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Abstract—RF-enabled wireless power transfer and energy
harvesting has recently emerged as a promising technique to
provision perpetual energy replenishment for low-power wireless
networks. The network devices are replenished by the RF energy
harvested from the transmission of ambient RF transmitters,
which offers a practical and promising solution to enable self-
sustainable communications. This paper adopts a stochastic
geometry framework based on the Ginibre model to analyze the
performance of self-sustainable communications over cellular net-
works with general fading channels. Specifically, we consider the
point-to-point downlink transmission between an access point and
a battery-free device in the cellular networks, where the ambient
RF transmitters are randomly distributed following a repulsive
point process, called Ginibre α-determinantal point process
(DPP). Two practical RF energy harvesting receiver architectures,
namely time-switching and power-splitting, are investigated. We
perform an analytical study on the RF-powered device and derive
the expectation of the RF energy harvesting rate, the energy
outage probability and the transmission outage probability over
Nakagami-m fading channels. These are expressed in terms of
so-called Fredholm determinants, which we compute efficiently
with modern techniques from numerical analysis. Our analytical
results are corroborated by the numerical simulations, and the
efficiency of our approximations is demonstrated. In practice,
the accurate simulation of any of the Fredholm determinant
appearing in the manuscript is a matter of seconds. An interesting
finding is that a smaller value of α (corresponding to larger
repulsion) yields a better transmission outage performance when
the density of the ambient RF transmitters is small. However,
it yields a lower transmission outage probability when the
density of the ambient RF transmitters is large. We also show
analytically that the power-splitting architecture outperforms the
time-switching architecture in terms of transmission outage per-
formances. Lastly, our analysis provides guidelines for setting the
time-switching and power-splitting coefficients at their optimal
values.
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I. INTRODUCTION

Wireless communication powered by energy harvested
from the natural environment, e.g., wind and tide, or power
sources such as wireless energy transmitters has enabled self-
sustainable communications maintaining and operating in an
autonomous manner, without human intervention [1]. Self-
sustainable communications, understood to integrate various
technologies including signal processing, circuit design, power
scavenging and management, etc., is envisioned to be the next
momentous development in the green mobile ecosystem. The
technologies will pave the way towards emerging paradigms
such as Internet of things (IoTs) [2], machine-type communi-
cations (MTC) [3], and autonomous sensor networking [4].

Energy efficiency and perpetual maintenance are two critical
issues in self-sustainable communications. Accordingly, si-
multaneous wireless information and power transfer (SWIPT)
and RF energy harvesting techniques [5]–[7] have recently
emerged as a practical and effective solution. On one hand,
energy efficiency is significantly improved by recycling the
ambient RF signals that are not captured by the intended
receivers. On the other hand, extracting energy from RF
signals that pervasively exists in wireless communication
systems renders perpetual maintenance and even battery-free
implementation for low-power energy-constrained electrical
equipments [8], such as IoT sensors and radio frequency
identification (RFID) tags. Moreover, as the wireless energy
is carried by the same RF signals that delivers wireless infor-
mation, RF energy harvesting becomes a particularly suitable
alternative technique for replenishing wireless communication
devices [9], [10].

Recently, SWIPT has drawn great research attention and
been intensively investigated, e.g., in point-to-point chan-
nels [11], broadcast channels [12], relay channels [13], multi-
antenna channels [14], [15], OFDMA channels [16], op-
portunistic channels [17] and wiretap channels [18]. More-
over, cooperative SWIPT in distributed systems have been
investigated in [19]. There has also been a growing interest
in exploring SWIPT with full-duplex techniques [20], [21].
For hardware implementation, as reviewed in [22], various
prototype platforms have been demonstrated for ambient RF
energy harvesting, e.g., from cellular networks and digital
TV signals, which indicates the practicality of self-sustainable
operation of real devices by optimizing their duty cycle. For
example, a recent measurement in [23] reported that an RF-to-
DC conversion efficiency of 40% and an output dc voltage of
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224 mV can be achieved by a dual-band RF energy harvester
for GSM-1800 and UMTS-2100 bands. The emerging self-
sustainable communications with RF energy harvesting has
found its applications in low-power wireless systems, such as
RFID systems [24], [25], wireless renewable sensor networks
[22], body area networks [26], [27], and backscatter commu-
nication systems [28]–[30]. RF-powered communications is
also expected to have a profound impact on the development
of IoT [31] and machine-to-machine communications [32].
The readers are referred to the recent survey in [33] for
detailed overview of existing applications of RF-powered
communications and envisioned future applications.

A. Related Work

Recently, there have been growing interests from academia,
industry, and standardization bodies on investigating RF en-
ergy harvesting. The existing efforts have primarily focused on
the hardware circuit design to improve the energy harvesting
efficiency as well as the resource allocation and performance
analysis in wireless networks with RF energy harvesting. An
up-to-date survey on the advance of RF powered communica-
tion networks can be found in [34].

For statistical modeling of large-scale RF energy harvesting
networks, stochastic geometry is a suitable tool that models
random spatial patterns by a point process. Poisson point
processes (PPPs) have been widely adopted to model the
spatial configuration of various types of wireless networks with
RF energy harvesting. The existing literature has primarily
focused on cellular networks and relay networks. The authors
in [35] characterized the tradeoffs among transmit power
and density of mobile devices and wireless power beacons.
The distributions of mobile devices and power beacons are
modeled as two homogeneous PPPs. In [36], the authors
investigated the transmission probability and the coverage
probability of the uplink transmission in a multiple-tier cellular
network. As for relay networks, the authors in [37] analyzed
the outage performance and the average harvested energy for a
large-scale network with transmitter-receiver pairs distributed
as a PPP. A random relay selection scheme was analyzed
for randomly located relay nodes distributed following an
independent PPP. In [38], the authors derived the probability
of successful data exchange and the network lifetime gain in
a two-way network coding enabled relay network modeled by
PPPs, where the relay node is powered by the RF information
sources. The authors in [39] applied PPP modeling to analyze
relay strategies in a randomly located network. The outage
probability and diversity gain have been characterized for three
different relay strategies to facilitate a comparison of their
performance.

Moreover, the research efforts have also investigated RF
energy harvesting in cognitive radio network [40] and device-
to-device (D2D) networks [41]. Reference [40] considered
the scenario wherein a secondary cognitive sensor network
opportunistically harvests energy from the transmissions of
the primary network. The authors optimized the maximum
throughput of the secondary network under the constraints of
an outage probability for both networks, which were modeled

as two independent PPPs. The study in [41] investigated
D2D communication powered by the RF energy from the
overlying cellular networks. By modeling the cellular base
stations, mobiles, and D2D devices as three independent PPPs,
the authors derived the network performance in terms of the
transmission probability and outage probabilities for both D2D
transmitters and cellular mobiles. In addition, reference [42]
studied a generic RF-powered network, where the wireless
nodes and the access points are distributed as two independent
PPPs. Given a successful information transmission probability
constraint, the authors maximized the spatial throughput for
wireless nodes in both battery-free and battery-deployment
cases.

