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Abstract

We construct unbiased estimators for the distribution of the number of points
inside random stopping sets based on a Poisson point process. Our approach is
based on moment identities for stopping sets, showing that the random count of
points inside the complement S of a stopping set S has a Poisson distribution
conditionally to S. The proofs do not require the use of set-indexed martingales,
and our estimators have a lower variance when compared to standard sampling.
Numerical simulations are presented for examples such as the convex hull and the
Voronoi flower of a Poisson point process, and their complements.
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1 Introduction

The probability distribution of the area of certain random domains constructed from

Poisson distributed points has been studied via Gamma-type complementary theorems

in [Mil70]. More precise Gamma-type distribution results have been obtained in [Zuy99]

for the volume content of stopping sets, which are random sets that carry over the notion

of stopping time to set-indexed processes, see [Zuy99], [Mol05]. The proofs of [Zuy99],

∗nprivault@ntu.edu.sg
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see also [Cow06] and Theorem 10.4.8 in [SW08], rely on Laplace transform arguments

and on the martingale property for set-indexed stochastic exponentials and martingales,

see e.g. [Kur80]. A different approach to the distribution of stopping sets has been

developed in [Pri15] using an anticipating Girsanov theorem for the underlying Poisson

point process, instead of changes of intensities as in the above references. In [BR16],

unbiased estimators have been constructed for the volume of the convex hull generated

by a point process, which is the complement of a stopping set.

In this paper, we characterize the distribution of the number of points in stopping sets

and their complements using moment identities for point processes, and we derive new

unbiased estimators for those distributions. Given a Poisson point process with a finite

and diffuse intensity measure σ on a measure space (X,B(X), σ), we consider identities

of the form

P(N(B) = n) =
1

n!
IE
[
e−σ(B)(σ(B))n

]
, n ≥ 0, (1.1)

for the probability distribution of the count N(B) of Poisson points within a random

subset B of X, extending the formula

P(N(B) = n) = e−σ(B) (σ(B))n

n!
, n ≥ 0, (1.2)

which is known for deterministic B ∈ B(X) such that σ(B) <∞.

Clearly, (1.1) cannot hold for any random set. For example, when X = [0, T ], T > 0,

with σ(dx) = dx, taking Bm := [0, Tm] where Tm, m ≥ 1, denotes the m-th jump time

of the standard Poisson process (Nt)t∈IR+ , we have P(N(Bm) = n) = 1{n=m} and

1

n!
IE
[
e−σ(Bm)(σ(Bm))n

]
=

1

n!
IE
[
e−σ([0,Tm])(σ([0, Tm]))n

]
=

1

n!m!

∫ ∞
0

e−2xxn+m−1dx

=
(n+m)!

n!m!2n+m
, n ≥ 0,

which does not match (1.2).

On the other hand, for the random set Bm := [0,min(T, Tm)] and its complement

Bm := X \Bm, the probability

P
(
N
(
Bm

)
= n

)
= P(N([0, T ]) = n+m) = e−T

T n+m

(n+m)!
, n,m ≥ 0,
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matches the expected value

1

n!
IE
[
e−σ(Bm)

(
σ
(
Bm

))n]
=

1

n!
IE
[
e−σ((min(Tm,T ),T ])(σ((min(Tm, T ), T ]))n

]
=

1

n!

∫ T

0

(T − x)n
xm−1

(m− 1)!
dx

= e−T
T n+m

(n+m)!

as in (1.1).

We will show that (1.1) remains true for a large family of random sets S := X \ S which

are the complements of stable and non-increasing stopping sets S inX, see Definitions 3.1

and 3.3. More precisely, denoting by FS the sigma-algebra generated by the random

stopping set S, see Definition 3.2, we show in Corollary 4.2 that such random sets S

satisfy the relation

P
(
N
(
S
)

= n
∣∣ FS

)
=

1

n!
e−σ(S)

(
σ
(
S
))n

, n ≥ 0, (1.3)

which implies (1.1) and provides an unbiased estimator of P
(
N
(
S
)

= n
)
. This also

shows that, given FS, the count of points N(S) in the complement S of the stopping

set S has the Poisson distribution with parameter σ
(
S
)
, a fact already noted in the

literature when S is the convex hull of a Poisson point process, see e.g. [DN00], [Pri12a],

and [BR16].

Our approach to the proof of (1.3) relies on moment identities for Poisson and more

general point processes, see [Pri09]-[Pri12b], [DF14], [BP14]. In particular, we show in

Section 3 that, when S is the complement of a stopping set S, the factorial moments of

N
(
S
)

coincide with the moments of σ
(
S
)

given FS, i.e.

IE
[
N
(
S
)

(n)

∣∣ FS

]
= σ

(
S
)n
, n ≥ 1, (1.4)

where x(n) := x(x− 1) · · · (x− n+ 1) is the descending factorial, which implies

IE
[
N
(
S
)

(n)

]
= IE

[
σ
(
S
)n]

, n ≥ 1, (1.5)

see (4.1). For n = 2, (1.4) is the usual conditional variance identity

Var
[
N
(
S
) ∣∣ FS

]
= IE

[
N
(
S
)

(2)

∣∣ FS

]
+ IE

[
N
(
S
) ∣∣ FS

](
1− IE

[
N
(
S
) ∣∣ FS

])
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=
(
σ
(
S
))2

+ σ
(
S
)(

1− σ
(
S
))

= σ
(
S
)
, (1.6)

which has been applied in [BR16] to unbiased volume estimation when S is the open

convex hull of a Poisson point process.

