E[(S,/P(r,T) — 1/a)* | F]. (5.17.85)
f) By Proposition 16.8 we find
dZ, = (o — o5(t) Z:dW,,
where (/Wt)tgug . is astandard Brownian motion under the forward measure

P.
g) By modeling (Z;):cr, as the geometric Brownian motion

Az, = o(t) Z,dW,,
Relation (S.17.85) shows that the convertible bond is priced as
P(t,T) + aS®(dy) - P(t, T)®(d-),

where
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1 St v3(t,7)
e =S <1°g PG.T) T 2 ) :
_ 1 St Uz(t*,T)
STWeD <l°g PLT) 2 ) ’

and v2(t,T) = JfT 02(s,T)ds, 0 <t <T.
Exercise 17.9 We have
17} 17} 1 c 1
iP(' ) = a5\ 77 T an N\ 1=
or -(0,m) or ((1 +r)n * r < (1+ r)”>>
ne
+

___n ey _1
- (14 r)ntl 2 (14 7r)m r(1 4 r)ntl’

hence
1+r 0
Du(ovn) - 7PC(0,TL) arpc(o%”)
oon (4r)e 1 1 Lne
(I47r)m 72 (I47r)m r(l+r)"

—nr — 17:7' (c(14+7)"=1))+nc
- re((l+r)"—1)
1+r—nr— 1+r(r+c((l+7‘)"—1))+nc

r+c((l+r)"-1)
_l4+r  I4r4n(c—r1)
o7 r+c((l4+r)n—1)
B (1—c¢/r)n 1+7r c((T+r"—-1)
A (G s s (m)

with Dy(0,n) = n. We note that

1+7r 1+r+n(c—r) 71+1
r r+ce((l+r)n—1)) r

lim D.(0,n) = lim <
n—oo n—00

When n becomes large, the duration (or relative sensitivity) of the bond price
converges to 1+1/r whenever the (nonnegative) coupon amount ¢ is nonzero,
otherwise the bond duration of P.(0,n) is n. In particular, the presence of a
nonzero coupon makes the duration (or relative sensitivity) of the bond price
bounded as n increases, whereas the duration n of Py(0,n) goes to infinity
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as n increases.

As a consequence, the presence of the coupon tends to put an upper limit
the risk and sensitivity of bond prices with respect to the market interest
rate r as n becomes large, which can be used for bond immunization. Note
that the duration D.(0,n) can also be written as the relative average

1 n = k

k=1

of zero coupon bond durations, weighted by their respective zero-coupon
prices.

Exercise 17.10
a) We have

¢ ¢ 1 ot
P(t,T) = P(s,T)exp (I rudu + f oldB, — 3 f |UZ|2du) ,

0<s<t<T.
b) We have

d (e_ Jireds p(, T)) = e Jamds5T p(t, T)dB,,
which gives a martingale after integration, from the properties of the 1t6

integral.
¢) By the martingale property of the previous question we have

E [o’ JT rods

F| =B [P m)e i e

7|
=P, T)e himds  0<t<T
d) By the previous question we have

P(t,T) = el @ | [e* I rads

5

- E C[‘; rods— S reds

T,

=1 [e_ Ji reds

7|, <t<T,

. — [t . .
since e~ Jo 745 is an F;-measurable random variable.
We have

P(s, S t s T 1t g2 T2
= — B, — - _
PGT)  PG.T) exp (L (05, — 0, )dB, 3 L (o low, |?)du

e

N
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- P(j ;; exp (r( odBT — 5 t(US - Ug)2du> ,

0 <t < T, hence letting s =t and ¢t = T' in the above expression, we find

P(T,S) = ié;’ i; exp (LT (6§ —oT)aBT - % g (05 - g?)2d8> .

f) We have
P(t,T)E[(P(T,S) — k)]

.
— P(t,T)E <P(t S; [T (05 —oTYaBT — [T (05 —oT)2ds/2 _ K) }

P(t,T

= PUT)E [(¥ = )" | 7]
_ P(t T)e t>+U2(t)/2§b ( (2) + Tt)(m(t) + Uz(t)/Q —log K]))
u(t)

—kP(t,T)P <—7 + W(m(t) +v%(t)/2 — log n)) ,

where P(LS) 17
0) 2 s _ _T\?2
PaT) 2Je (72 oR) s

and X is a centered Gaussian random variable with variance

vA(t) == LT G UZ)ZdS,

m(t) := log

given F;. This yields
P(t, T)E[(P(T, S) - #)]

= P(t,S)® (? + %1 g Hl;(tt ST))> kP(t, T)9 <7@ + ilog

Exercise 17.11 (Exercise 4.18 continued). From Proposition 17.2, the bond
pricing PDE is

oF 1
o7 () = aF(t) - m—myﬁt ZZZaﬂt)

F(T,z)=1.
We search for a solution of the form

F(t,z) — eA(T—t)—zB(T—t)’
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with A(0) = B(0) = 0, which implies
Al(s)=0
B'(s) + BB(s) + 30232(5) -1,

hence in particular A(s) = 0, s € R, and B(s) solves a Riccati equation,
whose solution can be checked to be

B 2(e7 — 1)
B = s e -1

with v = /52 + 202.
Exercise 17.12
a) We have
1
Yo = —? lOgP(O,Tl) = 953%,
1
1
Yo,2 = — 7 log P(0,T2) = 9.1%,
T,

1 P(0,Ty)

— =L —8.6%,
T-T *P(Ty,T) %

Y12 = —

with 77 = 1 and Ty = 2.
b) We have

P.(1,2) = ($1+80.1) x Py(1,2) = ($1 +$0.1) x e~ T2~ T2vr2 — $1,00914,
and

P.(0,2) = ($1+$0.1) x Py(0,2) +$0.1 x Py(0,1)
= ($1+$0.1) x e~ (Te=T2)yo2 4 §0 1 x e~ (T2=T2)vo
= $1.00831.

Exercise 17.13

a) The discretization ry, , := 7y, + (@ — bry, ) At &+ 0/ At does not lead to a
binomial tree because 4, can be obtained in four different ways from ry,,
as

re, = 11, (1 — DAL) + aAt £ oV At
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(reg (1 — DAE) + aAt + oV At) (1 — bAL) + aAt + oV At
(T4 (1 — DAL) + a At 4+ oV AL) (1 — bAL) + aAt — oV AL
(T4 (1 — bAL) + a At — oV AE) (1 — bAL) + aAt + oV AL

(T4 (1 — bAL) + a At — oV At) (1 — bAL) + aAt — oV At.
b) By the Girsanov Theorem, the process (r:/0)seqo, 7] With

@:a;bndt+d3t
o

g

is a standard Brownian motion under the probability measure Q with
Radon-Nikodym density

aQ 1T 1 T )
il (‘; Jy ta=trodB =525 [ =t dt)
1 T 1 T
~ exp (75 jo (a —br¢)(dry — (a — bry)dt) — 552 Io (a— brt)2dt>
1 (T 1 (T
= exp <7§ Jo (a—bry)dry + el [o (a— bn)zdt) .

In other words, if we generate (r¢/0)cjo,7] and the increments o~ 'dr; ~
++v/ At as a standard Brownian motion under @Q, then, under the proba-
bility measure P such that

dP 1 T 1 (T )
Q- exp <§ jo (a —bry)dr, — 257 jo (a—bry) dt) ,

the process

g, = dre _azbrey,
ag

o
will be a standard Brownian motion under P, and the samples

dry = (a — bry)dt + od B,

of (rt)¢efo,r) Will be distributed as a Vasicek process under P.
¢) Approximating the standard Brownian increment o~'dr; under Q by
+v/ At, we have

T/AT 1 a—br a— bry
e | (gi o vat)= ] liT\/At

0<t<T 0<t<T
—br
= exp <log H <1 + u\/ At>)
0<t<T 7
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= exp < Z log <1 + a—brtht>>
0<t<T 7

~exp< > M e va) -5 Y (a=br)® ij’t)%)

0<t<T 0<t<T

1 T 1 T 5
~ exp (; fo (a = bry)dr, — 597 J;J (a—bry) dt)
o
=

d) We check that

E[Ar, | r,] = (a — bry, ) At
= p(r,)o VAt — (1 = p(ry,))o VAt
= op(ri, VAL — oq(ry,) VAL

with

1
VAt and q(no):§

1 a—bry

p("'to) =5+

a—bry,
- ——2 VAL
2 20 t

20

Similarly, we have
E[Ary, | r,] = (a — bry, ) At
=p(ry, )oVAt — (1 —p(rs,))oV At
= op(ry, )VAt — oq(re, )V A,

with
1 a—bry 1 a-—bry,
P(Tt1)=§+TtVAt, Q(Ttl)zg—TtVAt
Exercise 17.14
a) We have
P(1,2) — B 100 1 100 N 100
T Tr ] 20478 " 20 +79)’
b) We have
100 100
P(0,2) =

21t ro) I+ 204 ro) 1+ rd)

¢) We have P(0,1) =91.74 = 100/(1 + ro), hence
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~_100—-P(0,1) B
ro = Pl0,1) =100/91.74 — 1 = 0.090037061 ~ 9%.
d) We have
83.40 = P(0,2) = POD PO

2(14+7r%) 21 +r¢)
and 7 /rd = e20VAL Yence

P(0,1) P(0,1)
2(1 4 7,?620\/A7t) 2(1 + r?)

