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Abstract

We construct differential forms of all orders and a covariant derivative to-
gether with its adjoint on the probability space of a standard Poisson process,
using derivation operators. In this framewok we derive a de Rham-Hodge-
Kodaira decomposition as well as Weitzenbock and Clark-Ocone formulae for
random differential forms. Asin the Wiener space setting, this construction pro-
vides two distinct approaches to the vanishing of harmonic differential forms.
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1 Introduction

The Weitzenbock formula
A,=L+ R,
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relates the Hodge Laplacian A,, = d*~'d®~Y* 4 d"*d" on differential n-forms to the
Bochner Laplacian L = —V*V through a zeroth-order curvature term R,,. Here, d" is
the exterior derivative on n-forms with adjoint d™*, and V is the covariant derivative
with adjoint V*. For one-forms, the Weitzenbock curvature R; reduces to the usual
Ricci tensor. The Weitzenbock formula has been established on the standard Wiener
space in [25] using the operators of the Malliavin calculus, cf. § 11-6.7 of [13], in which
case the curvature tensor R, is the identity operator on the Cameron-Martin space.
Weitzenbock formulas have also been established on path and loop spaces over Lie
groups, cf. [10] and [11], and also on the path space over a Riemannian manifold [7].
The Weitzenbock formula can be used to prove the vanishing of harmonic differential

forms, cf. [1] in the case of loop groups.

On the other hand, the Clark-Ocone formula
T
F=EF|+ [ EIDF| 7B,
0

on the Wiener space, cf. [6], [15], decomposes a square-integrable function into the
sum of a constant and a martingale, where D; denotes the Malliavin gradient. The
Clark-Ocone formula has been extended to the decomposition of n-forms into the sum
of an exact form and a martingale, see [26] on the Wiener space, and [9] on the path
space over a Riemannian manifold. It provides an alternative proof of the result of
[25] on the vanishing of harmonic differential forms as well as explicit decompositions
for closed differential forms, and it also admits a dual version that applies to the

representation of co-closed forms.

The above framework has been extended in [24] to the more general setting of normal
martingales using multiple stochastic integral chaos expansions, including compen-
sated Poisson processes via finite difference operators, also covering the results of [26]

on the Clark-Ocone formula for differential forms on the Wiener space.

In this paper we present another example of extension of this construction beyond

chaos expansions, based on a natural geometry on the Poisson space over the half line



R, = [0,00), using a gradient operator which has the derivation property, cf. [5], [§],
[16]. Our proof of the Weitzenbock formula is inspired by the arguments of [10] and
[11] on path and loop groups, and it extends the results of [18], [19], [20] which are

stated in the case of one-forms. In particular we construct a Hodge Laplacian
A, = drtdem D 4 dman,
on differential n-forms, with domain Dom (A,,), and we prove the Weitzenbock identity
A, = nldgrn + V*V, n>1,

cf. Theorem 5.3, using a space of smooth random forms valued in a space H, of
C:(R%; R) functions with compact support, that vanish in a neighborhood of the
diagonals of R}. As a consequence we deduce that Ker A,, = {0}, with the de Rham-

Hodge decomposition
L2(Q; H™) = Im d"! @ Im d™, n>1, (1.1)

where H" denotes the completed antisymmetric n-th tensor power of H, cf. Propo-
sition 4.2 and Corollaries 5.5, 6.5. On the other hand, we recover the de Rham-Hodge
decomposition (1.1) from the Clark-Ocone formula of Theorem 6.3, which also shows

the exactness of the sequence
Dom (d") %% Im (d") = Ker (") ©5 Im (d™*Y),  neN,

and the complementarity of the Weitzenbock and Clark-Ocone approaches.

We refer the reader to [2], [3] for a different construction of differential forms on the
configuration space over a Riemannian manifold with a Poisson measure, where n-
forms were defined by a lifting of the underlying differential structure on the manifold
to the configuration space. See also to [4] for a different approach to the construction

of the Hodge decomposition on abstract metric spaces.

This paper is organized as follows. The Poisson space geometry used in this pa-

per is presented in Section 2. In Sections 3 and 4 we construct the differential and
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divergence operators on differential forms, including their duality and commutation
relations. Section 5 and 6 presents the main results on the Weitzenbock identity and
the generalised Clark-Ocone formulae, respectively. The appendix Section 7 contains
alternative proofs for two lemmas used in the paper, using explicit calculations for

the Poisson process.
2 Differential geometry of the standard Poisson
space

We consider the probability space (€2, F, P) where ) = R" is endowed with the proba-
bility measure P and og-algebra F generated by the countable sequence of independent

exponentially distributed random variables (7;)g>; built as the coordinate mappings
Q35w = (wn)nen — Tp(W) = wy, k>1,
cf. [16] for details. This defines the sequence
T,=71+ -+ 7, k>1, (2.1)

of jump times of a standard Poisson process
(0.0
Nt - Z 1[Tk7oo)(t), t < R+,
k=1

generating the filtration (F;)er, on (2, F, P). We consider the space S of cylindrical

functionals of the form
Fw)=f(Th,....,Ts), feCRLR), d>1, (2.2)
where C}(R%;R) denotes the set of bounded continuously differentiable real-valued

functions on Ri.

We will use the following gradient operator, cf. [16], which is a modification of the
operator introduced in [5]. The notation J; denotes the partial derivative of f with

respect to its k-th variable.



Definition 2.1. Given F € § of the form F = f(T\,...,Ty), let

d
D,F ==Y Loz (t)ouf(T1,.... Ta),  tE€R, (2.3)
k=1
We also let
D,F = (v,DF)p2wr,), F€S, veS®LRy) (2.4)

Note that the operator D satisfies the chain rule of derivation
D(FG) = FDG + GDF, F,GeSs. (2.5)
The divergence operator § : L*(2 x Ry) — L?*() is defined on S ® L*(R,) by
(hG) = G/OOO h(t)(dN; — dt) = (h, DG) 2wy, G €S, hel’(Ry), (26)
and the operators D and 0 satisfy the duality relation
El(u, DF) o)) = E[FO(w)],  FeS, SoLAR,), (2.7
from which D can be extended to a closed operator
D : Dom (D) — L*(Q2 x R,)
with domain Dom (D) C L*(€2), and § can be extended to a closed operator
§ : Dom(8) — L*(2)

with domain Dom (§) C L?*(22xR.;), cf. Proposition 3.1.2 and Proposition 7.2.6 of [23].
This duality condition corresponds to Assumption A2 in [24], and as a consequence

these operators are extended to their respective closed domains Dom (D) and Dom (4).

In addition, the operator § coincides with the compensated Poisson stochastic integral
with respect to (Ny — t)icr, on the (Fi)er, -adapted square-integrable processes, cf.

e.g. Proposition 7.2.9 of [23].



Lie bracket

In the sequel, L?*(R, ) will be seen as a tangent space to €2, in which the gradient D
takes its values. On the other hand, the Lie bracket and covariant derivatives will
be defined on the subspace H = C°((0,00); R) of smooth vectors in L?(R. ), made
of continuously differentiable functions with compact support in (0, c0), and endowed

with the scalar product inherited from L?(R. ).

The Lie bracket {f, g} of f,g € H is the element {f, g} of H given by

t
U0 = 70 [ ods =) [ 1) teR,,

whose definition is justified by the following proposition.
Proposition 2.2. The bracket w = {f, g} is the unique function in H satisfying the
condition

(DyDy — DyDy)F = D, F, fge H FeS, (2.8)
where Dy is defined in (2.4).
Proof. First we note that by the chain rule of derivation (2.5) for D, Condition (2.8)
is equivalent to

DTy = (DfDy — DyDy)Ty, k> 1. (2.9)
Next, for any k > 1 we have D,/ T}, = — /Tk w(s)ds, and
0 .

