QUASI-INVARIANCE FORMULAS FOR COMPONENTS OF
QUANTUM LEVY PROCESSES’

UWE FRANZ AND NICOLAS PRIVAULT

ABSTRACT. A general method for deriving Girsanov or quasi-invariance for-
mulas for classical stochastic processes with independent increments obtained
as components of Lévy processes on real Lie algebras is presented. Letting
a unitary operator arising from the associated factorizable current represen-
tation act on an appropriate commutative subalgebra, a second commutative
subalgebra is obtained. Under certain conditions the two commutative subal-
gebras lead to two classical processes such that the law of the second process
is absolutely continuous w.r.t. to the first. Examples include the Girsanov for-
mula for Brownian motion as well as quasi-invariance formulas for the Poisson
process, the Gamma process [TVY00, TVYO01], and the Meixner process.

1. INTRODUCTION

Lévy processes, i.e. stochastic processes with independent and stationary in-
crements, are used as models for random fluctations, e.g., in physics, finance, etc.
In quantum physics so-called quantum noises or quantum Lévy processes occur,
e.g., in the description of quantum systems coupled to a heat bath [GZ00] or in
the theory of continuous measurement [Hol01]. Motivated by a model introduced
for lasers [Wal84], Schiirmann et al. [ASW88, Sch93] have developed the theory
of Lévy processes on involutive bialgebras. This theory generalizes, in a sense,
the theory of factorizable representations of current groups and current algebras
as well as the theory of classical Lévy processes with values in Euclidean space or,
more generally, semigroups. For a historical survey on the theory of factorizable
representions and its relation to quantum stochastic calculus, see [Str00, Section
5].

Many interesting classical stochastic processes arise as components of these
quantum Lévy processes, cf. [Sch91, Bia98, Fra99, AFS02]. In this Note we
will demonstrate on several examples how quasi-invariance formulas can be ob-
tained in such a situation. Our examples include the Girsanov formula for
Brownian motion as well as a quasi-invariance formula for the Gamma process
[TVY00, TVYO01], which actually appeared first in the context of factorizable rep-
resentations of current groups [VGG83]. We also present a new quasi-invariance
formula for the Meixner process.

OWork supported in part by the European Community’s Human Potential Programme under
contract HPRN-CT-2002-00279, RTN QP-Applications and by a DAAD Procope cooperation.
1



2 Uwe Franz and Nicolas Privault

We will consider Lévy processes on real Lie algebras in this Note, but the
general idea is more widely applicable. Furthermore, we restrict ourselves to
commututative subalgebras of the current algebra that have dimension one at
every point, see Subsection 2.3. This allows us to use techniques familiar from
the representation theory of Lie algebras and groups to get explicit expressions
for the two sides of our quasi-invariance formulas.

In Section 2, we present the basic facts about Lévy processes on real Lie alge-
bras and we recall how classical increment processes can be associated to them.
The general idea of our construction is outlined in Section 3. Finally, in Sec-
tion 4, we present explicit calculations for several classical increment processes
related to the oscillator algebra and the Lie algebra sl(2, R) of real 2 x 2 matrices
with trace zero. In Subsections 4.1 and 4.4, we study representations of the Lie
algebras themselves and obtain quasi-invariance formulas for random variables
arising from these representations. In Subsections 4.2, 4.3, 4.5, and 4.6, we turn
to Lévy processes on these Lie algebras and derive quasi-invariance or Girsanov
formulas for Brownian motion, the Poisson process, the Gamma process, and the
Meixner process.

2. LEVY PROCESSES ON REAL LIE ALGEBRAS

In this section we recall the definition and the main results concerning Lévy
processes on real Lie algebras, see also [AFS02]. This is a special case of the
theory of Lévy processes on involutive bialgebras, cf. [Sch93],[Mey95, Chapter
VII],[FS99].