From (1.5) we also obtain the probability generating function identity

IE
[
(1 + t)N(S)

∣∣ FS

]
= etσ(S), t ∈ (−2, 0),

see Proposition 4.1, which implies Relation (1.3) and yields the conditional moment

generating function

IE
[
eαN(S)

∣∣ FS

]
= e(eα−1)σ(S), α ≤ 0,

which shows that the conditional cumulant κn
(
N
(
S
) ∣∣ FS

)
of order n ≥ 1 of N

(
S
)

given

FS is given by

κn
(
N
(
S
) ∣∣ FS

)
= σ

(
S
)
,

extending (1.6) to n ≥ 3.

In Section 5 we present numerical simulations that illustrate the results of Section 4,

based on examples of complements of stopping sets such as annuli, convex hulls, and the

Voronoi flower and cell, based on Poisson-Voronoi tessellations. Although our estimators

are typically built from a single point process sample, their performance is measured by

their mean square error, evaluated over a larger number of samples. Those simulations

show that (1.3) has a lower variance than that of the standard sampling estimator.

Based on the results of Section 4, in Section 6 we construct an unbiased estimator of

the form

1{N(X)≤n}
(−1)n−N(X)

(n−N(X))!

(
σ
(
S
))n−N(X)

eσ(S), n ≥ 0,

for the probability distribution P(N(S) = n) of the count N(S) of points in a stopping

set S, see Corollary 4.4, and we present related numerical estimates based on the above

stopping set examples.
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2 Moments of point processes

We start with a brief presentation of point processes admitting a Papangelou intensity,

for use in the moment identities of Section 3. Let X be a Polish space with Borel

σ-algebra B(X), equipped with a finite non-atomic measure σ(dx). We let

ΩX :=
{
ω ⊂ X : #(A ∩ ω) <∞ for all compact A ∈ B(X)

}
denote the space of locally finite configurations on X, whose elements ω ∈ ΩX are

identified with the Radon point measures ω =
∑
x∈ω

δx, where δx denotes the Dirac measure

at x ∈ X and ω(K) ∈ IN∪{∞} represents the cardinality of K ∩ω. A point process is a

probability measure P on ΩX equipped with the σ-algebra F generated by the topology

of vague convergence. It can be characterized by its Campbell measure C defined on

B(X)⊗F by

C(A×B) := IE

[ ∑
x∈A∩ω

1B(ω \ {x})

]
, A ∈ B(X), B ∈ F ,

which satisfies the Georgii-Nguyen-Zessin [NZ79] identity

IE

[∫
X

u(x;ω)ω(dx)

]
= IE

[∫
ΩX

∫
X

u(x;ω ∪ x)C(dx, dω)

]
, (2.1)

for all measurable processes u : X ×ΩX → IR such that both sides of (2.1) make sense.

In Sections 2 and 3 we deal with point processes whose Campbell measure C(dx, dω) is

absolutely continuous with respect to σ ⊗ P , i.e.

C(dx, dω) = c(x;ω)σ(dx)P (dω),

where the density c(x;ω) is called the Papangelou density. We will also use the random

measure σ̂n(dxn) defined on Xn by

σ̂n(dxn) = ĉ(xn;ω)σ(dx1) · · ·σ(dxn),

where xn = (x1, . . . , xn) ∈ Xm and ĉ(xn;ω) is the compound Campbell density ĉ :

ΩX
0 × ΩX −→ IR+ defined inductively on the set ΩX

0 of finite configurations in ΩX by

ĉ({x1, . . . , xn, y};ω) := c(y;ω)ĉ({x1, . . . , xn};ω ∪ {y}), n ≥ 0,
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see Relation (1) in [DF14]. In particular, the Poisson point process with intensity σ(dx)

is a point process with Campbell measure C = σ ⊗ P and c(x;ω) = 1, and in this case

the identity (2.1) becomes the Slivnyak-Mecke formula, see [Sli62], [Mec67].

In the sequel, we consider (possibly random) sets A such that

{ω ∈ ΩX : A(ω) ⊂ K} ∈ F

for all K ∈ K(X), where K(X) denotes the collection of (deterministic) compact subsets

of X. For such random sets we let N(A)(ω) denote the cardinality of ω∩A(ω). We first

consider the factorial moment IE[N(A)(n)], where A is a (possibly random) measurable

subset of X. We denote by ε+
x the addition operator defined on random variables

F : ΩX → IR as

ε+
x F (ω) := F (ω ∪ {x}), x ∈ X, ω ∈ ΩX ,

and we use the notation

ε+
xn := ε+

x1
· · · ε+

xn , xn = (x1, . . . , xn) ∈ Xn.

Proposition 2.1 ([BP14], Proposition 2.1) Let A be a random measurable subset of

X. For all n ≥ 1 and sufficiently integrable random variable F , we have

IE
[
F N(A)(n)

]
= IE

[∫
Xn

ε+
xn

(
F1An(x1, . . . , xn)

)
σ̂n(dx1, . . . , dxn)

]
.