Tk
(DyDy, — DyDy)T}, = —Df/ g(s)ds + D, f(s)ds
0

0

= gm) [ fs)ds — £(T) / " g(s)ds,

0
hence (2.9) reads

Ty, Ty, Ty
- [ wds=omy [ fe)ds - 1@ [glods. k=1
0 0 0
and by differentiation with respect to T} this relation can be satisfied only by taking

wt) = £0) [ ohds =) [ 16)is. e R,

hence {f, g} is the only function w = {f, g} in H for which (2.9) holds for all k£ > 1.
U



The Lie bracket {-,-} is extended tou = F @ f,r =G® g € S® H by
{FRf,Gaglt)=FGR{f g}t)+ FD;G®g(t)— GD,F® f(t), t€ Ry, (2.10)
and (2.8) extends similarly as
(DuDy — DyDy)F = Dy 3 F
toall u,v e S® H, F € §.

Covariant derivative

In the sequel we will refer to stochastic processes of the form
u(t,w) =Y Fw) ®h(t), teRy, weq, (2.11)
i=1

with Fy,...,F, € S, hy,...,h, € L*(R,), as a simple (vector-valued) vector fields.
We extend D to a closable operator on the domain Do (L*(R.)) C L*(Q; L*(R,))
by defining

Dgu(t,w) := ZDsFi(w) ® hi(t), s,te Ry, weq,
i=1

on simple vector fields, as in e.g. Remark 2 page 31 of [14] on the Wiener space.

The covariant derivative operator V will be defined on the space

Dom (V) {u € Doy (I2(R.)) : E UOOO |u'(t,w)y%dt] < oo}

where u/(t,w) denotes the partial time derivative of ¢ — u(¢,w) in the Sobolev sense,
P(dw)-a.e. Given u € Dom (V) the covariant derivative Vu of w is the process defined

as

Vu(t) == Dsu(t) — 1 q(s)u'(t), s, t € Ry, (2.12)

cf. Section 3 of [19].

The use of the time derivative in (2.12) is a major difference from chaos-based

settings which involve a vanishing covariant derivative operator V on H and finite
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differences operators which do not have the derivation property in the Poisson case,

cf. [24].

With respect to the construction of [2], [3], the operator V defined in (2.12) has
the advantage to satisfy the simple commutation relation (2.16) below between the
gradient D and the divergence o, which takes the same form as on the Wiener and

Lie-Wiener path spaces.

The operator V is closed with domain Dom(V), and continuous with respect to

the norm

lalm o) ::EUO /0 \Dsu(t)|2dsdt}+E[/0 t\u’(t)|2dt}, w € Dom (V).

The covariant derivative V,u of u of the form (2.11) in the direction of v € L*(R.)
is defined by

Vou(t) = (U,OOVu(t))
= /0 v(s)Vsu(t)ds

t
= S RODE - R [os)ds. teR.,
] 0

=1

u,v € S®H, where D, F is defined in (2.4). We also note that the operator V satisfies
V.f(s) =0, 0<s<t, feH, (2.13)
by the definition (2.12), as in Assumption A4 of [24].

Vanishing of torsion

The next proposition, cf. Proposition 3.1 of [19], Proposition 3.2 of [20], or Proposi-
tion 7.6.3 of [23], corresponds to Assumption Al in [24].

Proposition 2.3. The connection defined by V has a vanishing torsion, i.e. the Lie

bracket {-,-} satisfies

{u,v} = Vv — Vyu, u,v €S X H. (2.14)



Proof. By (2.10) it suffices to check that

(FL9) = g0 / F)ds + 1) [ ato)is
= / f ]-[Ot]( )d8—|—/Ooog(g)f’(t)l[o’t](s)ds

_ / F(5)V.g(t)ds — / 9(5) V. f(t)ds

= Vyg t) Vo f(1), te Ry,
for all f,g € H. O
From (2.8) the vanishing of torsion (2.14) can be written as

/ (h, DD,F — D,DF) 2%, g(t)dt (2.15)
0

= / h(t)(Vig, DF) 2, )dt —/ g(t)(Vih, DF) 2w, dt,
0 0
for FeS, f,ge H.

Gradient-divergence intertwinning relation

Noting that
=> h(Ty) - / h(s)ds, heH,
k=1 0

the operators V,  and D can be shown to satisfy the commutation relation
Dio(h) = h(t) + 0(Vh), teR,, heH, (2.16)

cf. Relation (3.6) and Proposition 3.3 in [19], or Lemma 7.6.6 page 276 of [23]. Next
we extend the commutation relation (2.16) to cylindrical random processes in the
next proposition, cf. Assumption A5 in [24], which will be needed in Section 5 on the

Weitzenbock identity.

Lemma 2.4. (Intertwining relation). For allu € S ® H of the form v = F ® h we

have

(9. Do(u) r2my) = (9, W2y +0(Vgu) +(Vig, DF) 2wy, g€ H.  (217)



Proof. By Relation (2.6) together with (2.16) and the derivation rule (2.5) we get
D6(F®@h) = Dy(Fo(h) — (h, DF)r2r,))

= 0(h)DeF 4+ FDyo(h) — Di(h, DF) r2(g,)

= 0(h)DeF + Fh(t) + F6(Vih) — Dy(h, DF) 12w )

= Fh(t) + 0(hDF) + (h, DDF) 12,y + 0(F'Vh)
+(Vih(:), D.F) 2@,y — (b, DiDF) 2w,

= u(t) +6(Vu) + (h, DD, F) 2,
—(h, D{DF)2r,) + (Vih(-), D.F) 12(w,), (2.18)

which yields (2.17) by the vanishing torsion identity (2.15) and Relation (2.12) written
as

Viu=DF®h+F® V,;h, teR,.
O

We note in particular that Lemma 2.4 can be used to extend (2.16) to simple adapted
vector field u=F ®h e S® H as

provided h(s) = 0 for s < t, since we have h(r)D,FF = 0, r € R, when F is

Fi-measurable, see e.g. Lemma 7.2.3 of [23].

3 Differential forms and exterior derivative

Exterior product

The exterior product A is defined as
haN---Nhy, =A,(hi®---®hy,), hy,...,h, € H,
where A,, denotes the antisymmetrization map on n-tensors given by

Ay @+ @ hy) =Y sign(o) (hon) ® -+ ® hom)),

oEY,
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and the summation is over n! elements of the symmetric group ¥,,, consisting of all

permutations of {1,...,n}.

We denote by H®" the n-th tensor power of H, and by Hem, resp. HM its subspaces
of symmetric, resp. and skew-symmetric tensors, completed using the Hilbert space

cross norm inherited from L*(R,). We also equip H’" with the inner product

1 R
<fnvgn>[§mn = E(fnagn>f[®n> fmgn € H™.

In the sequel we will work on the space S® H"" of elementary (random) n-forms that

can be written as a linear combination of terms of the form
Up=F@MA-- - ANh,eS®H™, FeS8, hy,... ,h,€H. (3.1)
The operator D is extended to u, € S ® H" as in (3.1) by the pointwise equality
Dy, = (DiF) @ (hy A-+- A hy), te Ry,
ie. Du, € H®S® H"

Covariant derivative of differential forms

Using the partial covariant derivative VY defined on h, € H™ as

. oh,, .
VO h,(ty, ... t,) = _I[O:tﬂ(s)g_(tl’ s tn), j=1,...,n,
t
t1,...,t, € Ry, we extend the definition of V to deterministic tensors hy,(ty,...,t,)

in H by letting

n

vshn<t1,...,tn) = ZV( )h (tl,... Z [0,t5] tla'--atn)a

J=1

t1,...,t, € Ry. Given g € H we also define V,(hy A--- A h,) € H by
V(A Ahy) = / GOV A~ A Ry)dt

= Z/ “Ahj 1y AV Ahjy A A hy)dt

11



= > (M A ARy AVGhy Ahj Ao Ahy).
j=1

The definition of V also extends to random forms u, = F ® f, € S ® HMr by
Vis(un(ty, ... tn)) = (DsF) @ fulty, ... tn) + FQ Vfults, ... tn),

S,t1,...,t, € Ry, de.

