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Chapter 1

Exercise 1.1

1.
2.

The possible values of R are a and b.
We have

E*[R] = aP*(R = a) + bP*(R = b)
b—r+ r
b—a b—a

. By Theorem 1.1, there do not exist arbitrage opportunities in this market

since there exists a risk-neutral measure P* from Question 2.

. The risk-neutral measure is unique hence the market model is complete

by Theorem 1.2.

. Taking

B —a
So(b—a)’

_a(l+b)-B(1+a) B
n= —wl(b—a) and &=

we check that
nmy +ESo(l +a) =«
nm +&So(1+0) = B,

which shows that
nm +£51 =C.

. We have

m(C) = nmo + &S0
a(1+b)75(1+a)+afﬂ
(1+7r)(b—a) a—b
el +H)-B0+a)— (14— )
(1+7)(b—a)
ab— fa—r(a—p)
1+r)(b—a) (S-1.1)

1

February 2, 2023 https://personal.ntu.edu.sg/nprivault/indext.html


https://personal.ntu.edu.sg/nprivault/indext.html

10.

11.

12.

Solutions Manual

. We have
E*[C] = aP*(R=a) + fP*(R=1)
b—r r—a
=« . 1.2
“b—a +h b—a (5-12)
. Comparing (S.1.1) and (S.1.2) above we do obtain

(C) = ﬁ E*[C]

. The initial value 7(C') of the portfolio is interpreted as the arbitrage price

of the option contract and it equals the expected value of the discounted
payoff.
‘We have

11-9 ifK>9,
C=(K-8)T=(011-8)" =
0 if K <9

‘We have
_ —(11 - (1+4a)) _ 2 (1+0)(11 - (1+a))

8
b—a 3 T T U+nb-a) 105

3

The arbitrage price 7(C) of the contingent claim C' is

7(C) = nmo + €Sy = 6.952.

Chapter 2

Exercise 2.1

1.
2.

3.

2

The possible values of R; are a and b.

‘We have

E*[Riy1 | Fi] = aP* (Rys1 = a | Fy) + 0P (Rey1 = b | Fy)

‘We have

SCMER S (Z - Z) (Z:Dki <]:> (14 b)i(1 + )8,

=0
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k i k—i
k r—a b—r
=5, 1+0b —(1
2 () (=aen) (=ioe0)
=5 Tﬁa(l+b)+b*—r(1+a) '
P \b-a b—a

= (141r)ks,.

Assuming that the formula holds for & = 1, its extension to & > 2 can also
be proved recursively from the “tower property” (16.22) of conditional
expectations, as follows:

E*[Sits | Fi] = B E"[Six | Fror1] | Fi
=(1+7r)E"[Styr_1 | Fi)

=1 +r)E[E"[Sitr-1 | Frr—2] | Fi]

=1 +7)E*[Siip_2 | Fi

= (1+7) 2 E*[E*[Styr2 | Frrn—al | Fi)

= (1 + 1) E*[Siyk_3 | Fi]

= (1 +7“)k 2B [Sir2 | Fil
=1+ QIE*[]E*[StM | Fey1] | F2l
=1+ B (S | Fi

= (1 —+ ’I”)ka

Chapter 3

Exercise 3.1

1. The condition Vy = C reads
NNTN + fN(l + a)SN,l = (1 —+ a)SN,1 - K
Nty FEn(1+b0)Sy_1 = (1+b)Sy-1 — K

from which we deduce {x = 1 and ny = —K (1 +7)~N /.
2. We have

IN—1TN—1 +énv—1(1+a)Sy_1 = nnmn—1 +En(1+a)Sn_1
IN-1TN—1 +En_1(1+D0)Sy_1 = nnmn—1 +En(1 4+ 0)SN-1,

which yields éy_1 = év = 1 and ny_y = gy = —K(1 + )N /n0.
Similarly, solving the self-financing condition
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me + & (14 a)Sy = nepame + §41(1 +a)Sy
Neme + & (1 +0)Se = neyame + G (L + 0) Sy,

at time ¢ yields & = 1 and g, = —K (1 +7)""/m, t =1,2,...,N.
3. We have

m(C) = Vi = qm + &Sy = S — K(1+7) Ny /mo = Sy — K (1+7)~ N0,
4. Forallt=0,1,..., N we have
A+r) " NV-OEC|F]l=0+r) " NDE[Sy - K | F],
=1 +r) VOB Sy | F] - (1 +7) "V OE[K | F]
=1 +r) VA4Vt - K (14 7)” (V0
=8 —K(1+7r)~ ™=
=V, =m(C).

Exercise 3.2

1. This model admits a unique risk-neutral measure P* because we have
a < r < b. We have

b—r 0.07 —0.05

P* = = - Vv
(Be=a) = 3=, = o7 = (—0.02)"
and 0.05 — (—~0.02)
Tr—a . — (—U.
P(R, = b) = =)
(Fe=b)=3—, 0.07 — (—0.02)"
t=1,...,N.

2. There are no arbitrage opportunities in this model, due to the existence
of a risk-neutral measure.
3. This market model is complete because the risk-neutral measure is

unique.
4. We have
C= (SN)27
hence
H = (Sn)*/(1+ 1) = h(Xn),
with

h(z) = z?(1+7)~N.

Now we have
Vi= Ut(Xr,),

where the function v(z) is given by
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N—t e
T2 M -k
(r—a) ( )N t— kh<T<iii>k<11:)ka>
(N —1)!

= 22 (I4+r)~ NZW

o Erp— NV 'R 100\ * /144 2AN—t=k)
b—a b—a 1+7r 1+7r
(N =1)!
N
=a2*(1+7r)” ZW

r —a)(1+b)? b—r)(1+a)2\V
(=) ()

5 _ r—a) (1402 (G-r)1+a)?\" "
=z (1+7) N(Ebfa))glJrr;Q EbfagilJrr;)
22 ((r—a)1+b2+ (b —r)1+a)?) "

(1 +7r)N=2t(h — q)N-t
22 ((r — a)(1+2b+b2) + (b—r)(1 + 2a + a2)) ™
(14 7)N=2t(h — q)N—t
22 (r(1 420+ b?) — a(l + 20+ b%) + b(1 + 2a + a?) — (1 + 2a + a?))
A+ r)N=2(p— )N~

2(1—}-7(2—&-&—4—b)—ozb)N t

—t

N-—t

(1+r)N-2t
5. We have
. (iﬁXt 1) — v (1+TXt 1)
ét - Xt_l(b*a)/(l*‘rT)
146 )2 14a)\?
_x (1+r) - <1+r) (14+r@2+a+b)—ab)N?
T h—a)/(1+7) (1 +r)N-2
(1+7r2+a+b)—ab)V!

=S, 1(2+b+a) . t=1,...,N,

(14r)N-t
representing the quantity of the risky asset to be present in the portfolio
at time ¢. On the other hand we have

Vi— 64X,

0
& = X?
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_Vi-gx

i

N—tXt 7X¢,1(2+b+a)/(1+r)

mo(1 4 r)N—2t
Nt St —Si—1(2+b+a)
mo(1+ 1)V

N (1T+a)(1+0b)

71'0(1+7‘)N ’

=X/ (1+r(2+a+b)—ab)
=S(14+r@2+a+b)—ab)
= —(Si=1)’(1+r(2+a+b) — ab)

t=1,...,N.
6. Let us check that the portfolio is self-financing. We have

Soa1 S =& S0 + &S]
N-t-1 (1 +a)(A +b)
71'0(1 +7‘)N
(1+r2+a+b) —ab)V !
(1+r)N-t=1
14+724+a+b) —ab)N-t-1
= (St)Q( ( (1 - r)g\/,t )
x(2+b+a)1+7)—(1+a)(l+Db))

2 —t L
= (X)*A+r@2+a+b)—ab)V (FLET

= —(8)*(1 +7(2+a+0b) —ab) s?

+(S)2(2+b+a)

=(1+n)'V,
=& 5, t=1,...,N.

Exercise 3.3

1. We have

Vi = &St + meme
=&+ Ry)Si—1 +ne(1+7)m—y.

2. We have

E*[R|Fi—1] = aP*(Ry = a | Fi—1) + bP* (R, = b | Fi—1)

—ab 7’+br a
T b—a b—a

r r
bbfa_abfa

3. By the result of Question 1 we have
E*[V; | Fioa] = B &1+ Re)Se—1 | Foa] + B (L4 7)me—y | Fi]
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=&S B 1+ Ry | Fooa] + (L + ) B [nyme—1 | Fi—i]
=1 +7r)&S—1 + (1 +r)pymy
= (14 7)&Se + (1 +r)nemy

=147V,
where we used the self-financing condition.
4. We have
T
Viei = m]E [Vt ‘ ft—l}
= 3 P Ri=a| Fe)t P (R =b| Fiy)
1+7r ) ) 1+7r )
B 1 0.25 -0.15 0.15 - 0.05
T 14015 ( 0.25 - 0.05 0.25 — 0.05>
1 /3 8
115 <§ + 5)

4.78.

Chapter 4

Exercise 4.1

1. We need to check whether the four properties of the definition of Brow-
nian motion are satisfied. Checking Conditions (i) to (i74) does not pose
any particular problem since the time changes t + ¢ + ¢, t +— t/c? and
t + ct? are deterministic, continuous, and increasing. As for Condi-
tion (iv), Beqt — Beys clearly has a centered Gaussian distribution with
variance ¢, and the same property holds for ¢B; .2 since

Var(c(Bye — Byje2)) = 02Var(Bt/cz — Byje2) = At—s)/E=t—s.
As a consequence, (a) and (b) are standard Brownian motions.
Concerning (c), we note that Bz is a centered Gaussian random variable

with variance ct? - not ¢, hence (Bet2)ter, is not a standard Brownian
motion.

T
2. We have IU 2dB; = 2(Br — By) = 2By, which has a Gaussian law with
mean 0 and variance 47". On the other hand,

T
Jo (2x110,7/2)(t)+1(7)2,1)(t))dBy = 2(Brj2—Bo)+(Br—Br/2) = Br+Br)s,

which has a Gaussian law with mean 0 and variance 4(7/2)+T/2 = 5T/2.
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2m
3. The stochastic integral fo sin(t) dB; has a Gaussian distribution with
mean 0 and variance

2, (2 1—cos(2t)
JU sin®(t)dt = JO — dt = 7.

4. If 0 < s < t we have
E[B,B;] = E[(B:—B;,)Bs]+E[B?] = E[(B,—B;)| E[B,]+E[B%] = 0+s = s,

and similarly we obtain IE[B;B;] = ¢t when 0 < ¢t < s, hence in general

t
we have IE[B;B;] = min(s, t), s,t > 0.
5. We have

d(f(t)By) = f(t)dBy + Bedf (t) + df (t) - dBy
= f(t)dB; + B f'(t)dt + f'(t)dt - dB;
= f(t)dB; + B.f'(t)dt,

and by integration on both sides we get
0= f(T)Br — £(0)Bo
T
= |, drB)
= [T rwdB,+ [ Bu ()t
=J v+, B )

hence the conclusion.

Exercise 4.2 Let f € L2([0,T]). We have

E [e.n? ()dB,

_ t 1 T )
]:z] = exp (Io f(s)stJrijO [f(s)] ds) , 0<t<T.
Exercise 4.3 We have

B o (3 ) Bam) | = B e (38 - 7)/2)

= PT2E {exp <eﬁ<BT)2/2)}

-BT/2 .

_ e I°° BB g
V2T J—oo
e—BT/2

Vi-pBT

for all 5 < 1/T.
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Exercise 4.4 We have f(t) = f(0)e® (interest rate compounding) and
S, = SpeoBe=at/2Hrt ¢ ¢ R, (geometric Brownian motion).

Exercise 4.5
1. By (4.24) we have
_dxT X7 dB,

d(XtT/(T—t))—T_tJr(T_t)zdt:oT_t.,

hence by integration using the initial condition Xy = 0 we have

xF t 1
= _~ dB,, te[o,T)
Tt "fo T €0.1]

2. We have )
t
EXT] = o(T — ) E UO — sdBS] ~0.

3. Using the It6 isometry we have

Var[X[] = o*(T —t)* Var Uot ﬁd&}
=T —t)? fot ﬁds
) ,f 1 1
=0Tt <ﬁ‘f>

=o%(1 —t/T).
4. We have Var[XF] = 0 hence X} = E[XZ] = 0 by Question 2.
Exercise 4.6 Exponential Vasicek model.
1. We have z; = e %2y + 0 jgt e~ t=%)qB,.
2. We have y; = e %yq + g(l —e ) ¢ ajot e~ t=5)qB,.

