A RELATION BETWEEN THE GROSS LAPLACIAN AND
TIME CHANGES ON BROWNIAN MOTION

NICOLAS PRIVAULT
Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1
France
E-mail: nicolas.privault@Quniv-Ir.fr

‘We show that the transformations of random functionals by time changes on Brow-
nian motion can be expressed as the adjoints of generalized Fourier-Mehler trans-
forms. The derivatives of one-parameter families of such transformations of Brow-
nian functionals are computed using a weighted Gross Laplacian and a second
quantized operator.

1 Introduction

The Fourier-Mehler transform® is a group (Fy)ger of transformations of
random variables that provides a natural analog on Gaussian space of the
Fourier transform. The adjoint of the Fourier-Mehler transform also forms
a group whose infinitesimal generator is the sum of the Gross Laplacian and
the number operator. It has been extended as a two-parameter family of
transformations? and as families of transformations',® indexed by continu-
ous mappings on S(R). Moreover it has been noticed?, Cor. 4.4, that com-
plex dilations of Gaussian measures can be expressed via the adjoint of the
Fourier-Mehler transform.

In this paper we show that transformations of Brownian functionals by
time changes on Brownian motion can be expressed as the adjoints of gen-
eralized Fourier-Mehler transforms. Although such transformations are not
quasi-invariant they can be defined on a dense linear space of smooth Brow-
nian functionals. We compute the infinitesimal generators of one-parameter
families of such transformations using a generalized Gross Laplacian and sec-
ond quantized operators. These relations are viewed as the infinitesimal state-
ment of an It6 formula without adaptedness requirements.

In Sect. 2 we review the tools of white noise analysis that will be used in
this paper. In Sect. 3 we define a family of transformations of random variables
by time changes of Brownian motion. The generalized Gross Laplacian is
introduced in Sect. 4. An expression of transformations of random functionals
by time changes on Brownian motion is given in Sect. 5, using the adjoint
of the generalized Fourier-Mehler transform. In Sect. 6 we determine the
infinitesimal generators of families of such transformations using a weighted
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Gross Laplacian and second quantized operators.

2 Notation and preliminaries

Let S(R), S'(R) denote respectively the Schwartz spaces of test functions and
distributions with pairing < -,- >, and let (-,-), | - | denote the scalar product
and norm in L?(R; ). The white noise space (S'(R), ) is equipped with the
standard Gaussian measure y on S'(R) defined as

/ exp(z'<w,.s>)du(x)=exp(—§<§,5>), ¢ € S(R).
S'(R)

Let 12 (R% ) be the space of symmetric square-integrable functions on R} . We
denote by f, ® g, the tensor product of f, € L*(R}), g, € L*(RT), and
by ui o ---o0u, € L*(R?) the symmetrization of u; ® --- ® u, € L*(R})
in n variables. Let C°(R;) denote the space of C*° functions on R with
compact support in Ry, let F denote the o-algebra on S'(R) generated by
T (z,€), £ € C°(Ry), and let (L?) = L?(S'(R), F,n). Each F € (L?) has
a decomposition

F= Z In(fn); fn € E2(R3—)7 (21)
n=0

where I,(fy,) is the multiple stochastic integral of the square-integrable sym-
metric function f, € L2 (R% ) of n variables with respect to the standard Brow-
nian motion (B(t))icr, defined as B(t) =< z,1;94 >, € S'(R), t € R,..
Definition 2.1 Let P denote the space of square-integrable random variables
of the form

sz(‘[l(ul)7"' 7Il(un))7 Uly--- ,Un € CSO(R-F)v f € Cl(]Rn)a n €N
For y € §'(R), the gradient D, is defined on P as

D,F(@) = lim TEFW =F@) - omy
e—0 g

For ¢t € R, the white noise gradient 0; is defined as 0; = Dj;,, where d; is the
Dirac distribution at ¢, i.e.