Though the PPP offers a simple modeling framework with
analytical tractability, it fails to characterize the correlation
among the locations of the network agents. The weakness of
PPP modeling lies in the fact that the spatial points may be
located too close to each other due to their independence [43].
In real-world network scenarios, the distribution of network
components may exhibit repulsive behaviors. This repulsion
is indeed a common phenomenon in wireless systems, e.g.,
sensor networks [44]. An instance in real network design is
that RF transmitters such as cellular base stations, access
points, relay nodes and data sinks, are not deployed too
close to each other [45], [46], which is evidence of repulsive
behavior.

Recently, the Ginibre point process (GPP) [47], which is a
type of repulsive point process, has been advocated to model
random phenomena where repulsion is observed, e.g., in [48]
and [49]. Existing studies have applied the GPP [50], the α-
GPP [51], and the β-GPP [48], [52] to model locations of base
stations in conventional wireless networks. Our previous work
in [49], [53] utilized a Ginibre determinantal point process
to model the distribution of ambient RF transmitters in a
wireless powered sensor network with deterministic propaga-
tion channels. However, the closed form expressions of the
considered performance metrics are not available. Instead, we
were able to provide the lower bounds of the performance
metrics which were interpreted as the worst-case performance.
In this work, we consider a cellular network with general
fading channels and, using a conditioning technique inspired
by the seminal work of [43], we analyze the general-case
network performance and provide good approximations of the
performance metrics.

B. Motivations and Contributions

For self-sustainable communications, interference from am-
bient RF transmitters impairs the capacity of communications.
However, the interference is also instrumental for an RF-
powered device, as it can be converted to useful energy.
To understand the role of the interference, it is critical to
analyze how the RF signals from randomly-located ambient
RF transmitters, e.g., cellular mobiles, impact the overall
performance of self-sustainable communications. Moreover,
most of the existing literature only considers either SWIPT
(e.g., in [11] and [12]) or ambient RF energy harvesting (e.g.,
in [41] and [49]). However, in real networks, it is not practical
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to perform only SWIPT from a dedicated RF energy source
without the consideration of ambient RF transmitters. This
is because an RF energy harvester is designed to work on
certain frequency band(s), e.g., 900MHz or 1800MHz. Any
received RF signal within the range of the target frequency of
the energy harvester will be converted into energy, as long as
the input power density exceeds the sensitivity of the rectifier.
Therefore, we aim to study a realistic network scenario,
where a decided energy source performs SWIPT coexists
with ambient RF energy transmitters to be energy sources
of an RF-powered device. Additionally, the distribution of
ambient RF transmitters may demonstrate various patterns in
different environments. It is interesting to investigate how
the distribution of the ambient transmitters influences the
performance of an RF-powered device. To this end, we adopt a
novel repulsive point process called Ginibre α-determinantal
point process (DPP) to model the network distribution. The
factor α is able to capture different degrees of repulsion among
points, and also covers the Poisson point process (PPP) when
α = 0. These are the main motivations behind our study in
this work.

In this paper, we investigate the performance of self-
sustainable communications with RF energy harvesting over
cellular networks. Specifically, we consider the point-to-point
downlink transmission from a base station or an access point to
a battery-free network device, which is powered by the energy
harvested from randomly-located ambient RF transmitters. Our
main contributions are summarized below.

• First, we derive the closed-form expectation of the aggre-
gated energy harvesting rate of the RF-powered device as
a function of the density of ambient transmitters. Numer-
ical results corroborate our closed-form expressions.

• Next, we analyze the energy outage probability, i.e. the
probability that the RF-powered device experiences a
blackout due to insufficient energy. Our derivation pro-
vides semi-closed form expressions for the energy outage
probability. By this we mean that the error committed in
the approximation is well-controlled and can be quanti-
fied mathematically, cf. e.g. Theorem 2. It is confirmed
by simulation that the expressions provide very accurate
estimation of the energy outage probability. The analysis
further shows that a larger repulsion among the ambient
transmitters reduces the energy outage probability.

• Furthermore, we study the quality of service (QoS) met-
ric, namely, the transmission outage probability, which is
defined as the probability that the RF-powered device is
unable to meet its information throughput requirement,
due to an insufficient transmit power and/or interference.
We again derive an expression for the transmission out-
age probability in semi-closed form, which matches the
simulation results. Our analysis shows that there exists
a tradeoff between the interference signal received by
the information receiver and the RF energy harvested
by the energy harvester. This tradeoff is significantly
influenced by the density of ambient RF transmitters and
the minimum throughput requirement.

Our mathematical contributions rely heavily on Lemma 1.

Fig. 1. A network model of downlink transmission for an RF-powered device
over a cellular network.

This powerful lemma allows us to give precise approximations
of the performance metrics in terms of Fredholm determinants,
which will be defined later in Section II-B1. To the best of our
knowledge, the computation of performance metrics by means
of Fredholm determinants is a novel technique, and is shown
to be an efficient way to compute the relevant quantities. The
algorithms used in this paper for the numerical computation
of Fredholm determinants of general operators improve the
state of the art. We obtain fast and reliable estimations of the
Fredholm determinants involved in our main results, compared
with the alternative of computing the performance metrics by
Monte Carlo estimation.

The remainder of this paper is organized as follows. Section
II describes the system model, the stochastic geometry model,
and the performance metrics. Section III estimates the perfor-
mance metrics of the RF-powered device over a cellular net-
work with randomly-located ambient RF transmitters modeled
as a Ginibre α-DPP. Section IV demonstrates the performance
evaluation results. Finally, Section V concludes our work.

Notations: Throughout the paper, we use E[X] to denote
the probabilistic expectation of a random variable X , P(A) to
denote the probability of an event A. Moreover, we use ||x||
to represent the Euclidean distance between the coordinate x
and the central point of the plane.

II. SYSTEM MODEL

A. Network Model

We consider an RF-powered device powered solely by the
energy harvested from the RF signals transmitted by ambient
RF transmitters. We assume that the ambient RF transmitters
are distributed as a general class of point processes, which
will be specified in detail in Section II-B.

It is further assumed that the RF-powered device is battery-
less. In other words, the device utilizes the instantaneously
harvested RF energy to supply its operations. We investigate
two co-located receiver architectures, namely, time-switching
and power-splitting [34], as shown in Fig 1. These two co-
located receiver architectures allow an energy harvester and
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(a) Time Switching Achitecture

(b) Power Splitting Achitecture

an information decoder to share the same antenna, and both
of them observe the same channel condition.
• Time-Switching Architecture: The time-switching archi-

tecture, shown in Fig. 2a, operates on a time-slot based
manner. That is, either the information receiver or the RF
energy harvester is connected to the antenna at a given
time. Specifically, this architecture first uses τ portion of
time to harvest energy. Then during the remaining 1− τ
portion of time, the RF-powered device uses the energy
reserved from the capacitor to decode information.

• Power-Splitting Architecture: In the power-splitting ar-
chitecture, shown in Fig. 2b, the received RF signals are
divided into two streams with different power levels for
the information decoder and RF energy harvester. The
power splitter is able to adjust the power ratio between
two streams. We denote the portion of RF signals flowed
to the energy harvester by ρ, and that to the information
receiver by 1− ρ.

In this work, we consider downlink SWIPT from the base
station or access point to the RF-powered device. For the
time-switching architecture, the device alternately performs
energy harvesting and information decoding. For the power-
splitting architecture, the device performs energy harvesting
and information decoding simultaneously. We assume that the
capacitors of the both architectures are lossless.