2
3. We have dz; = x4 <9 + % —alog xt> dt + oxydBy.

0 t
4. We have r; = exp (e’at logro + E(l — e 4 afo e"l(t"';)ng>7 with
n=0+02/2.
5. We have

E[r] = exp [ e logry + g(l —e ) + Uj(l — o2t
L "a 4a '

) . 0  o?
6. We have lim E[r{] =exp | -+ — ).
t—00 a 4a
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Exercise 4.7 Cox-Ingersoll-Ross (CIR) model.

1. We have r; = 79 + f:(a — Brs)ds + af(: \/TsdBs.

2. Using the fact that the expectation of the stochastic integral with respect
to Brownian motion is zero, we get, taking expectations on both sides of
the above integral equation: u/(t) = a — Su(t).

3. Apply Itd’s formula to

r2=f <T0 + f;(a — Brs)ds + JJ: \/EdBS) ,

with f(z) = 22, to obtain
d(re)* = ri(0? 4 2a — 2Br;)dt + 2ri0\/r1d By. (S.4.3)
4. Taking again the expectation on both sides of (S.4.3) we get
El?] = B3] + [\ (0” Blr] + 20 E[ri] 20 B,
and after differentiation with respect to ¢ this yields
v = (02 + 2a)u(t) — 28v(t).
Exercise 4.8
1. We have
S = et
=eXo 4+ ft uSeXSdBS + It U,_;eXst + ljf u?ex-‘ds
0 0 22 0
o

t ot t
— X0 Xs Xs Xs
=e +JJO6 st+1/JOe ds+QJOe ds

So+o fot S.dB, + v fot S.ds + "; f; S.ds.

2. Let 7 > 0. The process (S;):er, satisfies the stochastic differential equa-
tion
dS; = rSydt + 05:dB;
when r = v + 02/2.
3. Let the process (St)ier, be defined by S; = Spe?B+t ¢ € Ry. Using
the decomposition S = Sye?Br=B)+¥7 we have

P(Sp > K | Sy = x) = P(Spe? Br=B)+v(T=D 5 K| 5, = )
_ P(IEU(BT—B,,H»D(T—f,) > K)
=P(e?Pr=B0) > e (T /g)

10
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7 (* 1og(K;*f"T<T*f>/w>>
o <log(z£1\(ﬁ)r+ 1/7) 7

where 7 =T —t.
4. We have

n* = Var[X] = Var[o(Br — B;)] = 0* Var[By — By = 0*(T — t),

hence n = ovT —t.

Chapter 5

Exercise 5.1
1. We have
Sy = Spe™ + o‘jt e*t=9)4B
t 0€ 0" LDs.

2. We have apy = 7.
3. After computing the conditional expectation

2
Ct,z) = e 7T exp <xeT(T7") + %(e%(T”’) — 1)) .

4. Here we need to note that the usual Black-Scholes argument applies and
yields ¢; = 9C(t, St)/Ox, that is

T | O _
¢ = exp (Ste’(T Rt E(ezr(T R 1)) .

Exercise 5.2
1. We have, counting approximately 46 days to maturity,
(r—30®)(T —t)+log 3

2
oyl —1
(0.04377 — %(0.9)2)(46/365) + log ﬁ

0.9/46/365

d_ =

= —2.46,

and
dy =d_ 4 0.94/46/365 = —2.14.

From the attached table we get
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&(dy) = $(—2.14) = 0.0162

and
&(d_) = $(—2.46) = 0.0069,
hence
f(t,8:) = Sid(dy) — Ke " T=Vd(d_)
=17.2 x 0.0162 — 36.08 x ¢~ 0-04377x46/365 o 4069
= HK$ 0.031.
2. We have

0
N = a—i(t,b}) =&(dy) = P(—2.14) = 0.0162,
hence one should only hold a fractional quantity 16.2 of the risky asset
in order to hedge 1000 such call options when o = 0.90.
3. From the curve it turns out that when f(¢,S;) = 10 x 0.023 = HK$ 0.23,
the volatility o is approximately equal to o = 122%.

This approximate value of implied volatility can be found under the col-
umn “Implied Volatility (IV.)” on this set of market data from the Hong
Kong Stock Exchange:

Updated: 6 November 2008

Basic Data

DW Issuer UL call pDw Listing Maturity Strike Entitle-
Code ™ /Put Type (D-M-Y) (D-M-Y) P ment
L PZa Ratio~
01897 FB 00066 Call Standard 18-12-2007 23-12-2008 36.08 10

Market Data

Total O/sS Delta Iv. Day Day Closing T/0 uL

Issue (%) (%) (%) High Low Price # ('000) Price

Size e e A ) $) ($) )
138,000,000 16.43 0.780 125.375 0.000 0.000 0.023 0 17.200

Remark: a typical value for the volatility in standard market conditions
would be around 20%. The observed volatility value o = 1.22 per year is
actually quite high.

Exercise 5.3

1. We find h(z) =z — K.
2. Letting g(¢, z), the PDE rewrites as

r(z —a(t)) = —d/(t) + rz,
hence a(t) = a(0)e™ and g(t,z) =  — a(0)e~". The final condition

12
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g(T,x) =h(z)=2— K

yields a(0) = Ke'™ and g(t,z) = 2 — Ke " (T-%),
3. We have
99

=248 =
gt 83?( ) t)
Exercise 5.4
1. We have
C=e"TVE[Sy — K| F]
e "TVE[Sy | Fi] — Ke 70
= "Bl TSy | ] — Ke "(T70
_ ertefrtst _ Kefr(T—t)
=8, — Ke "(T-9,

We can check that the function g(z,t) = x — Ke (T~ satisfies the
Black-Scholes PDE

o2
rg(z,t) = 99 (T t) +r$—(x t)+ — ?(r,t)

with terminal condition g(z, T) = 2— K, since dg(x,t) /0t = —rKe~"(T—1
and dg(z,t)/0x = 1.
2. We simply take & =1 and 17, = —Ke~"" in order to have
Ct = ét,St + 7],56Tt = St - KeiT(Tit), te [07 T]

Hint: Find the quantity & of the risky asset S; and the quantity 7, of the
riskless asset e”? such that the equality

Cy = &S¢ + me”™
holds at any time ¢ € [0, 7.

Remark: This hedging strategy is constant over time, and the relation
= 0g(St,t)/0x for the delta is satisfied.

Chapter 6

Exercise 6.1

1. For all ¢ € [0, 7] we have

13
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—r(T—t) g2 S%

C(t,S) =e S;E |55
S

_ e—r(T—t)StZ E [EQG(BTth)foQ(T7t)+2r(T7t)

= §2elrte) (Tt

2. For all t € [0, 7] we have

oC . -
ft = %(LI)\I:S} = 23t8(7+02)(T t),

and
_ C(Lsﬁ - &S e;l” (Sfe(r+u-2)(T—t) _ 253€(r+02)(T—t))
¢ 0
7573602(T71,)+7-(T—2t)
AO ’
3. We have

dC(t, S;) = d(S2elm o) (T-0)
—(r+ az)e“*”z)“"t)stzdt + e(”"Q)(T’”d(Sf)
—(r + )TN TN G2t 4 T+ T (96,43, + > S2dt)
= —rer e NT=062g¢ 1 96, e(rte*) (T gg,

and

£dS; + md A, = 28,eTTIT D gG, i o (T=)4r(T=28) 4 gy
0

= 28,erto )T g, _ p G2 (T=)+r(T=1) gy
hence we can check that the strategy is self-financing since dC(t,S;) =
gtdSt + ’V]tdAt.
Exercise 6.2
1. We have
S, = Spe't +aj (=9 4B,
2. We have
~ t )
Sy = So + UI e "*dBs,
0
which is a martingale, being a stochastic integral with respect to Brow-

nian motion.

This fact can also be proved directly by computing the conditional ex-
pectation E[S; | Fs] and showing it is equal to S,:

14
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~ t
ES | F]=E {So + (Tfo e "dB, | ]-'5}
= E[So] + oF [J; e AR, | ]-;}
=Sy+oF [J e "dB, |.7:] +okE |:j e "dB, ‘]:s:|

—So+o fos e dB, + o E Ut e"'"dBu]

=So+o JO e ™dB,

@

-
3. We have

C(t,Sy) = e "= Elexp(Sr)| F]

=e " T-OE {exp( S +(7f e T="4pB ) ‘]:t]

=T T-0p [cxp ( TSy + aJ r(T-wgp, 4 UJ *<T*“>dBu) ‘]—}}
= exp ( r(T —t)+ e t)St> {exp <0L 6T<T’”)dBu> ‘ft]

exp ( r(T —t)+ e 05}) {exp <(7 LT eT'(T_")dBu>]

= ( (T —t)+e T 05}) exp (22 LT(ET(T_"))Zdu)

(Tt g o? e2r(T—t) _ 1
t+4r( )

= exp
4. We have
ocC
_ r(T—t) 27(T t)
§t ax (t St) exp <St6 + 47_( )>
and
_ C(t,S:) — &St
Tt 7At
C—T(T—t) .
_ (T—t) 2r(T—t) _
AP <Ste +Z . ( ))
7iexp Ser(T t) + ( 2r(T—t) 1)
Ay 4r '
5. We have
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2
dC(t,S;) = re " T exp (S,,er(T’” + %(eZT(T’” — 1)> dt
o2
—rSexp (SteT(Tft) + E(eQT(T’” - 1)> dt
2 - o2 -
_767‘(1 —t) exp <Sf,€r(1 —t) + 7(62r(1—t) _ 1)) dt
4r
+exp (S @t 4 7 o ( 2r(T=t) _ 1)) dS;
2
+76r(T—t) exp Ster(T—t) + L(EZT(T—t) ~1) o2dt
2 4r
2
= e~ oxp (Ster(T—t) + %(GZT(T—Q _ 1)> dt

—rS; exp (SteT(T’t) + %j(le(T—t) — 1)> dt
+£.dS;.
On the other hand we have
&dSy + ned Ay = £d Sy
re~"T=1 exp (S,,e“Tft) + U—Z(ezr(T’t) - 1)) dt

77”Sf exp (Sfer(T t) + 4T( 2r(T—t) _ ))

showing that
dC(t,St) = &dS, + md Ay,
and confirming that the strategy (&, 7:):er, is self-financing.

Exercise 6.3

1. We have
o 5
Tty == /Df00),  GL(t0)=of(t,a),
and 2
O L) = o0,
hence

dSﬁdf(t By)
1 2f
2 0z

(t By)dt + %(f Bi)dB; + -

o (t, By)dt

16
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<7~ - %H) f(t, By)dt + o f(t, B;)dB; + %UQf(t, By)dt

rf(t, By)dt + o f(t, B;)d By
’I"Stdt + UStdBt‘

2. We have

E[eaBT |]:t] — E[EU(BT_Bi+B¢) |]:t]
= e"B‘E[eJ(B"'fB')‘f:]
_ eo‘BtE[EU(BT*Bt)]

_ enBt+02(T—t)/2

3. We have

E[Sp|F] = E[EUBT‘F‘I'T—U?T/Q‘ft]
_ erT—rrzT/QE[eoBT |]:t]
— " T=0°T/2,0Bi+0*(T—1)/2
_ erT+aBt—02t/2
— 67'(T_t)+UBt+7't—0'2t/2
= er(Tit)S[,.

4. We have
Vi = O B(ClF)

— e[Sy — K| 7]

= ¢ "IV B[Sr|F] - e "V B[K|F]

=5, —e TV,

5. We take & = 1 and 7, = —Ke "7 /Ay, t € [0,T].
6. We have
Vi = E[C | Ff] = C.

Exercise 6.4 Digital options.
1. By definition of the indicator functions 1| ) and 1jg k] we have

1 ifz>K, 1 ifz <K,

1k 00)(2) = resp. Ly () =
0ifz <K, 0ife>K,

which shows the claimed result by the definition of Cy and P;.
2. We have

71 (Cy) + m(Py) = e " TV E[Cy | Fi]+e " TV E[P; | F

17
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=e " TOR[Cy+ Py | F

= " Bk 00y (S1) + 1jo,5)(S1) | Fi]
= "(T—1) E[1(0,00)(ST) | Fi]

= "TVEN | F

= (T, 0<t<T,

since P(Sp = K) = 0.