Standard moment identities for the count N(A) of process points within A can be ob-

tained as a consequence of factorial moment identities, see [Pri12b] for Poisson stochastic

integrals and [DF14] for point processes with random integrands. By Proposition 2.1

and the relation

xn =
n∑
k=0

S(n, k)x(k),

where S(n, k) denotes the Stirling number of the second kind, we find the moment

identity

IE
[
F (N(A))n

]
=

n∑
k=0

S(n, k) IE

[∫
Xk

ε+
xk

(
F1Ak(xk)

)
σ̂k(dxk)

]
, (2.2)

for the random set A, see Lemma 4.1 of [BP14]. As a consequence of Proposition 2.1

and the relation

(1 + t)x = 1 +
∞∑
n=1

tn

n!
x(n), (2.3)
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we also obtain the following corollary on the Probability Generating Function (PGF) of

the count N(A) of process points in a (random) set A.

Corollary 2.2 For A a random set and F a bounded random variable we have

IE
[
F (1 + t)N(A)

]
= IE[F ] +

∞∑
k=1

tk

k!
IE

[∫
Xk

ε+
xk

(
F1Ak(x1, . . . , xk)

)
(ω) σ̂k(dx1, . . . , dxk)

]
,

t ∈ (−2, 0).

Corollary 2.2 and the relation

IE
[
F1{N(A)=n}

]
=

1

n!

∂n

∂sn
IE
[
F (1 + s)N(A)

]
|s=−1

, n ≥ 0,

allows us to recover the distribution of the discrete random variable N(A) in the next

corollary.

Corollary 2.3 For A a random set and F a bounded random variable, we have

IE
[
F1{N(A)=n}

]
=

1

n!

∞∑
k=0

(−1)k

k!
IE

[∫
Xk+n

ε+
xk+n

(
F1Ak+n(x1, . . . , xk+n)

)
(ω) σ̂k+n(dx1, . . . , dxk+n)

]
,

n ≥ 0.

3 Moments of stopping sets

In this section and the following ones, the measure σ is assumed to be finite on (X,B(X)).

We recall the definition of stopping set, cf. [Zuy99] and Definition 2.27 page 335 of

[Mol05]. Given K in the collection K(X) of compact subsets of X, let

FK := σ(ω(U) : U ⊂ K, σ(U) <∞) (3.1)

denote the sigma-algebra generated by ω 7→ ω(U), with U ⊂ K and σ(U) <∞.

Definition 3.1 A random set S is called a stopping set if it is a.s. compact and satisfies

{ω ∈ ΩX : S(ω) ⊂ K} ∈ FK for all K ∈ K(X).

We refer to e.g. Definition 1 in [Zuy99] for the following definition of sigma-algebra

generated by a stopping set.
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Definition 3.2 Given S a stopping set, we consider the stopped sigma-algebra

FS := σ
(
B ∈ F : B ∩ {ω ∈ ΩX : S(ω) ⊂ K} ∈ FK , K ∈ K(X)

)
. (3.2)

In addition to the stopping set property, we will need the following two conditions.

Definition 3.3 i) A stopping set S is said to be non-increasing if

S(ω ∪ {x}) ⊂ S(ω), ω ∈ ΩX , x ∈ X.

ii) A stopping set S is said to be stable if

x ∈ S(ω) =⇒ x ∈ S(ω ∪ {x}), ω ∈ ΩX , x ∈ X. (3.3)

The above monotonicity and stability conditions are satisfied by common examples of

stopping sets, starting with deterministic compact subsets of X. Examples of random

stopping sets include:

- the minimal closed ball Bm centered at the origin and containing exactly m ≥ 1

points,

- the closed complement S of the convex hull S of a point process inside a convex subset

of IRd,

- the Voronoi flower S, which is the union of balls centered at the vertices of the Voronoi

polygon that contain the point 0 and exactly two other process points,

see also [CQZ03] and [Cow06] for other examples of stopping sets, such as the Voronoi

sausage or the Delaunay lunes.

The following lemma, which is needed for the proof of the next Proposition 3.5, is proved

in appendix.

Lemma 3.4 Let S be a non-increasing stopping set. Then, for any FS-measurable ran-

dom variable F (ω) we have

ε+
x F (ω) = F (ω), x ∈ S(ω), ω ∈ ΩX .
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Letting y ∈ X and taking F := 1S(y) ∈ FS, Lemma 3.4 shows that(
ε+
x 1S(y)

)
(ω) = 1S(ω)(y), y ∈ X, x ∈ S(ω), ω ∈ ΩX . (3.4)

The next Proposition 3.5 is also proved in appendix.

Proposition 3.5 The complement S of a stable and non-increasing stopping set S ful-

fills the condition

ε+
xn

(
1S(x1) · · ·1S(xn)

)
= 1S(x1) · · ·1S(xn), x1, . . . , xn ∈ X, n ≥ 1.

By Proposition 3.5 we obtain the following consequences of Proposition 2.1, starting

with the next factorial moment identity.

Proposition 3.6 Let S be the complement of a stable and non-increasing stopping set

S. For all n ≥ 1 we have

IE
[
F N

(
S
)

(n)

]
= IE

[ ∫
Sn
ε+
x F σ̂n(dxn)

]
, (3.5)

for F a bounded random variable.

Similarly, from (2.2) we have

IE
[
F
(
N
(
S
))n]

=
n∑
k=0

S(n, k) IE

[∫
Sk
ε+
xk
F σ̂k(dxk)

]
. (3.6)

In addition, by (3.6) the moments of stopping sets can also be expressed as

IE
[
N(S)n

]
= IE

[(
N(X)−N

(
S
))n]

=
n∑
k=0

(−1)k
(
n

k

)
IE
[
(N(X))n−k

(
N
(
S
))k]

=
n∑
k=0

(−1)k
(
n

k

) k∑
l=0

S(k, l) IE

[ ∫
Sl
ε+
x1
· · · ε+

xl
(N(X))n−k σ̂l(dxl)

]

=
n∑
k=0

(−1)k
(
n

k

) k∑
l=0

S(k, l) IE
[
(l +N(X))n−kσ̂l(Sl)

]
,

where we took F := (N(X))n−k in (3.6).