1) Time-switching Architecture: The RF energy harvesting
rate (in watts) by the device from the RF transmitter k in a
fading channel P kH is given by [54]:

P kH =
τβPShk
(dk)γ

, (1)

where β is the RF-to-DC power conversion efficiency of the
device, PS is the transmit power of the RF transmitter k, γ >
0 is the path-loss exponent, and hk represents the channel
power gain from the RF transmitter k to the device. For RF
propagation, we consider a general channel power gain model
following the gamma distribution with shape parameter δ and

rate parameter θ. In other words, hk are assumed to be i.i.d.
random variables verifying

hk ∼ Γ(δ, θ), δ, θ > 0.

Note that δ = 1 recovers the case hk ∼ Exp(θ). Lastly,
dk is the distance between the transmit antenna of an RF
transmitter k to the receiver antenna of the RF-powered device.
Let xk ∈ R2 be the coordinates of the RF transmitter k in a
referential centered at the RF-powered device. In our model,
dk = ε + ‖xk‖, where ε is a fixed (small) parameter which
ensures that the associated harvested RF power is finite in
expectation. Physically, ε is the closest distance that the RF
transmitters can be to the device.

Then, the aggregated RF energy harvesting rate by the
device equipped with time-switching architecture is modeled
as follows:

PTSH =
F

1 + F

∑
k∈K

P kH =
Fτβ

1 + F

(∑
k∈K

PShk
(dk)γ

+
PAhA
dγAA

)
,

(2)
where K is a random set consisting of all RF transmitters,
PA is the transmit power of the access point, dA represents
the distance between the transmit antenna of the access point
and the receive antenna of the RF-powered device, hA denotes
the channel gain between the transmit antenna of the access
point and the receive antenna of the RF-powered device, and
it is assumed that hA ∼ Exp(λA) for λA > 0. Here, F is
a random variable independent of K and hk, k ∈ K. It is
further assumed that F ∼ Exp(µ) for some constant µ > 0.
The coefficient F is chosen so that this random noise has an
expectation of 1. Namely, we set F := (−µ eµ Ei(−µ))

−1 so
that by the change of variable u ≡ µ(x+ 1),

E
[

F

1 + F

]
= F

∫ ∞
0

µ

1 + x
e−µx dx

= Fµ eµ
∫ ∞
µ

1

u
e−u du = 1, (3)

where here Ei is the exponential integral special function
defined by

Ei(x) := −
∫ ∞
−x

1

u
e−u du, x 6= 0.

Let us note that the coefficient F/(1+F ) is unusual; it can be
understood as a random noise (e.g. electrical or in the channel)
in the detection of the actual harvested energy. We assume that
K is a point process [55] independent of the hk.

The maximum transmission rate of the access point is
evaluated according to the following model1:

CTS =

{
(1− τ)W log2

(
1 + hAPA/‖xA‖γA

σ2+ξITS

)
if PTSH ≥ PC,

0 if PTSH < PC,
(4)

where W is the transmission bandwidth, σ2 is a nonnegative
constant which represents the power of additive white Gaus-
sian noise (AWGN). By analogy, xA represents the coordinates

1Note that state-of-the-art wireless information receivers are not yet able
to achieve this rate upper bound due to additional processing noise such as
the RF band to baseband conversion noise.
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of the access point in the referential centered at the RF-
powered device, PA denotes the transmit power of the access
point, and γA > 0 is the path-loss exponent between the
transmit antenna of the access point and the receive antenna
of the RF-powered device. The device consumes a base circuit
power, denoted by PC. Following practical models [56], the
circuit power consumption of the device is assumed to be
fixed. Here, ITS denotes the interference from ambient RF
transmitters at the transmission link of the access point, for
the case of time-switching, and can be evaluated as follows:

ITS =
∑
k∈K

PShk
(dk)γ

. (5)

Lastly, ξ ∈ [0, 1] is an interference coefficient, which repre-
sents the fraction of the total interference RF transmitters that
impacts the transmission rate. Specifically ξ = 0 corresponds
the case without interference and ξ = 1 is the worst case
wherein it is assumed that all RF sources contribute fully to
the interference at the access point.

2) Power-splitting Architecture: Analogously, the aggre-
gated RF energy harvesting rate by the RF-powered device
equipped in the power-splitting architecture in a unit time is
modeled as

PPSH =
F̄ ρβ

1 + F

(∑
k∈K

PShk
(dk)γ

+
PAhA
dγA

)
. (6)

In the power-splitting architecture, the downlink information
rate can be computed as [54]:

CPS =

{
W log2

(
1 + (1−ρ)hAPA/‖xA‖γA

σ2
SP+(1−ρ)σ2+ξIPS

)
if PPSH ≥ PC,

0 if PPSH < PC,
(7)

where σSP is the signal processing noise power. Here, IPS

denotes the interference from the ambient RF transmitter after
power splitting, which is modeled as

IPS = (1− ρ)
∑
k∈K

PShk
(dk)γ

. (8)

The main notations used in this paper are summarized in
Table I.

B. Geometric DPP Modeling of Ambient RF Transmitters

As an extension of the Poisson setting, we model the
locations of RF transmitters using a point process K on an
observation window O ⊂ R2 such that 0 < |O| < +∞. here
|O| denotes the Lebesgue measure of O. In other terms, K
is an almost surely finite random collection of points inside
O. We refer to [55] and [57] for the general theory of point
processes. In the aforementioned references are defined the
correlation functions ζ(n) of K w.r.t. the Lebesgue measure
on R2, and which verify

E

[
n∏
i=1

K(Bi)

]
=

∫
B1×···×Bn

ζ(n)(x1, . . . , xn) dx1 · · · dxn,

(9)
for any family of mutually disjoint bounded subsets
B1, . . . , Bn of R2, n ≥ 1. Heuristically, ζ(1) is the spa-
tial particle density, and ζ(n)(x1, . . . , xn) dx1 · · · dxn is the

probability of finding a point of the point process in the
vicinity of each xi, i = 1, . . . , n. The correlation functions
are thus a generalization of the concept of the probability
density function to the framework of point processes. The
correlation functions play an important role in the definition
and interpretation of a general α-DPP.

1) General α-determinantal point process: We let α =
−1/j for an integer j > 0, and we define a general α-DPP in
the following. Let us introduce a map K : L2(R2) 7→ L2(R2),
where L2(R2) is the space of square integrable functions on
R2. We assume in the following that K satisfies Condition A
from [58], recalled below.

Hypothesis 1. Assume that the map K is a Hilbert-Schmidt
operator from L2(R2) into L2(R2) which satisfies the follow-
ing conditions:

1) K is a bounded symmetric integral operator on L2(R2),
with kernel still denoted by K(·, ·);

2) The spectrum of K is included in [0, −1/α];
3) The map K is locally of trace-class (see [59] for a

proper definition).