3. We have
m(Ca) = e "IV EC, | F]
= e_T(T_t) ]E[I[K’OO)(ST) ‘ St]
=" TOP(Sr > K | Sy)
= Cy(t, St).
4. We have

Cult,z) = e " TDP(Sp > K | Sy = )
_ g (1T %1 /2 + log(x/K)
—e e )

where 7 =T —t.

5. We have
m(Cq) = Ca(t, St)
_ o rTng (7”7' —o%7/2 + log(SL/K)>
o7
=e "o (d),
where
d - (r —o?/2)7 +log(S;/K)
_ = .
6. We have

m(Pg) = e 7T —my(Cy)
Tty _ (Tt (T o’7/2 4 log(z/K)
ayT

=TI (1 - @(d-))
=" T=Vg(—qd_).

7. We have

0Cq
= —(t, 5
& oz (t,5¢)
18
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_ e’r(T’”i@ (r'r —o%7/2 + 10g(x/K)>
=S,

Ox o\T
e L @
oV 21T S,

> 0.

The Black-Scholes hedging strategy of such a call option does not involve
short-selling because & > 0 for all ¢.
8. Here we have

& = %(tvst)
_ E*T(T*t)g¢ (7 rT —olT/2 + log(z/K))
Ox o\T _—y
= e r(T-1) 1 e (d)?/2
oV 27T Sy
< 0.

The Black-Scholes hedging strategy of such a call option does involve
short-selling because & < 0 for all ¢.

Chapter 8

Exercise 8.1

1. We have
2
Py >t) = P(X, > a) = [ px,(a)de =/ = [T ez, y >0,
a Tt y
2. We have
(t) = iP(’T <t)
Prall) =g \Ta = ¢

d oo
:aL ex, (x)da

L /2 apm = azjan, L (2 ap o2 e
2 ﬂ't L e d1+2 ﬂ_t L P dx

L /2,8 (_ j‘” I gy 4 gemat/ 20 4 f"" e—ﬁ/(zt)dx)
2V a a

a 2
_ % —a?/(2t)
= \/me s t>0.

3. We have

19
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E[(ra)?

j‘x’ 15/2,—a/(2) gy

f 22 /2

]:m
\/ﬂ

a?7

by the change of variable z = t~1/2, 22 = 1/t, t =272, dt = —2z3dx.
Remark: We have

Blra) = — [471/26=" /@0t =t

a
V2m Jo
Exercise 8.2 Barrier options.

oo (3)+(6(3)

A () ) () o ()
HE el () (0)
i ()= (45 ())

0< S <B,0<t<T,cf also Exercise 7.1-(iz) of ? and Figure 8.13.
2. We find

]P(YTS(I&BTZb):P(BTSZ(l*b), Ll,<b<07

hence

7(1P(YT§G&BT§1))7 d]P)(YTSOL&BTZb)
fYT,BT ((l, b) = dadb = dadb s a,beR.,
satisfies

/2 (b—2a)
fYT,BT(a7 b) = ﬁl(—oo,b/\o](a)T (2a—b)?/(2T)

20
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2 (b—2a) —(2a-b)/(21).

T T a<bAO,

0, a>bA0.
3. We find

1 2 2. o 1\2 /(e
f?T,BT(“vb) = 1(_00)%)](,1)?1 /ﬁ(bea)e T /2+pb—(2a—b)*/(2T)

% /lT(?a _ p)e I T/2Hub=a=b2/(RT) o A,
— ™

0, a>bAO0.

4. The function g(¢, ) is given in Relations (8.12) and (8.13).
Exercise 8.3 Lookback options. By (8.21) and (8.22) we find

P
&= 2,5,
_ 2r Tt [ St
= (1 ) (7 (7))
M2 o2 M
—r(r—t) ( Mg o ot (Mg
wren (g) () e ()

€10,7], and

mAy = f(t, S, M§) — &5,

o ity (1t St ey (ME\ T (M
=Mle "IN (g7t [ ZL)) —e7(T-0) [ 20 & Tt (20
e te (o (F)) e () e (g

Exercise 8.4 We have

- [(1{ J;)T Sudu— m) + ]_.L] — TR {% J;)T Sydu — H’]“{|

. 1 T
=TT {*J‘ Sudu

ft} — ke (T
= (T ’>1 [[ S du‘]ﬂ] 47T [J S, du‘]‘}} — ke "(T=D
e (Tt — ! f Sydu+ e 7T ”1 [I S du‘ff] — ke (T
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_rr—y Lt _rr—py 1 T (T—
= (T t)f Jo Sydu+ e t)f .L E[S,, | Fildu — ke 7T
—r(T— 1 t —r(T— 1 T r(u— —r(T—
= (T t)f Io Sudu + e T t)fﬁ Sie (=) gy — e (T

1 ot S, T—t
_ —r(T—t) = —r(T—t) Pt ru g —r(T—t)
=e T JO Syudu + e T JO e™du — ke

1t St .
— o r(T-t) ] o~ (T=t) Pt ( r(T—t) _ 1) _ o= r(T—t)
e T jo Sudu + e TT(L 1) — ke
_ e—r(T—t)

1t 1
— o r(T=t) = L—e > 7 —r(T-t)
e T JO Syudu + Sy T Ke ,

€ [0,TY, cf. ? page 361.

We check that the function f(t,z,y) = e "T(y/T — k) + (1 —
e 7T /(+'T) satisfies the PDE

of

ot

of of 12 20°f
(t,x,y)+$8y(t7x,y)+max(t7x,y)+ o (t,z,y),

rf(t,z,y) = 3 92

t,x > 0, and the boundary conditions f(t,0,y) = e "T=I(y/T — k),
0<t<T,ye€ Ry and f(T,z,y) = y/T — K, x,y € Ry. However, the
condition limy ,_o f(t,2,y) = 0 is not satisfied because we need to take

y > 0 in the above calculation.

Exercise 8.5 The Asian option price can be written as

—r(T—t) p* 1 (T d *
P E (Tfo Suu—K> ‘]—'t

= Sih(t,Uy) = Suy(t, Zy),

=SB [(Ur)* | U]

which shows that
g(t. Zy) = h(t,Uy),
and it remains to use the relation
1— e—'r'(T—t)

Uf, = T + e—r(T—t)Zt’ te [O,T}

Chapter 9

Exercise 9.1 Stopping times.

1. For any t € Ry, the question “is 7 > ¢ ?” can be answered based on the
observation of the paths of (Bs)o<s<¢ and of the (deterministic) curve
(oze’s/Q)oSSgt up to the time t. Therefore 7 is a stopping time.
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2. Since 7 is a stopping time and (By)icr, is a martingale, the stopping time
theorem shows that (ePer=(A7)/2), .z s also a martingale and in partic-
ular its expectation E[eBiar—(AT)/2] = EleBorr—(0A1)/2] = FleBo—0/2] =
1 is constantly equal to 1 for all ¢. This shows that

E[EBT_T/Z] — hm eBinr=(AT)/2| — lim E[PBc/\r—(t/\T)/Z] = 1.
t—o0

B —7/2

Next, we note that we have e® = ae , hence

Ele™"] = E[eB—/? = 1,

aEle”"=1/a <1

Remark: note that this argument fails when o < 1 because in that case
7 is not a.s. finite.

3. When 0 <t < 1 the question “is ¥ > ¢t ?” cannot be answered at time ¢
without waiting to know the value of B; at time 1. Therefore v is not a
stopping time.

Exercise 9.2

1. Letting Ag =0,
Apyr = Ay + E[Myyy — M, | F], n>0,

and
N, =M, — A,, n €N, (S.9.4)

we have,

(i) foralln € N,

E[Npt1 | Fol = E[Myi1 — Aptr | F

=E[Mn1 — Ap — E[Mpi1 — My, | o] | F
E[M,q1 — A, \ Fnl = E[E[M,11 — M, | Fp] | Fal

= E[Myy1 — An | Fo] = E[Myi1 — My, | )

=-E[A, | 7| + E[M, | F.]

=M, — A,

=N,

hence (N, )nen is a martingale with respect to (Fy,)nen-
(if) We have

An+1 - An = ]E[A/[n+1 - A/In ‘ ]:n]
= E[M,1 | Fn] — E[M, | F.]
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= ]E[]V[W/Jrl ‘ ]:n] - ]\/—171, > 0, ne N7

since (M, )nen is a submartingale.
(iii) By induction we have

An = An—l + ]E[]Ljn - A{n—l | ]:n—l]7 n > 17

which is F,,_j-measurable provided A,, is F,,_i-measurable, n > 1.
(iv) This property is obtained by construction in (S.9.4).

2. For all bounded stopping times ¢ and 7 such that ¢ < 7 a.s., we have

E[M,] = E[N,] + E[4,]
< E[N,] + E[A,]
= E[N,] + E[A,]
= E[M,],

by (9.11), since (M, )nen is a martingale and (A, )nen is non-decreasing.
Exercise 9.3 American digital options.
1. The optimal strategy is as follows:

(i) if S; > K, then exercise immediately.
(i) if S¢ < K, then wait.

2. The optimal strategy is as follows:

(i) if S; > K, then wait.
(ii) if S < K, exercise immediately.

3. Based on the answers to Question 1 we set
cim(t, K) =1, 0<t<T,

and
ci™T,z)=0, 0<z<K.

4. Based on the answers to Question 2, we set
Pt K)=1, 0<t<T,
and
PA™Y(T,z) =0, x> K.

5. Starting from S; < K, the maximum possible payoff is clearly reached
as soon as S; hits the level K before the expiration date T, hence the
discounted optimal payoff of the option is e"“m(’t)l{n\, <T}-

6. From Relation (8.7) we find

24
https://personal.ntu.edu.sg/nprivault/indext.html February 2, 2023


https://personal.ntu.edu.sg/nprivault/indext.html

Introduction to Stochastic Finance with Market Examples, Second Edition

B(ru <u)=9 (;% _ ewog (%> |

and by differentiation with respect to u this yields the probability density
function

a _(a—puw)?
e 2u
V2mrud

of the first hitting time of level a by Brownian motion with drift u. Given
the relation

fro(w) = flP’(Ta <u) =

S, = Stea(B1L7Bf)702(u7t)/2+“(u7t)-, u>t,

we find that the probability density function of the first hitting time of
level K after time ¢ by (Su)uet,00) is given by

a (a—p(u=1))?
U—r ————=e 20 u>t,
2m(u —t)3

with = o~ !(r — 02/2) and

1, K
= —log—,
a x

given that S; = z. Hence for z € (0, K') we have, letting 7 =T — ¢,
CA™(t,x) = E[e*T<TK**>1{TK<T} | S, = 2]

,f ety O lempemni
71'(9—#)

_ a (a=ps)?
:J e " —e¢” 2= ds
0 V2ms3

T 10g(K/x) 1 o? K\’
= —rs— —(r=Z log =
I Py exp rSs 9575 r 5 s+ log po ds

<K>(§Z—%)i(ﬁ+%)

T

™ log(K/x) 1 o? K\? i
Xfo P exp ~ 3575 +r+ 2 s+1og ds

2w/® s
\/127[( Y- e’ /Qdy+ E <§> LH e %
_ (r+02%/2)7 + log(z/K)
- K% ; | )
+ (%) I (‘(7” + UZ/?\T/; log(z/K)

), O<zr< K,
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SR (R PR S
= r T
vx o\/T 2 s x )’

and used the decomposition

K 1 o? K 1 o K
log—=—-(|(r+—5)s+log— |+ |—|r+—=])s+log— ).
T 2 2 T 2 2 T

We check that

where

C™(t, K) = &(00) + H(—00) =1,
and

; 2r/c?
Cam(T,2) = 0 (~00) + () D(~00)=0, <K,

since 7 = 0, which is consistent with the answers to Question 3.

7. Starting from S; > K, the maximum possible payoff is clearly reached
as soon as S; hits the level K before the expiration date T, hence the
discounted optimal payoff of the option is e’T(TK")l{TK<T}.