O F(z) = Z nlp—1(fn(*,1)),
n=1

if F € P is written as in (2.1). Let (S) and (S)* denote the white noise spaces
of test functions and distributions. The operator 0; extends as a continuous
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operator from (S)* into (S)* and its adjoint is denoted by 0f, t € Ry. The
operators 0; and O; are linked by the relation

B(t)=0,+0;, teR,,

where B(t) is the white noise. The exponential vector ¢¢ is defined as
— 1 1
de =D L I(E") = exp (11(6) - §|£|2) L feX(Ry),

n=0

and we let = denote the vector space generated by {¢¢ : £ € C3°(R} )}, which
is an algebra contained in P and dense in (L?). Finally, given a mapping
A : L*(Ry) — L*(Ry) we let I'(A) denote the second quantization of A,
defined on = as

D(A)pe = dag, €€ L(Ry).

3 Time changes on Brownian functionals

In this section we define a family of transformations of random functionals by
time changes on Brownian motion. Let

C°(Ry)={h€C®(Ry) : h(0) =0 and tlgglg h(t) = +o0}.

Definition 3.1 Given v € C§°(R;), we define R, : C°(Ry) — CXP(R;)
and A(R,) : P — P as

R, f(t) = f(v(t)), teRy, feCr(Ry),
and
A(R,)F = f(Ii(Ryu1),... , i (Ryuy,)),  F=f(Ii(uw),...,Li(u,)) €P.

Since R, is not continuous we need to show that this definition is independent
of the particular representation F' = f(I1(uy),... ,I1(uy,)) chosen for F' € P.
Proposition 3.1 Let F,G € P be written as

F=f(Li(u),...,[(up)), wi,...,u, € CP(Ry), feCHRY),
and

G=g(L(v1),...,[(m)), vi,...,vm € C(Ry), g€ C'(R™).
If F =G a.s. then A(R,)F = A(R,)G, a.s.
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Proof.  Let e1,...,er, € C°(Ry) be orthonormal vectors in L?(Ry) that
generate Uy,... ,Up,Vi,... ,Um, With u; = ;ZL agej and v; = ;ZL Bgej.
Then F and G are also represented as F = f(Il(el),... ,I1i(eg)), and G =
g(Il (61), .. ,_[1 (ek)), with

Jj=k Jj=k
f(y17"' 7yk) :f (Za{yh 7205%3/]) y Yi,--- Yk € Ra
j=1 j=1

and
=k =k
g(ylaayk):g Zﬂ{yg::Zﬂ%y‘] ’ yla"'aykeR'
j=1 j=1

Since F = G and I1 (e1), ... , Ii (ex) are independent, we have f = §. Moreover
by linearity of I1 and R, we get

A(R,)F = f(Ii(R,e1), ... ,Li(R,er)),
and
A(RV)G = g(Il (Rvel)a s 711 (Ruek))7
hence A(R,)F = A(R,)G. O

Next we show that if v € C§°(Ry) is strictly increasing, then the action of
A(R,) is to evaluate a given smooth functional on time-changed trajectories

(B(v™(t)))eer,. of (B(t))ier,-
Proposition 3.2 We have for F = f(I1(u1),... ,I1(u,)) € P:

A(R,)F = f (/000 ur(H)dB(v1 (1)), . .. ,/000 un(t)dB(u_l(t))> . as.

Proof. Since u; and R,u; are CZ° functions, the stochastic inte-
grals [ ui(t)dB(t) and [ u;(v(t))dB(t) can be defined for every path of
(B(t))ter,, with

| wtwnane = - [ voueesna = [ uoseoa

= /oo u;()dB(v~'(t)), a.s., i=1,...,n.
0

It remains to use the multiplicativity of A(R,) which follows from Prop. 3.1:
AR, f(Fr, ..., Fp) = f(AMR))F1,... ,A(R,)Fy),
F,...,F, €P, feCHR"). O
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4 Generalized Gross Laplacian

Given a mapping K : S(R) — S(R), let 7(K) denote the trace operator
associated to K, and defined as

(r(K),§@mn) = (K&m), & neSR).

Let Ag(K) denote the generalized Gross Laplacian associated to K, cf.
Def. 3.1. of Chung and Ji', defined here on P as

Ag(K) = / H(K)(5,8)0,Qydsdt,
T2
i.e.