The map K is called the kernel of the α-DPP. It represents
the interaction force between the different points of the point
process. A locally finite and simple point process on R2 is
called an α-DPP if its correlation functions w.r.t. the Lebesgue
measure on R2 (defined in (9)) exist and satisfy

ζ(n)(x1, . . . ,xn) = detα(K(xi,xj))1≤i,j≤n, (10)

for any n ≥ 1 and x1, . . . ,xn ∈ R2, where the α-determinant
of a matrix M = (Mij)1≤i,j≤n is defined as

detαM =
∑
z∈Sn

αn−ν(z)
n∏
i=1

Miz(i), (11)

where Sn stands for the n-th symmetric group and ν(z) is the
number of cycles in the permutation z ∈ Sn. We note that (11)
generalizes the usual definition of the determinant (obtained
for α = −1) and was initially introduced in [60].

Let us now give some basic properties of the α-DPP to
emphasize the role played by the kernel K. We start by
a proposition exhibiting the repulsion properties of the α-
DPP. Its proof follows from the definition of the correlation
functions (9).

Proposition 1 (Repulsion of the α-DPP). The covariance of
an α-DPP of kernel K is given by

Cov(K(A),K(B)) = α

∫
A×B

|K(x,y)|2 dxdy,

where K(A) and K(B) denote the random number of point
process points located within the disjoint bounded sets A ⊂ R2

and B ⊂ R2, respectively.

Since α < 0, K(A) and K(B) are negatively correlated and
the associated α-DPP is known to be locally Gibbsian, see,
e.g., [61], therefore it is a type of repulsive point process. As
α→ 0, K(A) and K(B) tend not to be correlated, and in fact
it can be shown that the corresponding point process converges
weakly to the PPP, cf. [58].
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TABLE I
NOTATIONS.

Symbol Definition
α Repulsion factor
β RF-to-DC power conversion efficiency of the RF-powered device
dk The distance between the transmit antenna of RF transmitter k and the receiver antenna of the RF-powered device
γ Pass-loss exponent
hA The channel gain between the access point and RF-powered device
hk The channel gain between the ambient RF transmitter k and RF-powered device
κ Minimum information throughput requirement
PC The circuit power consumption of the RF-powered device
PA The transmit power of the access point
Pk
S The transmit power of RF transmitter k ∈ K
PTS
H , PPS

H The RF energy harvesting rate of the time-switching and power-splitting architecture, respectively
ρ The portion of RF signals harvested by a power-splitting architecture
σ2 The power density of AWGN
σ2
SP The power density of signal processing noise
τ The portion of time a time-switching receiver working on energy harvesting mode
xi The coordinates of the RF-powered device
xk The coordinates of the RF transmitter k
W The bandwidth of the channel between the access point and RF-powered device
ξ Interference coefficient
ζ The spatial density of ambient RF transmitters

Next, we recall from [62] the following proposition which
gives the hole probabilities of the α-DPP. Proposition 2 allows
us to compute the quantities known as hole probabilities.

Proposition 2 (Hole probability of the α-DPP). For every
bounded set B ⊂ R2 we have

P(K ∩B = ∅) = Det(Id + αKB)−1/α, (12)

where KB(x,y) , 1B(x)K(x,y)1B(y), and 1B denotes
the indicator function of a set B. Here, Id is the identity
operator on L2(B) and for any trace class integral operator
K, Det (Id + αK) is the Fredholm determinant of Id + αK
which is defined as

Det(Id− αK)−1/α

=
∑
n≥0

1

n!

∫
detα(K(xi, xj))1≤i,j≤n dx1 · · · dxn, (13)

as long as |α| ≤ 1. (13) was obtained in Theorem 2.4 of [58],
see also [59] for more details on the Fredholm determinant.

Lastly, we recall from [58] the following proposition which
gives the Laplace transform of the α-DPP.

Proposition 3 (Laplace transform of the α-DPP). For any
ϕ : R2 → [0,+∞),

E

[
exp

(
−
∑
k∈K

ϕ(xk)

)]
= Det(Id + αKϕ)−1/α, (14)

where Kϕ is the Hilbert-Schmidt operator with kernel√
1− e−ϕ(x)K(x,y)

√
1− e−ϕ(y), x,y ∈ R2.

2) The Ginibre point process: In the rest of the paper, we
focus on the Ginibre α-DPP, which is a particular α-DPP well-
suited for applications. The Ginibre process is a type of α-
DPP that is invariant with respect to rotations. Therefore, it is
fruitful for computational convenience to restrict our attention
to the choice of observation window O = B(0, R), defined as
a disc centered around 0 and of radius R > 0.

The Ginibre process is defined by the so-called Ginibre
kernel given by

K(x,y) = ζ eπζxȳe−
πζ
2 (|x|2+|y|2),

x,y ∈ O = B(0, R), (15)

where ζ > 0 is a fixed parameter called spatial density of the
point process. This kernel is that of the usual Ginibre process
defined, e.g., in [47], to which we have applied a homothety
of parameter

√
πζ > 0: x 7→ x/(

√
πζ). The associated α-

DPP exists since the kernel (15) satisfies Condition A from
[58]. We begin by recalling a few key features of the Ginibre
process.
• The intensity function of the Ginibre process is given by

ζ(1)(x) = K(x,x) = ζ, (16)

cf. [58]. This means that the average number of points in a
bounded set B ⊂ B(0, R) is ζ |B|. Note that the intensity
function of a homogeneous PPP is also a constant, so ζ
is interpreted as the intensity of the corresponding PPP.

• The Ginibre α-DPP is stationary and isotropic in the
sense that its distribution is invariant with respect to trans-
lations and rotations, cf. [47]. Hence, the Ginibre point
process models a situation where the RF transmitters are
distributed homogeneously in the plane.

We note that the constant intensity (16) and the invariance
with respect to rotations might in some cases not be practical.
However, these hypotheses may be lifted. Namely, the kernel
(15) may be modified in order to account for an inhomoge-
neous spatial density, and all the main results of this paper
may be written in terms of the eigenvalues of the modified
kernel.

Next, we mention that the Ginibre α-DPP used here is
different from the so-called β-Ginibre process introduced in
[63] and used as a model for wireless networks in [48].
The Ginibre α-DPP (−1 ≤ α < 0) is a superposition of
−1/α independent copies of a Ginibre DPP with an intensity



7

multiplied by
√
−α, while the β-Ginibre (0 < β < 1)

is obtained by deleting the points of a Ginibre DPP inde-
pendently and with probability 1 − β and by applying a
homothety of ratio

√
β to the remaining points (cf. [63]).

Both classes offer a (different) parametrization of a range of
point processes between the Ginibre process and the PPP. We
also note that our calculations can be extended to the class
of β-Ginibre processes with no major technical difficulties.
Different variations of the Ginibre point process have been
successfully applied to model phenomena from wireless com-
munication, cf. [48], [50]–[52] among others. We choose here
the α-GPP instead of its alternatives since its construction
by superposition of independent repulsive processes yields a
natural physical interpretation of the repulsion as happening
on distinct independent layers, e.g. on 2 different frequency
bands for the (−1/2)-DPP. Additionally, we remark there is no
additional complexity involved in this choice and most results
will be expressed in terms of the Fredholm either way.