2.1. Definition and construction.

Definition 2.1. Let g be a real Lie algebra, H a pre-Hilbert space, and 2 € H

a unit vector. We call a family (jst g — E(H))0<S<t of representations of g by

anti-hermitian operators (i.e. jg(X)* = —js(X) forall 0 < s <t¢, X € g) a Lévy

process on g over H (with respect to €0), if the following conditions are satisfied.
(1) (Increment property) We have

forall0 < s<t<wandall X €g.

(2) (Independence) We have [j(X),jsw(Y)] =0 forall X,V € g, 0 < s <
t<s <t and

<Q;j51t1 ()(l)k1 o 'jsntn (Xn)an> = <ijs1t1 (Xl)kIQ> e <Q7j5ntn (Xﬂ)an>

forall n,ky,...,k, e N 0<s <t <s59<---< 8y, Xq,..., X, €Eg.
(3) (Stationarity) For all n € N and all X € g, the moments

mn (X8, t) = (Q, st (X))

depend only on the difference ¢ — s.
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(4) (Weak continuity) We have lim (€, 75:(X)"€2) = 0 for all n > 1 and all
X eg.

Two Lévy processes are called equivalent, if they have same moments.
For the classification and construction of these processes we introduce the no-
tion of Schiirmann triples.

Definition 2.2. Let g be a real Lie algebra. A Schirmann triple on g over some
pre-Hilbert space D is a triple (p,n, L) consisting of

e a representation p of g on D by anti-hermitian operators,
e a p-l-cocycle n, i.e. a linear map n : g — D such that

n([X,Y]) = p(X)n(Y) — p(Y)n(X),

for all X,Y € g, and
e a linear functional L : g — ‘R C C that has the map gAg> X AY —
(n(X),n(Y)) — (n(Y),n(X)) € C as a coboundary, i.e.

L([X,Y]) = (n(X),n(Y)) = (n(Y),n(X))
forall X,Y € g.
A Schiirmann triple (p, n, L) is called surjective, if n(g) is cyclic for p.

The following theorem can be traced back to the works of Araki, Streater, etc.,
in the form given here it is a special case of Schiirmann’s representation theorem
for Lévy processes on involutive bialgebras, cf. [Sch93].

Theorem 2.3. Let g be a real Lie algebra. Then there is a one-to-one correspon-
dence between Lévy processes on g (modulo equivalence) and Schiirmann triples
on g.

Let (p,n, L) be a Schirrmann triple on g over D, then

(2.1) Jst(X) = A (p(X) + A5 (n(X)) — At (n(X)) + (¢ — 5) L(X)id

for 0 < s <t and X € g defines Lévy process on g over a dense subspace
H CT(L*(R:, D)) w.r.t. the vacuum vector €.

2.2. Regularity assumptions. In order to justify our calculations, we have to
impose stronger conditions on Lévy processes than those stated in Definition 2.1.
We will from now on assume that (js)o<s<: is defined as in (2.1) and that the
representation p in the Schiirmann triple can be exponentiated to a continuous
unitary representation of the Lie group associated to g. By Nelson’s theorem this
implies that D contains a dense subspace whose elements are analytic vectors
for all p(X), X € g. Furthermore, we will assume that 7(g) consists of analytic
vectors. These assumptions guarantee that js; can also be exponentiated to a
continuous unitary group representation and therefore, by Nelson’s theorem, any
finite set of operators of the form iju(X), 0 < s < ¢, X € g, is essentially
selfadjoint on some common domain. Furthermore, the vacuum vector €2 is an
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analytic vector for all j4(X), 0 < s <t, X € g. These assumptions are satisfied
in all the examples considered in Section 4.