83.40 = P(0,2) =
or

1 ,1
2oVAL ()2 4 9pd 07V A oo (oVAt) <1 _ PO > +1- PO.1) _ 0

2P(0,2) P(0,2)
and
d_ —oVAL P(O,1)
rf=e (cosh(a\/At) <2P(0,2) 1
P(0,1) 2 P(0,1)
:t\/<2p(0’2) 1) cosh? (oVAt) + P0.2) 1
= 0.078684844 ~ 7.87%,
and
7,7{ _ Ti]ler\/E
_ VAL P(0,1)
=e <cosh (0\/ At) <2P(0, o) 1
P(0,1) 2, P(0,1)
:t\/<2p(072) 1) cosh? (0VAt) + P0.2) 1
= 0.122174525 ~ 12.22%.
We also find

1 d 1 u

p=—(ovVAt+log ™) = = (—oVAt+1og L ) = 0.085229181 ~ 8.52%.
At To At To

Exercise 17.15

a) When n = 1 the relation (17.55) shows that f(t,LTl) = f(t,t,T1) with
F(t,x) = cie~ M=% and P(t,T}) = c;ef&HT) | hence
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1 oF

D(t,Tl) = _7P(t7T1) %

t ft,t, 7)) =Ty —t, 0<t<T.

b) In general, we have

1 oF

D(t,T,) = —m%(

t f(t.t.T,))

1 -
N fere @R T
P(t,T,) Z( b~ tee

n
=D (T =ty
k=1

where

Ck o~ (Te=)f(t.t.T0)
P(t,Tn)
=(Te—t) f(£,2,T)

Wy, 1=

Ccge

I —
3 e @0 T
=1

epe— M=t F(t:6.T0)

n -
Z e (T=0F(tTn)
=1
and the weights wy, ws, ..., w, satisfy

n

Z wg = 1.

k=1
¢) We have

1 9*F

Ct,T,) = PUT,) 0 —— (

z‘f(z‘tT))

(Tk — t)2wk

I
M=

£l
Il
—

[
=

(Tx —t — D(t,T,)))?wy, +2D(t, Ty) i (T — tywy, — (D(t,T},))?
k=1

=~
I
-

= (D(t,T,))* + i(Tk —t— D(t,Tn))*w
k=1
= (D(t,Tn))* + (S(t. Tn))*,
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where .
(S(t,T))* =Y (Tx —t — D(t, T))*w.
k=1
d) We have
1 n
D(t,T,) = ——— o B(T. — t)eATe=t)+B(Tk—t) fa(t,t,Tn)
1) = 56,10 kzzl% (T = t)e
! Y A(Ty—t)+B(Tk—t) fa (t,t,Th
= AT T DT 3 B(Ti — t)eAT—O+BI=0fa(t4T)
k=1
- Z exB(T) — t)eA(Tk—t)—A(Tn—t)+(B(Tk—t)—B(Tn—t))f,,(t,t,Tn).
k=1
e) We have
D(t,T,) = 1 (1 _ e*(Tk7t)b)ckeA(Tk—t)—A(T“_t)+(C*(Tnft)b_cf(Tk—t)b)fa(t"t)Tn)/b
biA
1 - (e~ (Tn—t)b_— (T —t)b,
=3 (1 — e—(Tk—t)b)CkeA(Tk—t)—A(T,L—t)(P(t’t Fa(T, — 1) T
k=1
Chapter 18

Exercise 18.1

a) By partial differentiation with respect to 7' under the expectation ]E, we

have

oP 0 T

- — __ T* — J reds

o7t = 5 B e 7
=E" { —rre” S rods .7:1}
= —P(t,T)E[rr | F).

b) As a consequence of Question (a), we find
f(tT)—f#a—P(tT)—lﬁ[’ | Fil 0<t<T, (S.18.86)
’ = P(t,T)BT s = ILrr tly >t= 4, < 10-

see Relation (22) page 10 of Mamon (2004).
¢) The martingale property of (f(t,T)):cjo,r) under the forward measure

IE follows from Relation (S.18.86) and the tower property of conditional
expectations as in e.g. (7.1) or (7.42).
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Remark. In the Vasicek model, by (17.2) and (19.9) we have

— roe’bT + %(1 _ e’bT) I UJOT e7(7‘7s)deS
= roe T 4+ %(1 —e 4o joT o’(T"“)bd/Ws
7%2 OT o~ (T=9)b(1 _ o~ (T=2)by g
— rge T + %(1 —e V) 4 ”LT e T=)b gy,
7%2 IOT e~ (T=9)bgs 4 %2 IOT e 2(T=9)b g,
hence
HAE[TT | Fi] = roe™ T + %(1 — e’bT) +o fof e’<T’S)de\s
7%2 J;)T e~ (T=3)bgg 4 %2 J;)T e 2T=9)bgg
=rpe T 4 %(1 - c’bT) + o—jot e~ (T=9bqmy,
-‘r%z f(: e’(T’S)b(l - e’(T’Sw)ds
7%2 fOT e (T=9bgs 4 %2 fOT e AT=9bgs
=rge T 4 %(1 - e_bT) + e~ (T-1)0 (rt — rge % — %(1 - e_bt))
+%2 L: e~ (T=9)bgs — %2 L: e 2(T=9)bgg
_%2 IOT o (T=9b g 4 %2 IOT 0 2AT—)b g

o2 (T o2 (T
_ —(T—s)b —2(T—s)b
e ds + W L e ds

I (e L
p e (” v) " b Je

)
% e (=00 (Tt - E) - %2 fOT_t e ds + 0; LT_t e s
)

b
2 2
_a —(T—t)b a g —(T—t)b g —2(T—t)b
7E+e< )<”_g b—z(l—e( ))+b7(1—e (T-0b)
2 2 2
_a < —(T—t)b a_ o 07 —2(T—t)b
=5 gt ’(”*3*?)*?26 o,

which recovers (18.31).

Exercise 18.2 We have
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P(0,T») = exp( f f(t,s) s) = T (=T t € 0,T],
and
T
P(Ty,T2) = exp <7 fT2 f(t,s)ds) = 2(T2-T1) t €0,Ts],

from which we deduce

1
log P(T,T: B
Tl g ( 1, 2)

and

T, =T
Ty
L og P(TL, T2) — 2 10g P(0,T2)
T 0og 1,12 T, 0og y 12
1 P(0,T3)
——log ——~.
T, P(T],Tz)

T = —T2

1
T log P(0,T3)

Exercise 18.3 (Exercise 4.15 continued).

a) We check that P(T,T) = X — 1.

b) We have
FT,8) =~ (X5 = X = (5 = 7))
=;¢—aSiT<(S—t)Ltﬁst— — 1) f —dB)
:N*051T1t<s_t*T_z>st
’“7‘75 Tr(Tié)(fS—)é)((T_is)t)(Sﬂ)dB*’
¢) We have

ST =0 |, (;:—j:)QdBSA

d) We note that

. t 1
%{n‘tf(t,T)fpfg N mst
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does not exist in L2(§2).
e) By Itd’s calculus we have
dP(t,T) 1, X7
———- =0dB; + -o°dt dt — dt
P, ) CtPr ot Ty
log P(t,T
_log P(t,T) .

1
= 0dB; + 502(# t€[0,7].

f) Letting

1 xr

rtT::quiaszit
1,  (t dB,
sty

by Question (e) we find that

dP(t,T)

2 ) — 5dB, + rldt 0<t<T.
P(t.T) a t+rt El >0

g) The equation of Question (f) can be solved as
ot t
P(t,T) = P(0,T) exp <oBt -5+ fo 7l ds> ., 0<t<T
hence the process
t o2
P(t,T)exp - fo rlds) = P(0.T)exp (0B~ Tt), 0<t<T,

is a martingale under P*, with the relation
t T .,
P(t,T)exp <— fo rl ds) =E* {P(T7 T) exp (— Io r! ds> ‘ft}
T
=E* — [ rTds <t<
E {exp( L)rsds)’]:t], 0<t<T,
showing that
t T
P(t,T) = exp (Jo rfds) E” {exp <7 Jo rfds) ‘]—}]
=IE" |exp jt rTds ) exp | — IT rTds) | F
5 0 5" 0 s t
T
=E* [cxp <7L 7':d5> ‘]—}} , 0<t<T.

IN
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h) By Question (g) we have

dPp P(t,T) _ JErTds 0By —o’t/2
E — | F — s 45 — t ‘e <t <T.
[ dP t} P(O,T)e ’ ¢ ) 0=t

i) By the Girsanov Theorem, the process EL := By — ot is a standard Brow-
nian motion under Pr.

j) We have
TS—T
log P(T,S) = —u(S —T dB;
ogP(T,8) =—u(S-T)+o | =
TS—T
= —u(S - 7‘+ng———uB L
S—-T TS_T
=< log P(t,5)+ o , SidBS
S-T T ST
=T tbgP@S)+aJ o dB , gl
S-T TS-T . S—t
757tbgma@+aﬁ gj;ﬂh+wawl%SiT7
0<T<S.
k) We have

P(t,T)Er [(P(T,S) - K)* | Fi]
=Pt,T)E[(X - K)" | F]

1
= P(t,T)e™ /2 <% + o (me + v7 /2 — log K))
t

on

—kP(t,T)® (—5 +— ! (mt +0v2/2 —log n))

= P(t,T)e™Tvi/2¢ (vt + vi(mt —log n)) — KkP(t,T)P <vi(mt —log /<;)> ,
t t

with

S—T . 5—
me= oy log P(t,S) + (S —T)o” log T
and

) o (T(S-T)
UL:UL st

2 2 1 1
=(-1)% <sﬁ*ﬁ)

_ LT —1)
= (ST .
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hence
P(t,T)Er [(P(T,S) - K)* | F]

S—t\Ee
= PP, ) S (FE0) T et

(S—T)(S—t) g\ (5-T)e?
xP (vt-‘rllog((P(t’S)) (S t> >>
Uy K S-T

1 (P, s)Es-DE=0 g\ =D
—kP(t, T)P <UL log < . <S — T) .