We write K ∼ Gin(α, ζ) when K is an α-DPP with the
Ginibre kernel defined in (15) and spatial density ζ. Since
K is a Hermitian compact operator, the spectral theorem for
Hermitian and compact operators yields the decomposition
K(x,y) =

∑
n≥0 λnϕn(x)ϕn(y), where (ϕi)i≥0 is a basis

of eigenvectors of L2(O), and (λi)i≥0 are the corresponding
eigenvalues. In, e.g., [47], it is shown that the eigenvalues of
the Ginibre point process on O = B(0, R) are given by

λn =
Γ(n+ 1, πζR2)

n!
, n ∈ N, (17)

where

Γ(z, a) ,
∫ a

0

e−ttz−1 dt, z ∈ C, a ≥ 0, (18)

is the lower incomplete Gamma function. Furthermore,
the eigenvectors of K are given by ϕn(z) ,

1√
λn

√
ζ√
n!

e−
πζ
2 |z|

2

(
√
πζz)n, for n ∈ N and z ∈ O. We

refer to [47] for further mathematical details on the Ginibre
point process.

Remark. Combining the contents of Section II-B1 and Sec-
tion II-B2, we summarize the main characteristics of the
Ginibre α-DPP, where α ∈ [−1, 0].
• The intensity function of the Ginibre α-DPP is ζ, cf. (16).

In other words the average number of points in a bounded
set B ⊂ B(0, R) is ζ |B|.

• The Ginibre α-DPP is stationary and isotropic.
• Letting A,B ⊂ R2 be two disjoint bounded sets, we have

Cov(K(A),K(B)) = αζ

∫
A×B

e−πζ‖x−y‖
2

dxdy ≤ 0,

by Proposition 1, which contrasts with the PPP wherein
the above covariance is zero.

C. Performance Metrics

We define the performance metrics of the RF-powered
device as the expectation of RF energy harvesting rate, average
energy outage probability, and average transmission outage
probability. The mathematical quantities of interest are then
defined in the following.

The expectation of the RF energy harvesting rate is defined
as EPH , E [PH] . Energy outage occurs when the RF-
powered device cannot harvest sufficient RF energy from the
ambiance to operate the circuit. The energy outage probability
is defined as Peo , P (PH < PC) . Moreover, we are interested
in the QoS metric defined as a transmission outage probability.
Let κ ≥ 0 denote the minimum information throughput
requirement. If the RF-powered device fails to obtain enough
throughput, it incurs a transmission outage. Note that the trans-
mission outage occurs in two cases, namely when there is an
energy outage, and when the decoded information throughput
is less than the minimum requirement under the condition that
there is enough harvested power. Therefore, the transmission
outage probability can be calculated as

Pto , P (PH < PC) + P (C < κ, PH ≥ PC) . (19)

The computation of the key performance metrics involve the
so-called Fredholm determinant introduced in Proposition 2.
The numerical computation of the Fredholm determinant is
a largely unexplored area, see the excellent survey [64].
The Fredholm determinants appearing in this paper (cf. for
example Theorem 2 and Theorem 3) involve 2-dimensional
Hilbert-Schimidt operators, whereby an adapted version of
the main (1-dimensional) algorithm of [64] is required. It
should be noted that the numerical evaluation of Fredholm
determinants is orders of magnitude faster than the alternative
Monte-Carlo techniques, cf. the rate of convergence obtained
in Theorem 6.2. of [64]. This heuristic is observed in the
algorithm that we used; the Monte-Carlo simulations were
much more time-consuming.

III. ANALYTICAL FORMULAS

In this section we estimate the metrics defined in Sec-
tion II-C when K ∼ Gin(α, ζ) is the Ginibre α-DPP with
parameter α = −1/j (for some positive integer j), and density
ζ > 0.

The performance metrics defined in the previous section
might be estimated by Monte Carlo simulation of the under-
lying α-DPP. Simulation of α-DPPs when α < 0 is done by
using the Schmidt orthogonalization algorithm developed in
full generality in [65], and specifically in [47] for the Ginibre
point process. The simple generalization of the algorithm to
α < 0 can be found in the survey [66], and additional details
on DPP can be found in [67].

The results from this section are primarily based on the
following lemma which is a generalization of the ideas from
[43] to the context of α-determinantal point processes.

Lemma 1. Let K ∼ Gin(α, ζ) and (hk)k∈N a sequence
of mutually independent and identically distributed random
variables, independent of K, and with moment generating
function denoted by

Mh(t) := E
[
eth1

]
, t ≤ 0,

defined on the nonpositive reals. Then for any nonnegative
ϕ : R2 → [0,+∞),

E

[
exp

(
−
∑
k∈K

hkϕ(xk)

)]
= Det (Id + αA)

−1/α
,
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where Det denotes the Fredholm determinant, A is the integral
operator with kernel,

A(x,y) =
√

1−Mh(−ϕ(x))K(x,y)
√

1−Mh(−ϕ(y)),

x,y ∈ R2, (20)

and K is defined in (15).

For brevity, the proof of Lemma 1 is presented in Appendix
I.

The Monte Carlo methods used to compute the quantities
in Section II-C can be time-consuming in practice, especially
when Monte Carlo estimation is repeatedly applied to multiple
values of the parameters. Thus, in many applications, it is
of major interest to have some (semi-)closed forms for the
performance metrics, which we now present. We will study
in more detail the time-switching architecture as well as the
power-splitting architecture in the following subsections.

A. Time-Switching Architecture

We start with the time-switching architecture. The expecta-
tion of RF energy harvesting rate is evaluated in the following
theorem, which is similar to Theorem 1 in [49]. Although there
is a slight overlap with our results in [49], we write here all
the details since the context is different and we proceed in a
different manner.

Theorem 1. The expectation of RF energy harvesting rate
in the time-switching architecture is explicitly computed as
follows:

E
[
PTSH

]
= τβ

(
PA

θA‖xA‖γA
+

2πζPSδ

θ

∫ R

0

r

(r + ε)γ
dr

)
.

(21)
Furthermore, the integral appearing in (21) has a closed form
given by

∫ R

0

r

(r + ε)γ
dr =

(ε2−γ−(R+ε)1−γ(ε+(γ−1)R))
(γ−2)(γ−1) if γ 6= 1 and γ 6= 2,

R− ε ln (1 +R/ε) if γ = 1,

ln (1 +R/ε)− R
R+ε if γ = 2.

(22)

The proof of Theorem 1 is shown in Appendix II.
We now give an expression of approximation energy outage

probability in the case of the time-switching architecture.
Note that the computation of the energy outage probability
is equivalent to that of the probability density function of
RF energy harvesting rate, computed at PC. Recall that in
Theorem 2, PTSH is given by (2).

Theorem 2. The energy outage probability is in the following
interval:

P
(
PTSH < PC

)
∈[(

1 +
µτβPAF

θAPC‖xA‖γA

)−1

Det (Id + αA)
−1/α

,

(
1 +

µτβPAF

θAPC‖xA‖γA

)−1

Det (Id + αA)
−1/α

+
(
1− e−µ

)]
,

(23)

where Det denotes the Fredholm determinant, A is the integral
operator with kernel

A(x,y) =

√
1−

(
1 +

µτβPSF

θPC(‖x‖+ ε)γ

)−δ
×K(x,y)

√
1−

(
1 +

µτβPSF

θPC(‖y‖+ ε)γ

)−δ
,

x,y ∈ R2, (24)

and where K is the kernel of the Ginibre determinantal point
process defined in (15).