Denote by g = eX an element of the simply connected Lie group G associated
to g. Our assumptions guarantee that n(g) and L(g) can be defined for X is a
sufficiently small neighborhood of 0. Then the group representation Uy that we
get by exponentiating j,; can also be obtained by solving the quantum stochastic
differential equations

Us(g) =id + / Usr(g)d(AT (p(9)) + Az (n(9)) — Ar(n(g™h)) + (- S)L(g)dT)

for 0 < s < t. For an explicit expression for the action of Ug(g) on exponential
vectors, see also [Sch93, Proposition 4.1.2].

2.3. Classical processes. Denote by g+ the space of simple step functions with
values in g,

g’+ = {X = ZXkl[sk,tk[

k=1

0< s <t <s <o <ty <00, Xy, Xy € g

Then g®+ is a real Lie algebra with the pointwise Lie bracket and any Lévy
process on g defines a representation 7 of g&+ via

(2:2) m(X) = stktk(Xk)

for X =57, KXilis, i € gi+.
By choosing a commutative subalgebra of 7(g%+) we can get a classical process.
Denote by S(R, ) the algebra of real-valued simple step functions on R,

S(Ry) = {f =3 felpul

k=1

0<s1 <t <5< o<ty <00, fi,o, fu €R),

then the product fX of an element X € g*+ with a function f € S(R;) is again
R
Ing-+.

Theorem 2.4. Let (jst)o<s<t be a Lévy process on a real Lie algebra g and let w
be as in Equation (2.2). Choose X € gi+ and define

X(f) = in(fX)
for f € S(R;).

Then there exists a classical stochastic process (Xt)tzo with independent incre-
ments that has the same finite distributions as X, i.e.

(290 (X (A1) - 9 (X () D) = E( 01 (X (1) -~ 9 (X (£2))
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foralln €N, fi,...,fn € S(Ry), g1,--.,9n € Co(R), where
X(f) = R f(t)dXt = ka(th - Xsk)
+ k=1

fOT f = ZZ:l fkl[sk,tk[ € S(R+)

The existence of (X;)¢>o follows as in [AFS02, Section 4]. Thanks to the regular-
ity assumptions in 2.2, the operators X (f1),..., X(f.) are essentially self-adjoint
and g1 (X(f1)),---,92(X(fa)) can be defined by the usual functional calculus for
self-adjoint operators.

3. QUASI-INVARIANCE FORMULAS FOR COMPONENTS OF QUANTUM LEVY
PROCESSES

Let (jst)o<s<t be a Lévy process on a real Lie algebra g and and fix X € g*+ with
classical version (X't)t>0. In order to get quasi-invariance formulas for (Xt)t>0,
we simply choose another element Y € g®+ that does not commute with X and
let the unitary operator U = ™) act on the algebra

Ax = alg{X(f)[f € S(R;)}

generated by X. We can describe this action in two different ways.
First, we can let U act on Ay directly. This gives another algebra

Axr = alg {UX(f)U"|f € S(Ry)},

generated by X'(f) = UX(f)U*, f € S(X). Since this algebra is again com-
mutative, there exists a classical process (X});>o that has the same expectation
values as X' w.r.t. Q, i.e.

<Q,91 (X,(fl)) e -gn(X'(fn))m = ]E(gl (Xl(fﬂ) T 'gn(Xl(fn))>

foralln €N, g1,..., 9, € Co(R), fi,---, fn € S(R;), where X'(f) = [ f()dX]
for £ = Y0, filjssy € SR ).

If X'(f) is a function of X (f), then Ax is invariant under the action of U. In
this case the classical process (Xt')tzo can be obtained from (Xt)tzo by a pathwise
transformation, see 4.2 and 4.5. But even if this is not the case, we can still
get a quasi-invariance formula that states that the law of (Xé)tzo is absolutely
continuous w.r.t. the law of (Xt)tzo-

Second, we can let U act on the vacuum state (2, this gives us a new state
vector ' = U*Q. If Q is cyclic for Ax, then ' can be approximated by elements
of the form G2 with G € Ax. It is actually possible to find an element G which is
affiliated to the von Neumann algebra generated by Ax such that G2 = €. This
follows from the BT theorem, see [Sak71, Theorem 2.7.14]. Then the following
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calculation shows that the finite marginal distributions of ( A{)tzo are absolutely
continuous w.r.t. those of (X;),

E(9(X'(N)) = ©g(x'(N)) = Qg(UX< JU")9)
= (Q,Ug(X())U"Q) = (U, g(X(f)U")
= (@, 9(X () GQ g( () GD)

= E(g(X(N)IGI* ).