Exercise 18.4
a) In the Vasicek (1977) model, by (17.32) we have

P(t,T) = {exp (7 _LT rsdsﬂ
-E {exp (- LT h(s)ds — LT Xsds)}
= exp (7 LT h(s)ds) E [Cxp (7 LT Xsds>]

= exp (7 LT R(s)ds + A(T — t) + X,C(T — t)) . 0<t<T,

T
hence, since Xo = 0 we find P(0,T) = exp <7 jo h(s)ds + A(T)).
b) By the identification

P(,T) = exp (7 LT h(s)ds + A(T — t) + X,C(T — t))

T
= exp (fjt f(t,s>ds> :
we find
T T
L R(s)ds = L f(t,s)ds + A(T —t) + X,C(T — t),
and by differentiation with respect ot T" this yields
WT) = f(t,T) + A(T —t) + X;:C'(T — t), 0<t<T,

where
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_a2 2
A(Tft):4ab 30 +(r 2ab

2 2
o*—ab _yp_ o° _
e o(T—t) _ T~ —2b(T 1),

o (T—t)+

4b3

Given an initial market data curve fM(0,T), the matching fM(0,7T) =
£(0,T) can be achieved at time ¢ = 0 by letting

W(T) == fM(0,T)+A'(T) = fM(0,T)+Z

2b2

2 2
—2ab o"—ab o o207

2o T

T > 0. Note however that in general, at time ¢ € (0,7] we will have

W(T) = f(t,T) + A(T —t) + X,C'(T — t) = fM(0,T) + A(T),

and the relation

F&,T) = fM(0,T) + A(T) — A'(T — t)

- X,C'(T—-1t), telo,T],

will allow us to match market data at time ¢ = 0 only, 7.e. for the initial
curve. In any case, model calibration is to be done at time ¢ = 0.

Exercise 18.5 (Exercise 4.12 continued, see also Proposition 4.1 in Carmona

and Durrleman (2003)). Letting o := \/0? — 2poi02 + 03, we have

dS, = rSydt + odW,

where (Wt)¢epo,1], is a standard Brownian motions under P*, hence

_ Tt ¢ (t—s)r
Se = Soe" 40 | elt=Iraw,

t>0,

The spread Sz has a Gaussian distribution with mean a := I5*[St] = Spe"™

and variance

n* := Var*[Sr]

T
= Var {a Jo e(T’”TdBS}

_ (T=s)r)
_gj )

;7» (eer 1)7

and probability density function

Vr/m

wlz) = o T —1 P < o2 (BT —

Hence, we have
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—rt ) .
e (S — K)Y]) = LJ (z — K)Te~ =0/ gy
/2mn? J—os
o=/ (@) gy,

e—rt oo
=V I =0

et »00 2 2 Ke™ "t oo 2 1002
7 —(@—)?/(20°) gy _ —(@—a)/(2%) 4
e e e Aa
/2m2 JK /272 JK
—rt —rt
_ ne o0 —1:2/2 Ke o 712/2
= T+ «a)e dr — e dx
V2 f(K*a)/n( ) V2 I(K*a)/n
—rt
- [67“2/2] * — (K —a)e "' <7K — a>
V2T (K—a)/n n
et
_ 1T (K@) _ (¢ — )t <_K - 0‘) _
V2 n

Exercise 18.6 From the definition

et = 1 (1),

we have

1
PT) =17 (T—0)L{t,t,T)

and similarly

1
P&S) =T 5oty

Hence we get

1 P(t,T)
L(t,T,S) = S_T (P(t,S) N 1)

1 <1+(Sft)L(t,t,S)_1>
S—T \1+ (T —t)L(t,t,T)

1 [((S=tLEtS)— (T —t)L(t,t,T)

_S—T< 1+ (T —t)L(t,t,T) )

When T = one year and L(0,0,T) = 2%, L(0,0,2T) = 2.5% we find

L(t,T,S) = l(

= 2.94%,

2TL(0,0,2T) — TL(0, 0,T)> 2x0.025 - 0.02
7 -

1+ TL(0,0,T) 1+0.02

so that we would prefer a spot rate at L(T, T, 2T") = 2% over a forward con-
tract with rate L(0,T,2T) = 2.94%.

Exercise 18.7 (Exercise 17.4 continued).
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a) By Definition 18.1, we have

FT.8) = 5 ! (08 P(t,T) ~ log P(t,5))
- s—% <<—(T — e+ %Q(T - t)3> - (—(s - %2(5 - t)3>>
=7+ SiT%Q((T—tP —(S-1)?).
b) We have
£.7) = Jim £0.7.5)
- —8%1%- P(t,T)
= 70% <7(T —t)ry + %Q(T - t)3>
=r;— %Q(T — 1)
¢) We have

dif(t,T) = (T — t)o?dt + odB;.

d) The HIM condition (18.28) is satisfied since the drift of d; f(t,T) equals
o LT ods.

Exercise 18.8

a) We have
_ —bt b (t—s)b (1)
X, = Xge +0j00 dB¢
and .
Y, =Yoet+ o JO e~ =bgp® e R,
see (17.2).
b) We have

2
Var[X,] = Var[yj] = ;—b(l —e ) teR,,
see page 478, and therefore
t

¢
Cov(X;,Y:) = Cov <X007bt +o jo e~ (=90 BM yye~ 4 ojo e (t’s)de£2)>

— 02 Cov (Jt e~ (=g, jt e*<t*~*>*’d13<2>>
0 S ? O S
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R Uot (=g BM fot e—(t—s)de‘gQ):|
t
_ p02 fo e 2(t=5)b g

a’ —2bt
:pQ—b(l—e ), teR,.
c) We have
Cov(log P(t,T1),log P(t,T5))
= Cov (log (Fi(t, Xy, Th) Fa(t, Yy, T2 )efV ¢ TV log (Fy(t, Xy, Ti) Fa(t, Yy, To)efV (0 T2)))
= Cov (CT" + X, AT + OF* + Y, AT, CT? + X, AT? + CJ* + Y, AD?)
= Cov (X, AP + v, AL, X, AT + Y, AZ?)
= AT AT Var[X,] + AT AT? Var[Yy] + (A]" AJ? + A2 ATY) Cov(X,, Y7)
= (AT AP 4 AT AR 4 p(AT AT 4+ AT2 ATY)) Var[X,).
When Cov(X,,Y;) = p Var[X,] = p Var[Y;], we find the correlation
Cov(log P(t,Ty),log P(t, T:
Cov(log P(t,T1),log P(t,T3)) = ov(log P(t, Th), log P(t, T4))
\/Var[log P(t, T1)] Var[log P(t, T»)]
_ AP AT + AT AT + p(AT A2 + AT2 AT
2 2
VAT +(AF) 4 p(A A7 + AT AT
1
VALY + (AF) + p(AP AT + AT A)
When p =1, we find

X

Cov(log P(t,T1),log P(t,T5))
A{lATQ + Ag"l Agz +A'1[‘1 Ag"z +A'{2Ag‘1
VAT (A + AT AT+ AT AT\ J(AR) 4 (AF) + AT AT + AT AT
_ (AT A7) (A7 + A7)
AT+ AD | AT + AT
= +1.

For example, if A{l =4, A?z =1, Agl =1 and Agz =4, we find

Cov(log P(t,T),log P(t,T5)) = ?;:Ll;ﬁ
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Correlation
o
T

Fig. S.81: Log bond prices correlation graph in the two-factor model.

Exercise 18.9
a) We have

t ¢
f(t,z) = f(0,x) +afo sds + o‘fo dsB(s,x) = r + ata® + oB(t,z).
b) We have
ry = f(t,0) =7+ B(t,0) = r.
¢) We have

P(t,T) = exp (— LT f(t, s)ds)
= exp <7(T —t)r—at IOT_t s%ds — o L)T_t B(t, .’L)dL)
— exp <7(T — ) — %t(T —3— ajom B(t,x)dz) . telo,T).
d) Using (18.43), we have
E [(j:t B(t7:r)dx> T - ‘[0”‘ OTft E[B(t, 2)B(t, y) dzdy

T—t Tt
= tjo jo min(z, y)dzdy

_ T—t ry _ 1 3
=2t .fo .fo xdzdy = 3t(T t)°.
e) By Question (d) we have

E[P(t,T)] = E [exp <7(T = SUT -1 0 jOTf" B, x)dxﬂ

318
https://personal.ntu.edu.sg/nprivault/indext.html June 17, 2024


https://personal.ntu.edu.sg/nprivault/indext.html

Introduction to Stochastic Finance with Market Examples, Second Edition

f)

g)

—exp (—(T — t)r — 24T — 1 ("
= exp ( (T —t)r 3t(T t) ) E {exp < Ujo }
2 T—t
- (T —t)r — 24T — 1) 7
= exp ( (T —t)r 3t(T t) ) exp < 3 Var [Jo B(t,x)dw})
a 5 02 3
= exp 7(T7t)r7§t(T7t) +€t(T7t) , 0<t<T.
By Question (e) we check that the required relation is satisfied if
COUT - 4 T T -1 =0
3t ¢ e t)° =0,
ie.a=02/2.

Remark: In order to derive an analog of the HJM absence of arbitrage con-
dition in this stochastic string model, one would have to check whether the
discounted bond price e " P(t, T') can be a martingale by doing stochastic
calculus with respect to the Brownian sheet B(t, x).