8. Using the notation and answer to Question 6, for z > K we find, letting
T=T—1t,

ij(t,:c) = ]E[e_r(”‘_t)l{.,K<T} | S; = a]

T a (a—ps)? ;15)2
:f e " e~ ds
0 V2ms3

7 log(z/K) 1 a? z\’
o 7{7 ot exp | —rs — 9975 r—? s+log? ds
D)
T \z
XJ‘TMG A T AR P
0 ovars P\ Tagzs \ T 2 ¢ K

xr —y*/2 L (a\2r/ot oo
Kj ¢ dy+\/27r (K) Lu-e y
< (r+02/2) T*lOg(I/K>

T

= a\

+

:c) —2r/a® gp<(r+02/2)7—7log(:c/K)

I or >7 x> K,

with

‘We check that
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P (t, K) = $(—00) + P(00) = 1,
and
Am T T —2r/0?
P (T,z):Edﬂfoo)Jr(?) P (—o0) =0, 0<z<K,

since 7 = 0, which is consistent with the answers to Question 3.
9. The call-put parity does not hold for American digital options since for
z € (0, K) we have

CA™(t,z) + P (t,a) =1+ %4; ((7" +a2/21rr\/J;log(z/K)>

L) (St lota/10))

K

while for z > K we find

—(r+0?/2)7 —log(z/K)
CAM(E )+ P (1) =14 L (T
1t ) + Pt x) +K o T
N (£>—2r/02@ (r+02/2)7 — log(z/K)
K o\T ’
Exercise 9.4 American forward contracts. Consider (S;)icr, an asset price
process given by

@ =rdt + odBy,
St

where (By)ier, is a standard Brownian motion.

1. For all stopping times 7 such that ¢ <7 < T we have

E* [efr(T*t)(K _ ST)

St] =KE" [c*’('f*t)‘st] _E {C,T(T,t)s‘r
)

5

since 7 € [t,T] is bounded and (e™"'S;);cr, is a martingale, and the
above quantity is clearly maximized by taking 7 = t. Hence we have

fts) = s B[ S,
t<r<T
T stopping time

8| =K - s,
and the optimal strategy is to exercise immediately at time .
2. Similarly we have
E [e*T“*”(sT - K)‘St] - E* [e*“f*")sT‘st] ~KE* {e”“*“ ‘St]

=S - KE* [e*fﬁfﬁ‘st] ,
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since 7 € [t,T] is bounded and (e™"'S;);cr, is a martingale, and the
above quantity is clearly maximized by taking 7 = T'. Hence we have

F(t,8) = sup icrer  EF [e*T“*”(sT . K)‘S,} — 5 — e T,
T stopping time

and the optimal strategy is to exercise at time 7.

. Concerning the perpetual American call forward contract, since u +»
e "(v=1) G is a martingale, for all stopping times 7 we have*

B [e7T0(8, - K)|5)] = B [ 008, |5y - KB [e 005,
<S8 - KE* [e’T(T’U‘St]
<S8, t>0.

On the other hand, for all fixed T > 0 we have

E* [e-“T-”(ST ~K) St} —E [e-f'<T-f>sT St] ~KE* [e-"<T-f> st]

=8 —e"TVK, t>0,
hence

sup E* [e_"'(T_t)(S., - K)
>t
T stopping time

St] > (St - e—"'<T—fJK) . T>t

and letting 7" — oo we get

sup E* [e’T(T’”(ST - K)‘St] > lim (St — e’T(T’”K)
>t T—o00

= SLy
hence we have

ftS) = s B [0S, - K)
tg‘r'gg‘timu

$i| = s,

and the optimal strategy 7% = 400 is to wait indefinitely.
Concerning the perpetual American put forward contract we have

Jt8) = swp B[ TO(K - 8,
tST'S"Ttilnc

sup E* [e’T(T’“(K - ST)+‘Sf,:|
1<T<T

5

IN

* by Fatou’s Lemma.

28
https://personal.ntu.edu.sg/nprivault/indext.html

February 2, 2023


https://personal.ntu.edu.sg/nprivault/indext.html

Introduction to Stochastic Finance with Market Examples, Second Edition

= fr-(S1).
On the other hand, for 7 = 77+ we have
(K~ S,,.) = (K~ L%) = (K - L*)*

since 0 < L* = 2K7/(2r + 02) < K, hence

fre(S) = E* [E_T(T_t)(K - st]
- E [e*r“*”(}( ~5..) st]
s s EB[Ow sl
_ sy

which shows that
f(&,50) = fr-(Sy),

i.e. the perpetual American put forward contract has same price and
exercise strategy as the perpetual American put option.

Exercise 9.5

1. The option payoff equals (k — S;)P if S; < L.

2. We have
Ju(80) = [e77 70 (n = 50,) 5]
=E [e—rurt)((n — L)ty Sﬁ}
= (= LY B [ 05,]
3. We have

fo(z) =E" {e’“”’”(n - STL)+‘St = x]

(k — )P, O0<xz<L,
= R (5.9.5)
(nfL)”<Z> ,x > L.
4. By differentiating - (x — z)P = —p(x — 2)P~! we find
2 (L*)—Zr/oz—l B
U *y _ _ b _rx\p\-~ /) _ 7*\p—1
i (1) = = g = L g = e = L),
i.e. 9
r * *
gk —L7) =pL",
29
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or
2r

= — K
2r + po?

*

< K.

5. By (S.9.5) the price can be computed as

(k= S)?, 0< S, <L*,

2

po’e \* [ 2r +po? S, —2r/e .

— s Sy > L*.
2r + po? 2r K

f(t,Se) = fr-(Se) =

Exercise 9.6

1. The payoff will be x — (S;)P.

2. We have
Fe(80) =B [0 — (S,,)7)| 1]
—E [e*““*”(m ) St}
= (v — LP)E* [e*“ﬂfﬂ‘st} .
3. We have
fr(z) = E* [677‘(7L7t)(ﬁ — (STL)p)‘St = x]
K —aP, O0<z<L,
= T —2r/0?
_In (<
(k — LP) ( L) x> L.
4. We have
2% (L*)—2r/02—1 .
! *y _ 27 _ *\P — *\p
fL*(L )7 o2 ('{ (L ) ) (L*),zr/g2 - p(L ) )
i.e. 9
T * *
= (L)) = (L,
or y
2rk p 1
S /p
L <2r T p02> < (k)'P. (S.9.6)

Remark: We may also compute L* by maximizing L — fr(z) for all fixed
x. The derivative Ofr(x)/JL can be computed as

08 (1 ()")
30
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2 2
L 2r/c 2 I 2r/oc
= —prr! <;> + 5L (k- 1) (—) :

z
and equating df7(z)/0L to 0 at L = L* yields
p—1 2T *\p
L ) e (1) =,

which recovers (S.9.6).
5. The price can be computed as

k—(S)7, 0<S <L

f(t"St) = fL* (St) = —2r/c?
*\p (St) *
(nf(L))W, Sy > L
K — (Sp)P, 0< S <L*
- 0-2 —27“/0‘2 * p+27'/02 *
?p(st) (L ) ) St 2 L )
K — (Sp)P, 0< S <L*
= 2 2 gpy —2r/(po?)
POk 2r + po® S} .
. > L
2r + po? < 2r K <& S 2
Exercise 9.7
1. We have that
A
7, = (%) e~ (rmOXRAT2-N0 02 _ AoBi-NiaPt/2. te Ry,
0

is a geometric Brownian motion without drift under the risk-neutral prob-
ability measure P*, hence it is a martingale.
2. By the stopping time theorem we have

]E*[ZTL] = ]E*[ZO] = 1>

which rewrites as

S\ :
E* <%> e~ (r=aA=2o?/24N 0% /D | _
0

or, given the relation S;, =L,

I\
E [e—((1-—a))\—/\02/2+/\262/2)TL:| -1
So ’
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Eﬂf”q:<%>ﬂ

provided we choose A such that

—((r —a)X = X% /2+ N26?%/2) = -1, (8.9.7)

0=X\02/2 4+ \Nr —a—0?/2) -1

This equation admits two solutions

—(r—a—0%/2)£/(r—a—0%/2)2 +4ro‘2/2‘

o2

A=

and we choose the negative solution

\e —(r—a-o%/2) - \/(r —a—02/2)2 + 4rg2/2

(e

since So/L = x/L > 1 and the expectation IE*[e™""¢] < 1 is lower than
lasr>0.
3. Noting that 7, = 0 if Sy < L, for all L € (0, K) we have
E* {efw (K — sn)ﬂso - 1]
K —z, 0<z<L,

E {e*W (K — L)+‘50 = x} x> L.

K -2, 0<z <L,

(K — L)E [e*”L Sy = x] x> L.

K —z, 0<z<L,

- —(r—a—02/2)—+\/(r—a—02/2)2+4rc2/2
x o2
(KfL)<Z> 2> L.

4. In order to compute L* we observe that, geometrically, the slope of f1,(x)
at x = L* is equal to —1, i.e.

! * * (L*))\71
i (1) = MK = L) s = =1,
” MK - L*) = L*,
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or )
L*=71K<K.

5. For © > L we have

fue (o) = (56 - £ ()

(K s =D\
U A1 AK
o E ) (=) ey
T A1)\ -K
(= A1\ Mt
DY -K
AN A—1\" K
= (%) (T) T (5:98)
6. Let us check that the relation
fre(x) > (K —z)* (S.9.9)
holds. For all x < K we have

st === () (35 15 e w

() () Her)

Hence it suffices to take K = 1 and to show that for all

A
=L <<
L )\7171
we have
a* A—1\*
f“(x)f(lfx)zl,)\<7> +z-—1
>0

Equality to 0 holds for z = A\/(\ — 1). By differentiation of this relation
we get
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A
fr(@) = (1 —2) = xa?! (—A;1> !

hence the function fr»(z) — (1 — x) is non-decreasing and the inequality
holds throughout the interval [A\/(A — 1), K].

On the other hand, using (S.9.7) it can be checked by hand that fr- given
by (S.9.8) satisfies the equality

(r — a)efy. (z) + %a%? 7 (@) = rfie () (5.9.10)

A
forx > L* = ﬁK In case

A
0<z<L'=—""—K<K
S W R

we have
frr(@) =K -z = (K-,

hence the relation
! 1 2.2l +
rfr- (@) = (r = a)zfp.(z) = 5o7a" fr-(2) ) (fr-(2) = (K —2)7) =0
always holds. On the other hand, in that case we also have

(r—a)zfr-(x) + %02902 To(z) = —(r —a)z,

and to conclude we need to show that
1
(r—a)zfr-(x) + 50%2]‘”* (@) <rfp(z) =r(K —z), (5.9.11)

which is true if
ar < rkK.

Indeed by (S.9.7) we have

(r—a)X =r+X\—1)c%/2
>,

hence
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since A < 0, which yields

ar <al*<a

K < rK.
PR

7. By Itd’s formula and the relation
dS; = (r — a)S;dt + 0S;dB;
we have
d(fr-(Sy)) = —re "t fr-(Sy)dt + e "t df - (Sy)
= —re T o (S + e L (S)dS: + ge o S L (S)
i (ﬂ”fL*(St) = @) (S0 + 5083 g*(st)> dt
+e 08, f}.(S;)dB;,

and from Equations (S.9.10) and (S.9.11) we have

(r = )afi (@) + 5o* 1 &) < 1o (2),

hence
tes e " (Sh)

is a supermartingale.
8. By the supermartingale property of

ts e " fre(Sh),

for all stopping times 7 we have

Fi(S0) 2 B [ f1-(S,)

So] = B [emr (k¢ - sm]so] 7
by (S.9.9), hence

f(So)>  sup  E [c*"'T(K—STﬁ‘SO}. (S.9.12)

T stopping time

9. The stopped process
b e T fre(Sepry.)

is a martingale since it has vanishing drift up to time 7z« by (S.9.10),
and it is constant after time 7,~, hence by the martingale stopping time
Theorem (9.1) we find

35
February 2, 2023 https://personal.ntu.edu.sg/nprivault/indext.html


https://personal.ntu.edu.sg/nprivault/indext.html

Solutions Manual

J1(S0) = B [e77 10 (Sr,.) | 0]
_E [efrff“ (L*)‘SO]
—E [e’”(K ~5,.. )*‘SU]

< sup [E* [e_"T(K - ST)+‘SU] .

T stopping time

10. By combining the above results and conditioning at time ¢ instead of time
0 we deduce that

Jue(80) = B [e7 v 0K — 5,0

5

K*St, O<St§ K7

A
A—1
A—1\" =5\ A

AT i > 2 K

- =inf{fu>t : S, <L}

for all t € R, where

‘We note that the perpetual put option price does not depend on the value
of t > 0.