- ou,,
Vsun<t1, P ,tn> — Dsun(tl, e ,tn) - 1[0,tj}<8)_

j=1
Exterior derivative

The exterior derivative d”(hy A --- A hy) of the n-form hy A --- A h, € H™ is the

(n + 1)-form
dp (R Ao ANhy(ty, .o t,)) = d"(ho A Ay (b, s tag)
n+1
= D (=1 (A Aha) (bt e )
j=1
n+1 n A
= > T VI A AR (et o)
j=1 i=1
n+1 n
= D (=Y (A AV R A N (b ot )
j=1 i=1
ty,...,thr1 € Ry, in HMNHD | We now can define the exterior derivative of elementary

forms of the form (3.1) by

d'f'L

tn+1

(F@hl/\/\hn(tl,,tn)) = dn(F®h1/\/\hn)(t1,,tn+1)
= (DEYANhi A~ ANhpy)(ty, .. tppr) F F @A™ (ha Ao Ahp)(tr, .o togr).

In other words, for a random n-form u, € S ® H*" we have

d”un(tl, ce ,tn+1> = d?nJrl (Un(tl, ce ,tn»
1

= m.An_H(V.un)(tl, c. 7tn+1)
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1
= (D.FA fu)(t1,. . tas1) + mF@AnH(V.fn)(tl, e tagt),

which is also equal to

n+1
Z(_l)j_lvtjun(th cootion i, tag)

j=1

in H"" Y for u, € S ® H™. In this torsion free setting we also have

n+1
(h1,d"™up A+ Ahpir1) gamen = Z(—l)kA(hl, Vi tn A A1 A a A~ ARnit) grans

= (3.2)

1
where hy,...,h,y1 € H, ie. d" = —‘AHHV.
n!

The invariant formula for differential forms (see e.g. Prop. 3.11 page 36 of [12]) shows
that we have

d"(S ® H'") ¢ Dom(d"*'),  neN,

and

d"td" =0, n € N. (3.3)

In the appendix Section 7 we present an alternative derivation of (3.3) by explicit

computation.

We close this section with the next lemma which, in the present framework, corre-
sponds to Assumption A3 in [24]. Here the definition of V is further extended to the
higher deterministic tensor hy,(t,t1,...,t,) in H® H by

g Oh,,
Vihn(t ty, .. ty) = — Zl[o,tj](s)m(t,tl, Cot), sttty € Ry
j=1 J

Lemma 3.1. The operator V satisfies the condition

/ A / <thn+1 (t, tl, “e. ,tn), gn<t1, e ,tn)>R®ndt1 A dtndt (34)
0 0

= —/ / <fn+1(t,t1,...,tn),vtgn(tl,...,tn)>R®(n+1)dt1~-~dtndt,
0 0

Gn € H™, fri1 € HNHD > 1,
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Proof. By an elementary integration by parts for C} (R ; R) functions we check that

/ / fn+1(t7t17"-7tn)vtgn(t17"';tn)dt1"-dtn
0
G
- _Z/ / Lo (8) fra (Eyta, s )(;Z (t1, ... tp)dt, - --dt,

— Z/ / fn+1(t’t1’ .,tjfl,t,tj+l7-..,t’n)
j=170 0

Xgn(tla Ce tjfl,t tj+1, R )dtl s dtjfldt]url ce tn

Y - > afn 1
+Z/O /0 Lo.;)(t) at+ (t,ty, .o tn)gn(te, ..o ty)dty - -+ dty,
j=1

n 0o . a 3
= Z/ / Lio,;) (1) gtﬂ(t,tl,...,tn)gn(tl,...,tn)dtl...dtn
J

= / / thn+1 t tl,... )gn(tl,,tn)dtldtn, te R+,

fn+1 S f{/\(n+1), Jn € f{@n) n Z 1, since fn+1(t,t1,...,tj_l,t,tj+1,...,tn) =0 by
antisymmetry of f,.q € H "D, O

4 Divergence of n-forms and duality

The divergence operator

§:S®H — L*(Q),

v = (V)rer, — 0(v)

defined in (2.6) acts on stochastic processes v € S ® H and it can be extended to

elementary n-forms by letting

n

1 . R
5(h1/\. . -/\hn) = ﬁ E (—1)3_15(hj)®(h1/\' . '/\hj—l/\hj+1/\‘ . '/\hn) c S®H/\(n—1)7
J=1

and to random forms u, = F @ hy A -+ A h, € S ® H" of the form (3.1) by

S(un)(try -y tn1) = 0(un(- b1, oo tn1)) (4.1)
= J(F @M N Nhp))(tr, ... tn1)
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n

I S (1T (F @hy) @ (hy Av- Ny Abjig Aee= A (b, ts).
j=1

The divergence operator d"* on (n + 1)-forms u, 1 € S @ H ") of the form (3.1) is
defined by

A" Upy1(t1, .. t) = 0(F @ fui1(s,t1, ... t,)) — Ftrace (V. fui1 (5 tr, ..o 1n))

where
trace (V. fri1(s 1, ... tn)) == / Vifor1(t te, ... t,)dt.
0

In other words we have

d"*un+1(t1, R ,tn) = 5(F X fn+1<'7t17 e ,tn)) — F/ thn+1(t,t1, e ,tn)dt,
0
(4.2)

which belongs to S @ H from (4.1), with
do*u1 :6(’&1), U1 ES@H,

since V,f1(t) = 0 as fi(t) is regarded here as a O-form. Relation (2.6) for § extends

to d™ as the divergence formula

dn*un+1(t1, e atn) = Fd(fn+1(', t]_, . ,tn)) — / Vt(an—i-l(t; t]_, e ,tn))dt
0
The next result is a consequence of Proposition 2.3 and Lemmas 2.4 and 3.1.
Proposition 4.1. (Duality). For any u, € S® H™ and v, € S®@ H "D we have

<dnun, /Un+1>L2(Q7HA(n+1)) - <u7’L7 dn*vn+1>L2(97H/\n) . (43)

Proof. Assuming that u, = F® f, € S® H" and vps1 = G ® gny1 € S @ HMNHD
have the form (3.1) we have, using successively the definition (3.2) of d”, the duality
relation (2.7), the antisymmetry of g,.1, the antisymmetry condition (3.4), and the
definition (4.2) of d™*, we have

<d?n+1 (an(t17 v 7tn))7 ng—i—l(tly v 7tn+1)>L2(Q7ﬁ/\(n+1))

15



TL+1 j*l

Vt (Ffn(ti, . tio1,tir1, o tng1)), Ggnpr (b1 tngd)) p2 (o grome)
S <—1>ﬂ'-1
(D Ffulty, ot tipn, oo tngn), Gona (b - 1)) p2 (0 fromen)
— (n+1)! ’
n+1 j—l
+Z th Salts s tjons e, tng1), Gnga (B, - tng1)) p2(q freme)
7j=1
n+1
=l ,Z YFf, (1ot tis  tng1), 0(Ganga (B, - 1o L1, -5 1)) p2(q fremy

n+1 %)
_ n+1 'Z J 1 an tl,...,tj_l,tj+1,...,tn+1),G/ Vtgn—f—l(tl,---7tj—17t7tj+1,---,tn+1)dt>L2(Q7ﬁ®n)
0