As a consequence of Proposition 3.6 and of Relation (2.3) we have the next extension

of Corollary 2.2.
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Corollary 3.7 Let S denote the complement of a stable, non-increasing stopping set S.

The Probability Generating Function of N
(
S
)

satisfies

IE
[
F (1 + t)N(S)

]
=
∞∑
k=0

tk

k!
IE

[ ∫
Sk
ε+
xk
F σ̂k(dx1, . . . , dxk)

]
, (3.7)

for F a bounded random variable, t ∈ (−2, 0).

Multiple differentiation of (3.7) at t = −1 yields the distribution of N
(
S
)

as

IE
[
F1{N(S)=n}

]
=

1

n!

∞∑
k=0

(−1)k

k!
IE

[ ∫
Sk+n

ε+
xk+n

F σ̂k+n(dx1, . . . , dxk+n)

]
, n ≥ 0. (3.8)

Corollary 3.8 Let S be the complement of a stable and non-increasing stopping set S.

We have the conditional distribution

P
(
N
(
S
)

= n
∣∣ FS

)
=

1

n!

∞∑
k=0

(−1)k

k!
IE
[
σ̂k+n

(
Sk+n

) ∣∣ FS

]
, n ≥ 0. (3.9)

Proof. Taking F to be FS-measurable in (3.7)-(3.8), by Lemma 3.4 we have ε+
x1
· · · ε+

xk
F =

F , x1, . . . , xk ∈ S, hence from Corollary 3.7 we find

IE
[
F (1 + t)N(S)

]
=
∞∑
k=0

tk

k!
IE
[
Fσ̂k

(
Sk
)]
,

which implies

IE
[
(1 + t)N(S)

∣∣ FS

]
=
∞∑
k=0

tk

k!
IE
[
σ̂k
(
Sk
) ∣∣ FS

]
,

t ∈ (−2, 0), and yields (3.9) by multiple differentiation. �

4 Stopping sets based on Poisson point processes

In the remainder of this paper we specialize the results of Sections 2 and 3 to the setting

of a Poisson point process having a finite diffuse intensity measure σ on (X,B(X)). In

this case we have c(x, ω) = 1, σ̂n(dxn) = σ(dx1) · · ·σ(dxn), and for all compact disjoint

subsets K1, . . . , Kn of X, n ≥ 1, the mapping ω 7→ (ω(K1), . . . , ω(Kn)) is a vector

of independent Poisson distributed random variables on IN with respective parameters

σ(K1), . . . , σ(Kn). From (3.5), we have

IE
[
N
(
S
)

(n)

∣∣ FS

]
= σ

(
S
)n
, n ≥ 0, (4.1)
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where S the complement of a stable, non-increasing stopping set S, hence the factorial

moments of N
(
S
)

coincide with the moments of σ
(
S
)
. From (2.3) and (4.1) we obtain

the following result as in Corollary 3.7.

Proposition 4.1 Let S be the complement of a stable and non-increasing stopping set

S. We have

IE
[
(1 + t)N(S)

∣∣ FS

]
= etσ(S), t ∈ (−2, 0).

From Proposition 4.1 we recover the distribution of N
(
S
)

as in Corollary 3.8.

Corollary 4.2 Let S be the complement of a stable and non-increasing stopping set S.

We have

P
(
N
(
S
)

= n
∣∣ FS

)
=

e−(σ(S))

n!

(
σ
(
S
))n

, n ≥ 0. (4.2)

Corollary 4.2 shows in particular that, given the stopping set S, the count N
(
S
)

is a

Poisson random variable with intensity σ
(
S
)
, see Theorem 3.1 of [BR16], and [Pri12a],

when S is the closed complement of the Poisson convex hull S.

In the remainder of this section we construct an estimator for the number of Poisson

points inside a stopping set S, using the information provided by S. The following

result is a consequence of (3.8), and will be used for the construction of stopping set

estimators.

Lemma 4.3 Let S be the complement of a stable and non-increasing stopping set S.

The distribution of N
(
S
)

and N(S) satisfies

P
(
N
(
S
)

= n and N(S) = l
)

=
(−1)n

n!
IE

[(
− σ

(
S
))l+n−N(X)

(l −N(X))!
1{N(X)≤l}

]
, (4.3)

l, n ≥ 0.

Proof. Applying (3.8) to F = 1{N(X)=l+n} with the relation

ε+
xk+n

1{N(X)=l+n} = 1{N(X)=l−k}, xk+n = (x1, . . . , xk+n) ∈ Xk+n,

we have

P
(
N
(
S
)

= n and N(S) = l
)

= IE
[
F1{N(S)=n}

]
11



=
1

n!

∞∑
k=0

(−1)k

k!
IE

[∫
Sk+n

ε+
xk+n

F σk+n(dx1, . . . , dxk+n)

]
=

1

n!

∞∑
k=0

(−1)k

k!
IE

[
1{N(X)=l−k}

∫
Sk+n

σk+n(dx1, . . . , dxk+n)

]

=
1

n!

l∑
k=0

(−1)k

k!
IE
[
1{N(X)=l−k}

(
σ
(
S
))k+n]

, l, n ≥ 0.