We have

E [exp (— LT Tsds) (P(T,S) - KV}

S5-T +
— TR |:<exp <7(S —T)r— %T(S —T)3 + afo B(T,;r)d:c) - K> }
=e"TE [(ze™™ — K)T],
where = e~ (51" ' m = —aT(S — T)3/3, and
S—T
X= UJO B(T, z)dx ~ N(0,0%(T — )3/3).

Given the relation o = 02/2, this yields

E [exp (7 jOT rsds> (P(T, ) — K)+]
log(e(ST)7'/K)>
o /T(S —T)3/3
log(e_(S‘T>"'/K)>
o /T(S —T)3/3

log(e=(5-T)" /)
o/T(S—1)3/3

=e 0 (0’ T(S-T)3/12 +
~Ke "T¢ (—a T(S—T)3/12 +

= P(0,9)d <a T(S —T)%/12 +
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log(e= (91" /K)
—KP(0,T)d —a\/WJrW/_iTW3 .

Chapter 19

Exercise 19.1

a) We price the floorlet at t = 0, with T} = 9 months, T, = 1 year, k = 4.5%.
The LIBOR rate (L(t,T1,T2))iec[o,ry] is modeled as a driftless geometric
Brownian motion with volatility coefficient @ = o1 ,2(¢t) = 0.1 under the
forward measure P5. The discount factors are given by

P(0,T1) = e /' ~ 0.970809519

and
P(0,T5) = e " ~ 0.961269954,

with r = 3.95%.

b) By (19.21), the price of the floorlet is
IE* |:67 IOTZ Tﬂds(/i — L(T]7 T]7 Tg))+:|
= P(0,T3) (k®( — d_(T1)) — L0, Ty, To)®( — d (T}))), (S.19.87)
where
d (T ) _ lOg(L(O,ThTQ)/H) + 0'2T1/2
e o1VTi ’
and log(L(0,Ty,T: T /2
0,71, -
d(Ty) = og(L(0, 11, T5)/K) — o"T1/2.
oVT1
are given in Proposition 19.5, and the LIBOR rate L(0,7},T») is given by
P(0,Ty) — P(0,T»)
LO,T),T,) = 22— 20 £2)
0.5, 1) (T2 = T1)P(0,T3)
6—31'/4 —e T
© 0.25e7"
=4(e"/* - 1)
~ 3.9695675%.
Hence, we have
2
dy(Th) = 1log(0.039695675/0.045) + (0.1)* x 0.75/2 ~ —1.404927033,
0.1 x +/0.75
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and
log(0.039695675/0.045) — (0.1)2 x 0.75/2
d_(Ty) = ~ —1.491529573,
(1) 0.1x0.75
hence

E* [e_ % reds (g L(Ty, Ty, To))*

= 0.961269954 x (kd(1.491529573) — L(0, Ty, Ts) x H(1.404927033))
= 0.961269954 x (0.045 x 0.932089 — 0.039695675 x 0.919979)

~ 0.52147141%.

Finally, we need to multiply (S.19.87) by the notional principal amount of
$1 million per interest rate percentage point, i.e. $10,000 per percentage
point or $100 per basis point, which yields $5214.71.

Exercise 19.2

a) We price the swaption at ¢ = 0, with Ty = 4 years, T> = 5 years, T3 = 6
years, Ty = 7 years, s = 5%, and the swap rate (S(t,T1,T1))tcpo,1y) 18
modeled as a driftless geometric Brownian motion with volatility coeffi-
cient 6 = o1 4(t) = 0.2 under the forward swap measure Py 4. The discount
factors are given by P(0,71) = e~%", P(0,Ty) = e~°", P(0,T3) = e~ %",
P(0,Ty) = e~ ™", where r = 5%.

b) By Proposition 19.17 the price of the swaption is

(P(0,T1) — P(0,T2))®(d (T, — 1))
7/{45(6[, (T]))(P(O7 Tg) + P(O7 T3) + P(O7 T4)),

where d4 (1) and d_(T7) are given in Proposition 19.17, and the LIBOR
swap rate S(0,Ty,Ty) is given by

P(0,T1) — P(0,Ty)
P(0,T,Ty)
P(0, 1) — P(0,74)

P(0,T2) + P(0,T3) + P(0,Ty)
Tr

S(0,11,Ty) =

e 4 —e”
e—57T +efﬁr +ef77“
et —1
T e t1
_ COA15 —1
T @01 4 @0.05 4
= 0.051271096.

By Proposition 19.17 we also have
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~ 1og(0.051271096/0.05) + (0.2)2 x 4/2

dy(Th) = 02vi = 0.526161682,
and

d_(Ty) = 10g(0.051271096é§(\)2 —(0.2)%2 x 4/2 — 0.005214714,
Hence, the price of the swaption is given by
(™4 — " ™)$(0.526161682) (S.19.88)

—k®(0.005214714) (e 75" + 7 4 e7T)
= (0.818730753 — 0.70468809) x 0.700612

—0.05 x 0.50208 x (0.818730753 + 0.740818221 4 0.70468809)
= 2.3058251%.

Finally, we need to multiply (S.19.88) by the notional principal amount of
$10 million, i.e. $100, 000 by interest percentage point, or $1,000 by basis
point, which yields $230,582.51.

Exercise 19.3 Taking t = 0, we have T} = 3, T, = 4 and T3 = 5. The LIBOR
swap rate S(t,T1,73) is modeled as a driftless geometric Brownian motion
with volatility ¢ = 0.1 under the forward swap measure @,J The receiver
swaption is priced using the Black-Scholes formula as

* —J'Tl rsds _ +
E"|e” " P(Ty,Th,T3) (k — S(Th, T1, T3)) " | F
2

= k®(—=d_(Ty = 1)) > (Tit1 — Te) P(t, Tii1)
k=1
—(P(t,T1) — P(t,T3))9(—d(T1 — 1)),

where k = 5%, r = 2% and P(t,Ty) = 73" = 0.9417, P(t,T) = e™%" =
0.9231, P(t,T3) = e™°" = 0.9048. Hence,

P(t,Ty,T3) = P(t,Ty) + P(t,T3) = 0.92311 + 0.90483 = 1.82794

and

P(t,Ty) — P(t,T5) _ 0.9417 — 0.9048

T1,T3) = -
S(t, Ty, Ts) P(t,T1,T3) 1.82794

= 0.02018.

We also have

_ log(S(t7T17T3)/f<c) +O'2(T1 715)/2

d+(T1 7t) Jm
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] 2
_ log(2.018/5) + 0.1% x 3/2 = —5.1518
0.1v3

and
d_(Ty —t) =dy(Ty — t) — o/Th — t = —5.3250,

hence

E* [e* [ redspry Ty ) (5 — (T, T, T3))+‘ }'t]
= 0.05 x 1.82794 x (5.3250) — (0.9417 — 0.9048) x ¥(5.1518)
— 0.05 x 1.82794 x 0.9999999 — (0.9417 — 0.9048) x 0.9999999
— 0.054496
— 5.4496%
— 544.96 bp,

which yields $54,496 after multiplication by the $10, 000 notional principal.

Exercise 19.4

a) We have

P(t,T)\  dP(t,Ty) 1 1
d(szn>= P(.T) *P“J”d<Pmin>*dp@ﬂw'd<P@zn>
dP(1,Ty) AP(t,T))  dP(t,T:)- dP(t,T})
- Pmin‘*P“T”<*uwun»2 (P(tT1))? )
dP(t,T}) + dP(t,T)
T (P Ty

1
- W(’”tp(ﬂz)dt + G(t) P(t, To)dW,)

P(t,T3)
- (P(t,T1))?
P(t,T5)
(P(t,Th))?
1

- (P(t,T1))?
P(thQ)
Hm>”fn GG

_ P( 2)
= —P(t,Tl)Cl(t)(ﬁz(t) Gi(t))dt +

(reP(t, Ty)dt + G () P(t, Ty)dWy)

+ ((reP(t, Ty)dt + (1 () P(t, Ty)dW,)?)

((reP(t, Ty)dt + Co(8)P(t, T1)dWy) « (ry P(t, To)dt + Co(t) P(t, To)dWy))

P(t,T»)
P(t,T1)

dWi — (i(2)

dWy

P(t,Ty)
( 7T1)

b, )

dt

= G1(t))dW;
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ﬁEZ %; (Ga(t) — G (D) (AW — Gi(t)dt)
= (6) = GO B ) A = (G0~ G0 o

where th = dW; — (i (t)dt is a standard Brownian motion under the
T, -forward measure P.

b) From Question (a) or (19.7) we have

P(Ty,T»)

P(Ty,Ty)

piz o (J) @ = .- [ @)~ ) )

P(T\,Ty) =

wlTlere X is a centered Gaussian random variable with variance v? =
ft l(Cz(s) — (1(s))%ds, independent of F; under P. Hence by the hint
(19.43) with z := P(t,T>)/P(t,T1) and  := K/z, we find

E* [ef K reds (g p(Ty, 1))t ’ }'t] = P(t.T)E [(K - P(T1,T»))* | 7]

RO R HE)

= KP(t,Th)® (2 ~log K> P(t,Ty)® <f§ + —log K>

Exercise 19.5

a) The forward measure P is defined from the numéraire N, := P(t,S) and
this gives N
Fy=P(t,S)E[(x — L(T,T,9))" | 7.