1 n+1

= n+1 |Z f’n t1,.. ., ] 17t]+17-~-7tn+1)75(Gg7Z+1<'7t17"'7tj—17tj+17'"7tn+1))>L2(Q’];[®n)

1 n+1

_mz fn t1,... tj 1,tj+1,.. tn+1 G/ Vtgn+1(t t1,... t] 1,t]+1,.. tn+1)dt>L2(QH®n)

= <an(t1,..., n),dn (ng+1)(t17"‘7tn)>L2(Q,HAn)'
0

As in (2.7) above we note that the duality (4.3) implies that d” can be extended to a

closed operator

d" : Dom(d") — L*(Q; ﬁA(”H))
with domain Dom (d") ¢ L2(€; H*), and d™, n € N, can be extended to a closed

operator
d™ : Dom (d™) — L*(Q; H™")

with domain Dom(d™) c L*(Q; HM"*D), by the same argument as in Proposi-
tion 3.1.2 of [23]. When n = 0, the statement of Proposition 4.1 reduces to (2.7).

Relation (3.3) shows that
Imd" C Kerd"t, n € N. (4.4)
In addition, the duality and the coboundary condition (3.3) imply
dd™* =0,  neN, (4.5)
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and

Imd™* ¢ Kerd™, neN. (4.6)

De Rham-Hodge decomposition

Based on (4.4) and (4.6) we define the usual Hodge Laplacian A, on differential
n-forms as

A, = d" 14D 4 greg,
and call harmonic n-forms the elements of the kernel Ker A,, of A,,. Note that from
the closedness of d” and d™, the Hodge Laplacian A,, extends to a closed operator
A, : Dom(A,) — L*(Q; H')
with domain Dom(A,) C L2(Q; H™).

Proposition 4.2. We have the de Rham-Hodge decomposition

X H) =Imd" ' @ Imd™ @ KerA,,  n>1. (4.7)

Proof.  The spaces of exact and co-exact forms Imd™” ! and Im d™ are mutually
orthogonal in L2(; H™) by (3.3) or (4.5) and the duality of Proposition 4.1. In
addition, the orthogonal complement (Ker d™~Y*) N (Ker d") of Imd"~! @ Im d™ in
L2(€; H™) is made of n-forms u, that are both closed (d™u, = 0) and co-closed

(d"=V*y,, = 0), hence it is contained in (and equal to) Ker A,,. O

The next lemma extends the intertwining relation of Lemma 2.4 to differential forms,

and will be used in the proof of the Weitzenbock identity in Theorem 5.3.

Lemma 4.3. For any u, € S ® H™ of the form u, = F ® f,, with F € S and
fosgn € H™, we have

(A" (b1t atns o)) fran = RE by, tn), gn(ts - tn)) gan

D (Vi (F @ falty, o tjot, st tn)))s gn(tr - tn)) fran
j=1
—<d?n_1(F ® trace V. frn(t1, .. tn-1)), gn(t1, - - - ’t")>gm
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n o ‘
+ Z/ <DtF & fn(tly ey tn)u vg)gn(tb R 7tj—1)ta tj-‘rla v atn)>ﬁAndt
j=1"0
(4.8)

Proof. By (2.17) we have
d?ldo*ul = Dtl(S(Ul)
=ui(t1) +6(Vyur) + (fi, DDy F) 2w,y — (f1, D DF) 2w,y + (Vi f1(0), D.F) 2r,),

foruy = F® fi1 € S® H. By the definitions (2.12) and (3.2) of V and d", and (2.17)
or (2.18) applied to

U(S) =F & fn(S,tl, Ce 7tj—17tj+17 Ce ,tn),

we get

n

AO(F @ fultt, .o tym1) = Y (1) 7T'VL(F @ folt, o to, g, o tn)
1

= NF@ fultsy b))+ 0V (F® fulty, .t tisns - tn))

<.
Il M 3 <.
— Il

+Z(_1)j71<fn('7t17"'7tj717tj+17"'7tn)7D~Dth_DtjD-F>L2(R+)
j=1
+ 3 VD fulty, - tioa, s ), DF) pwy
j=1
= nF @ fultr, . ta) + Y6V, (F® fulti,. . timt, b, )

j=1

+Z/ (VP galts, -ttty 1), DeF @ fulty, . b)) gandt.,
j=1"0

by the vanishing of torsion (2.15) applied to h(s) = f.(t1,...,tj—1,8,tj41,...,t5), Us-
ing the operator Vg) which applies to the j—th component of f,,(t1, ..., t1, tjt1, .-, tn).
We conclude by the definition

A" DNEQ f)(t1, . tnt) = 6(F@ ful- t1, ... ta1)) —F @ trace V. fu(- ty, ... ty1)
of d™, cf. (4.2). O
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For n = 1, Relation (4.8) and the fact that V,f;(t) = 0 yield
(g1(t1), 47, A% uy (t1)) L2y
= F(f(t1),01(t1)2my) + (Ve (F ® f1)), g1(t1)) 2wy) + (Ve 01(); D.F) 2wy, f1(t)) 2wy,

F €S, fi,q1 € H, which coincides with the commutation relation (2.17) of Lemma 2.4

5 Weitzenbock identity for n-forms

In this section we will use the following dense subspace H,, of H".

Definition 5.1. Let H,, denote the space of continuously differentiable functions in

C:(R%; R) with compact support in R';, and vanish in a neighborhood of the diagonals
{(t1,...,t,) : t;=1t; for somei# j} of RY.

The proof of the Weitzenbock identity in Theorem 5.3 below relies on the following

lemma which corresponds to Assumption B1 in [24].

Lemma 5.2. For alln > 1 the covariant derivative operator satisfies
APVt by ter) = VodP T (b by ), (5.1)

t,...,tp, e Ry, te Ry, f, € H,.
Proof. Since the functions in H,, vanish in a neighborhood of the diagonals, we check
by explicit derivation that for any f,, € H, we have

APVt by t)

n

= Z<_1)j71vtjvtfn<ta tl? s 7tj717 tj+17 s 7tn)

j:l
afn
— Z th ( 0. (¢ a =, tl,...,tj_l,tj+1,...,tn)>
7=1
175]
- O fa
= Y (-1 221[(” V104, (t >8t8t (ttr, ottty s tn)
j=1 i=1 k=1
i£j  k#j

n a a
+Z( Z(St ]-[(]t a.]; (t tlw"atj—l)tj—‘rl;-"atn)
7=1

Z#J
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n an
Z( J 1221[015 [Otk] >at 815 (t tl,-~-,tj—17tj+17‘--7tn);

j=1 i=1 k=1
i#j  k#j

due to the vanishing

815 (t tl,...,t‘, '-7tj—1>tj+17-"7tn) :0

when t = ¢;. On the other hand we have

vtd;jjlfn(t ty ey tn1)

3fn
= Z th <1[01t 2y, tl,...,t._l,t-ﬂ,...,tn))
s 3t J J
1?5]
n an
- _Z<_ Zzl[Ot [Otk] )at at (t tl""atjflatj+17"'atn)
Jj=1

i=1 k=1
i#j k)

n a 8
_Z( 25t 8{ (ttr, o titstjts oo tn)
j=1

#J
. 5fn
+Z( ZCSt, Ljo.(t (,% ——(tt, ot i, t)
j=1
1#]

= = E ( E E 1[0t 1[Otk] )875 oty (t t1,...,ijfl,tj+1,...,tn).
Jj=1

i=1 k=1
i#j k)

U

Note that (5.1) differs from the vanishing of curvature condition which reads V,V, —
VoVu = Viuw), where {u, v} is the Lie bracket of two vector fields u, v, cf. Proposi-
tion 3.2 of [19] or Proposition 7.6.4 of [23].