Here G was a “function” of X and G is obtained from G by replacing X by
X. This is possible, because Ax is commutative, and requires only standard
functional calculus. R X

The density relating the law of (X}):>o and that of (X;);>¢ is therefore given
by |G|

The same calculation applies of course also to the finite joint distributions, i.e.
we also have

JE(91 (X'(1)) ...gn(X'(fn))> = ]E(gl (X(f) - -gn(X(fn))\GIQ)-

forallneN, fi,...,fn € SRy), g1,---,9n € Co(R).

4. EXAMPLES

In this section we give the explicit calculation of the density |G|? for several
examples.

We define our real Lie algebras as complex Lie algebras with an involution,
because the relations can be given in a more convenient form for the complexifica-
tions. The real Lie algebra can be recovered as the real subspace of anti-hermitian
elements.

4.1. Gaussian and Poisson random variables. The oscillator Lie algebra
is the four dimensional Lie algebra osc with basis {N, AT, A=, E} and the Lie
bracket given by

[N,A*] = £A* [A",AT]=E, [E,N]=[E,A*]=0.

We equip osc furthermore with the involution N* = N, (A*)* = A~ and E* = E.
A general hermitian element of osc can be written in the form Xa 8 =0alN+
CAt + (A~ + BE with a, BE€R, ( € C.
Let Y = i(wAT +wA~). We can compute the adjoint action of g; = ¥ on
Xa,,p by solving the differential equation
d

—Ady, (X) = [, X(t)].

X0 =g
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Writing X (¢) = a(t)N + z(t) AT + Z(t) A~ + b(t) E, we get the system of ode’s
a(t) = 0,
z2(t) = —iaw,
b(t) = i(wz— wz),
with initial conditions a(0) = «, 2(0) = (, b(0) = 5. We get
(4.1) X(t) = aN + (¢ —iawt) AT + (( +iawt) A~ + (B + 2tS(w) + a|w|*t*)E,

where §(z) denotes the imaginary part of z.
A representation p of osc on 2 is defined by

p(N)ln) = n|n),
p(AN)n)y = Vn+1n+1),
p(A7)[n=1) = Vnln—-1),
p(E)ln) = |n),
where |0), |1),... is an orthonormal basis of £2.

Proposition 4.1. The distribution of p(Xa,,g) in the vacuum vector |0) is given
by the characteristic function

exp (Mﬁ — ’\72|§|2) for a=0,
exp (i/\ <ﬁ — %) + E—‘; (ei)‘a — 1)) for a#0,

i.e. it is either a Gaussian random variable with variance |(|? and mean B or

2 2
Poisson random variable with “jump size” «, intensity E—L, and drift 3 — %

(0] exp (iAp(Xay,5))|0) =

Lemma 4.2. The vacuum vector |0) is cyclic for p(Xacp), as long as ¢ # 0, i.e.
span {p(Xac5)k0) : k=0,1,...} = %

Proof. Due to the creation operator A in the definition of p(X, ¢ g), we have

k—1
p(Xac,8)k10) = CFVEIE) + ) crl)
=0

with some coefficients ¢, € C. Therefore

span {|0), p(Xa,c,6)[0); - - -, p(Xac,6)*|0)} = span {[0), ..., [k)}.
for all £ € N, if ¢ # 0. U

Therefore v(t) = exp ( — tp(Y))|0) can be written in the form

o0

v(t) =) er(t)p(Xags)'10) = G(Xag,,1)[0)-

k=0
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In order to compute the function G, we consider