�

From (4.3) we can recover the relation

P
(
N
(
S
)

= n
)

=
∞∑
l=0

P
(
N
(
S
)

= n and N(S) = l
)

=
(−1)n

n!
IE

[(
− σ

(
S
))n ∞∑

l=0

(
− σ

(
S
))l−N(X)

(l −N(X))!
1{N(X)≤l}

]
=

1

n!
IE
[(
σ
(
S
))n

e−σ(S)
]
,

which also follows from (4.2).

On the other hand, Lemma 4.3 allows us to construct an unbiased estimator

1{N(X)≤l}

(
− σ

(
S
))l−N(X)

(l −N(X))!
eσ(S) (4.4)

for the distribution P(N(S) = l) of the number of points in a stopping set S, as in the

next corollary.

Corollary 4.4 Let S be a stable and non-increasing stopping set S(ω). We have

P(N(S) = l) = IE

[
1{N(X)≤l}

(
− σ

(
S
))l−N(X)

(l −N(X))!
eσ(S)

]
, l ≥ 0. (4.5)

Proof. By (4.3), we have

P(N(S) = l) =
∞∑
n=0

P
(
N
(
S
)

= n and N(S) = l
)

= IE

[
1{N(X)≤l}

(
− σ

(
S
))l−N(X)

(l −N(X))!

∞∑
n=0

(
σ
(
S
))n

n!

]

= IE

[
1{N(X)≤l}

(−1)l−N(X)

(l −N(X))!

(
σ
(
S
))l−N(X)

eσ(S)

]
.

�
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In particular, we have P(N(S) = 0) = IE
[
1{N(X)=0}e

σ(S)
]
,

P(N(S) = 1) = IE
[(

1{N(X)=1} − 1{N(X)=0}σ
(
S
))

eσ(S)
]
,

and

P(N(S) = 2) = IE

[(
1

2
1{N(X)=0}

(
σ
(
S
))2 − 1{N(X)=1}σ

(
S
)

+ 1{N(X)=2}

)
eσ(S)

]
.

5 Distribution of stopping set complements

The simulations presented in this section and the next one use a Poisson point process

with flat intensity λ > 0, i.e. σ(dx) = λdx, and are done with the R Spatstat package

[BT05].

In this section we estimate the distribution P
(
N
(
S
)

= n
)

of the number of Poisson

points inside the complement S of a stopping set S using both the standard sampling

estimator 1{N(S)=n} and the alternative estimator

P
(
N
(
S
)

= n
∣∣ FS

)
=

(
σ
(
S
))n

n!
e−σ(S) (5.1)

obtained from Corollary 4.2. The performances of the estimators 1{N(S)=n} and (5.1)

are compared via their respective variances given by P
(
N
(
S
)

= n
)(

1− P
(
N
(
S) = n

))
,

and
1

n!2
IE
[(
σ
(
S
))2n

e−2σ(S)
]
−
(
P
(
N
(
S
)

= n
))2

. (5.2)

As (5.1) is clearly satisfied when S is deterministic, we only consider examples of random

stopping sets S.

5.1 Annuli in finite volume

In this case, X := B(0, R) is the ball of radius R > 0 centered at 0 in IRd and we consider

the stable and non-increasing stopping set S := Bm defined as the smallest closed ball

centered at the origin and containing m ≥ 1 process points in ω.

13
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Figure 5.1: Sample disc Bm (in blue) with m = 5.

In this setting, the distribution of N
(
Bm

)
is explicitly known as

P
(
N
(
Bm

)
= n

)
= P(N(B(0, R))−N(Bm) = n)

= P(N(B(0, R)) = n+m)

= e−σ(B(0,R)) (σ(B(0, R)))n+m

(n+m)!
, n ≥ 1, (5.3)

and

P
(
N
(
Bm

)
= 0
)

= P(Bm = B(0, R))

= P(N(B(0, R)) ≤ m)

= e−σ(B(0,R))

m∑
k=0

(σ(B(0, R)))k

k!
, (5.4)

and we have the identity

P(σ(Bm) > r) = P(N(B(0, r)) < m) = e−r
m−1∑
k=0

rk

k!
, 0 ≤ r < R,

which shows that the distribution of σ(Bm) is given by

dP(σ(Bm) ≤ r) = −dP(σ(Bm) > r)

= P(N(B(0, R)) < m)δR(dr) + e−r
rm−1

(m− 1)!
dr,

where δR(dr) denotes the Dirac measure at R ∈ (0,∞). In particular, it can be checked

by closed form calculations that

IE
[
etσ(Bm)

]
= IE

[
(1 + t)N(Bm)

]
, t ∈ (−2, 0),

14



as in Proposition 4.1, and

P
(
N
(
Bm

)
= n

)
=

1

n!
IE
[(
σ
(
Bm

))n
e−σ(Bm)

]
, n ≥ 1,

in agreement with Corollary 4.2.

Using the estimator 1{N(S)=n} (“Sampling”) and the alternative estimator (5.1) (“Aver-

aging”), the following simulations provide estimates of the distribution P
(
N
(
B5

)
= n

)
of

the count of points strictly inside the convex hull B5 complement of B5 in X = B(0, 1/2).

Figures 5.2 and 5.3 are plotted with N = 1000 and N = 10, 000 Monte Carlo samples

respectively, together with the exact estimates (5.3)-(5.4) and the Poisson probability

function with parameter λ > 0.
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Figure 5.2: Distribution and standard error for B5, with N = 1000 and λ = 10.