The next Theorem 5.3 is an extension to n-forms of Lemma 3.2 of [20] and Propo-
sition 3.3 of [19], or Proposition 2 of [18], which are stated in the case of one-forms.

The following Weitzenbock identity (5.3) is interpreted as
on S ® H,, n > 1, where V* is the formal adjoint of V.
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Theorem 5.3. For any n > 1 we have the Weitzenbock identity

(Antin, Un) 120, ramy = 1{tn, Un) 2 gem) + (Viin, Von) p2q gremn), (5.2)

Uy, Uy €S ® H,.

Proof. We will show that

n!||d(n_1)*u’n||iQ(Q7HA("—1))+n!||dnun||iQ(Q7HA(n+1)) = nn!||un||iQ(Q,HM)+||Vun||12(97H®(n+1)),
ie.
||d(n 1)* |dn

un”LQ Q,H® (- 1))+n T 1| unHLz (Q,H®n+1)) = nHuan QH®n)+”VunHL2 Q,A®(n+1))

for u,, € S® H,,. The intertwining relation (4.8) of Lemma 4.3 reads, after application
of Lemma 5.2 to get (5.4),

<gn<t17 s 7tn>7 dn_ld(n_l)*un(tla s 7tn)>H/\n = nF(fn(tla s Jtn)a gn(tlﬂ s 7tn)>ﬁ1/\"

+D {0V (F @ falty, -ttty tn)))s gn(tys - b)) o

j=1
_ Z(—1)1*1<(Dth) ® /000 Vsfu(s,ti, .otz tisn, - - tn)ds, gn(th, . ... ,tn)>ﬁm
” (5.3)
F </OOO Vi folt byt ) gt ,tn)> A (5.4)
o

+Z/ (Vi gty o tion bty oo t), (DF) @ fulty, o ) gaadt.
—1 70

Hence, using Lemma 3.1 from (5.3)-(5.4) to (5.5)-(5.6), and applying (2.13) from (5.6)
to (5.9) and grouping (5.5) and (5.7) into (5.8) below, we find

(d?n_ld(”_l)*un(- by tn), Un(ts ) oo any = MU (s - ), On (b, ) pa g irany

+ Z ® fn(tlu s 7tj—17 'th+17 s 7tn))7 G & gn(th s 7tn)>L2(Q7HAn)

+ Z((S(F (029 thfn(tl, e 7tj—1a '7tj+17 e ,tn)), G & gn(tb R 7tn)>L2(Qj{/\n)

J=1
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3

1
Z/ / )®fn<t1,...,tj_1,8,tj+1,...,tn), (55)

G X Vsl)gn(t17 . ;tj—h tj+1, Ce ,t»,“ t))Lg(Q7ﬁ/\(n_1))d8dt

/ / (F@VO Lot tai bt t), (5.6)
0

0

+
S|

<.
Il
—_

3

M-

+
S|+

=1

o
G®Vt gn(tla---7tj—1;37tj+17---atn)>L2(Q7ﬁ/\(n—l))dtd5
_1)n—j/ <(DtF)®fn(t1,, )G@Vt gn(tlw--;tj—lytj+17-"7tn7t)>L2(Q7IA{An)dt
0
(5.7)

= n{up(t1, ... tn), 0n(t1, ..., tn ))LQ(QI;A”)
W1 Z/ / (DF) @ fulti- ety $tinnse e ),

(DsG) @ gn(ty, .- lj1, b tjta, ooy tn)) po(o am-n)dids
4= Z/ / (FRVifults,.. . tj—1,8,tjq1, .- ty),

(D G) X gn(tla e tj—l, t, tj+17 e ,tn)>L2(Q,HA(n_1))dtd8

n

1
Y [T 0P @ ittt ) 59
7=1
G ® Vs gn(tl’ ce 7tj_1, tj+1, ce 7tn7 t)>L2(Q,I:I/\(n—1))det
1 n ) n 00 0o )
- yn FRVDfo(ty, ..ttt ..t 5.9
+n; lzl:/ov /0< @ sf<17 5 Ul—15 by V41, ) )7 ( )

G® Vgl)gn(tl, ce ,tjfl, tj+1, ce ,tn, S)>L2(lejl/\(n,1))dtd8
= n{uy(t1, ..., tn), vn(ty, ... ,tn))Lg(QﬁM)

1
+ m<(Dtn+1F) @ fultiy.otn) + F @V falts, .o t),

n ] Dtj ) X gn(tl, .. 7tj—1a tj-i-l’ R 7tn7tn+1)
j=l
+ Z(_l)n_] Z G ® vg)gn(tla s 7tj—17 tj-i—la s 7tn7 tn+1)>
j=1 1=1 L2(Q,H®(n+1)
== 7’L<Un(t1, cee atn)> Un(tla cee atn)>L2(Q,f1/\”)
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(="
n!) (Dyy i F) @ fulty, s t) + F @ Vo falty, - t0),

n+1
S (DY) © Galtts s tyts byt o)
j=1
n+1 n
j— l
+Z(—1)] ' Z G® ng)gn(tlv L S P TES PR 7tn+1)>
J=1 =1 L2(Q,H®(n+1))

1
+ E<(Dtn+1F) ® fn(tla cee ,tn) +F® thJrlfn(tl, e 7tn)7

(D1, G) @ gultr, .. ta) + G @D VI galty, ... ,tn)>
=1 L2(Q,H®(n+1))

= n(un(ts, - tn), Onlts, - tn)) g2 any

(=1)"
o (Dt F) @ fa(tr, ... tn) + FQ Vi falty, ... tn),

n+1

ST (=1)ITHDLE) ® gultrs - o ti1bisns-tag)

j=1
n+1
+) (-1 G @ Vi galty, -ttt ,tn+1)>
J=1 L2(Q,H® (1))

1
+ = ((Diy i, F) @ fultr,- o tn) + F @ Ve falty ..y tn),
(Dtn+1G> ® gn(tl’ c e 7tn) + G ® vthrlgn(tl, . e 7tn)>L2(Q’ﬁ®(n+1))

- n<un(t1a cee 7tn)7 ’Un(tl, s ’tn)>L2(Q,PI/\")

1 n+1 -
ST <Z<—1>” YD, F) @ faltty oo tjotstists s tot)
j=1

n+1
+ Z(—l)]_lF @ Vi fulty, - tj—1, b, tagn),
j=1

n+1

Z(_l)‘jil(Dt]G) oY gn(tla s 7tj717 thrl? s 7tn+1)

j=1
n+1
+ Z(_l)j_lG & thgn(tl, s 7tj—17 tj+17 s 7tn+1)>
J=1 L2(Q,H®(n+1))

1
+— ((Dip o F) ® fults, ... ta) + F @ Vi fultis .. ),

(Dtn+1G> ® gn(th . 7tn) + G ® vtn+1gn(t1’ . 7t’n)>L2(Q’H®(n+1))
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= 7’L<Un(t1, Ce 7tn)7 ’Un(tl, N ’tn)>L2(Q7[:]/\n) — <dnun’ dnvn>L2(Q7ﬁA(n+l))

1
+ E(thﬂun(tl, oo tn), Vi On(ta, - tn)) p2 )

Hence we have

<d(n71)*un’ d(nil)*vn>L2(Q,I:IA”) + <dnun7 dnU”)LQ(Q,ﬁA(n+1))

1
= n<un7 U”>L2(Q,I:I/\") + E<Vun, vvn>L2(Q,H®<n+1))7

1.e.