b) The LIBOR rate L(t, T, S) is a driftless geometric Brownian motion with
volatility o under the forward measure ﬁ’s. Indeed, the LIBOR rate
L(t,T,S) can be written as the forward price L(t,T,S) = X, = X¢/N;
where X; = (P(t,T)— P(t,5))/(S—T) and N; = P(t,S). Since both dis-
counted bond prices e~ o =42 P(t, T') and e~ o =45 P(t, §) arc martingales
under P*, the same is true of X;. Hence L(t,T,S) = X¢/N; becomes a
martingale under the forward measure Ps by Proposition 16.4, and com-
puting its dynamics under Pg amounts to removing any “dt” term in
(19.44) after rewriting the equation in terms of the standard Brownian
motion (Wt)t€R+ under @57 i.e. we have
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dL(t,T,S) = oL(t,T, S)dWy,

which is solved as L(t, T, S) = L(0,T, S)e?Wi=o"t/2 0 < t < T.
We find

N

C

F, = P(t,S)E[(k — L(T,T,S))* | 7

= P(t, S)B[(x — L(t, T, S)e~(T=07/2+Wr-Wooy+ | 7]

= P(t, 8)(k®(~d_(T — 1)) = Xi®(~d. (T ~ 1))

= kP(t, S)B(—d_(T — t)) — P(t, S)L(t, T, S)B(—d (T — t))

= &P(t, S)P(—d—(T —t)) — (P(t,T) — P(t,9)P(—d+ (T - t))/(S = T),
where ™ = L(t, T, S)e~(T=89°/2 42 = (T — )62, and

log(L(t,T,S)/k) oVT —t
oVT —t 2

di (T —t)=

)

and
_ 10g(L(t7T7S)/K) _ JVT*t
B ovVT —t 2

because L(t, T, S) is a driftless geometric Brownian motion with volatility

d_(T —1)

)

o under the forward measure Pg.

Exercise 19.6

a) We have
j—1
P(T;,Ti,Tj) = Y cis1 P(Ti, i)
=i
b) It suffices tolet G =1,l=4i+1,...,5— 1. and & = ¢; + 1/k.
¢) The swaption can be priced as

B [ 5 (P(T, Ty) = P(TLT) = k(T T 1)) | 7]

i-1 *
Ty . . -
=E* |:e_ Ji rads <1 — KZCH1P(E7E+1)> ’ Fi

=i

-1 -1 +
Ti o ds - ~
= kIE* o Ji ' red: <Z P (Ti, ) — ZCMEH(TinT,)) ‘ Fi

I=i I=i

=i

-1 +
’1‘7' g 3 ~
=xkIE* {e‘ff Tods <Z Cig1 (Fia(Tiy ve) — Fl+1(Ti77"T1))> ’ Fi
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j-1
TZT ~
=rE" {C L Sds]l{rr,,S%} ZCHI(FI+1(TL'7'Y»:) - F (T, r)) ‘ ft}

=i

j-1
T 5
kE* |:e_ Jotrads ch“ (Fisr Ty vw) — Fra (Th,rr)t ’ -7:{|

=i

j—1 .
=Ky ap B {efj‘ " (Fia (Tiyve) — (T3, Trga) ™ ‘ ]:L]
=i

j-1
HZél+lp(t7Ti)Ei[(Fl+1(Ti:'Y~) - P(T;, T )V | R,

l=i

which is a weighted sum of bond put option prices with strike prices
F‘l+1(1—‘i¢7f€)7 l=di+1,....j—1

Exercise 19.7

a) We have

dP(t,Ti) _ (i) _
PT) redt + ¢\ (¢)d By, i=1,2,

and
T T 1T
P(T,T;) = P(t,T;) exp <Jf rads+ [ (OB, — 3 [ 1! )(s)|2ds> ,

0<t<T<T,i=12 hence

T T . T .
log P(T,T}) = log P(t, T}) + | ruds + |, <<l><s>st—§ f, 1cPs)Pds,

0<t<T<T;i=1,2 and
dlog P(1,Ty) = rdt + (O (1)dB, — L|COWPar, i =1,2.
In the present model, we have
dry = odBy,

where (By)cr, is a standard Brownian motion under P, by the solution
of Exercise 17.4 and (17.25) we have

D)y =—(Ty—t)o, O0<t<T;, i=1,2.

Letting
dB{" = dB, — ¢V (t)dt,

defines a standard Brownian motion under P;, i = 1,2, and we have
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e = pb e (J] €00 - ¢ enaz - 3 [T 1OOR - 0 Pas)
— e ([ €6 - cnan - 3 [ - D)2 )

which is an F;-martingale under P, and under Py 5, and

P(Tle) P(tyTl)eX

% - iﬁf; exp (— [ (W) — @ naB® — 2 [ (cs) - <<2><s)>2ds) |

which is an F;-martingale under P .

b) We have
1
f(t, Tl,TQ) = — — Tl (lOg P(t,Tg) - IOg P(t,Tl))
— L _ 13 _ 3
=Tt T T, 6 ((Tl )" = (T2 —1)°).
¢) We have
1 P(t,Ty)
11, Th) = ————dl
df(t. 11, 1) = = —prdlog g 713

5 . T <(<<2><t> (@B, L) - |<<1>(t)\2)dt>

B _Tz% (“”“” OB + O 0yit) ~ (1K) - \c<l><t>|2>dt>
= ﬁ <(C(2)(t) C(l)(t))ngz) _ %(C(ﬂ(t) _ C(l)(t))2dt> .

d) We have

1 P(T, )
T,T),Ts) = ———— log —2-2)
FI T T) = == s 5

— f(TT) - o i 7 () €0 - c@nas. - S0 - €0 6)R)as)
— 01T = e () 600 - 0 ean® - 4 [0 - ) as)
= ST - 7 iTl (f) (€0 = cepatd + 5 [ c6) - O pas)

Hence f(T,T,T2) has a Gaussian distribution given F; with conditional
mean

my = f(t,T1,Ty) - %LT(C ®(s) = ¢V(s))%ds
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under Py, resp.

my = f(t,T1,Tz) + 2f(g” —¢W(s))%ds

under Py, and variance

v ﬁ [ 5) ~ ¢V s))%s.

Hence, we have

(T» - T) E* {e’ 5 meds(F(T, Ty, To) — k)T ]:f}
= (T = T))P(t, T5) Bs [(f(T1, Ty, T3) — #)* | Fi]
= (Ty — T1)P(t,T5) Es [(m2 + X — H)Jr‘]:t}

o (r=m2)?/(2v%) + (mg — K)P((mg — n)/u)) .

= (I, -T)P, 1) <\/1;7

e) We have

L(T, Ty, T») = S(T, Ty, T»)
1 (P(T,T)
:B—Ia@%rn)’g
1
T LT
X <£g:2; exp (LT(C“)(LS) ¢ (s))dB, — 7j (1CD (s)[2 — \C(z)(S)Iz)ds> B 1)
1
-7
(e oo () €00 —e@enane -3 [T - c@ispya) 1)
1
-7

< (e e (J) €0~ c@pan® + 4 [0 - @ w2as) -1).

and, by Ito calculus,
1 P(t,T1)

ds(t,Th, T d :
&1, T2) = Rfﬂ,<ﬂnﬂ)
_ 1 Pt
T Ty —T, P(t,Ts)

1
5O - [P 0P

(€00 - @ wpan + 50 - G ora
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— (g +50.T0T) ) (600 — €200+ 20 (0) - < )anar)

= (T2 e sozn,m) (€W = @ @dBY + (D@ ~ 1KV @)t

:< : +S(t,TI,TQ>>(<<1>(t),¢<2>(t))d3g2>, te[0,Th],
T, — T

hence t — ﬁ + S(t,T1,T») is a geometric Brownian motion, with

T,11,T:
T2—T1+S( T, T3)

<T 1T +5(t, Tl,T2)>
xexp<[ (CD(s) - )aB — j (€W(s) <<2>(s))2ds>,

0<t<T<T.
We have

f

=

(o = T B o738 (L(T, T3, To) - )| 7]
(I~ T)E { — I reds pOpy ) (L(Ty, Ty, T) —H)+’]:t:|
= P(t,ThTz)IELQ [(S(Tth,TQ - I<L +|]‘—t].
The forward measure Py is defined by

dPs ‘ P(t,Ts) P
(OvTQ) ’

ft}f 0<t<T,

and the forward swap measure is defined by

dPlg P(tTg)iL d
E* ‘}' - lreds. 0<t<m,
[ t] P(0,13)° ==

hence P, and Py » coincide up to time 7% and (BL(Z)),E[O ) is a standard
Brownian motion until time 77 under Py and under P; 5, consequently

under P; 5 we have
L(T, T, To) = S(T,T1,T3)

1 1 T (s(1) (2 (2)_1 (T () (2)(4))2
- _ + +S(t, Ty, T») ofe (P ()= ())dB® =5 [ (¢ (5)=¢)(s)) ds
T, -1y <T2 -1

has same distribution as
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1 P(t7Tl)eX7Var[X]/2 ~1
T, — Ty \P(t,T») ’

where X is a centered Gaussian random variable with variance
T
[ €M) = ¢ (s))%ds
given F;. Hence, we have

(T, — Ty E* [e* S reds (L(Ty, Ty, Ty) — k)T )ft]
= P(t,T1,T3)

JRHEW (5) — ¢ (s))2ds 1
Tl—t ,I{+T2_T1,T1—t>‘

1
Bl t, 11, T:
X <T2—T1+S(’ 1,13),

Exercise 19.8

a) The LIBOR rate L(t, T, S) is a driftless geometric Brownian motion with
deterministic volatility function o(t) under the forward measure Pg.