Exercise 9.8
1. By the definition (9.36) of Si(t) and S2(t) we have
_ S\
_ rt
Zt =€ Sg(t) <Sz(t)
— e—rtsl (t)QSZ (t)l—a
_ Sl (0)052(0)1—(16(001+(1—a)02)W,,—a§t/27

which is a martingale when

o8 = (aoy + (1 — a)oz)?,
i.e.

aoy + (1 — a)og = to9,
which yields either a = 0 or

20
a= 2 > 1,
02 — 01

since 0 < 01 < 03.
2. We have
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Ele™""(S1(71) — Sa(71))*] = E[e ™" (LSa(11) — S2(71.)) 7]
— (L1 Ee " S,(ry)). (S.9.13)

3. Since 71, At is a bounded stopping time we can write

55(0) (g;ég;)a =E {C*WLMSQ(TL At) <%> T (S.9.14)

et (B2 ] 0 (380) 1)

‘We have

—rt Sl (t)
(& SQ (t) (m

hence by a uniform integrability argument,

«
) Lir oy < €800 0y < €S (HL2,

B S (t) «

. rt 1 _
thjgc E |:6 S2(t) <52(t)) 1{71_ >t}:| =0,
and letting ¢ go to infinity in (S.9.14) shows that

R ey ]

since S1(71)/S2(7) = L/L = 1. The conclusion

51(0)
55(0)

Ele ™" (S1(r2) — Sa(r2)) ] :<L71>*L’“52(°)< > .

then follows by an application of (S.9.13).
4. In order to maximize (S.9.15) as a function of L we consider the derivative

0 L—-1 1
= _a(L-1)Lt=0,
A T ) 0
which vanishes for
«@
L* =
a—1

and we substitute L in (S.9.15) with the value of L*.
5. In addition to r = 02/2 it is sufficient to let S;(0) = & and o7 = 0 which
yields o = 2, L* = 2, and we find

1 K\ 2
Ele— " (k — S 1= (5}
T stopsplilrln)g time [e (H 2(7—)) ] 52 (0) (2) :

which coincides with the result of Proposition 9.4.
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Chapter 10

Exercise 10.1
1. We have
5 X; Xy VB — (02 —12)t/2
dXt:d<—> :—d(é“ B (o '1)/)
N, Ny
Xo (0—n)By—(a*—n?)t/2 Xo 2 (o—n)By—(a2—n?)t/2
=g —n)el” =2, 4 2 (g — p)2elommBem (@02 gy
N ttong @)

~ Ko (g2 L ppyele-mB otttz
= 7%(02 —?)dt + %(o —n)dB; + %(o —n)2dt
= *%U(U —n)dt + %(U —1)dB;
— o = B, — ndo)
= (0~ m3LdB, = (0 — ) XedB,
t

where dB; = dB; — ndt is a standard Brownian motion under P.
2. By the result of Question 1, X, is a driftless geometric Brownian motion
with volatility ¢ — n under P, hence

NN . log(Xo/\)  &6VT log(Xo/\)  6VT
B[(Xr -\t = Xod (m/T + 2) —\P (NOT - 2)

is given by the Black-Scholes formula with zero interest rate and volatility
parameter & = o — ), which shows (10.30) by multiplication by Ny and
the relation Xy = NoXo.

Hint 1: We have the change of numéraire identity E[(Xr — ANp)T] =
NE[(Xr — )T
3. We have 6 =0 — .

Exercise 10.2 Bond options.

1. Itd’s formula yields

d ( P, 5 )) = PS) sy~ m (o)) aw, - ¢ (1))

P,T))  P(t,T)
_P(LS) o
= By O — @), (S.10.16)
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where (Wt)tg]]{+ is a standard Brownian motion under P by the Girsanov
theorem.
2. From (S.10.16) we have

2o = po e (e - i - 5 [1e56) - Topas)

hence

e = e ([ - T - § 16 - TP )

u > t, and for v = T this yields

_ P9 TS T( S(s T2
PT5) = pigiy o (J) (€ - T - [11c0) - Topas).
since P(T,T) = 1. Let P denote the forward measure associated to the

numéraire
Ny :=P(t,T), 0<t<T.

3. For all S > T > 0 we have

B[ 7 (p(r, 5) ~ K)*| 7]

(ﬁﬁi? (X ~5JTe) CT(8)|2d5> - K>+ ‘;t}

= P(t,T)E [(6X+m(:,T,s) _ K) ’]_.t} 7

=P, T)E

where X is a centered Gaussian random variable with variance
T
CT,S) = [ 165(s) = ¢T(s)]ds
given Fy, and

P(t,9)
Pt,T)

1
m(t, T, 8) = —5v*(t, T, S) + log

Recall that when X is a centered Gaussian random variable with variance
v?, the expectation of (e™*X — K)¥ is given, as in the standard Black-
Scholes formula, by

E[em™X - K)*] = em'*'%@(v + (m—logK)/v) — K&((m —log K)/v),
where
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z 2 dy
b(2) = vz L ER,
(= [ e

denotes the Gaussian cumulative distribution function and for simplic-
ity of notation we dropped the indices ¢, T, S in m(¢, T, S) and v*(¢, T, S).

Consequently we have

E [e* I reds(p(r, 5) — K ‘]—',,]

= P(t,8)® (g + %log %) — KP(t,T)® (

v
2

1
+ —log
v

P(t,S)
KP(t, T)) ’

4. The self-financing hedging strategy that hedges the bond option is ob-

tained by holding a (possibly fractional) quantity

v o 1 P(t,S)
¢ <§ Ty los KP(t,T))

of the bond with maturity S, and by shorting a quantity

v o1 P(t,S)
Ko <_§ o8 %p T))

of the bond with maturity 7.
Exercise 10.3

1. The process
e—rtsz(t) — 52(0)60’2W¢+(H—7')t
is a martingale if
1

7“—/1250'%.

2. We note that
ethXt _ 877‘f,€(7‘7}1,)t7(1'ff,/28] (t)
(3_"te("§_“f)"/231(t)
= emHoit2g, (t)
=5 (O)euL—afL/zeaIWLﬂu

— Sl (O)eal Wt—aft/Z

is a martingale, where

X, = e(r—/;,)f,—rrft/Qsl (t) _ e(n‘g—(rf)f,/ZS] (t)

3. By (10.32) we have
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N X
X(t) = Fﬁ
((oi—atyt/251(t)
Sa(t)
_ 510) (o3-ot)t/24(01-02 W
52(0)
51(0)6(02 o1)t/24(01—02)Wit0oa(01—02)t
S2(0)
_ SI(O) (01 02)Witosoit—(o2+o2)t/2
52(0)
_ 51(0)e(al—@)m—(al—@)?tm
S2(0) '

where )
Wy := Wy — oat

is a standard Brownian motion under the forward measure P defined by

P g7

dP No

—rp S2(T)
S2(0)

e—r’l‘eﬂz Wor+pT

— CUZWTJr(pfr)T

2
_ eagWTfaZt/Z.

4. Given that X, = e(@3=oDt/28,(t) and X(t) = X,/N, = X,/Ss(t), we
have
e TE[(S1(T) — 8S2(T))T] = e T E[(e= @2 =7DT/2 Xy — 185(T))™]
— T (03—0)T/2 E[(Xy — He(ag_”f)T/QSQ(T))ﬂ
= 95(0)e= @ TDT2R( Xy — kelo3—oDT/2)H
= S (0)e —(03—01) T/Q]E[(X elor— 02)Wr—(01—-02)*T/2 _ m,(ﬂzfal)T/Z)Jr]
= 5y(0)e @D/ (R (T, Ro) - re(3- D200 (1, %))
= 55(0)e~E-oNT/2 %39 (T, Xy)
7/*{52(0)6 (02 01)T/26(02 U1>T/2@g (T‘7 XO)
= e 3= DTR X80 (T, Xo) — £52(0)8° (T, Xy)
= 81(0)9%(T, Xo) — 152(0)8° (T, Xo),

where
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(pi(TvT) - ( log(z/k) + (01— 02)? — (03 — 0}) \/T)

oy — oo VT 2oy — a2
‘P(M*FUlﬁ) g1 > 02
|U1—02\\/T ' i

@(% —ap/f) , o1 <09,

and

8 (1,0) = o (8ol _ oo et )

‘0'1—0'2|\/T7 2|01 — o9
¢<M+G’2ﬁ> g1 > 02
|U1*02\\/T ' ’

log(z/) ﬁ)
| —————=— g2 T 5 o1 < 02,
<|01 —09|VT

if 01 # 09. In case 01 = 02 we find
e TE[(S1(T) = kSo(T)) '] = e T E[SI(T)(1 - £52(0)/51(0)) ]
= (1= kS5(0)/51(0)) e~ T E[S1(T)]
= (51(0) = £52(0))1 (5, (0)>rS2(0)} -
Exercise 10.4

1. Tt suffices to check that the definition of (W ),er, implies the correlation
identity dW,° - dW}N = pdt by 1td’s calculus.
2. We let

61 =\/(0F)2 —2p0fi0f + (of')?

and

x _ 0 fs — pa} s o
AW = —————dW? — /1 — p?——dW,, t e Ry,
Ot Ot
which defines a standard Brownian motion under P* due to the definition
of 6.
Exercise 10.5

1. We have & = 1/(05)? — 2p0F0S + (0 F)2.
2. Letting X; = e "X, = e(*"tS, /R, t € R, we have

PR
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— oo [ (g - o) 7]

_ (a7 (Xp <(T - a;r &;/E)ET 2+ 7 ; =% %)
ppla-T <(T - "’; &;/E)]ET b &\/% log %))
- %ttem-—a)(T—t)@ <(T - ”: ‘};/E);T =D, p ; — log %)

hence the price of the quanto option is

S +
—r(T—t) p* T
e E |:<RT n) ‘ft

St —ar—tyg ((r—a+ 62/2)(T —t) 1 Sy
=2, @ ¥ log 24
R VT —1 VT -1 KR,
. A2
e (T (r—a—-6%/2)(T -t L e 50
e < T — 1 YT =1 ®RR,

Chapter 11

Exercise 11.1

1. We have r, = rg + at + By, and
F(t,ry) = F(t,ro +at + oBy),
hence by Proposition 11.2 the PDE satisfied by F(¢, ) is

2
OF o+ 29 P 20, 1117

oF
—zF(t,z) + E(t7 x) + a%(t, 3% a2

with terminal condition F(T,z) = 1.
2. We have r; = rg + at + By and

F(t,r) = E* {exp (7 LT rsds> ‘}}]

—E {exp (—rO(T ~t)—af sds— [ Bsds> ’]—}}

T
— E* |:6—T0(T—t)*a(T271,2)/2 exp (7(T — t)Bt — L (T — s)dBS> ‘]:t:|
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= e ro(T=t)=a(T?~3) /2—(T~) B, o+ {exp <_ IT(T_ s)st> ‘]_-t}
t
T
t

—exp <7(T ) —a(T—1)%/2 + % - S)st>
=exp (—(T —t)re —a(T —)%/2+ (T —1)*/6) ,
hence F(t,z) = exp (—(T — )z — a(T — t)?/2+ (T — t)3/6).

Note that the PDE (S.11.17) can also be solved by looking for a solution
of the form F(t,x) = eAT—H+2C(T=Y) in which case one would find
A(s) = —as?/2 + 53/6 and C(s) = —s.

3. We check that the function F(t,z) of Question 2 satisfies the PDE
(S.11.17) of Question 1, since F(T,z) =1 and

(T

—zF(t,z) + <:r +a(T —t)— %132) F(t,x) —a(T —t)F(t,x)

1
+502(T —t)2F(t,z) = 0.

4. We have
J.T,8) = <o P(,T) ~ log P(t, )
_ 1 o’ 3 o 3
=3-7 ((—(T—t)u+ F(T—z&) > - (7(5*1&)7}4’?(5*25) ))
_ 1 o° 3 3
5. We have
f,T) = —il  P(t,T) =7 — U—Q(T—f)2
L, =~ar og P(t, =71 2 £)”.
6. We have

dif(t,T) = o*(T — t)dt + odW;.

7. The HIM condition (11.33) is satisfied since the drift of d, f(¢,T) equals
o ftT ods.

Exercise 11.2

1. We have
t ¢ 1t
P(t,T) = P(s,T) exp (L rudu + L oldB, — 3 L |05|2du> ,

0<s<t<T.
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2. We have . .
d (7P, 1)) = e W riol Pt TYaB,,

which gives a martingale after integration, from the properties of the It6
integral.
3. By the martingale property of the previous question we have

B[ e

F| =B [P, T)e It

7|
=Pt Te larmds 0<t<T
4. By the previous question we have

P(t T)—PJUTdS]E{ _Ju rds

7]
}

}1] . 0<t<T,

_E{efords —Ji reds| £

- E {e’ [T rads

ds

t
since e~ Jo <45 ig an JFi-measurable random variable.