Ag(K)¢e = (K€, E)¢e, €€ CE(Ry).

In this section we introduce a particular generalization of the Gross Laplacian.
Let h € C*°(R; ), and let K} denote the operator Kp : C°(Ry) — C°(Ry.)
defined as

Kn€(t) = h(t)S'(t), teRy, L€CT(Ry).

Definition 4.1 Lett € R,.. We define 8} on P as 8} = —Ds1, where 8} is
the first distributional derivative of oy, i.e.

d
OiF = aatF, teR,, FeP,

The generalized Gross Laplacian Ag(K7},) associated to K, can be expressed
as

Ag(Kh)FZ /Ooo h(s)@saiFds. (4.1)

The following proposition expresses Ag(K},) as a weighted Laplacian.
Proposition 4.1 Let h € C*(R;). We have

Ac(Kp)F = —% / 1 (s)9,0,Fds, F € P. (4.2)
0

Proof. For F = f(I1(u1),...,I1(u,)) € P we have

0.0 (1), Ta(un)) = 3 ws9)us ()50 (Ta(w). - Fa(u),
i,j=1 v
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s,t > 0. Hence by integration by parts on Ry, using the condition h(0) = 0,

n I 62
AG(Kh)F = Z (h;uzu_])ayéf (I1(u1), 7I1(Un))
i,j=1 i
1<, 5
= _5 i,jzl(h Uiauj) 6?/@6?/] (Il (Ul), ., Il (un))

5 Time changes and the Fourier-Mehler transform

We now present a relation between the operator A(R,) and the adjoint of
a generalized Fourier-Mehler transform. This relation can be viewed as the
integrated form of the relation proved in the next section. In the case of
complex dilations of Gaussian measures this type of result has been obtained
in Cor 4.4-(v) of Chung and Ji%2. For A and B two continuous linear mappings
on S(R), the transform G(A, B) has been defined in Lemma 4.1 of Chung and
Jil as

G(A, B) = I'(B) exp(Ag(4)),

and shown to be equal to the adjoint of a generalized Fourier-Mehler trans-
form. We note that this definition is still possible on the space Z without
continuity assumptions on A, B : C*°(R;) — C*(R, ), since the expression
of F€E as

F = Zaiqbg“ (51)
i=1

is unique whenever §; # &;, 1 # .
Proposition 5.1 Assume that v € C°(R}.) is bijective on Ry and written
as

v (t) =t +h(t), teRy,
for some h € C*(Ry). Then A(R,) =G (—Kn,R,).
Proof. We will prove the following relation on =:

A(R,) =(R,) exp (—~Ag(Kp)) . (5.2)
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We have

A(R,)é¢ = A(R,) exp (ms) - l|§|2)

— oxp (11( Vg)——|§|2>

= oxp (Rt = 167 o (RE) - G107
= exp SR - 16P)) o

—exp (SRS - 16 ()6

= e (= [ et 0 - o) TR0

= o (- [ eteont) rim s

O

Similarly, if A € C*®(R,.) satisfies v(t) = t + h(t), t € Ry, we can prove that
A(R,) = exp (Ag(K3)) T(Ry),

as follows:

=
=
N
-
o~

|

— AR exp (116) - 6

= oxp (31REP e ) r()9
- p(omu DE (D)) = e ) T(R )6
:exp( [ v ogwene venhoa) rirs

0
= exp GK,,))F( e, £ € LX(Ry).
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6 Derivatives of transformations induced by time changes

It has been shown? that the generator of the adjoint of the Fourier-Mehler
transform is given by the sum

z/ ds a;as+3/ ds 8,0, (6.1)
0 2 0

of a second quantized operator (the number operator) and the Gross Lapla-
cian. The formulas 6.2-6.5 obtained below are an extension of these results
one-parameter families (A(Rep))eer of transformations of Brownian function-
als induced by time changes on (B(t)):cr,- The operator fooo ds 9:8! in the
next proposition is in fact the differential second quantization of the opera-
tor of differentiation of Fock kernels, which differs from the number operator
Jo~ ds 8;0;.