Ezxplanation: The LIBOR rate L(¢,T,S) can be written as the forward
price L(t,T,S) = X, = X,;/N, where X, = (P(t,T) — P(t,8))/(S—1T)
and N; = P(t, S). Since both discounted bond prices ¢~ 4 ™45 P(t, T) and
e o rsdsP(t, S) are martingales under P*, the same is true of X;. Hence
L(t,T,S) = X¢/N; becomes a martingale under the forward measure @s
by Proposition 16.4, and computing its dynamics under @5 amounts to
removing any “dt” term in the original SDE defining L(¢,T, S), i.e. we
find
dL(t,T,S) = c(t)L(t, T, S)dW,, 0<t<T,

hence
L(t,T,S) = L(0,T,S) exp (Lf O'(S)d/W\s - fot az(s)ds/2> ,

where (ﬁ/\t)teR . 1s a standard Brownian motion under I@S.
b) Choosing the annuity numéraire Ny = P(t, S), we have

B [ 5 B o(L(T, T, 8)| | = B [em I Noo(L(T, T, 9)) | 7
= NE[$(L(T,T,5))|F]
= P(t, S)E[¢(L(T, T, S)) | Fil.

c¢) Given the solution
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L(T,T,S) = L(0, T, S) exp <I0T o(s)dW, — LT 02(3)(15/2)
= L(t,T,S)exp (LT O’(S)d/WS - LT 0'2(5)d8/2) ,

we find

P(t, $)B[§(L(T.T, 5)) |
= Pt B [6 (L(t, T, S)el 71T S o @105/2) | ]

o0 2 712 72 d/,
:P(t,S)ngZ)(L(t,T,S)e’” 72)e /m)\/ﬁ’

T —~
because j o(s)dW, is a centered Gaussian variable with variance n? :=
t

T ~
L o?(s)ds, independent of F; under the forward measure P.

Chapter 20

Exercise 20.1 For any z € [0,T], we have

P(T — Ty, >« and Np >1)

P(T*TNT >CE|NT21):

P(Ny > 1)

]P(NT - NT—.’I: =0 and NT > 1)
N P(Nz > 1)

]P(NT - NT—w =0 and NT—w > 1)
- P(Nr > 1)

P(Ny — Np—y = 0)P(Np_y > 1)
N P(Nr > 1)

ef(Tf(sz))A(l _ e—(sz),\)
B 1—e T

e~ (T=(T=2))X _ o=AT
B 1—e T

O—)\z C—)\T
T 1T 0<#<T
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We note that

P(T—Tn, >0|Np>1)=1 and P(T =Ty, >7T | Ny > 1) =0.

Exercise 20.2
a) When t € [0,71), the equation reads

dSt = 77]ASf'dt = *77)\Stdt,

which is solved as S; = Spe™", 0 < t < T}. Next, at the first jump time
t = T, we have

ASy := 8y — Sy = nSp-dNy = nSy-,

which yields S; = (1 + 1)S;-, hence Sz, = (1+ n)Sz; = So(1 + n)e 1.
Repeating this procedure over the NV} jump times contained in the interval
[0,1] we get

Sy = So(1+n)Nee™ t>0.

b

=

When ¢ € [0,T7) the equation reads

dS; = —nASe-dt = —nASidt,
which is solved as S; = Spe™ ", 0 < t < T}. Next, at the first jump time
t = T} we have

dS; =S¢ — S =dN; =1,

which yields S; = 1+ S;-, hence S, =1+ STi =14 Spe~"T1 and for
t € [1h,T>) we will find

Sy = (14 Spe M T)e= =T Ty < ¢ < Ty

More generally, the equation can be solved by letting Y; := ¢S, and
noting that (;);er, satisfies dY; = eMtdN,, which has the solution

t
Y, =Y + jo eMN,, >0,
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hence in general we have
S, =e M8, +j —t=mgN, >0,

Exercise 20.3
a) Taking expectations on both sides of (20.40), we have
u(t) = E[S)
1 t t
-E {SO + “fo S,ds + ajo S.dB, +1 jo ss,dys}

t t t v
= E[S)] + E [u jn Ssds] T E [a jo s_quﬁ} T E {n fn S.d }
t t
=S+ uj E[S,]ds + 0 + nA]E[Z]f E|[S-]ds
7SO+uJ u(s) ds+7])\]E[Z]J s)ds, , t>0.
b) The above equation can be rewritten in differential form as
! (t) = pu(t) + nAE[Z]u(t)
with «(0) = Sp, which admits the solution
E[S)] = u(t) = u(0)et M BED — g outna Bzt 5 g

Exercise 20.4

a) We have

Xoe, 0<t<T,

(XUCO‘T1 + 0) et=Te — X6 4 gelt=TVY T <t < T,
X; =
((Xoe“T1 + a) eT=Ta | 5) (t-T2)a
= Xpe® + gelt=T 4 get=T2)a Ty < ¢ < T,

and more generally the solution (X;);cr, can be written as

Ny
t
Xp = Xoe® +0 ) _eltmT* = Xpe! (=g, >0.
L= Xoet 40y e o€ +af0e dN,, t>0

k=1
(S.20.89)

b) Letting f(t) := E[X;] and taking expectation on both sides of the stochas-
tic differential equation dX; = aX;dt + ocdN; we find
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df(t) = af ()dt + odt,

or
F(6) = af(t) + oA
Letting g(t) = f(t)e~**, we check that

§() = ore ",
hence
t LN by _
g(t) = g(0) + fo g'(s)ds = g(0) + o\ Jo e *ds = f(0) + a;(l —e ),
and

f(t) = E[X;]
= g(t)e™

A
= f(0)e™ + (ra(eo‘t -1)
A
= Xoe* + o= (e - 1), t>0.
[0

We could also take the expectation on both sides of (S.20.89) and directly
find

ot /\
f(t) = BIX,] = Xoe* +0) JO e79%s = Xoe™ to (e —1), £ 0.
Exercise 20.5
a) We have X; = XUH (140)=Xo(14+0)™M = (1+0)™, t e Ry.

b) By stochastic calculus and using the relation dX; = 0 X-dN;, we have
t t
dS, =d (SQXt +rX; jo X;lds> = SodX; +rd (X,, jo X;lds>
t t t
= SydX; + rXed (j X;lds> +r (I X;lds> AX; +rdX, - d (I X;lds>
; o X
= SodX, + rX, X \dt+r <J X7 ds) dX, +rdX, - (X[ 'dt)
= SodXy +rdt +r <f0 X;lds> dX, = rdt + <So +r fo’ X;lds> ax,
t
=rdt+o (50Xt. +rXy fo Xs—lds> ANy = rdt + ¢Sy dN;.

¢) We have
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E[X,/X,] = E[(1+ o)V ]
= (1 +0)*P(N; — N, = k)

k>0
— AT (14 0) k(( ) T s)Az( 5)(1+0)/\)
k>0 k>0
_ e—(t—s))\e(tfs)(lﬁ»a))\ _ e(tfs)ka7 0<s<t.

Remarks: We could also let f(t) = E[X,] and take expectation in the
equation dX; = oX-dN; to get f'(t) = oAf(t)dt and f(t) = E[X,| =

f(0)erot = et Note that the relation IE[X;/X,] = IE[X,]/ IE[X], which
happens to be true here, is wrong in general.
d) We have

t -t
E[S] = E [Soxt + rth X;lds} = S, E[X,] + rJ E[X,/X,]ds

_ SOeAvt+rj (t—s )\n‘ds =S e)\at+7,j )\rrsds

ot __ 1
PRI Caidlnt) P
Ao
Exercise 20.6
a) Since E[N;] = X, the expectation E[N; — 2Xt] = —\¢ is a decreasing

function of t € Ry, and (N; — 2)t);er, is a supermartingale.
b) We have
Sy = Spe"t M1+ )N, >0

¢) The stochastic differential equation
dSt = T’Stdt -+ O'St— (dNt - /\dt)

contains a martingale component (dN; — Adt) and a positive drift r.S.dt,
therefore (S;)icr, is a submartingale.
d) Given that o > 0 we have ((1+ ¢)F — 1)* = (1 +0)* — 1, hence

e TE [(Sp — K)¥] = e T IE*[(Soe" "N (1 + o)V — K)*]
— T ]E*[(Soe(r—a}\)T(l +0_)NT _ Soe(rf)\G)T)J»]
= Soe” M E (1 +0)"" — 1)*]
= Soe= Y (1 +0)F = )*P(Ny = k)
k>0

= Soe= > (14 0)F = DP(Ny = k)
k>0
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= Spe™ "N (14 0)"P(Nr = k) — Soe ™" Y "P(N
k>0 k>0

_ o moxrar - (T +a)N)* —oAT
- SOe I;) T - Sge
= 50(1 - eio)\T)v

where we applied the exponential identity

tox:=T(1+0o)\
Exercise 20.7
a) Forall k=1,2,..., N; we have
XT,‘, — XT,; =a-+ 0’)(7‘];7

hence
XTk = (1+ (1 -‘1-(7))('1“;7

and continuing by induction, we obtain

Xr, =a+(1+0)at -+ (1+0)"at+ Xo(l+ o)

1 k1
BN O + Xo(1 + o),
o
which shows that
Xy = Xry,

1 Ne 1

= Xo(1+ U)Nt + a%

=(1+0)M (Xo+5) -2 o
ag o

This result can also be obtained by noting that

a a

X, +2 = (1+0) (XT; +;), k=1,2,...,N,.
b) We have
k
E[(1+ )] = e S (14 op AL et s,
k!
n>0
hence
336
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Aot 1
E[X{] = Xoe* +a° =Mt (X0+3) ~2 i
o o o
Nt
Exercise 20.8 We have S; = Spe™ H(l +nZy), t € Ry.
k=1

Exercise 20.9 We have

Var[Yr| = E <§ Zy — E[YT]>

2

S E [(sz—ma ) ‘NT=1§} P(Ny = k)

n>0

2
Angm -
_ A At
=e M) ~E <§ Zk)\t]E[Z]>

n>0 k=1

S| ($a) e ]

n>0 k=1

n4n
— *)\ti A
= e _—
n!

n>0

xE {2 o Znzi+ zn: |Z)? — 2ME[Z] izk + AW(]E[Z])Z}

1<k<i<n k=1 k=1

e AT
P ey
x(n(nl 1)(E[Z])? + nE[|Z]*] — 2n\(E[Z])? + XN*t2(E[Z])?)