The standard errors plotted in Figure 5.2-(b) show that the estimator (5.1) (“Averag-

ing”) is more accurate and has a lower variance than the standard estimator 1{N(S)=n}

(“Sampling”). In this figure and the following ones, error estimates are provided in two

different forms:

• Monte Carlo error estimates for the standard estimator 1{N(S)=n} (“Sampling”)

together with the corresponding error estimator√
P
(
N
(
S
)

= n
)(

1− P
(
N
(
S
)

= n
))
/N, (5.5)

where N is the number of Monte Carlo samples;
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• Monte Carlo error estimates for (5.1) (“Averaging”), together with the correspond-

ing estimator (5.2) (“Error estimator”), which can be computed as√
1

n!2
IE
[(
σ
(
S
))2n

e−2σ(S)
]
−
(
P
(
N
(
S
)

= n
))2

=

√
1

n!222n
IE
[(

2σ
(
S
))2n

e−2σ(S)
]
−
(
P
(
N
(
S
)

= n
))2

=

√
(2n)!

n!222n
P
(
N
(
2S
)

= 2n
)
−
(
P
(
N
(
S
)

= n
))2

by applying (5.1).
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Figure 5.3: Distribution and standard error for B5, with N = 10, 000 and λ = 10.

5.2 Open convex hull of a Poisson point process

The closed complement S = C of the (open) convex hull S = C of a Poisson point process

in a convex domain X of finite intensity measure in IRd is a stable and non-increasing

stopping set, see page 8, and Figure 5.4 for an illustration. The study of the convex hull

of a random set of points is a classical topic in computational geometry, with numerous

applications in statistics and computing, see e.g. [AHPS+17] and references therein.
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Figure 5.4: Sample convex hull of a Poisson point process.

In Figures 5.5 and 5.6 we provide estimates for the distribution P
(
N
(
S
)

= n
)

of the

count of points strictly inside the convex hull S complement of S, generated by the

Poisson point process on X = [0, 1]2, which are plotted with N = 500 Monte Carlo

samples.
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Figure 5.5: Distribution and standard error for the inside of the Poisson convex hull, λ = 4.

As in Figures 5.2-5.3, we check that the estimator (5.1) (“Averaging”) is more accurate,

as it has a lower variance than standard sampling when estimating the count of points

in the complement S of the Poisson convex hull S for two different values of the Poisson

intensity parameter λ.
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Figure 5.6: Distribution and standard error for the inside of the Poisson convex hull, λ = 10.

The estimates are plotted together with the Poisson probability function with parameter

λ > 0 as in Figures 5.2 and 5.3. The Monte Carlo error estimates “Sampling” and “Av-

eraging” are respectively complemented with their estimators (5.2) (“Error estimator”)

and (5.5).

5.3 Voronoi flower complement

We consider the stopping set given by the Voronoi flower S based on a typical cell

containing the point (1/2, 1/2) in the unit square X = [0, 1]× [0, 1], see page 8, up to a

translation of the Poisson point process with flat intensity λ > 0. In case the window

X = [0, 1] × [0, 1] does not contain any Voronoi cell around the point (1/2, 1/2) we let

S = [0, 1]× [0, 1], which is the case in particular when N(X) ≤ 3.
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Similarly to Figures 5.5 and 5.6, the next simulations provide estimates for the distri-

bution P
(
N
(
S
)

= n
)

of the count of points in the complement S of the Voronoi flower

S around the point (1/2, 1/2), generated by a Poisson point process with flat intensity

λ > 0 on the unit square X = [0, 1]2.
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Figure 5.8: Distribution and standard error for the Voronoi flower complement, λ = 4.

In Figures 5.8-5.10, which are plotted withN = 1000 Monte Carlo samples, we also check

that the estimator (5.1) (“Averaging”) has lower variance than the standard sampling

estimator 1{N(S)=n} when estimating the count of points in the complement S of the

Voronoi flower S for two different values of the Poisson intensity parameter λ.
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Figure 5.9: Distribution and standard error for the Voronoi flower complement, λ = 10.

As in Figures 5.5 and 5.6, the Monte Carlo error estimates are respectively complemented

with their estimators (5.2) (“Error estimator”) and (5.5).
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Figure 5.10: Distribution and standard error for the Voronoi flower complement, λ = 20.

6 Distribution of stopping sets

In this section we estimate the distribution P
(
N
(
S
)

= n
)

of the number of Poisson

points inside a stopping set S using both the standard sampling estimator 1{N(S)=n} and
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the alternative estimator

1{N(X)≤n}

(
− σ

(
S
))n−N(X)

(n−N(X))!
eσ(S) (6.1)

obtained from Corollary 4.4. We note however that here, this estimator does not improve

in precision over the standard sampling estimator 1{N(S)=n}.

6.1 Annuli in finite volume

In this setting we have X = B(0, R), S = Bm, h(R) = σ(B(0, R)) and σ
(
S
)

= h(R) −
σ(Bm), and the result of Corollary 4.4 can be recovered in closed form.

(i) When 0 ≤ l < m, we have

dP(σ(Bm) ≤ r and N(B(0, R)) = l) = P(N(B(0, R)) = l)δR(dr),

and σ(Bm) = h(R) if N(X) < m, hence the estimator (4.4) coincides with the standard

sampling estimator, as

1{N(X)≤l}
(σ(Bm)− h(R))l−N(X)

(l −N(X))!
eh(R)−σ(Bm) = 1{N(X)=l}.