5. We have
P = pem e (f1(of - ohas, - g [(a2P - ol Pau )
— g o (Jlof ~ oTyast - § [[t02 - ol Pau)
0 <t < T, hence letting s =t and t = T in the above expression we have
P(T,S) = ig:i; exp (LT((rf —oaBT - %LT(U;S - 03)2d5> .

6. We have

P(t,T)Ey [(P(T, S) - K,)+]

_ P(t,5) 7 (o5 —aT)aBT —4 [T (oS —oT)2ds _ i
7P(t,T)IET <P(t ) K
= P(t,T)E[(" —r)" | F]

= P(t,T)em™ /2 < —(mt +v2/2 - log H)>

—kP(t, T)® (f% + —(mt +v2/2 —log n)) ,
Ut

with
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1T
my = log(P(t, 8)/P(t,T)) = 5 Jf (05 — oT)2ds

and

i.e.

P(LT)Er [(P(T,S) = n)]

v, 1 P(t,S) v 1
— PSP [ L+ Zlog 02) ) _pt, TV [ =2+ 21
(*5) <2 B pey) " *1) 2 T, 8

Exercise 11.3

1. We check that P(T,T) = X7 = 1.

P(t,9)
kP(t,T)

2. We have
FT,8) =~ (X7 = X[ — (5~ T))

:WUSiT ((sft)ﬁﬁstf(Tft)j;ﬁdBé,)
umostp ) (551 e
S S L EE
=1t ;é;_—i))((ST_—?)dBS‘

3. We have

F(t,T) :ufaJ: (Tt:iss')Qst.

4. We note that

lim f(17) =~ o [ ——dB
R AU S M

does not exist in L2(£2).
5. By Itd’s calculus we have

dP(t,T) 1, xr
=22 — 5dB; + ~o?dt + pdt — dt
p(t,T)  CtPrt ottty
1 log P(t,T)
= 0dB, + ~o%dt — —=—""Ldt,  t€0,T)].
oz 1,+20' T—1¢ , 6[7 ]
6. Let
1, X
S _ L 2 A4
(I Ly
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1
=u+ 20 7UJ —ng,
and apply the result of Exercise 11.11.5-(4).

7. We have
|:d[PT’]_-t:| — oB—0t/2.

8. By the Girsanov theorem, the process B, := B, — ot is a standard Brow-
nian motion under Pp.
9. We have

T 1
log P(T, S) = —pu(S — T) +a(5—T)j0 1B

—u(S—T)+0(S - T‘[S ﬂ3+aw Jvasisﬂg

S—T
= G log P(t.S) + o[ ~ J“J

S—T

= log P T) B, + o2 T)
g7 log (t,S)+o(S— f d +0%(S — jS ds
S—T ) Sft
o g P(t.S) + (S — Tf 5B +0%(S ~ T)log t—.,

0<T<S.

10. We have
P(T)Er [(P(T,S) - K ‘E}

= P(t,T)E[(e - r)* | F
= P(t,T)em™i/%g ( 5 —(mt +vf/27logn)>
+

—wP@TW<7%

! (mt +vi/2 log/{))

= P(t,T)em™+i /2 <vt + —(m; —log n)) — kP(t, T)@( (my — log K)) ,

with

-7, 9 S—t
_— log P(t,5) + o (S—T)logS_T
and

2 =o?(S

)2 LT ﬁds

— (S~ T)? (TIT - ﬁ)
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(T-1v)
(§-1)

=0}(S-T)
hence
P(,T) Er [(P(T,5) - K)*| 7]

S-T)(S S—t\7ED
P (PSS (F51) e

1 (P(t, S))(SfT)(S—f,) S_¢ 02(S—T)
x@(vﬁ-mlog( - o7

-T —t 02( -7
—kP(t,T)® (ilog<(P(t,S))(S )(S—1) (57t> s T))

t K S-T

Exercise 11.4 From Proposition 11.2 the bond pricing PDE is

oF 1

ot 2
F(T,z)=1.
Let us search for a solution of the form
F(t,z) = eAT-O—2B(T-1)
with A(0) = B(0) = 0, which implies
A'(s)=0

B'(s) + BB(s) + 202B%(s) = 1.

—(t,z) = xF(t,z) — (o — ﬂx)g—i(t,x) - 702$2(327§(t,$)

hence in particular A(s) = 0, s € R, and B(s) solves a Riccatti equation,

whose solution is easily checked to be

2 — 1)

PO = e e 1

with v = /2% + 202

Chapter 12

Exercise 12.1
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1. The forward measure Pg is defined from the numéraire N, := P (t,9) and
this gives )
F, = P(t,S)E[(k — L(T,T,8))" | F].

2. The LIBOR rate L(t, T, S) is a driftless geometric Brownian motion with
volatility o under the forward measure 113’54 Indeed, the LIBOR rate
L(t,T,S) can be written as the forward price L(t,T,S) = X; = X,/N;
where X; = (P(t,T)—P(t,5))/(S—T) and N; = P(t,S). Since both dis-
counted bond prices e I rsds P(¢,T) and e~ I rsds P(t, S) are martingales
under P*, the same is true of X;. Hence L(t,T,S) = X;/N; becomes a
martingale under the forward measure Py by Proposition 2.1, and com-
puting its dynamics under Ps amounts to removing any “dt” term in
(12.19), i.e.

dL(t,T,8) = oL(t,T,S)dW,, 0<t<T,

hence L(t,T,S) = L(0,T,S)e"Wt=o"t/2 where (W,),cr, is a standard
Brownian motion under I@’S.
3. We find
Fy, = P(t,S)E[(x — L(T, T, S))* | F]
= P(t, S)B[(r — L(t, T, S)e™ (T=0/20o(Wr=Woyt | 7]
= P(t, S)(r(~d_) — X,B(~d,))
= HP(ta S)¢(7d—) - P(tv S)L(tv T, S)Q(fd-#)
— kP(t, S)B(—d_) — (P(t.T) — P(t,$))®(~d1)/(S — T),

where e™ = L(t, T, S)e=7"T=1/2 42 = (T — )02, and

_ log(L(t, T, S)/k) n ovVT —t

d
+ oT —t 2 ’
and
q - log(L(t,T,5)/k) ovT —t

oI —t 2
because L(t, T, S) is a driftless geometric Brownian motion with volatility
o under the forward measure Pg.

Exercise 12.2

1. We have
dP(t,T})

BT rodt + CldBy, i=1,2,

and
P(I.T,) = P(t.T,) exp ( [ ras+ [ as L f T(Ci)QdS) 7

49
February 2, 2023 https://personal.ntu.edu.sg/nprivault/indext.html


https://personal.ntu.edu.sg/nprivault/indext.html

Solutions Manual
0<t<T<T;i=1,2, hence

log P(T, T;) = log P(t, T)+j r5d5+f ¢idB, — f (¢))%ds,

0<t<T<T;i=1,2 and
. 1 .
dlog P(t,T;) = rydt + (idB; — 5((;)24115, i=1,2.

In the present model
dry = 0dBy,

where (By)ier, is a standard Brownian motion under P, we have
G =—o(T; —t), 0<t<T;, i=1,2.

Letting ‘ _
dB; = dB; — (;dt,

defines a standard Brownian motion under P;, i = 1,2, and we have

P(T,Ty) P@t,T) L e
rirry = oy (I € = [ )
P(t,Th)

T PT >€P<f (6 = ¢)dB; ~ L(ci—cfws),

which is an F;-martingale under Py and under P 2, and

P(T,\Ty)  P(t,Ty) T 1 o7 .
nr )~ e e (<) @ - a4 [ @ - apas),

which is an F;-martingale under P .

2. We have
ft, 11, Tr) = Lo (log P(t, Ty) — log P(t, T1))
- ﬁf(m — 1) — (T —1)%).
3. We have
df(t, Ty, Tz) = *ﬁd]og (P(t,Ty)/P(t,T1))
= T i <(Cf,2 —¢})dB; — %((Q?)? _ (<t1)2)dt>
T <(Ct ¢H(dB} + ¢7dt) — %((Cf)z _ (Ctl)z)dt)
D —
50
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1 1
— g (@ - hast - (@ - ).
4. We have

[T, T, T) = —

7 o8 (P(T)/P(T.T3)

= T - gt (1€ - - @2 - (@as)
— T T) - (LT@? ~chas? - 5 1@ - c.3>2ds)
=TT - g ()@ - chamt 4 [ - cytas).

Hence f(T,T1,T5) has a Gaussian distribution given F; with conditional
mean

_ 1T 12
m= [T To) + 5 [, (62— ¢l)ds
under Po, resp.
1 T .
m= f(tv T17T2) 9 (Cg - C;)zd&
under P;, and variance

1
v mf( 2 - ¢l)ds.

Hence
(T —Th)E {e_-r‘ﬁ "V”ds(f(T1,T1:T2) - H)+‘Fi]

= (Ty = T)P(tTo) Bs [(f(T1, 11, T2) — 1)

2
= (Ty — T))P(t, T5) E» [(m +X - n)+‘ﬁ]
= (T — Ty)P(t,T») <ﬁe CTE L (= R)B((m— K)/v)> .
5. We have
L(T,Th,Ty) = S(T,T1,T»)
T 1 Ea (% - 1)
oo (P oo (J) @ - cam - 5 1@ - @as) -1)
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1 (P(tT)

iz (g e ()@ - cam - 5 (@ - @pas) 1)
1 P(t,Ty) - - A

o (e (J) @ - st g [ - cras) 1),
and by Ito calculus,

! P(t,Ty)
ds(t, Ty, Ty) = T — Ty d <P(t7T2)>

5 JZEZ;; <(<§ B+ (¢ -t — (¢ (cf)?)mf)

= <T2 1 7t S(t,Tl,Tg)) (¢} = B, + C2(¢2 — ¢Lydt)dt)
- <T2 5+ S(t,T1,T2)> (¢} — )dB! + ((C2)? — (¢))dt)
= <T2iT1 +S(t,T1,T2)> (¢ = ¢HaBE, te[0,Tu,

hence ﬁ + S(t,T1,T») is a geometric Brownian motion, with

-7 +S(T,11,T3)

= L Toa  ovipe L (T 0 o,
~ (g +semm oo ([T - a3 [ @ - @pas).
0<t<T<T.
6. We have

(T~ ) B [ 5 (LT, 70, T5) — )| 7
=(-T)E {e* I8t reds p(Ty, To) (L(Ty, T1, T) — n)*\ft]
7]

= P(t,T1,T2) E; 2 [(S(TLThTz) —K)

The forward measure Py is defined by

P, P(T3) ey
s @ <t<
[ ‘f‘} PO 0 0stsTy

and the forward swap measure is defined by

dPl 2 P(t Tg) 7]1 d
= Tsds <t<Ty.
]E{ \f,] pomyS BT 0St<T
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hence P, and IP; » coincide up to time 77 and (B?)tE[O,Tl] is a standard
Brownian motion until time 77 under P> and under P; 5, consequently
under P; 5 we have

L(T, T\, Ty) = S(T,T1,T»)

_ 1 +< 1 +S(t,T1_,T2)> eI (€ =caB— [T (¢l=¢2)as,

LTy \-T

has same law as

1 P(t7T1)eX—%Var[X] 1
Ty =Ty \ P(t,T) ’

where X is a centered Gaussian random variable with variance

[ cyas

Jt

given F;. Hence

(T, - TV E [e_ I reds (Lmy Ty, Ty) — H)Wft}
= P(t,T1,T>)

Ty r1 242

1 J7H(G = ¢3)%ds 1

Bl Ty, Ty), 2t e T —t).
x <T2T1+S(t‘ 1 1), T —t SRR SR !