We note that Theorem 2 implies the approximation

P
(
PTSH < PC

)
'
(

1 +
µτβPAF

θAPC‖xA‖γA

)−1

×Det (Id + αA)
−1/α

,

and the error is less than or equal to 1− e−µ which in turn is
bounded by µ.

The readers are refered to Appendix III for the proof of
Theorem 2.

Furthermore, we derive the transmission outage probability
in the setting of the time-switching architecture based on (4).

Theorem 3. The transmission outage probability of the time-
switching architecture may be approximated by (25), where
Am and Bm is given by (26) and (27), respectively, and K is
defined in (15).

Although the result of Theorem 3 is an approximation
of the transmission outage probability, it will be shown in
Section IV that the approximation is in practice very close to
the actual value. For brevity, the proof of Theorem 3 is shown
in Appendix IV.

B. Power-splitting Architecture

We now study the power-splitting architecture. From a
mathematical point of view, these two architectures merely
differ by a shift of the constants. Thus, the proofs in this
section will be corollaries of those of Section III-A and we
skip some details.

As in Section III-A, we begin by computing the expectation
of the RF energy harvesting rate, based on (6).
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P
(
CTS < κ

)
' 1− exp

(
−θAσ

2‖xA‖γA
PA

(
2κ/(W (1−τ)) − 1

))(
Det (Id + αAm)

−1/α −
(

1 +
µτβPAF

PC‖xA‖γAθA

)−1

Det (Id + αBm)
−1/α

)
,

(25)

Am(x,y) =

√√√√1−

(
1 +

θA‖xA‖γAPS ξ
(
2κ/(W (1−τ)) − 1

)
θPA(‖x‖+ ε)γ

)−δ
K(x,y)

√√√√1−

(
1 +

θA‖xA‖γAPS ξ
(
2κ/(W (1−τ)) − 1

)
θPA(‖y‖+ ε)γ

)−δ
,

(26)

Bm(x,y) =

√√√√1−

(
1 +

θA‖xA‖γAPSPC ξ
(
2κ/(W (1−τ)) − 1

)
+ µτβPSPAF

θPAPC‖(x‖+ ε)γ

)−δ

×K(x,y)

√√√√1−

(
1 +

θA‖xA‖γAPSPC ξ
(
2κ/(W (1−τ)) − 1

)
+ µτβPSPAF

θPAPC(‖y‖+ ε)γ

)−δ
, (27)

Theorem 4. The expectation of RF energy harvesting rate in
the power-splitting architecture is explicitly computed as

E
[
PPSH

]
= ρβ

(
PA

θA‖xA‖γA
+

2πρPSδ

θ

∫ R

0

r

(r + ε)γ
dr

)
,

(28)
where the integral appearing in (28) has a closed form given
by (22).

Proof of Theorem 4. We simply note that the expression of
PPSH given in (6) is simply PTSH with τ replaced by ρ. Hence
Theorem 1 directly yields the result.

Next, we give an expression of the energy outage probability
in the case of a power-splitting architecture.

Theorem 5. The energy outage probability is in the following
interval:

P
(
PPSH < PC

)
∈[(

1 +
µρβPAF

θAPC‖xA‖γA

)−1

Det (Id + αA)
−1/α

,

(
1 +

µρβPAF

θAPC‖xA‖γA

)−1

Det (Id + αA)
−1/α

+
(
1− e−µ

)]
,

(29)

where Det denotes the Fredholm determinant, A is the integral
operator with kernel

A(x,y) =

√
1−

(
1 +

µρβPSF

θPC(‖x‖+ ε)γ

)−δ
×K(x,y)

√
1−

(
1 +

µρβPSF

θPC(‖y‖+ ε)γ

)−δ
,

x,y ∈ R2, (30)

and K is defined in (15).

Proof of Theorem 5. We note that by the same arguments as
in the proof of Theorem 4, Theorem 2 yields the result.

Then, based on (7), we compute the transmission outage
probability in the power-splitting architecture.

Theorem 6. The transmission outage probability in the setting
of the power-splitting architecture is given by (31), where Am
is the integral operator with kernel

Am(x,y) =

√√√√1−

(
1 +

θA‖xA‖γAPS

(
2κ/W − 1

)
θPA(‖x‖+ ε)γ

)−δ

×K(x,y)

√√√√1−

(
1 +

θA‖xA‖γAPS

(
2κ/W − 1

)
θPA(‖y‖+ ε)γ

)−δ
,

x,y ∈ R2, (32)

and Bm is given by (33), and K is defined in (15).

Proof of Theorem 6. It suffices to notice that the expression of
the maximum transmission rate CPS given in (7) is precisely
CTS with W (1− τ) replaced with W , PA replaced with (1−
ρ)PA, and σ2 replaced with σ2 +(1−ρ)σ2

SP . Theorem 3 thus
applies whilst applying the mentioned replacements.

IV. PERFORMANCE ANALYSIS

In this section, we examine the validity and perform the
analysis of the expressions derived in the previous section
through numerical simulations. The network simulations in
this paper are considered in the scenario of an LTE-A network,
where an eNB performs downlink SWIPT to an MTC device
enabled with RF energy harvesting capability. The overlaid
network structure of MTC over cellular network has provided
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P(CPS < κ) '1− exp

(
−
θA

(
σ2 + σ2

SP /(1− ρ)
)
‖xA‖γA

PA

(
2κ/W − 1

))

×

(
Det (Id + αAm)

−1/α −
(

1 +
µρβPAF

PC‖xA‖γAθA

)−1

Det (Id + αBm)
−1/α

)
, (31)

Bm(x,y) =

√√√√1−

(
1 +

θA‖xA‖γAPSPC ξ
(
2κ/W − 1

)
+ µρβPSPAF

θPAPC(‖x‖+ ε)γ

)−δ

×K(x,y)

√√√√1−

(
1 +

θA‖xA‖γAPSPC ξ
(
2κ/W − 1

)
+ µρβPSPAF

θPAPC(‖y‖+ ε)γ

)−δ
, x,y ∈ R2, (33)

a nature framework to facilitate RF energy harvesting for MTC
devices from ambient cellular transmissions.

The eNB transmits on 46dBm (i.e., 39.81W) over a 20MHz
channel following the specification 3GPP TS 36.942. The
transmit power of ambient RF transmitters is set to be 100mW
which is within the normal transmit power of cellular mobiles.
The energy harvesting zone R is assumed to be 30m. The
RF-to-DC power conversion efficiency is set to be 30%. The
circuit power consumption of the MTC device is set to be
2.64µW as a recent circuit design in [68]. The incoming noise
at the information receiver for both receiver architecture is
assumed to be white Gaussian with power spectral density
-120dBm/Hz [69], correspondingly 20nW over the 20MHz
channel bandwidth. While the signal processing noise induced
by the power splitter is assumed to be 10−6µW as in [70]. The
other parameters take the values as shown in Table II unless
otherwise stated.

TABLE II
PARAMETER SETTING.