C(t) = —exp (— tp(1))p(¥)]0) = ~iexp (— 1p(Y))ul1).
We can rewrite this as
Loty =~ exp (— tp(¥)) (06X z00500)10) — BEO)
= ) XpL—tp (P a,(1)B(1) )

o (P(Xacs) = BE)) exp (= tp(Y))]0) = o (P(Xags) = B®)) (1),

where

™\

(t) = (—iauwt,
Blt) = B+ 23(wl) + alw*?,

This is satisfied provided G(z,t) satisfies the differential equation

d ) .
7@ =75 (

z— 5(t)) G(z,1)

with initial condition G(z,0) = 1. We get

G(z,t) = exp (—iw/o (%f)(s)) ds) .

Evaluating the integral, this can be written as
1¢12 —
+ o2 ’U}C t2 | |2
exp | i— — —|w
p o B )
and therefore

2 E;B—i—% 7|C|2 QW | 42 2|w|2
|G(‘Tat)|2 = (1 + 2tay (%) + tQOZZ |w| ) e ;T(Qta\sf—kt @ W)

After letting o go to 0 we get

z=f

G(x,t) = (1 —ZO‘TW> ’

|G(Qj’t)|2 — th(I_’B)g%_t?|C|2(2S%)2'
Note that the classical analog of this limiting procedure is
(1+ oz)""\(Na—>‘/042)-|-’),z—2 a0 e’\X_%V,

where N, is a Poisson random variable with intensity A > 0 and A(N, — \/a?)
converges in distribution to a standard Gaussian variable X. No such normaliza-
tion is needed in the quantum case.
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Proposition 4.3. We have

]E[g(X(t))} =1E[g 00,8 | G(Xag s, )ﬂ
for all g € Cy(R).

For o = 0, this identity gives the relative density of two Gaussian random
variables with the same variance, but different means. For a # 0, it gives the
relative density of two Poisson random variables with different intensities.

4.2. Brownian motion and the Girsanov formula. Let now (js)o<s<: be the
Lévy process on osc with the Schiirmann triple defined by D = C,

p(N) =1, p(A%)=p(E) =0,
n(AT) =1, n(N)=n(A")=n(E) =0,
L(N)=L(A*)=0, L(E)=1.

Taking for X the constant function with value —i(A™ + A7), we get
X(f) =A"(f) + A(f)

and the associated classical process (Xt)tzo is Brownian motion.
We choose for Y = h(AT — A7), with h € S(R;.). A similar calculation as in
the previous subsection yields

t
X'(1og) =" X(Apgle ™ = X(joz) — 2/ h(s)ds
0

i.e. Ax is invariant under e¥ and (X!);»¢ is obtained from (X;);>o by adding a
drift.

e™¥) is a Weyl operator and gives an exponential vector, if it acts on the
vacuum, i.e.

e (Y)(Q) = e—thlz/Zg(h)

see, e.g., [Par92, Mey95]. But - up to the normalisation - we can create the same
exponential vector also by acting on Q with eX(?)

X0 — (lIM2g (p).

Therefore we get G = exp (X (k) — ||h||?) and the well-known Girsanov formula

B(s(X'(1)) = (g(X () exp (2600 —2 [ #2(s)as) ).
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4.3. Poisson process and the Girsanov formula. Taking for X the constant
function with value —i(N + vAT + vA~ + V?F), we get

X(f) = N(f) + vA* () + vA(f) + / " f(s)ds

and the associated classical process (Xt)tzo is a non-compensated Poisson process
with intensity ©? and jump size 1. Given h € S(R,) of the form

h(t) = bl (d),
k=1

with hy > —12, let

w(t) =i(\/v?2 + h(t) —v),
and Y = w(A" — A7). The calculations of Subsection 4.1 show that
X'(1p4) =" X (g )e”"

is a non-compensated Poisson process with intensity v? + h(t). We have the
Girsanov formula