Exercise 12.3
(i) We have
L(t, Ty, Tp) = L(0, Ty, Ta)els nOMWi=3 i@ g < ¢ <1y,
and L(t, T, T3) = b. Note that we have P(t,T5)/P(t,T3) = 14 b hence

Py =P3 =Py up to time 7;.
(ii) We have

B [en 1 rto (L(7y, T3, T) — W‘E}
= P(t,T)Es [(L(Ty, T2, ) — )F | F
— B F o @)dw2 =3 [ I s)Pds _ o+
= P(tT)E, [(L(t. Ty, To)eh Al — )" | T
= P(t, TQ)BI(K/7 L(t, Tl,T2)7 g1 (t), 0, T1 - t),

where 1 "

204\ _ B 2
o) = J, m()ds.
(iii) We have
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Pt,T) P(t, 1)
P(t,T1,T3)  6P(t,Ty) + 6P(t,T3)
_ P, Ty) 1
T 0P, Ty) 1+ P(t,T3)/P(t, T»)
1+ 6b

=——— (1+6L(t, T, T <t <T
6(5b+2)( +0L(t, T, T3)), 0<t<T,

and

P(t,T\,T3) P(t,Tz) + P(t,T3)
1
1+ P(t,Ty)/P(t,Ts)
1
+6b’

0<t< T (S.12.18)

th—t

(iv) We have

PLTY)  PT)
P(t,T1,T3)  P(t,T1,T3)
14 6b 1

= mu HOLTL ) ~ 5o s

S(t, T, Ts) =

) + 5b
We have

14 0b
2+ 6b

b
<S<t,T1,T3) - m)

=S, T, T3)o1 3(t)dW2,  0<t<Ty,

ds(t, Ty, Ts)

L(t Tl, Tz)’yl (t)dW,

At (t)thQ

with

b
0= (- spmmErm)
b
- <1 Thr (e 6b)L(t,T1,T2)) n®)
(L4 0)L(tTh, T)
= vrazoiemy '?
(L4 S)L(t, Ty, T)
= Grosen, )t

(v) The process (W?)icp, is a standard Brownian motion under Py and
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P(t, Ty, T3)Eq 5 [(S(T, T1. T3) — k)F | F)
= P(t, 712)131(.‘{7 S(t, 7117 1—‘2)7 5’1,3(t), O7 T1 — t),

where |71 3(¢)|? is the approximation of the volatility

1 (7 s, 1 (14005, Th, To) "
Tl—tjt lo1.3(s)l ds’Tl—tJf, <(2+6b)S(s,Tl,T3) (s)ds

obtained by freezing the random component of o1 3(s) at time ¢, i.e.

_ 1 A+ )L T T\ (T
OI’S(t)_Tl—t((2+5b)5(t,T1,T3)> L a(s)l"ds.

Exercise 12.4
1. We have

e It (p(1,5) — )"

T
]-'t] :VT:VOJrj0 av,
t t
= PO.T)Exr [(P(T,8) = 0)"| + [ €LaP(s,T) + | ¢5aP(s,S).
0 0
2. We have
dv; = d (e Iy,
= —rie” Jo redsyidt 4 e~ I reds gy,
= —re o rds (eI P(t, T)
+€5P(t, S))dt + e~ I 4L APt T) + e~ Jo medseSdp(t, §)
=¢ldP(t,T) + & dP(t, S).

3. By Itd’s formula we have

Er [(P(T.8) - n)" || = C(Xz,0,0)
= C(Xo,T,v(0,T)) + f; %(Xs, T — s5,v(s, T))dX,

= Er [(P(T,8) - 0] + | ¢

o E(X57 T —s,v(s,T))dXs,

since the process
te By [(P(T,8) - 1) |7

is a martingale under P.
4. We have

dv, = d(V,/P(t,T))
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= dBr [(P(T,8) - 1) | 7]

oC
= BT(XMT — t, U(t, T))dXL

_ P(t,8) 9C
T Pt,T) oY

T —t,v(t,T)) (o —ol)dBE.
5. We have

Vi = d(P(t,T)V})
= P(t,T)dV; + VidP(t,T) 4+ dV; - dP(t,T)

— P(t, ) ‘ZC (X0, T — £, 0(t, T))(05 — oT)dBY + VdP(1,T)
+P(t, S)gc(Xt,T—f o(t, T))(of — ool dt
— P, ) ZC (X0, T — t,0(t, T))(0F — oT)dB, + VidP(L, T).

6. We have
AV, = d(e= I 45y
= —re” fJ i dswdt + e Jimsdsqy,
= P, S) (Xt, —t,v(t, 7)) (0 — o7 VdB, + VidP(t, T).

7. We have

dv, = P(t,8) ZC(Xt,T—t,v(t,T))(otS —ol)dB; + VidP(t,T)
= Z—C(X“T —t,0(t,T))dP(t,S)
P(t,S) oC
T P(t,T) 0z
(. P@S)oC
- < TP, T) 0z

(X, T —t,0(t,T))dP(t,T) + VidP(t,T)

— (X4, T —t,0(t, T))) dP(1,T)
+%(Xtv T —t,0(t,T))dP(t,S),

hence the hedging strategy (¢7, {f)tE[O,T] of the bond option is given by

& = Vim D 5o (KT = to(t.T))
. P(15) 0C
= O T 00t 1) — s 5o (KT = £0(0.T))
and
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gtS = %(XMT - tﬂ)(t,T)),
te[0,T).
8. We have
2 )
0 u\/T 1 z vy/T 1 x
=% [x@ <T+ﬁlog;> — kP <7T+ mlog;)}
0 v\/T 1 x 0 vy/T 1 z
= zadf' (T+ mlog;) —fc%@ <— 3 + v\/?log;>
+& (# + u\% log %)
(R ) (- enmeer)’
e e
- Var <mﬁw>’“ Var <v¢ﬁ>
+& (# + # log%)
_(log(z/k) + Tv?/2
)
As a consequence we get
€ = C(X,, T — t,0(t,T)) - ig % %(Xt,T —t0(t,T))
_ P(t,S)q) <(T7t)vz(t,T)/2+logXt>
P(t,T) VT —to(t,T)
v(t, T) 1 P(t,9)
e <7 > o) 8 ﬁP(t,T))
7P(t7S)¢ (log(Xt/ﬂ) + (T — t)vz(t,T)/2>
P(t,T) VT —tu(t,T)
b <log(Xt/n) —(T - t)vQ(t,T)/Q)
v(t, T)VT —t ’

and

log(X:/k) + (T — t)v3(t, T)/2> ~

. 9C
S = (X, T—t,0t,T)) =9
& = L0 - ot = v e

t € [0,77], and the hedging strategy is given by

Ve = [e_ §reds (p(T, 8) — k)t

7]
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=Vo+ [ €1aP(s,T) + [ €8aP(s,5)
o (B ) — (-T2
=i [ O TWT 1 )P
log(X,/%) + (T — 1)02(1,T)/2
Lo (e

Consequently the bond option can be hedged by shortselling a bond with
maturity 7" for the amount

log(X;/k) — (T — t)v2(t,T)/2
'@( v(t, T)VT —t ) ’

and by buying a bond with maturity S for the amount

® <log(Xt//1) + (T — )2 (¢, T)/2>
o(t, T)VT —t ’

) dP(s, S).

Exercise 12.5
1. We have

T i 1 (T:
S(T“T“’TJ) = S(t,Ti7T]‘) exp (L aiyj(s)dB;J — 5 L

2(s)ds) .
2. We have

P(t.T, 1) By, [(S(T. T 1) - )| 7]

= P(t, T}, T)) B |:<S(t7Ti7Tj)ef¢,T" iy ()dBY —4 [T |oi ;P ()ds _ ﬁ)+ ’}-t}

= P(t,T;,T;)Bl(x,v(t,T;)/VT; — t,0,T; — t)
= P(t-,TivT]')

x (S(t.,Ti,Tj)a5 <% + ”“f”) o (% - ”“’f”)) :

where "
v2(t, T}) :L loi;|2(s)ds.

3. Integrate the self-financing condition (12.25) between 0 and ¢.
4. We have

dv; = d<6—j'0‘rsdsvt)

= —re” fnf “‘dsv‘dt T+ fﬂ' 'r",dsd‘/t
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J J
= —re T BN ER P Ty dt + e o N eRdP (1, T
k=i k=i

J
> &dP(t,Ty),  0<t<T.
k=i

since

dP(t,Ty)
5. We apply the It6 formula and the fact that

=G(dt,  k=i,....]

t By [(S(5. 00 T) — w)*

7

and (S;)ier, are both martingales under P
6. Use the fact that

V, =E;; {(S(TuTi,Tj) -r)* ‘]:t] )
and apply the result of Question 5. R
7. Apply the Ito rule to V; = P(t,T;,T;)V; using Relation (12.23) and the

result of Question 6.
8. We have

ocC
AV = 8,5 (Su0(t.T))

x (Z(Tm = T) P(t, Ti1) (G (1) — Gea (1) + P, T) (G (1) — Q(ﬂ)) dB;
k=i
+VidP(t, T;, Ty)

oC
= Sta(st,v(t,Ti))

x (Z(Tml = T) P(t, Ter 1) (G (1) — Grrr (1)) + P TH) (G () — (j(ﬁ)) dB,

k=i
i1
VD (Tisr = Te)Crpa ()Pt Tir1)dBy
k=t
aC =
=S (S, 0(t,T3) p_(Tewr = Te) P(t Ties1) (Gilt) = Cr1(¢))d By
k=i

aC
+%(5t7”(t’Té))P(LTj)(Ci(t) —¢;(t))dB;
j—1
Vi (Tirr = Ti)Gra () P(t, Thoy1)dB
k=i
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Jj—1
= SGi(t ) Sf, (t,T3)) (Te41 — Tx)P(t, Tt1)d By
ot
*Sz*(sz v(t,T3)) ) (T — Ti) P(t, Thor1)Crra (£)d By
k=i
oC
+%(St,U(t-,Ti))P(t»Tj)(Ci(t) = G(8)dBe
j-1
V2D (Tirr = Ti)Gria () P (1, Ty )dBy
k=i

1
(Thotr — Tie) P (¢, Thot1)d By

<.

= 5,60 00 (5 0(t )

k=i

j—1
" (v - s,%(s,,,va,m)) S (Tier = T P( T o (0B,
k=i

+%(va”<t7Ti>>P<tJy->(<i<t) — ¢;(t))dB..

9. We have

dv, = Stg(t) (St,u(tT)Z(TkH Ti)P(t, Tpo41)dBy
k=1
j—1

+ <Vf - St%(&»ﬂhﬂ))) Z(Tk+1 — Ti)P(t, Tos1) Gt (1) d By
k=i
+ 0 (S (t, T) P TG G0

= (P(t,T}) - P(t, T))Cf(t) (va (t,T:))dB

+ (- s%wt,v(t,m)) aP(.T, T))

52 (51,0t T PTG — G ()4,
= (@OP.T) - GO P(T) 5 (51 (. T))B,

(
+ (- 85260001 ) a7, )
= 2% 50t )P T) ~ P(T)
+ (V- 815550000, ) dP(e T, T,
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10. We have

oC 0 v 1 x v 1 T
%(m,r,v) =% [z@ (5 + ;log E) — kP (—5 + ;1og E)}

0 v 1 z 0 v 1 T v 1 z
71%45<§+;10g;) 7n%45<f§+;10g;>+¢<5+;10g2>

~3(3+31082)°

e ( 1 > e~3(-grdioez)’ < 1 >
=T -k | —
V2 VX V2 VT
1
+ <E + —log E)
2w K
W <log(w/m> . g) .
v 2
11. We have

Vi = 9 (Suy ot TNA(P(,T3) ~ PG T3)

; (VL - sf—c<shv(tﬁm>) 4P(.T,,T;)

oz
-7 (% - U(tém> d(P(t,T;) = P(1,T))
o () T apie 7, 7).

12. We compare the results of Questions 4 and 11.

Chapter 13

Exercise 13.1 Defaultable bonds.