At A" —At A"
e ME [Z])QZ(%?)! te AIE[IZ\Q]W;W

n>2

2 MAHE[Z])? ) (nAitZ)! + N (E[Z])%)

= ME[1Z]?],

or, using the moment generating function of Proposition 20.6,
Var[YT] [lYT } (E[YT]

82

= 2a2

—)\tf ly|*u(dy) = ME[|Z]?].

E[e*""]jqz0 — N*t*(E[Z])°
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Exercise 20.10

a) Applying the It6 formula (20.24) to the function f(z) = e and to the
process X; = ut + oWy + Y;, we find

ds, = <ﬂ + %H) Sydt + Sy dWy + (Sy — Si-)dN;

- <u + %«72) Sydt + 0, dWy 4 (SpertToWetYe _ gpenttoWetYi )N,

= <;4 + %02> Sydt + 0.8, dW; + (SgerttoWitYe+2n, _ guttoWetYioyq
= <u + %ﬁ) Sydt + 7S, dW, + Si-(eZNt — 1)dNy,

hence the jumps of S; are given by the sequence (e*

The discounted process e~"S; satisfies

- 1)]921.
b

=

1
de™ ™S =e </t —r+ 502) Sydt+oe™ "t S dWite Sy (Nt —1)d ;.
Hence by the Girsanov Theorem 20.20, choosing u, X, 7 such that
1, 3 VA
por+go =ou— AEz[e” —1],
shows that
d(e™8;) = oe " Sy (AW +udt)+e Sy ((e7¥ —1)dN, — A E; [e? —1]dt)
is a martingale under (P, 5 ;)-

Exercise 20.11
a) We have

Ny N:
St:SOCM'H(lJer):SUCXp <p,t+sz> s t>0.

k=1 k=1
b) We have the discounted asset price process
~ NL
S;:=e ™S, = Syexp ((;4 —r)t+ ZX’“> , t>0,
k=1

satisfies the stochastic differential equation

ds, = (u— r)gldt + Xn, S-dN,
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= (u—r+ AE[Z])Sidt + (X, — AE[Z])S:-dN; >0,
hence it is a martingale if
0=p—r+AE[Z] = p—r+ AE[e’ —1] :ufr+(e”2/271)/\.
¢) We have

e~ (T-tr E[(St — &) | St

_ o 4
— o (T-r R (So exp (/LT + Z Xk.) - H) ‘ S

k=1

- . +
— o (T-0rR (Stexp <(Tt)u+ Z Xk>l*i> ‘St

k=N;+1

- . +
e~ T (x exp ((T — )+ Z Xk> — n)

k=N,+1

=5,
I Np—N; +
= T (x exp <(T —t)pu+ Z Xk> — n)
L k=1 =5}
n +
= e (T-tr Z E {(xe(Tft)‘“er:l Xe _ /g) } P(Ny — Ny =n)
n>0 z=5;
D) © [(we(T*t)ll‘FZ::le _ H)* (T =N
n!
n>0 =St
T— n
RS () BI(S,et—n)T=04n9*/2 1 02 /(7 g e 7 )
n!
n>0
—r- —r)(T—t)+no —(@—t)r (T —t)A"
= o (TN 3 (5l T=004n7 20 ) — e (=07 (d.)) =,
n>0
with
log(Spe(t=T=0+n9"/2 [,y 4 (T — t)r + no?/2
dy =
ovn
_ log(Si/k) + (T — t)p + no?
N avn ’
. log(Se(t=mNT=D+n0?/2 /10y 4 (T — )y — no2/2
- ov/n
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_ log(5¢/k) + (T —t)p
ovn ’

and p=r+ (1 —e”/2)A

Exercise 20.12

a) We have
d(e®'S;) = oe™ (dN; — Bdt),

hence
et S, = So+af *(dN, — Bd),
and
Sy = Spe~ ”t-i-rrf ~(t=9)a(gN, — Bds), t>0. (8.20.90)
b) We have
f(t) = E[S]

750e"’L+cr]EU, e (- ”dN] 5(;]’ (=)

_ —at —(t—s)a g _ —(t—s)a
Soe + Ao fo e ds ﬁajo e ds

1— e—at

=See ™ + (A= B)o o
A— - A
= 075 + (So + UL > e t>0.
a a
¢) By rewriting (S.20.90) as
Sy = So— asnj —(t=s)agg 4 gj ~(t=9)a(gN, — Bds)
=So+o j “=D(AN, — (B + aSo/0)ds)
=5 +0'f =9\~ B — aSy/0)ds) +af (=9 (IN, — \ds),
t € Ry, we check that the process (S;)ier, is a submartingale, provided
that A— B8 —aSp/c >0, i.e. So+ (8 —N)o/a < 0. We also check that this
condition makes the expectation f(t) = IE[S;] decreasing in Question (b).
Since, given that Ny = n the jump times (731,T5,...,T;,) of the Poisson

process (Ny)¢er, are independent uniformly distributed random variables
over [0,T], hence we can write

d

=

Blo(sr)] = B [ (ST +0 [ e T (an. - pas), )|
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> P(Np =n)

n>0

x E [gf) <Soe’”T Yo IOT e~ T=9(gN, — Bds)) ‘ Np = n}

e (AT
ey O1)

n>0

n T
—aT —(T—Tk)o __ —(T-s)a _
><]E[¢<Sge +0’E e Uﬁjo e ds) ‘NTn:|

k=1
A
— Cf)\T E o
n!
n>0

—aT

T (T _ E o l1—e
X.Io ---JO qb(Soe aT+O'ZB (T '9’“>°‘cr[3a> dsy - dsp,

k=1

T >0.

Exercise 20.13

a) From the decomposition Y; — A\t(t + E[Z]) = Y; — AIE[Z]t — M? as the
sum of a martingale and a decreasing function, we conclude that t —
Y, — Mt (t + E[Z]) is a supermartingale.

b) Writing

dS; = pSydt + 0 Si-dY;
= rSydt + oSy (dYt _r= "’dt)
g

=rSydt + oSy (dY; — AE[Z]dt), 0<t<T,

we conclude that (S;)¢c(o,r) is a martingale under P5 provided that

EZT _ _NE[Z)dt,
ag
i.e.
< r— i
A= .
o E[Z]

We note that A < 0 if z < r, hence in this case there is no risk-neutral
probability measure and the market admits arbitrage opportunities as the
risky asset always overperforms the risk-free interest rate r.

¢) We have

e T EB5[Sr — k| Fi] = e Esle ™ Sy | Fy] — Ke™ (770"
=8, — Ke~T=r,
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since (St)¢efo,r) is a martingale under Ps.

Exercise 20.14

a) We have
Ny

Sp=See" [[(1+21), t>0.
k=1

b) Letting Xj = log(1+ Z), k > 1, we find that

N
e, = Spexp ((# —r)t+ Z Xk> ) t>0,
k=1

and (20.43) can be rewritten for the discounted price process
Sy i=eS,,  t>0,

as
dS, = (u — r + AE[Z))Sydt + Sy (dY; + AE[Z]),

which becomes a martingale if
O=p—r+ANE[Z]=p—r+ )\joo zv(dz).
¢) We have

e TITE[(Sr — R)T | 5]

Nop +
=e (TR <Soe“T 112 - m) ‘ S,

k=1

S| P(Np — Ny =n)

Ny +
= e (T-0r Z E <Ste(T_t)“ H Zy — n)

n>0 k=N;+1
N Tl | @-nae
— o~ (rEN(T-1) Z E (Ste(Tm H T — /{) s, :
n>0 k=Ny+1 e

(N (T—1) (T —tA)"
= Z n!

n>0

n +
00 200
X Jioo e Jioo (Ste@t)“ kli[l 2K — n) v(dzy) - v(dzn).

Exercise 20.15
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a

Nad

The discounted price process (¢~"St)¢co,7) is a martingale, hence it is
both a submartingale and a supermartingale.

b) The discounted price process (e*”St)te[OyT] is a supermartingale.

¢) The discounted price process (e_"tSL),,e[gﬂT] is a submartingale.

=

d) Under the probability measure @5\, the discounted price process (e~ St)eefo 1]
is a martingale, hence it is both a submartingale and a supermartingale.