Proposition 6.1 Let h € C°(Ry). For all € > 0, define v € CP(Ry) as

ve(t) =t +eh(t), teR,.

Then € — A(R,,)F is differentiable in (L?) for all F € P and we have the
equalities:

A AR om0 = A0 + A (K (62
= /oo ds h(s)9:0! + /oo ds h(s)9,0! (6.3)
0 0
* * al 1 * !
= /0 ds h(s)0;0; — 5/0 ds h'(s)0s0s, (6.4)
=/0 ds h(s)B(s)d.. (6.5)

Proof. On the space Z of exponential vectors these formulas follow directly
by differentiation of (5.2) under the hypothesis of Prop. 5.1. We need to
proceed differently in order to do the proof on P. We will show that
d o 1 [
4 ARy )P = / h(s)0: 0 Fds — / W(s)0,0,Fds.  (6.6)
de 0 2 Jo
The expressions (6.2) and (6.4) follow then from Prop. 4.1, and (6.5) follows
from the relation B(t) = 8; + ;.
a) We start by proving (6.6) for F = I (u), u € C°(Ry). Given that

1 2
lim —(Rv.u — u) &) ha',
e—=0 ¢
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we have

d ) d
dEA(RVE)F]E 0 — d€

= /OOO h(s)0*01 I (u)ds = (/000 h(s)0;0+ds +Aa(Kh)> I (w),

(R, w)ima = 1) = [ 050 ()

since Ag(Kp)I1 (u) = 0.
b) Next we show the chain rule

(/ h(s)0:0kds + AG(Kh)> F(Fy.o.  Fn) (6.7)
Z 6—f . Ey) (/ h(s)0*dlds + AG(Kh)> F,,
— 0
F,...,FE, € P, f € Cs°(R™), using the relation
6;‘(FG):Faz‘G—G(’)thGBt*F—FBtG, teRy, F,GeP.
We have

oo i=n oo af
* 0l _ * [ YJ 17
/0 h(s)3: 0 f(Fy,... ,F,)ds = Z;/O h(s)0? (8% (Fi,... ,Fn)68E> ds

_ 6f.(F1,...,Fn)/O h(s)a;a;mds—/o h(s)(OLF)O, f(FY, ... , Fy)ds

= o
S g / h(s)0: 0} Fyds
im Vi
i=n 62 /
- (R, .. h(s)(OLF})(9, F
i,j=1 0yidy; 1 R
-y Y, ,Fn)/ h(s)0 0] Fids
i=1 %Y 0
FEN S F)/oo(a F)(0,F;)H (s)ds (6.8)
2 5= 0yi0y; R ' '
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On the other hand, using the fact that Oy is a derivation operator on P it can
be shown exactly as for the classical Gross Laplacian®, Th. 6.18, that

) (Fl) ) ) (69)

g—m, - F)AG(E)F,

Il
IIMH =
[\3|l—‘ 3

i

5o (Fiove ) [ OR)@FN (s (610

Combining (6.8) and (6.9) we obtain (6.7) on P. Since [ h(s)0;0ids +
Ag(Kp) and dA(R,,)/de|.=o satisfy the same chain rule of derlvatlon and
coincide on first chaos random variables, they coincide on P. O

If b is defined by h(t) = —t,t € Ry, then Ag(K}) = Ag is the classical Gross
Laplacian. On the other hand, the operator Ag(K}) can be interpreted as an
infinite-dimensional realization of the generator of Brownian motion: indeed
for all fixed T' > 0 and h € C§°(Ry ) such that h(T') = —1 we have the relation

1

A (Kn) (f(B(T)) = 5 f"(B(T)),  f € Ci(R).

The computation of the derivative of one-parameter families of transforma-
tions associated to time changes:

d > 1 [
AR o = UK + Aa(E) = [ ds h0;0l =5 [ ds W0,
can be viewed as an elementary non-adapted It6 formula in which the finite
variation term and the stochastic integral term correspond respectively to
the Gross Laplacian and to the second quantization of the derivation of Fock
kernels.
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