1. Use the fact that (r¢, A)sejo,7] is @ Markov process.

2. Use the “tower property” (16.22) for the conditional expectation given
Fi.

3. We have

R (X))
— _(Tf, + /\t)e— J'(Jb(r';+>\5)d51“_)(t7 T)df te J;Jb(r5+>‘-‘)d5dp(t7 T)
= —(r + N)e” SN P Tt 4 e~ Jo e tADS G (¢ vy, \,)

rt rt 8F
= —(ry + M)e” lo “s**s)dSP(t, T)dt + e~ Jo (Tﬁ%)dsa(t» T, Ag)dre
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oF 1 g 0’F
te= Jo(ratA)ds T2 8 (t,re, Ae)dN + 767 Jo (T"*)‘-‘)dsw(t,n,/\,,)Uf(t,rt)dt

+2 e Jo(retAs )dé (7‘ e, A )oa (t, Ay )dt
¢ 2F ¢ r
+e o <’s+*s>dspa—(t, ey Aoy () oa (t, A )dE + e~ o <Ts+*s>d5%(t, e, Ay )dt

dxdy
)
ox

— e Bt as O s () dBY 4 e A ”“ (t 71, A)o2(t, A )dBf

e . oF
e do (rstas)ds ( (re + M) P(t,T) + (f re, Ae)pa (t,7t)

£ e, A )oa(t, Ar)

10?%
—— (e, M)ot(t,re) + 3 ay -

oF 19%F
+0—(t re, Ae)pa(t, Ae) + = 5 a2
0*°F oF
+P6Tay(t, e, Ae)oi(tre)oa(t ) + E(tv Tt >\t)> dt,
hence the bond pricing PDE is
oF
—(z+y)F(t,x,y) + ul(t.x)a—(t.x y)

+ua(t, y) (f z,y) + 01(1‘ f)a 3 (t z,y)

. 6 F 0*F oF
204 P ” _
+§02(t7 ‘/) 6 B (t T, U) +p01(t ‘L)UQ(t y)a 8 ( 7‘T¢y) + ot (t¢’t~,/\t) =0.
4. We have
i _Llr s
fo reds = . (UB, — rt)
_ 9 (p) _ (t —at-s) p01)
= (B,, f e dB!
o t
_ v _ —a(t—s) (1)
=7 [ (1= em B,
hence

LT reds = jOT reds — jot reds

o T o (t
— _ —a(T—s) @ _ ¢ _ —a(t—s) (1)
’ fo (1—e yaB — 2 fo (1—e )dB!
o t T
__Y —a(T—s) _ ,—a(t—s) (1) —a(T—s) _ (1)
. <f0 (e e )dB! +j (e 1)dB¢ )
T
Y —a(T—t) _ —a(t—s) (1) _ —a(T—s) _ (1)
Z(e 1)j dB¢ aL (e 1)dB!

a
1
7a(T—t) _ _ Y —a(T—s) _ (1)
— (e re =2 e 1)dB{Y.
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The answer for \; is similar.
5. As a consequence of the previous question we have

T T
E Ut rods + . )\sds‘}}} = Cla,t,T)r + C(b,t, TN,

and
Var Uf rods + LT )\Sds‘]-',} =
= Var Uf reds
+2Cov (LT X,ds, LT sts‘]-})
o2 T

=2, (e’“(T’S) - I)st

T
]-'t} + Var Uﬁ Aods

7

N (T —a(T—s) _ 1y(o=b(T—5) _
+2pab . (e 1)(e 1)ds

2 T
- ~b(T=5) _ 1\24
+b2L (e 1)%ds
T T
ZUZL CQ(a7S,T)ds+2panL C(&S,T)C(b,s,T)ds
T
[ C2(b,sT)ds,

from the It6 isometry.
6. We have

T T
P(t,T)=1an B {exp <7L rods— | )\sds> ‘]—‘t}
T T
= 1751 €Xp (—]E {L rsds ]:t} -E {L Asds ft})
1 T T
X exp <§ Var [L 7'Sds+L )\Sds‘]-}]>

=15 exp (=C(a,t, T)ry — C(b,t, T)As)

2 T 2 7
X exp <% L C*(a,s,T)ds + % L C2(b, S7T)€71)(T—s)ds>

T
X exp <pm7L C(a,s, T)C(b, s,T)ds) .

7. This is a direct consequence of the answers to Questions 3 and 6.
8. The above analysis shows that
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T
P(r>T|G) = 1o B [exp (—L )\sds> ‘]—'t}
n* T 2
= 1oy exp <—C(b,t,T)/\t + EL C*(b, s,T)ds) ,

for a = 0 and

T 2 T
E {exp <7 J rsds> ‘]—}} = exp <7C(a,t,T)n —+ U—J C*(a, s7T)ds> ,

Jt 2 Jt
for b = 0, and this implies
T
U(t,T) = exp (pa’r)ft C(a,s.,T)C(b,s,T)ds)
= exp (p% (T —t—Cla,t,T) — C(b,t,T) + Cla+ b,t,T))) .

9. We have

dlog P(t,T)
or

2 2
=10 <rte*“<T*t> - %Cz(a,t,T) + Ae 2T %CQ(me))

f(th) = _1{T>t}

*1{7>t}PU7ZC(a7 2 T)C(b t,T).
10. We use the relation
T
P(r>T|G)=1snE {exp <7L )\Sds> ‘]—}]
(T s

=1,y oxp <7C(b,t,T)/\,, + ?L c (b,s,T)ds)
= 1{T>t}67 LT f2(t.u)du7

where f5(t,T) is the Vasicek forward rate corresponding to A, i.e.

2
Folt,u) = Ae™b(=0) — %02(1;, tu).

11. In this case we have p = 0 and

PLT)=P(r>T|G)E {exp (- N r5d5> ft] ,

since U(t,T) = 0.
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Chapter 14

Exercise 14.1

1. We have S; = Spe™ (1 +n)Vt, t € R,
Ny

2. We have S; = Spe"* H(l +nZk), t € R,
k=1

Exercise 14.2 We have

Var[Yy] = (Z Zy — YT]>
‘NT - k} P(Ny = k)

= ZE [(sz — XE[Z] )
=M Z /\nf" (Z Zy — ,\tlE[Zl]>2

n=0 k=1

_MZ A - {(Z Zk) _2)‘tE[Z1}iZk+)\2t2(E[Z1])2:|

k=1
n4n
_ —Atz A"t
=e —
=0 n:

xE [2 > ZZi+ i |Zi|? — 2ME[Z4) Zn: Zn + /\QtQ(E[Zl])Z}

1<k<i<n k=1 k=1

e A
=S
x(n(n — 1)(E[Z1])? + nE[|Z1|%] — 2n\(E[Z1])? + N2t2(E[Z1])%)

o]

- @)Y 2 e Bz Y

—2e"MAL(E[Z)] Zi A 7 + N2 3(E[Z1]))?)

= ME[|Z:]?],
or, using the characteristic function of Proposition 14.3,

Var[Yr] = E[|Y7[?] — (E[Y7])?
- % E[e ] ja=0 — N’t*(E[Z1])
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=t [ lyPPu(dy) = ME[Z: ).

Exercise 14.3
1. We have

ds, = (u + %H) Sydt + a8, dWy + (S; — S;- )dN,

= <u + 302) Sydt + 08, dWy 4 (Sl HoWetYe _ g enttoWetYioyq N,

= (;4 + %02> Sidt + o SpdWy + (Soe““r"w*“/ﬁ*z”t — etttoWitYio )d N,
= <u + %ﬁ) Spdt + 0.8, dWy + - (eZN — 1)dNy,

hence the jumps of S; are given by the sequence (e?*

2. The discounted process e~"*S; satisfies

— l)kzl-

1
d(e7"S) =e " <;4 —r+ 502> Sidt+oe "t S dWy4-e S, - (eZNf —1)dNy.

Hence by the Girsanov theorem, choosing u, A, 7 such that
1, 3 z
p=r+g0 =u—AEp[e” —1],
shows that
d(e™8}) = e S, (dWi+udt)+e Sy ((€ZM —1)dN; — A B [e?1 —1]dt)

is a martingale under (P, 5 ;).
Exercise 14.4
1. We have

N Ny
St=Sge“tH(l+Yk) = Sy exp (/lt‘i‘ZXk) s teRy.

k=1 k=1

2. We have
Ny
e S, = Spexp ((ur)t+ZXk> , teRy,
k=1

which is a martingale if
0=p—7r+AE[Yi] =p—r+AE[eX 1] :pfrwt)\(e"j/z —1).
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3. We have

e T D E[(Sr — k)T | 8]

N, +
e "I 1g (So exp (;AT + Z Xk> — K])

k=1

St

= e m(T=1) i E {(Ste“(TftHE::l X _ n>+ ‘St} P(Np — Ny =n)

n=0
e n + T — n
= e (N @) Z]E [(Steu(T—zHZk:l Xr K) ‘St:| (A( : t))
n.
n=0
AT Z BI(S;eIT=0410/2 o2 17 _ ) o 7 ) (/\(T: ?))
n=0 n:
> T — )"
— NIt Z (Ste(u—r)(T—t)+na2/2¢(d+) _He—r(T—t)¢(d7)) (\( - ) ’
n=0 :

with

B log(Syeh=mT=04n0"/2 /)y 4 (T — t) + no2/2

dt Vno
_ log(Si/K) + (T — t) + no?
n Vno ’
P log(S;et=/T=0+n9%/2 /)0y 4 (T — 1) — no?/2

Vno
_ log(Si/r) + (T 1)
Y

and g =7+ A(1 —e”/2).

Chapter 15

Exercise 15.1

1. Independently of the choice of a risk-neutral measure P, 5 ; we have

e " TR, 5,8t — K | Rl =e"E, 5 le""Sr | ] - Ke ")

(w7
_ erf,efrtSL _ Kefr(Tft)
=8, — Ke 7T
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= f(t7 St)7
for
ft,x)=x— Ke(T=t), t,x > 0.

2. Clearly, holding one unit of the risky asset and shorting a (possibly frac-
tional) quantity Ke™"7T of the riskless asset will hedge the payoff Sy — K,
and this hedging strategy is self-financing because it is constant in time.

3. Since %(t,z) =1 we have

ﬁ%ﬂn&4+géwuﬁﬁﬂ+aﬂ—ﬂ“&”)
o2 + a2\

& =

by
2+ 25, (1+a) - S;-)
5,

B 02 + a2\
=1, t € [0,77,
which coincides with the result of Question 2.
Exercise 15.2
(i) We have
1, N,
Sy = Spexp | pt + 0B, — 59 t)(1+n)™.

(if) We have
= 1
Sy = S exp ((p —-r)t+oB; — §o2t> 1+,
and

dSy = (p — r + An)Sydt + 1S,- (AN, — \dt) + 05, dW;,

hence we need to take
w—r+An=0,

since the compensated Poisson process (Ny — At)icr, is a martingale.
(i) We have

e TTTOE[(Sp — k)T | 8]

1 +
= ¢ "T-E* |:(SO exp (/,LT + 0B — 502T> (1 +n)Nr — /{) ‘St

o |:(SteM(T—t)Jra(BT—BL)—énz(T—t)(1 4 p)NeNe _ N)+ ‘St:|
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e (T Z P(Np — Ny =n)
n=0

<E* |:(SL6;L(T—f,)+(r(Bq-—Bt)—%vz(T—t)(1 ) — K)* ‘SL:|

() (T—1) Z - t)

n=0

xE* |:(Ste(T*MI)(T*t)Jr’f(BT*Bt)*5‘72(7“*”(1 +n)t = /<L>+ ‘St:|

—ANT—t) Z BI(S,e= T=0(1 4 )", v, 02, T — £, ) (T —' t))
n=0 n
— —/\(1 t) Z (Sfe n(T t)(l +n)n¢(d+) _ ﬁ€7T<‘[ —t) @(d )) ()\(Th; t)) ,
n=0 )
with
g - log(Sye=AT=0(1 4+ n)*/k) + (r + 02 /2)(T — t)
T oyl —1
_ log (S (1 +n)"/K) + (r — )\7]+02/2)(T—t)
oyl —t
and
0 — log(S;e ™ T=0 (1 + )" /x) + (r — a2/2)(T — 1)

ovT —t
_ log(Se(1+n)"/k) + (r —dn—o*/2)(T — 1)
n oyl —1 '

Exercise 15.3

1. The discounted process S; = e~ "S, satisfies the equation
dS; = Yn,Sp-dNy,,

and it is a martingale since the compound Poisson process Yy,dN; is
centered with independent increments as IE[Y;] = 0.

2. We have
Nr
ST = S()GTT H(l + Yk),
k=1
hence

k=1

Nr +
e "TE[(Sr — k) =eTE <soe"'T [Ta+w) - n)
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n=0

oo Nt +
=Y E (soeTT [[a+ve)- /{) (NT =n| P(Nr =n)

k=1

4
oo n
AT)"
= TAT Z]E <SO(37'T H(l +Yi) — H) Q0" 'n')
k=0 k=1 a

B N N o N L g ’
=TT ] Ll<--Ll Soe " [[(+ye) =5 | dyy---dy,.
k=0 : k=1
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