<d(n—1)*un’ d(n_l)*vn>L2(Q,ﬁ®") + m(d”un, dnvn>L2(97H®(n+1))

= n(un; Uﬂ)LQ(Q,I:I@’") ‘l’ <Vun, VU”>L2(Q,I:I®("+1))7
and applying the duality
<vun7 V/UTL>L2(Q7H®(H+1)) - <V*VU/7L7 UTL)LQ(QJ:[/\n)a Up,, Un S S ® -[:I/\ny

we get

d* YT 4 d™ A" = nlga, + VIV

Relation (5.2) shows in particular that the Bochner Laplacian L = —V*V and the
Hodge Laplacian A,, have same closed domain Dom(A,,) on the random n-forms. In

addition, Theorem 5.3 shows the following.

Corollary 5.4. Let n > 1. All eigenvalues N\, of the Hodge Laplacian A, on the

n-forms satisfy A, > n.

Proof. Relation (5.2) rewrites as
L=nldgn, — Ay,

so the Bochner Laplacian L = —V*V and the Hodge Laplacian A,, share the same

eigenvectors. Next, for any w, € S ® H,, we have
0 < (Vwn, Vwn) 2 jan)
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= —(Lwn, wn>L2(Q,mn)
= <(An - nIdﬁAn)wnv wn>L2(Q,FIAn)

= <Aan7 wn>L2(Q,IflA”) - n(wn, wn>L2(Q7H/\n), n 2 1,

which shows by closability of A,, that

n(wn, wn>L2(Q7IfI/\n) < <Anwn, wn>L2(Q’g/\n), (510)

for any w,, € Dom(4,,). In particular, if w, € Dom(4,) is an eigenvector of A,, with

eigenvalue A, then (5.10) shows that

/\n<wnvwn>L2(Q,ﬁlAn) = <Anwmwn>L2(Q,HAn) > n<wnawn>L2(Q,flAn)7
hence A, > n. J

The next corollary is a consequence of Proposition 4.2 and Corollary 5.4.

Corollary 5.5. We have Ker A, = {0}, n > 1, and the de Rham-Hodge-Kodaira

decomposition (4.7) reads

L2(Q, H™) = Imd"! @ Im d™, n> 1.

Proof. Corollary 5.4 shows that any harmonic form for the de Rham Laplacian A,
has to vanish, i.e. the space Ker A,, of harmonic forms for the A, is equal to {0}. We

conclude by (4.7). O
6 Clark-Ocone representation formula for n-forms
Recall that the operator D satisfies the Clark-Ocone formula

F=E[F|F]+ /OO E[D.F | FJd(N, —r), teR,, (6.1)

for F' € Dom (D), cf. e.g. Theorem 1 of [16] or Proposition 3.2.3 page 115 of [23], and
Assumption C1 in [24]. Here, the stochastic integral with respect to the compensated

Poisson process (N, — r),¢cr, is the Ito integral defined in the L? sense.
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Under the duality relation (2.7), the formula (6.1) is equivalent to stating that (IV; —
t)ier, has the predictable representation property and o coincides with the stochastic
integral with respect to (N; — t)er, on the square-integrable predictable processes,
cf. Corollary 3.2.8 and Propositions 3.3.1 and 3.3.2 of [23]. Also it is sufficient to
assume that (6.1) holds for ¢t = 0, cf. Proposition 3.2.3 of [23].

Note that the Clark-Ocone formula also holds in the different framework of finite
difference operators on the Poisson space cf. Proposition 7.2.7 page 259 of [23] and
Assumption C2 in [24].

Lemma 6.1. The operators V and ¢ satisfy the relations
VE[F | Fi] = 1pq(s)E[DF | F, s,t € Ry, (6.2)

and
5(Log()Elu. | F]) = E[(w) | ], te€ Ry, (6.3)

for F €S andu € S ® H, respectively.

Proof. Regarding (6.2) it suffices to consider s € [0, t] since both sides vanish when
s > t. By Proposition 2.3.6 of [23], for any f € L*(R"}) we have

E[f(Th,...,T,) | Fi

SNt+2
s t
= / n / / Tl,.. TNtasNt+17~--73n)dsNt+1"'dSn

Sk+2
= Zl{Ntk}/ e(S”t)/ / f(Tl,.. .,Tk,8k+1,...,Sn)dSkJrl"'dSn
=0 t t t
0 0 Sn, Sk+2
= Z]‘[Tk7Tk+1)(t>/ eS"/ / f(Tl,...,Tk,Sk+1 +t,...,8n+t)d8k+1"'d$n.
k=0 0 0 0

Hence for F' € S of the form (2.2), by the definition (2.12) of V we have

st[F | ]:t]

x k e8] Sn Sk42
= _Zl[Tk7Tk+l)(t)Z1[07Tz‘](3)/ efs"/ / 0if(Ty, ..., Ty, 8k1 +t, ..oy 8 +t)dsgrr -+~ dsp
k=0 i=1 0 0 0
[e'e) ] Sn Sk+42
+Z(5t(Tk)1[O,Tk,](5)/ e_S" / / f(Tl,... ;Tkask—i-l —l—t,... ,Sn —l—t)dS].H_l dSn
P 0 0 0
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[e'e] o0 Sn Sk+2
_ Zét(TkH)l[O,TM](s)/ e~ / / F(T, .o Ty Spe1 + b, .o, Sp +1)dskyr -+ dsy
o 0 0 0
oo oo Sn Sk42
7210t] 5Tk 5Tk+1(t))/ 678"/ / f(Tl,...,Tk,Sk_H+t,...,5n+t)d5k+1~“d5n

oo

5k+2
- Z]-Ot] 1[Tk Tk+1 Z / / / Tla“ Tkask-‘rl +1,. t)dsk-l-l <dsp

1=k+1

X n Sk+42
= _1[0115](8)Z1[Tk1Tk+l)(t)Z1[01Ti](8)/ e_‘S"/ / Oif(Th, . Tk, Sp41 + .oy Sy +1)dSky1 - dsp
Sk+2
1j0,4( Z V7 1) () 10,5, 44 (5 Z / / / J(Tu, .o Thyskqr +t, .oy Sy Ft)dsgyr -+ - dsy

1=k+1

n SNy+2 Ny
:—1[0’t](8)/ 8_5"/ / Zl[OT] 8f Tl;-~-aTNtaSNt+1+t7~-~73n+t)d3Nt+1"'d5n

n

SNi+2
0 t / —bn / / Z 0 s +t a f(Tla .. TNt,SNtJrl + t s Sn + t)dsNt+1 d
i=N¢+1
= 1[07,5} (S)E[DgF | ]:t], s,t e R+.

Concerning (6.3), for all Fi-measurable random variables F' € S we note that D F' =

1j04(s)DsF, s € Ry, cf. e.g. Lemma 7.2.3 of [23], hence we have

E[Fo(u)] = E(DF,u)12m )] = E[(Log()D.F ul-)) 2] = E[F (L (-)ul-))];

which leads to (6.3) by a density argument and a classical characterization of condi-

tional expectations. [l

In the appendix Section 7 we present an alternative proof of Lemma 6.1 based on
chaos expansions. We note that (6.2) implies the following Corollary 6.2 which will
be used in the proof of Theorem 6.3 below.