Chapter 21

Exercise 21.1

a) We have E[N; —at] = E[Ny] — at = A\t — at, hence N; — at is a martingale
if and only if @ = A. Given that

d(e™S,) = ne "S- (dN, — adt),

we conclude that the discounted price process e~"S; is a martingale if
and only if & = A,

b) Since we are pricing under the risk-neutral probability measure we take
a = \. Next, we note that

Sp = ST (1 4 )Nt = §er=mNT =t (1 4 p)Ne=Ne . <t < T,
hence the price at time ¢ of the option is

oI E[|S7? | F]
— e—(T—t)r ]E[‘St‘Zez(r_n)\)(T—t)(l + n)Q(NT—Nt) ‘ ]:t]
_ ‘St‘Qe(r—QnA)(T—t) E[(l +77)2(N7~—Nt) ‘ ]:t]
— ‘St‘%(r—?n/\)(T—t) E[(1+ n)Q(NT—Nt)]
_ ‘St‘QE(T_Qn/\)(T_t) Z(l + U)ZHP(NT —-N, = TI)

n>0

AT —t)™
=[5yl 3 n)2n¥
n>0 :

_ ‘St‘Qe('r—2'r1/\—)\)(T—t)+(1+'r/)2)\(T—t)

— ‘St‘2e(r+7]2)\)(T—t)’ 0<t<T.

Exercise 21.2

a) Regardless of the choice of a particular risk-neutral probability measure

P, 5,7+ we have

e TR, 5 ,[Sr — K | B = € B, 5 ple™" Sy | Fi] - Ke 0"
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— Cr'tefrtst _ KC*(T*&)'V'
— SL _ K67<T7t)r
= f(tv Si)v

for
ftz) =2 — Ke T=7, t,xz > 0.

b) Clearly, holding one unit of the risky asset and shorting a (possibly frac-
tional) quantity Ke™"7 of the riskless asset will hedge the payoff St — K,
and this (static) hedging strategy is self-financing because it is constant
in time,

¢) Since %(t,x) =1 we have

. 7L, 50) + S (050 (1) - 1(8.50))

o2 + a2\

) hy
o2+ 2251 +a) - Sp)
St-

o2 + a2)
—1, 0<t<T,

which coincides with the result of Question (b).

Exercise 21.3

a) We have
S; = Spexp <pt + 0B — %U%) (1 +n)Ne.
b) We have
Sy = Spexp ((/1, —r)t+oB; — %0’2t> (1 +n)Ne,
and

dSy = (u — 1 + An)Sydt + 1Sy (AN, — Adt) + 0 S, dW,,

hence we need to take
pw—r+In=0,

since the compensated Poisson process (N, — )‘t)f@h is a martingale.

c) We have

e T E*[(Sp — k)t | 8]

: 1 +
= "T-OE* [(SO exp (,uT + oBr — §J2T) 1+t — fi) ‘ St}
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e [(Ste““*‘)HBT*Bt>v—<T—t>o2/2(1 o) NeN n)+ ‘ SL]

=e "IN "P(Np — Ny =)
n>0
B |:(Steu(T—t)+(BT—Bt)o—(T—t)aQ/2(1 ) — K)* ’ S,,]
_ n
e N0 3 AT -1)
n>0 n'

T T +
< [(Ste“*A")U —)+(Br=Bi)o—(T-t)0*/2(1 | yyn _ H) ’ S,,]

T— n
— o ATD) ZBl(Ste—)\n(T—t)(l ) o T — ¢, k) (A( - t))

n>0
— —)\(T t) Z ( —An (T—t) (1 +n)n¢(d+) _ ke~ Tﬁt)@(d,)) ()‘(THT t))n7
n>0 ’
with
A — log(Spe T (1 4 )" /k) + (r + 0% /2)(T — 1)
T oVT —t
_log(Sy(L4+n)"/K) + (r — An+0?/2)(T —t)
N oVT —t ’
and
J log(Ste 1T=(1 )" /) + (r — o2 /2)(T — t)
- oyl —1t
_ log(S¢(1+n)"/k) + (r — A\ — a2 /2)(T — 1)
oVT —t '

Exercise 21.4
a) The discounted process gt = e "t S, satisfies the equation
dS; = Yn,SrdNy,,
and it is a martingale since the compound Poisson process Yy,dN; is
centered with independent increments as E[Y;] = 0.

b) We have

Np
Sp=See " [[(1 + Ya),
k=1

hence
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k=1

Nr +
e TE [(ST — H)ﬂ =B [(SOCTT H(l +¥) - H) :|

Ny +
= efrT Z E (SOGTT H(l + Yk) - /i) ‘ NT =N [P(NT = ’ﬂ)

n>0 k=1

n + m
e_,.T_)\TZ]E KSOQTT H(1 +Yi) — n) } %

k>0 k=1

" +
— T )\TZ 2"71‘ J' f (500 1;[ 1+ yk) n) dyy -+ - dyn,.

Exercise 21.5

a) We find o = X where X is the intensity of the Poisson process (N)ier, -
b) We have

e T E[Sy —k | F] = Ele ™Sy | 7] —e T E[s | F]
=" Ele TS, | F] —e~ Tk

=8, —e Ty,

since the process (e7"S});cr, is a martingale.

Exercise 21.6

a) We have
Sy = Soe<T_>‘“)t(1 + oz)Ni7 t>0.

b) We have
o0 B 9(Sr) | Fi) = e T B {aﬁ( STH

St ) L ja=s,

=TI [g (Ie(r—ka)(T—t)(l+a)NT7Nt)}

|lz=8,
= o (rEN(TD) Z t)/\ $(SierNTD(1 L a)k), 0<t<T.
¢) We have
dV, = roe”tdt + £,dS,

= re”tdt + & (rSpdt + aSy- (AN, — Adt))

= rVidt + a&S- (AN, — Adt)

= rf(t, Sy)dt + &, Sy- (AN, — Adt). (S.21.91)
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d) By the Ité formula with jumps we have

d(e " f(t, ) = —re "t f(t, Sp)dt + e df (t, St)
= —re " f(t,S;)dt

te <‘?9f (1 S0t 7S, (1, S0)dt — AS, 92 (1,5, )
+(f@ 1+ a)Se) — f(t, St,))dNt>
= e S
e (‘Z’;(t s0+18. 2 (1,50 262 1.5,

AT (f(t (14 @)Sh) = f(t, St)))dt

+e T (f(t (14 a)Sp) = f(t,Si-))dNy

_)‘e_” ]E[f(tv (1 + O‘)“L) - f(t7 x)]\z:St— dt.
Since the discounted price process (e~ f(t, St))ter, is a martingale under
the risk-neutral measure, d(e™"' f(t,S;)) must reduce to its martingale
component, i.e. the sum of “dt” terms vanishes, and we get
(e f(t, S1))
=" (f(t,(L+a)Si) = f(t,Si))dNy = AT E[f (£, (1 + a)) = f(t,2)]jo=s,-dt
=e " (f(t (L +a)Sy) = f(t,81-))dNy — Ae™ ™ (f(t, (L +a)Sp) — f(t, Si-))dt

or equivalently
df(t,S,) = (8, S)dt+ (£(t, (14+0) Sy )~ (¢, S )) (AN~ N)dt. (S.21.92)

Finally, by identification of the terms in the above formula (S.21.92) with
those appearing in (S.21.91), we obtain

i Sp-(ANy — Mdt) = (f(t, (1 + @)S) = f(t, S-)) (dN; — Adt),

which yields the hedging strategy

1

gt:E

(f(t,(1+)Si-) — f(t,Sr)), 0<t<T.

Exercise 21.7

a) We have

IE[NL ‘ ]_:] eGYg—sm(é)) E [e(Yt—YS)G—(f,—s)m(B) |]:s:|

= Ys—sm(0) | [e(Yt—Ys)@—(t—S)m(@)} =N,, 0<s<t.
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b) We have
N
E’ [e7'S, | F] = E [e“ N ]-']
N,
— Y, 't
= {e N, Fs
— eYs E [ey,7Y_qe(Y,,—Y5)9—(t—5)m<9) ‘ ]:s‘]

= Ve~ (t=5Im(0) [ [o(H+0) (YY)

_ eY5 e—(tfs)'m,(G)e(tfs)m(ﬁ#»l)7

hence we should have m(#) = m(# + 1). For example, when (Y})ier, =
(N; — t)ier, is a compensated Poisson process we have m(6) = e’ —0 —1

and the condition reads ¢/ + 1 = e/*1, j.e. § = —log(e — 1).
¢) We have

N

T (S7 — K)F | ] =TT B [(ST -K)'g
t

ft} |

6
o~ (T=0((0)04m(6) {(ST Ky (%T)
t

Chapter 22
Exercise 22.1 For all j =1,2,..., M — 1 we have
Bjyj_1 + Bj,]' + Bjyj.,_l =1+ 7’At,

hence when the terminal condition is a constant ¢(T,z) = ¢ > 0 we get

, 7\ -V
qb(ti,x):c(lJrrAt)’(N’l):c<1+rﬁ> , i=0,...,N.

:

In particular, when the number N of discretization steps tends to infinity,

denoting by [z] the integer part of z € R we find

(s,z) = ]\}gnoc¢(t[1vs/T]7I)
—etim (14 z —(N—[Ns/T])
T U TN

. 7\ ~IN(T=8)/T]
=cgm (1 + TN)
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=c li 1+ x R
7cNg>noo TN

_ cefr(Tfs)7
for all s € [0,T7, as expected.

Exercise 22.2
a) We have

XN = XN XNt — te) + 0 XY (Weys, — Wiy,

trtt

which yields

k
XN =XNT[(+rti—tio))+ (Wi, = Wi _)o), k=0,1,...,N.
i=1
b) We have
X =X+ =X (tegr — t) + o X[ (Wey,, — W)

1 5~
+502XZZ(WW1 - W2,

which yields

K
~ ~ 1
Xy =xi]1 (1 +(r =0 /2)(ti — tim) + (We, = We,_y)o + W — Wt,,1)202> .

i=1
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