Symbol ‖xA‖ τ % ε µ γ m
Value 80m 0.5 0.5 0.05 0.01 4 0.05Mbps

We evaluate the performance of the MTC devices over
Nakagami-m fading channels, which can be adjusted to fit
different fading environments. Indeed, hk ∼Nakagami(m, Ω),
m ≥ 0.5 is the shape parameter of the Nakagami distribution,
which controls the Nakagami-m fading degree. Here, Ω=
2σ2

I is the parameter which determines the spread of the
Nakagami-m power density function, where σ2

I = 1 is the
variance of the in-phase and in-quadrature components of the
received signal envelope [71]. Our adopted channel model
covers Nakagami(m, Ω) by setting hk ∼ Γ(m, mΩ ) [72].
(Here, second parameter of the Gamma distribution is the
rate.) Note that the Rayleigh distribution can be obtained
with m = 1. Also, the results for the PPP can be obtained
by choosing α = 0 in the α-DPP setting. In addition, it
can be observed from Theorems 1, 2, 4 and 5 that the
performance of the power-splitting architecture in terms of
the expectation of the RF energy harvesting rate and average
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Fig. 2. Expectation of RF Energy Harvesting Rate versus Density of Ambient
RF Transmitters.

energy outage probability is identical to that of the time-
switching architecture by substituting ρ to τ .

We first examine the validity of the expectation of RF
energy harvesting rate. Fig. 2 shows the results for γ = 5 and
γ = 4 in Rayleigh fading channels (i.e., m=1). It can be seen
that the numerical results, averaged over 107 of simulations,
match accurately with the analytical expression given in (1)
over a wide range of densities ζ, i.e., from 0 to 0.1. This is
equivalent to the average number of ambient RF transmitters
varying between 0 and 283. The RF energy harvesting rate
is significantly affected by not only the path loss exponent
γ but also ε. As expected, a larger (average) RF energy
harvesting rate can be achieved when ε is small. The reason is
straightforward as smaller ε indicates the ambient transmitters
may stay closer to the RF-powered device, thus resulting
in more energy harvesting rate. In addition, the degree of
repulsion does not affect the average energy harvesting rate.

In Fig. 3, we illustrate the variation of the energy outage
probability Peo as a function of the density of ambient RF
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transmitters ζ. The numerical results validate that the ana-
lytical expressions for the energy outage probability in (23)
is accurate for different values of α under different fading
factor m. Additionally, the error is expected to be less than
µ = 0.01 which is verified by simulation. We can see that Peo
is a monotonically decreasing function of ζ. In other words,
the higher the density of ambient RF transmitters, the lower
the chance the MTC device experiences an energy outage.
Moreover, in an environment with smaller m, due to a larger
RF energy harvesting rate, the MTC device experiences a
smaller energy outage probability. Figure 4 further examines
an impact of α on Peo. A smaller value of α results in a
lower energy outage probability. In other words, the more
repulsion leads to the more scattering of the RF transmitters.
Consequently, the chance that some RF transmitters are close
to the MTC device to contribute enough energy is high, and
a lower energy outage probability can be observed. Moreover,
we observe that generally when the density ζ is larger, the
variation of α results in a greater difference in the value of
Peo. The reason is that when the number of RF transmitters
increases, strong attraction may generate more variance in the
distribution pattern causing larger performance differences.

In Fig. 5, we evaluate how the value of time-switching

coefficient τ influences the energy outage probability Peo in
the cases where the density ζ is 0.005 and 0.01. It can be
seen that Peo is a monotonically decreasing function of τ
irrespectively of ζ. That is, the energy outage probability is
minimized when τ takes the value of 1. From Fig. 5, we
observe that when the density is large (e.g., ζ =0.01), the
energy outage probability varies more dynamically with a
change of τ than when the density is low (e.g.,, ζ = 0.005).

Figure 6 demonstrates the impact of the circuit power
consumption PC of the MTC device on Peo when the density
ζ takes the value of 0.005 and 0.01. It is seen that Peo is a
monotonically increasing function of PC. When the density is
low (e.g., ζ = 0.005), the corresponding performance shows a
logarithm-like function. This shows that Peo is more sensitive
when PC is small and becomes less sensitive when PC is large.
This implies that advances in circuit implementation to lower
down PC can render a considerable decrease of the energy
outage probability, especially in the environment where the
available ambient RF transmitters are scarce. Moreover, we
observe that when ζ =0.005, the energy outage probability
with the DPP (α =-1) approaches that with the PPP. Nev-
ertheless, when ζ =0.01, the performance gap between the
cases of the DPP (α =-1) and the PPP is wider. Therefore,
the degree of repulsion α has more impact on Peo when the
density is low.

Next, we examine the analytical expressions for the trans-
mission outage probability Pto in (25) and (31) for time-
switching and power splitting architectures, respectively. Fig-
ure 7 illustrates the plots of Pto as a function of the density ζ
for different values of α for both time-switching and power-
splitting architectures. We observe that when the density ζ
is low, i.e., smaller than 0.01, there exists some small gap
between the simulation and analytical results. However, our
derived approximation matches the simulation results better
when ζ becomes larger. It can be found that Pto is a convex-
like function of ζ. With the increase of the density ζ from
0, Pto first decreases then bounces up. The reason is that
when ζ is small, the transmission outage is caused mostly
by insufficient harvested energy. The increase of ζ will bring
about more harvested energy, and thus decrease Pto. When
ζ is larger than a certain value, the cause of the transmis-
sion outage becomes the excessive interference. Though the
increase of ζ lowers the occurrence of an energy outage,
the resulted incremental interference decreases the decoded
information throughput, thus increasing Pto. Moreover, an
interesting observation is that, a smaller α (larger repulsion)
will not always be beneficial to achieve a lower Pto. This is
different from the impact of α on Peo wherein a smaller α
always induces a lower Peo. In particular, when the density
is low, e.g., ζ = 0.005, a smaller α results in a lower Pto.
However, when the density is high, e.g., ζ = 0.03, a larger α
(stronger attraction) is helpful to reduce Pto. The reason can
also be understood from the perspective of the distribution of
RF transmitters. When the density ζ is small, transmission
outage is caused primarily by insufficient harvested energy.
Recall that a smaller α induces a lower Peo, which also
helps to generate a smaller Pto. However, when the density
ζ is large, the occurrence of a transmission outage is caused
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(Rayleigh Fading).

mainly by impaired throughput due to enlarged interference.
Therefore, the DPP (corresponding to α =-1) yields better
performance than that of the PPP when ζ is low and provides
worse performance when ζ is high.

In Fig. 8, we study the influence of the time-switching
coefficient τ on Peo under different densities ζ. (As the power-
splitting coefficient ρ results in a similar impact on Pto, we
omit presenting the corresponding plots.) It is shown that
Pto is also a convex-like function of τ . Specifically, when
τ varies from 0 to 1, Pto first decreases from 100% and then
increases back to 100% after reaching its minimum point. This
is because there exists an optimal tradeoff in harvesting energy
and receiving information. Either a smaller τ that gives less
energy or a larger τ that diminishes the information throughput
which causes an increase in Pto. Furthermore, it is obvious
that the optimal value of τ is dependent on the density ζ.
The larger ζ is, the smaller the optimal τ . The reason is
straightforward as a smaller proportion of time is required to
harvest sufficient energy in an environment with larger density
ζ. Furthermore, when the throughput requirement is high, τ
should decrease to let a larger portion of the time be used for
receiving information.