Corollary 6.2. For any n-form u, € S ® H" we have
VsEuy(t1, ... tn) | Ful = Lion)(8)E[Vsun(ty, ..., tn) | Frl, se Ry,

whenever 0 <t; <ty,1=2,...,n

Proof. Consider u,, € S ® H" of the form Un(t1, ... tn) = F & folty,... tn),
t1,...,tn € Ry, f, € H™. Since Vfu(ty, ..., t,) is deterministic we find, from (2.13)

and Lemma 6.1,

VsElun(te, ... t) | Fil = Ve(fulte, ... ) E[F | F,))
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- ]E[F | El]vsfn(t17 s 7tn) + fn(th s 7tn)v5]E[F | ft1]
= K Fvsfn(tb cee 7tn) | El] + 1[0,t1}(5)fn(t17 s atn)E[DsF | ftl]

= Lo, (S)E[FVD fo(tr, ..y tn) | Fiul + Loa)(s) fulte, - - . t)E[DF | Fiy
j=1
= 1o4)(8) Y Lo (SEFEVY fults, . ta) | Foul + Lo () fults, - ta)E[DLF | Fi
7j=1

= Lo (S)EFVsfult, .. tn) | Ful + Lo () faltes - tn) E[DF | F,
= 1[0,t1]<S)E[ (F ® fn(tl’ cee 7tn)) | ]:tl]
= 1[07t1](S)E[V Un(tl, ce ,tn) | -Ftl]-

Clark-Ocone formula for n-forms

The following result is a consequence of Proposition 2.3, Lemmas 2.4 and 6.1, and

Relation (6.1). In the sequel, t; V -- -V t,, denotes max(t,...,t,).

Theorem 6.3. For all u, € Dom(d"), we have, for a.e. ti,...,t, € Ry,

Up(ty, ... ty) = d?nl/ Eluy(ryty, ... ta_1) | Fr]d(N, — 1)
t

1V Vip_1

+/ E[d?ﬂun(to, tl, c. ,tn_1> | Eo]d(Nto — to)
t

1V Vg
Proof.  We start by proving the formula for u, € S ® H"". By (2.13) and the

Clark-Ocone formula (6.1) we have

Un(t1, .- tn) = Elun(ty, ... t0) | Fepveove,] + / E[Dyuy(t1, ..., ty) | Fr]d(N, — 1)
t1V---Vityn
= Elun(t1,...,tn) | Fryvve,] +/ E[NV,un(t1, ... tn) | FrJd(N, — 1),
t1V--Vitp

t1,...,t, € Ry. Next we have, using (2.19),

dy! / Elun(r,t1, .t 1) | FoJd(N, — )
t

1V--Vip—1
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= Z(—l)j_lvtj / E[Un(’/’, tl, Ce 7tj—1’tj+lu Ce ,tn) | ]‘;]d(NT — ’I“)
j=1 t

1VerVE VL1V Vi

= (=1 Lot oo () Eltin (b bty tisn, ) | Fy)]
j=1

LV V1 Vi1 Viy,

+ Z(_l)j—l/ Vi, Elun(to, t1, .. tim1, tjgt, - tn) | Frold(Nyy — o)
j=1

= Z Lt v vin,00) (tj>E[Un(t17 e 7tn) | ‘th]
j=1

4 Z(—w’—l/ Vi Eltn(for s oo tyt tyas s tn) | Fiuld(Nyy — to)
j=1 t

1V VE i1 VEjp1--Vip

= E[un(tl, .. 7tn> ’ ‘El\/"'th]

+Z(—1)J’—1/ E[Vitn(to,tr, -y tiativn, o tn) | Fiold(Ny —to),  (6.5)
j=1 t

1V---Vin
where we applied Corollary 6.2 to get (6.5), hence by taking the difference of (6.4)
and (6.5) we get

[e.9]

Un(ty, ... t,) =dp! / Eluy(ryty, ... ty—1) | Fr]d(N, — 1)

L1V Vip_1

_ Z<_1)J’1/ BIV st (for iy oo tyt by tn) | Fuald(Nyy — to)
j=1 t

1V-Vin

—|-/OO E[Vrun(tl,...,tn) |Fr]d(NT_r)

1V--Vin

= del / Elu,(ryty, ... ta1) | Fo]d(N, — 1)
¢

1VerVitn—1

+/ Eldg un(to, tr, -y tn-1) | Fiold(Nyy — to),
t

1V--Vin

ti,...,t, € Ry. We conclude the proof by the denseness of S in L?*(f2), using the
closability of the operator d”. O

By Theorem 6.3 we have the following corollaries.

Corollary 6.4. For any closed form u, € Dom(d") we have

o0

tn(tr, 1) = dg;l/ Elun(r.t1, - tn 1) | FlAN, — 7).

t1V--Vin_1

ty,...,tp € Ry.
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In the next Corollary 6.5 the Clark-Ocone formula allows us to recover Corollary 5.5 by
a different method and to derive the exactness of the sequence (6.6) as in Theorem 3.2
of [25].

Corollary 6.5. The range of the exterior deriwative d and its adjoint d* are closed

and we have Im d® = Ker d"*', n € N. As a consequence, the de Rham-Hodge-Kodaira

decomposition (4.7) reads
L2 HM) =Imd" ' @ Imd™, n>1,
and the following sequence is exact:
Dom (d") Y% Tm (d") = Ker (™) ¥5 tm (d"*Y),  neN. (6.6)

Proof. By Corollary 6.4 we have Imd" D Kerd"™, which shows by (4.4) that
Imd® = Kerd"*!, n € N. O

In this way we recover the fact that the Hodge Laplacian A, has a closed range as
well, so it has a spectral gap, cf. Theorem 6.6 and Corollary 6.7 of [9]. However this
does not yield an explicit Poincaré inequality and lower bound for the spectral gap,

unlike for the classical Clark-Ocone formula cf. e.g. Proposition 3.2.7 of [23].

By duality of Corollary 6.5 we also find that Im d™*1* = Ker d™, and the following
sequence is also exact:

Im (d™) &7 Ker (d™) = Im (™) 97 Dom(d®+Y*),  neN.

7 Appendix
An alternative derivation of (3.3)

Here we show that (3.3) can be recovered by an explicit computation and a symme-
try argument which involve the cancellation of distribution terms, using calculus in
distribution sense for the operator D on the Poisson space, cf. [21], [22]. Given a

smooth n-form wu, (T, ..., T, t1,...,t,) in S® H" we have

Vsun(tl, R ,tn) = Dsun<t1, Ce ,tn> — Z 1[0’%’](8)%@1’ v ;tn)a
j=1 !
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where for simplicity of notation we omitted the dependence of u, (T4, ..., T, t1, ..., t,)
in the jump times Ti,...,T,,. Denoting by Oyu,(ti,...,t,) the partial derivative of

Un(Thy .o, Ty ty, ..., tn) in (2.3) with respect to the variable Ty, we get

n+1
df (b, tn) = > (=1 Vi un(ty, ot o)

Jj=1
n+1

= S Dyttt tag)

Jj=1
n+1 n+1

—Z( YN Lot n(tla---atj—latj+1a~--7tn+1>
- J

l#
n+1

= —Z( )’ Zl[OTk] )Okun(tes -y b1 tjpn, - tngr)
j=1

n+1 n+1
_Z( Jf 1[0tl] (tla"‘7tj*17tj+17"'7tn+1>~

l#a
Let us first check the statement for n = 0 when wug simply depends only on the k-th
Poisson jump time T} defined in (2.1). We have

d;,d uo = dy, Dy, ug = Vi, Diyug — Vi, Diyug

= =V, (Lj0,13,) (t2) Oruo) + Vi, (110,13, (1) Orto)

= —1j9.1,](t2) Dy, Opig — OV, Lo 13, (t2) + Lio,1,) (t1) Diy Otio + Orptto Vi, 1jo,13, (1)
= —1j9.1,](t2) Dy, Opig + Okiodio 1,1 (1) 0ty (Th) — OntboLio 1) (1), (t2)

+ 10,11 (t1) D1, Oxug — OrioLio, 1] (t2)0, (Th) + Oriodio 1,1 (t2)0m, (1)

= OptoLo,1,] (1) 08, (Th) — Oxttodio4)(t1) 07, (t2) — OktioLio, ) (t2)04, (Th) + OwioLiosy)(t2)om, (1)
= Optto Lot (11)0t, (Th) — Oktiolio 1] (1)1, (t2) — OkuoLio e (t2)0, (Th) + Oxtodios,)(t2)d7, (t1)

=0.