E(s(X(1)) = E(Q(X(f))ﬁ(1+@)m[sk’tk[)e—“2<tk—5k>hk>

. 2 [ h(s)ds hy, X (Lag 1)
_ E(g(X(f))e o [ (14 12)

k=1

= E (g(f((f)) exp <X (log (1 + %)) -2 /OOO h(s)ds>) :

4.4. sl(2,R) and the Meixner, Gamma, and Pascal random variables.
Let us now consider the three-dimensional Lie algebra s/(2; R), with basis BT, B~, M,
Lie bracket
[M,B¥] = £2B*,  [B~,B*] =M,
and the involution (B*)* = B~, M* = M.
For § € R, we set X3 = BT+ B~ + M. Furthermore, we choose Y = B~ —B*.
We compute [Y, Xg] = 26B" +28B~ + 2M = 23X, ,3 and

eY/2 X geY/2 = e%adYXB = (cosh(t) + Bsinh(t)) X5,

where 5 cosh(t) + sinh (1)
cos sin
V(8,1) = cosh(t) + fsinh(t)

For ¢ > 0 we can define representations of sl(2; R) on ¢* by
pe(BI)k) = V(k+c)(k+1)[k+1),
pe(M)lk) = (2k +c)|k),

pc(Bi)‘k» =V k(k +c— 1)%)1
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where [0}, [1),... is an orthonormal basis of /2.
Using the Splitting Lemma for sl(2), cf. [FS93, Chapter 1, 4.3.10] to write e**#
as a product e+B" e»0Mer-B~ it ig straight-forward to compute the distribution

of p.(Xp) in the state vector |0).

Proposition 4.4. The Fourier-Laplace transform of the distribution of p.(Xp)
w.r.t. |0) is given by

) N/ C
(0] exp ()\pC(Xﬂ))m) N (\/ﬁ27—1008h (/\\/527—1) — Bsinh (/\\/527_1)> .

Remark 4.5. For |B| < 1, this distribution is called the Meixner distribution. It
is absolutely continuous w.r.t. to the Lebesgue measure and the density is given

by
Cexp (m — 2arccos 8)x (€. i
2v/1— 32 2 9./1_ B2

see also [AFS02]. C is a normalization constant.
For § = +1, we get the Gamma distribution, which has the density

2

Y

|1ﬂcfl

T(e)

Finally, for |3| > 1, we get a discrete measure, the so-called Pascal distribution.

e_ﬁI15R+.

Lemma 4.6. The lowest weight vector |0) is cyclic for p.(Xg) for all § € R,
c> 0.

Proof. On |0), we get

B

pe(X5)F|0) = VEle(c+1) - (c+ k —1)|k) + Y cel)

~
Il

with some coefficients ¢, € C. Therefore
span {0), pe(X5)[0), .- -, pe(X5)*|0)} = span {0),...., [k)}.
forall k € N, if ¢ > 0. O

Therefore we can write v, = e *<(")/2|0) in the form

o(t) = Y clt)pe(Xp)*(0) = G(Xg,1)[0).

In order to compute the function G, we consider

d 1

() = 5 exp (= 1Y) /2)pe(V)|0) = 5 exp (= tpe(¥)) VD).
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As in Subsection 4.1, we introduce Xz into this equation to get an ordinary
differential equation for G,

Colt) = gexp (— t0Y)/2) (pe(Xyq50) — e1(50) 0
v
This is satisfied, if
d _ 1a —c¢(Bcosh(t) + sinh(t))
&G(x, t) = 2 cosh(t) + Bsinh(t) Gla,1)

with initial condition G(z,0) = 1. The solution of this ode is given by

1 /t z — c(B cosh(s) + sinh(s)) ds

G(z,t) = exp 5 cosh(s) + Bsinh(s)