(ii) When l ≥ m, we have

P(σ(Bm) > h(r) and N(B(0, R)) = l) = P(N(B(0, r)) < m and N(B(0, R)) = l)

= P(N(B(0, R))−N(B(0, r)) > l −m and N(B(0, r) +N(B(0, R))−N(B(0, r)) = l)

=
l∑

p=0

1{l−p>l−m}P(N(B(0, R))−N(B(0, r)) = l − p)P(N(B(0, r)) = p)

= e−h(R)

m−1∑
p=0

(h(R)− h(r))l−p

(l − p)!
(h(r))p

p!
, 0 ≤ r < R,

and

dP(σ(Bm) ≤ r and N(B(0, R)) = l) = −dP(N(B(0, r)) < m and N(B(0, R)) = l)

= e−R

(
m−1∑
p=0

(R− r)l−p−1

(l − p− 1)!

rp

p!
−

m−1∑
p=1

(R− r)l−p

(l − p)!
rp−1

(p− 1)!

)
dr

= e−R
(R− r)l−m

(l −m)!

rm−1

(m− 1)!
dr,
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hence when l = m, the right hand side of (4.5) reads

IE

[
1{N(X)≤m}

(−1)m−N(X)

(m−N(X))!
(h(R)− σ(Bm))m−N(X)eh(R)−σ(Bm)

]
= IE

[
1{N(X)=m}e

h(R)−σ(Bm)
]

=

∫ h(R)

0

e−x
xm−1

(m− 1)!
dx

= P(N(X) ≥ m)

= P(N(Bm) = m),

while when l > m we find

IE

[
1{N(X)≤l}

(−1)l−N(X)

(l −N(X))!
(h(R)− σ(Bm))l−N(X)eh(R)−σ(Bm)

]
=

l∑
k=m

(−1)l−k

(l − k)!
IE
[
1{N(X)=k}(h(R)− σ(Bm))l−keh(R)−σ(Bm)

]
=

l∑
k=m

(−1)l−k

(l − k)!

∫ h(R)

0

e−x
(h(R)− x)l−m

(k −m)!

xm−1

(m− 1)!
dx

=

∫ h(R)

0

e−x(h(R)− x)l−m
xm−1

(m− 1)!
dx

l−m∑
k=0

(−1)l−m−k

(l −m− k)!k!

= 0 = P(N(Bm) = l),

which recovers the equality (4.5).

6.2 Convex hull of a Poisson point process

Next, we apply Corollary 4.4 to estimate the distribution P(N(S) = n) of the count

of boundary points in the convex hull of Section 5.2. Unlike in Section 5, in this ex-

ample and in the next one, no particular improvement is observed when applying the

estimator (6.1) (“Averaging”) instead of the standard estimator 1{N(S)=n} (“Sampling”)

in Figure 6.1, which is plotted with N = 10, 000 Monte Carlo samples. In this case, we

have S = X when N(X) ≤ 2, hence P(N(S) = n) = P(N(X) = n) for n = 0, 1, 2.
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Figure 6.1: Distribution and standard error for the Poisson convex hull boundary, λ = 4.

Figure 6.1-(b) compares the variance of 1{N(S)=n} (“Sampling”) to that of (6.1) (“Aver-

aging”) when estimating the number of boundary vertices of the convex hull of a Poisson

point process on the unit square X = [0, 1] × [0, 1]. The error estimates are provided

as Monte Carlo error estimates for the estimator 1{N(S)=n} (“Sampling”) together with

(5.5) and (6.1) (“Averaging”).

6.3 Voronoi flower

Here we consider the Voronoi flower S of Section 5.3 based on a typical cell containing

the point (1/2, 1/2) in the square X = [0, 1]× [0, 1], up to a translation of the Poisson

point process. Closed form expressions for the distribution of the number of points

of the typical Voronoi cell have been obtained using the Slivnyak-Mecke identity and

integration on simplexes in [Cal03] and references therein.
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Figure 6.2: Distribution and standard error for the Voronoi flower, λ = 4.

Figure 6.2, which is plotted with N = 10, 000 Monte Carlo samples, compares the

accuracy of the standard estimator 1{N(S)=n} (“Sampling”) to the estimator (6.1) (“Av-

eraging”) when estimating the count of points in the Voronoi flower S around the point

(1/2, 1/2). In this case we have N(S) = N(X) when N(X) ≤ 3, and we check that

P(N(S) = n) = P(N(X) = n) for n = 0, 1, 2, 3.

As we are dealing with a finite volume, our estimates can be compared with the distri-

bution estimates of e.g. Table 1 in [Cal03] for the typical Voronoi cell only when the

intensity of the underlying Poisson process tends to infinity, in which case the number

of points in the Voronoi flower becomes the number of points in the typical Voronoi

cell plus one, see the next Figure 6.3 with N = 10, 000 Monte Carlo samples. However,

the loss of performance of the averaging estimator (6.1) observed in Figure 6.2 becomes

even stronger as λ becomes large.
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Figure 6.3: Distributions of the Voronoi flower for different values of λ.

A Appendix

Proof of Lemma 3.4.

Let B ∈ FS. For any compact set K ∈ K(X), by (3.2) we have

B ∩ {ω ∈ ΩX : S(ω) ⊂ K} ∈ FK ,

hence the random variable 1B1{S⊂K} is FK-measurable, and by the definition (3.1) of

FK its value is not affected by Poisson points outside of K. Thus, for all ω ∈ ΩX and

x in the complement K of K, we find

ε+
x

(
1B1{S⊂K}

)
(ω) = 1B(ω)1{S(ω)⊂K},

i.e.