More generally for n > 1 we find

ALy un(ty, . te) = Z (1) =1V Ve, tn (B, -t bty oo b tjas ooy tng)
1<i<j<n+1
+ > DTNV Vit ottt b )
1<j<i<n+2
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= — Z (71)1-71(71)j71vtivtjun(t1,...7ti_1,ti+17...,tj_l,tj+1,...7tn+2)
1<i<j<n+2

+ Z (—1)i_1(—1)j_1vtivtjun(tl,...,tj,l,tjﬂ,...,ti,l,ti+1,...7tn+2)
1<j<i<n+2

Next we focus on the first term above. We have

Z (1) (=1) 'V, Vi un (o tim s i ts e oo tim 1 bt - s Ega)
1<i<j<n+2
) ) m
= Z (=17 (=1t Z Lio,7 ()01 (L0, 1 (8)Okun (B, - - tict, ity ooy b1, bjgts - - -y Eng2))

1<i<j<n+2 k=1

m n+2
+ Z (—1 )y 1221[(”, (1[0T,€ (t))Okun(tr, - tict, vty i1, i1, - -y tng2)
1<i<j<n42 k=1 1=1
1#i
m n+2 au
+ Z (-1 )’ lzzl[on i) 10,1, (¢ )31:8n(th~-~,t¢71,t¢+1,-~~7tj—1,tj+1,--~,tn+2)
1<i<j<n+2 =1 1=1

n+2
. - 0 ou
D DI CS A C VY 1[0,tk](ti)87k <1[0,n](t ) 8tn(t1,-~-,ti—l,ti+1,-~-,tj—1,tj+1,-~-,tn+2)>

<i<j< k=1
lsi<jsnit2 ki, l#i, 1#£j5

m
= Z (=17 (=1)"! Z Lio,131(t) Lo, 1) (85) OO0k un (1, - - - s timt, tigts oo tjo1, b1, oo s tng2)
1<i<j<n42 k=1

m

+ Z (=177 (=1 101 (E)0, (Th)Oun (1, - - - s timts i ts e oo bjm 15 Ljgts - s bge2)

1<i<j<n+2 k=1
m n+2 (9
+ Y (=Y ZZlM 101yt )8 Otin (b1, - titstigts oo sty 1s bty s bnga)
1<i<j<n-+2 L

m
- Z (—1) (=1t Z Lio,t,)(t:)0m, (8)Okun(te, - - ticts tivns oo tj—15 41, s tng2)

1<i<j<n+2 k=1

m n+2
ou
+ > (-1 PN TS 1m (E) 1o, (2 YOttt it ot )
1<i<j<n+2 k=1 =1 !
1#£j
i—1 j—1 = 9 Ouy,
+ Z (=1 (-1) Z Lj0,,] (i) Lo, (L )(% ot (bt i, o i, - tage)
1<i<j<n+2 k=1 l
k#i, 1#£]
n+2 au
- > (=" TN Aot (¢ )at"(tl,...,ti_l,tiﬂ,...,tj_l,tjﬂ,...,tnw)
1<i<j<n+2 AL !
n+2 ou
n
+ Z (-1~ Z 10,4, ()0, (t >6t (trs- s ticttigty - tjm1 b, - oo tny2)
1<i<j<n+2 S
m

= Z (—l)j_l(—l)i_l Z 1[0,Tl](ti)l[oka](tj)alakun(tl,...,ti,l,tiﬂ,...,tj,l,tjﬂ,...,tnﬁ)

1<i<j<n+2 k=1
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m n+2

0
+ Z Z 1 J lzzl[om l[OTk ) ot 8kun(t1,...,ti_l,tiH,...,tj_l,tj+1,...,tn+2)
1§i<j§7l+2 k=1 l=1 1
[
m n+2
ou
+ Z ( ] 1221[0Tk 1[015,( ) at”(t17..,’ti_17ti+1,...,tj_l,tj+17...,tn+2)
1<i<j<n+2 k=1 1=1
1#5
n+2
i - 0 Ou
D G B GV 1[%](ti)1[07tl](t]—)%7;(tl,...,ti,l,tm,...7tj,1,tj+1,...,tn+2).
1<i<j<n+2 k;zél.:z;j k l

A similar computation by exchanging i and 7 shows that

Z (1) "N =1Y 'V Vyun(tr, .t bty - tict, by - Ega),

1<j<i<n+2

is equal to the above summation by exchanging the indexes i and j, which allows us

to conclude to the cancellation of the two terms.

A Poisson chaos-based proof of Relation (6.2)

Here we provide an alternative, chaos-based proof for (6.2) by considering F' of the
form
=L,(f*"),  feCi(Ry;R), n>1,

with
EF | F] = L((f109)®"), teR4,

and using the following limiting argument. In order to apply the relation

Li(f") = nf ()L (f507Y) = nL(f2"Y 0 (f1se)), (7.1)

cf. Proposition 8 of [17] or Proposition 7.7.2 page 279 of [23], we first need to apply a
regularization argument to f1lp,). Let ¢ € C'(R;R), ¢ > 0, with support contained
n (—1,1), such that fjl é(r)dr =1, and let

¢°(r) = to(e7Mr), reR, >0,

_ /_;d)f(r—s)ds _ /_(;df(r—s—t)ds

33

and



s € R, € > 0, denote the regularization of the indicator function 1_ ;. For any

€ > 0 we consider the regularized conditional expectation operator
P LA(Q) — L*(Q)
which is continuous on L?(2) and defined by

PrL(f°") = L((fY5)*"),  r€Ry,
which converges in L*(€2) to the conditional expectation
EL(f*") | ] = L("18n)
as ¢ tends to 0. Next, by applying (7.1) we find

VP F = V,L((f¢)®")
= DL = Va1 500
= nf($)U () L (FED) D) = nlpg(s) L ((F0)) 7" 0 ((f1) Lise0))
Lt (17 )
= nf ()i () L (fED) ") = nlpg(s)La ((F7)%" 7 0 (f 5 L))
g ) (£ © (165 Tm) = g ()1 ((£0570 V0 (15207 )
= nf ()07 () Laoa (FUD) V) = nlppg(s)Ln (F5)" ) 0 (f'Ui L))

= nf ()07 (8) P Lua (50 7Y) = 1o () PEL(F50 7 0 (f'Lpso0))),

where we used the relation
13 a 1> a £
(%)'(T) = E¢t (T) = —a% (7“), r € R.
As ¢ tends to 0 we find
lim VP, F
e—0

= nf(s)Log(s) Lo (fZ" Vg o) — 0l (s)La(FE7 7 0 (f'1s,00)) L0
= 1[0,t](S)E[DSF ‘ .Ft]
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