For 8 =1, we get G(z,t) = exp 2(z(1 — e ') — ct) and we recover the following
identity for a Gamma distributed random variable Z with parameter c,

E(g(e'Z)) = IE(g(Z) exp (Z(1—e") — ct)).
If |B| < 1, then we can write G in the form

G(z,t) = exp (®(B, 1)z — c¥(B,1)),

where

1 1+ 7 1+5
(4.2) ®(8,t) = TﬁQ (arctan (et q> — arctan ( ﬂ)) ;

(4.3) ¥(B,t) = %(t +log(1+8+e*(1-p)) - log2>.

4.5. A quasi-invariance formula for the Gamma process. Let now (js)o<s<t
be the Lévy process on s/(2; R) with Schiirmann triple D = £?, p = po, and

n(BY) =10), n(B")=mn(M)=0,
L(M)=1, L(B¥) =0,

cf. [AFS02, Example 3.1]. We take for X the constant function with value
—i(B* + BT + M), then the random variables

X (1) = A (p(X)) + 45,(0)) + Au(|0)) + (£ — s)id

are Gamma distributed in the vacuum vector 2.
For Y we choose h(B~ —Bt) with h =Y, _ hilp, 1, € S(R), 0 <51 <ty <
s9 < --- <t,. As in the previous subsection, we get

X'(1j5) = "X (1 )e ™) = X (21, ).
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On the other hand, using the tensor product structure of the Fock space, we can
calculate

e_hljsltl (Y))Q ® PR ® e_h‘njsntn (Y))Q
1
= exp 5 <X((1 — 6_2h1)1[517t1[) - (tl - 81)2hd8)Q -

1
-+ @ exp §(X((1 —e )1

1
= expy (X(l —e %) — /R 2hds> Q,
+

since jg is equivalent to p;_s.

Proposition 4.7. Let n € N, fi,...,fn € SRy), g1,---,91 € Co(R), then we
have

)~ (tn — sn)ths)Q

[Sn,tn[

E(9:(X'(1) -+ 0 (X' (1)) )
=E (g1 (X(f1) - gu(X(fn)) exp (X(l —e %) — /R+ 2hds)> :

4.6. A quasi-invariance formula for the Meixner process. We consider
again the same Lévy process on sl(2;R) as in the previous subsection. Let ¢, § €
S(Ry) with |5(t)] < 1 for all t € R, , and set

X,p5=¢(BY+ B~ + BM) € sl(2; R)*+.
Let Y again be given by Y = h(B~ — B*1), h € S(R, ). Then we get
X'(t) = "X (t)e Y = (t) (cosh(2h)+B(t) sinh(2h)) (B*—i—B‘—i—v(,B(t), 2h) M)
ie. X' = X5 with
o) = gp(t)(cosh (2h(t)) + B(t) sinh (2h(t))>,
g'(t) = v(B(t),2n(t)).

As in the previous subsection, we can also calculate the function G,

1
"0 = exp (X¢<g,2h),ﬂ - / T (B(), 2h(t))) Q,
Ry

where @, ¥ are defined as in Equations (4.2) and (4.3).

Proposition 4.8. The finite joint distributions of X, g are absolutely continu-
ous w.r.t. to those of X, g, and the mutual density is given by

exp (Xq,(ﬂ,%),ﬂ _ /R (50 2h(t))> .
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5. CONCLUSION

The results stated in Subsections 4.2, 4.3, 4.5, and 4.6 have been proved with
our methods for the finite joint distributions. They can be extended to the
distribution of the processes either using continuity arguments for the states and
endomorphisms on our operator algebras or by the use of standard tightness
arguments of classical probability.

Of course the general idea also applies to classical processes obtained by a
different choice of the commutative subalgebra, e.g. as in [Bia98], and to more
general classes of quantum stochastic processes. The restrictions in this Note
were motivated by the fact that they simplify the explicit calculations.
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