1{S(ω∪{x})⊂K}
(
ε+
x 1B

)
(ω) = 1{S(ω)⊂K}1B(ω), ω ∈ ΩX , x ∈ K. (A.1)

In addition, since (A.1) is valid for all ω ∈ ΩX and K ∈ K(X), we can fix ω′ ∈ ΩX and

apply (A.1) to a compact K(ω′) depending on ω′, which yields

1{S(ω∪{x})⊂K(ω′)}
(
ε+
x 1B

)
(ω) = 1{S(ω)⊂K(ω′)}1B(ω), ω ∈ ΩX , x ∈ K(ω′),

or, in the particular case where we let ω := ω′,

1{S(ω′∪{x})⊂K(ω′)}
(
ε+
x 1B

)
(ω′) = 1{S(ω′)⊂K(ω′)}1B(ω′), ω′ ∈ ΩX , x ∈ K(ω′). (A.2)
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Let now ω ∈ ΩX and x ∈ S(ω). Since S(ω) is a closed (and compact) set in X, there

exists K(ω) ∈ K(X) such that

x ∈ K(ω) ⊂ S(ω),

with

S(ω ∪ {x}) ⊂ S(ω) ⊂ K(ω)

since S(ω) is non-increasing. Hence, by (A.2) we have

ε+
x 1B(ω) = 1{S(ω∪{x})⊂K(ω)}ε

+
x 1B(ω)

= 1{S(ω)⊂K(ω)}1B(ω)

= 1B(ω), x ∈ S(ω).

This conclusion extends from B ∈ FS to any FS-measurable random variable F (ω) by

a monotone class argument. �

Proof of Proposition 3.5. (See also Proposition 3.3 of [BP14]).

Let x1, . . . , xn ∈ X. We consider the following cases.

(i) If {x1, . . . , xn} ⊂ S(ω) then we have {x1, . . . , xn} ⊂ S(ω∪{x1, . . . , xn}) because S(ω)

is non-decreasing, hence by Lemma 3.4 we have

ε+
xn

(
1S(x1) · · ·1S(xn)

)
= 1S(x1) · · ·1S(xn) = 1.

(ii) In case {x1, . . . , xn} ⊂ S(ω), it follows from Lemma A.1 below that there exists

xe ∈ {x1, . . . , xn} such that xe ∈ S(ω ∪ {x1, . . . , xn}), hence

ε+
xn

(
1S(x1) · · ·1S(xn)

)
= 1S(x1) · · ·1S(xn) = 0.

(iii) If {x1, . . . , xn} ∩ S(ω) 6= ∅ we partition {x1, . . . , xn} as

{x1, . . . , xn} = {x1, . . . , xk} ∪ {xk+1, . . . , xn}

with {x1, . . . , xk} ⊂ S(ω) and {xk+1, . . . , xn} ⊂ S(ω), for some k ∈ {1, . . . , n}. By point

(ii) above we have

ε+
xk

(
1S(x1) · · ·1S(xk)

)
= 1S(x1) · · ·1S(xk) = 0

26



and by Lemma 3.4 we have S(ω) = S(ω ∪ {xk+1, . . . , xn}), hence

ε+
xn

(
1S(x1) · · ·1S(xn)

)
= ε+

xn

(
1S(x1) · · ·1S(xk)

)
ε+
xn

(
1S(xk+1) · · ·1S(xn)

)
= ε+

xk

(
1S(x1) · · ·1S(xk)

)
ε+
xk

(
1S(xk+1) · · ·1S(xn)

)
= 1S(x1) · · ·1S(xk)ε

+
xk

(
1S(xk+1) · · ·1S(xn)

)
= 0

= 1S(x1) · · ·1S(xn), xk = (x1, . . . , xk).

�

The next lemma has been used in the proof of Proposition 3.5.

Lemma A.1 Let S be a stable and non-increasing stopping set. For any ω ∈ ΩX , and

x1, . . . , xk ∈ S(ω), there exists i ∈ {1, . . . , k} such that xi ∈ S(ω ∪ {x1, . . . , xk}).

Proof. We do the proof by contradiction by assuming that {x1, . . . , xk} ⊂ S(ω ∪
{x1, . . . , xk}). We will show by induction on j = 1, . . . , k + 1 that

S(ω ∪ {x1, . . . , xk}) = S

(
ω ∪

k⋃
i=j

{xi}

)
, (A.3)

with the convention ∪ki=k+1{xi} = ∅. For j = k + 1 this leads to S(ω ∪ {x1, . . . , xk}) =

S(ω) and to xj ∈ S(ω), j = 1, . . . , k, which contradicts {x1, . . . , xk} ⊂ S(ω).

Relation (A.3) clearly holds for j = 1, and we suppose that it holds for some j ∈
{1, . . . , k}. By assumption we have

xj ∈ S(ω ∪ {x1, . . . , xk}) = S(ω ∪ ∪ki=j{xi}),

hence

xj ∈ S(ω ∪ ∪ki=j+1{xi})

by the stability condition (3.3). Consequently, by (3.4) or Lemma 3.4 we have

S(ω ∪ {xj+1, . . . , xk}) = S

(
ω ∪

k⋃
i=j

{xi}

)

since S(ω) is a stable and non-increasing stopping set. �
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