We then compare the time-switching and power-splitting
architectures directly in terms of the transmission outage prob-
ability. Fig. 9 shows Pto as a function of an energy harvesting
ratio (τ for time-switching and % for power-splitting) under
different minimum throughput requirements and densities ζ.
We observe that the power-splitting architecture always out-
performs the time-switching architecture. In particular, with
the adjustment of the energy harvesting ratio from 0 to 1,
the performance gap between the two architectures first in-
creases and then declines. The power-splitting architecture has
a significant performance advantage over the time-switching
architecture, especially when ρ is around its optimal value
to minimize Pto. The reason can be intuitively understood
as follows. Pto is determined by both the energy harvesting
rate and the information decoding time. When the energy
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harvesting ratio is small, transmission outage is mainly caused
by insufficient harvested energy. As the expressions of Peo
for both time-switching and power-splitting have the same
function for their corresponding energy harvesting ratio, the
performance difference for Pto of both architectures is small
when the energy harvesting ratio is small. However, when
the energy harvesting ratio is large (i.e., with a larger energy
harvesting ratio), Pto is mainly affected by the information
decoding time. The information decoding time of the time-
switching architecture is only (1-τ ) times that of the power-
splitting architecture. Therefore, the latter outperforms the
former when the energy harvesting ratio is large.

From Fig. 9, the optimal energy harvesting ratio obtained
to minimize Pto is τ = 0.4 and ρ = 0.81, when κ = 0.1.
Under this optimal setting of energy harvesting ratio, we then
demonstrates in Fig. 10 how Pto varies with the minimum
information throughput requirement κ. The time-switching
and power-splitting architectures are labeled as TS and PS,
respectively. We can see that the plots are a log-like function,
which indicates that κ has larger impact on Pto when κ takes
small values. Another observation is that for both architectures,
larger repulsion (e.g., α = −1) results in lower Pto when
κ is small, however, induces higher Pto when κ becomes
large. This is because when the κ is small, Pto is mainly
caused by insufficient harvested energy. As we have observed
from above, larger repulsion renders higher energy harvesting
rate thus results in smaller Pto. While when the κ is large,
interference becomes the dominate factor on Pto. In this case,
larger attraction (e.g., PPP) induces less interference thus
actually brings about better perform.

Next, we investigate the mutual impact of the density ζ and
the interference coefficient ξ as well as the transmit power
PA and PS on the transmission outage probability. Fig. 11
demonstrates the role of the interference coefficient ξ on the
transmission outage probability Pto. It can be observed that
ξ tends to have a larger impact on Pto in an environment
with a larger ζ. When the density of ambient RF transmitters
is high (e.g., ζ =0.05), Pto is very sensitive to the variation
of ξ, especially when ξ varies in a small range (e.g., from
0 to 0.4). An implication is that in a large-area network, a
channel experiencing less interference should be assigned to
MTC devices with a higher density of ambient transmitters. On
the contrary, channels suffer high interference can be allocated
to MTC devices with a lower density of ambient transmitters,
as Pto becomes less sensitive in that context.

In Fig. 12, we show how the transmit power of the eNB
and the ambient RF transmitter affect Pto, when ζ=0.01. As
expected, increasing PA monotonically decreases Pto. It is
also found that Pto is a concave-like function of PS. This
reveals a tradeoff between the energy harvesting rate and the
interference caused by the ambient transmitters. In a small
range, e.g., PS <0.03, the increase of PS markedly improves
the energy harvesting rate to lower down Pto. However, when
PS is greater than a certain threshold, the increase of PS

causes additional interference to impair the throughput, thus
amplifying Pto.

For future work, the access point can adopt MIMO [73]. In
this case, the transmission performance can be derived based
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on MIMO channels. Additionally, an RF energy source can
be based on MIMO, e.g. cellular base stations. The energy
harvesting can benefit from the energy of multiple antennas.
Moreover, instead of considering the distribution of the wire-
less nodes, different path-loss models, e.g., as discussed in
[74], can be adopted to analyze the self-sustainable commu-
nication networks. The new path-loss models could be able
to represent the non-uniform distributions of the RF energy
sources and access points. However, an indepth analysis to
evaluate the advantages and disadvantages of these approaches
deserves further study.

V. CONCLUSION

This paper has presented a novel tractable framework based
on the Ginibre point process to model and analyze the per-
formance of self-sustainable communications with RF energy
harvesting. We have introduced general models that scale well
with different distribution patterns, and in different channel
fading environments. Specifically, our study has characterized
the expectation of RF energy harvesting rate, the energy
outage probability and the transmission outage probability over

Nakagami-m fading channels. The accuracy of the derived
analytical expressions has been validated through numerical
simulations. In particular, we observe that when the density
of the ambient RF transmitters is small, a larger repulsion
among the ambient RF transmitters is able to yield a better
transmission outage performance. However, when the den-
sity is large, a stronger attraction among the ambient RF
transmission renders a lower transmission outage probability.
Moreover, the power-splitting architecture outperforms the
time-switching architecture in terms of the transmission outage
probability. Our analytical framework can be extended by
considering uplink transmission from the RF-powered device
to the base station. Additionally, it is also interesting to analyze
heterogeneous multi-tier cellular networks, e.g., considering
underlaying/overlaid small cells and picocells.

APPENDIX I

Proof of Lemma 1. By independence,
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[
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.

By (14),
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= Det (Id + αA)

−1/α
,

where the kernel of A is precisely (20).

APPENDIX II

Proof of Lemma 1. Let us begin by recalling that in (3) was
proven that E

[
F/(1 + F )

]
= 1. Thus by independence,
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by Campbell’s formula [55], where ζ(1)(x) = K(x,x) = ζ is
the intensity function of K given by (16). Hence,

E[PTSH ] = τβ

(
PSδ

θ

(
2π
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dr
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)
,

by polar change of variable.
We conclude by computing the latter integral. Let us begin

by writing∫ R

0

r

(r + ε)γ
dr =

∫ ε+R
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u1−γ du− ε
∫ ε+R
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by change of variable. Thus if γ 6= 1 and γ 6= 2,∫ R
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Similarly,∫ R
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which concludes the proof.

APPENDIX III
Proof of Theorem 2. First, notice that (35), where we have
used that since hA ∼ Exp(θA),
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Additionally by Lemma 1,
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where the kernel of A is precisely (24). Lastly, we note that
the only inequality in the previous computation is in (34).
Denoting by X := τβF
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which concludes the proof.

APPENDIX IV

Proof of Theorem 3. Let gA be a random variable with the
same law as hA and independent from the rest. Define ĈTS

as in (4):

ĈTS =

{
(1− τ)W log2

(
1 + gAPA/‖xA‖γA

σ2+ξITS

)
if PTSH ≥ PC,

0 if PTSH < PC,

with gA in place of hA. We base the rest of the proof on
the approximation P

(
CTS < κ

)
' P(ĈTS < κ). Since

gA, hA ∼ Exp(θA), by (19), we have (36). and by the same
approximation as in Theorem 2 we obtain by conditioning
(37).

Now recall that since h1 ∼ Γ(δ, θ),

E
[
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]
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(
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, t < 1/θ,

hence by Lemma 1, we conclude (38) and (39), respectively.
The result follows immediately by the approximation

P
(
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)
' P(ĈTS < κ).
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