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Abstract—Due to the fading and broadcast nature of wireless
medium, it is challenging to provide full wireless coverage and
secure the transmitted signals from unintended users in cellular
networks. As a result, cyber risks, such as service outage and secrecy
outage, would inevitably occur and cause loss/damage to the users.
To transfer the cyber risks and mitigate the impact of loss, cyber
insurance appears to be a promising solution for the economics
of wireless services. In this paper, we introduce a cyber insurance
framework for wireless users to relieve loss from the cyber risks.
In this framework, each user pays a premium to an insurer. If
the user experiences an outage, he/she will claim the loss, and the
insurer will pay the corresponding indemnity to the user. Under
the network model of a large-scale massive multiple-input multiple-
output (MIMO) cellular networks and cyber insurance, we first
characterize the user performance in terms of both service outage
probability and secrecy outage probability using stochastic geometry
analysis. Based on these performance results, we quantify the ruin
probability of the cyber insurer, which indicates the chance that the
insurer does not have enough capital reserve to afford the claims
from the outage users. Through numerical evaluation, we show that
the ruin probability of the insurer can be efficiently reduced by
equipping a larger number of antennas at base stations or increasing
network frequency reuse.

Index terms- Cyber insurance, cyber risk, massive MIMO, ruin
theory, stochastic geometry.

I. INTRODUCTION

Securing wireless data communication has become one of
the top priorities for mobile service providers due to dramatic
expansion of pervasive wireless access through mobile devices
over the Internet. Especially, mobile communication systems are
carrying important confidential information, e.g., for financial
transaction and health-care monitoring and control, through pro-
liferating wireless services such as e-commerce, e-health-care and
cloud-based applications. The loss, damage, or delay of such
information can cause serious consequences to the users.

To safeguard wireless communications, physical layer secu-
rity techniques [1] has emerged and caught significant research
attention. It uses channel codes, e.g., Wyner codes [2], to
provide direct secure communication. Thus, by focusing only
on transmission parameters, physical layer security techniques
avoid the use of computation resources, such as signal process-
ing on cryptographic keys, and incur small signaling overhead.
Existing efforts have mainly focused on the precoder design
for multiuser downlink transmission and artificial-noise (AN)-
aided jamming based on multiple-input multiple-output (MIMO)
technologies [2], [3].

Although these physical layer security techniques manage
to improve the robustness and resilience of wireless services,
existing cyber risks in cellular networks cannot be completely
prevented by developing and deploying system-based security
solutions alone. Therefore, instead of developing technological
approaches to handle the cyber risks, we take a different approach
by transferring the risks away from the network users via cyber
insurance [4], [5]. In this paper, we introduce the concept of
cyber insurance to protect wireless users against cyber losses.
Our objective is to formulate a cyber insurance framework for
risk evaluation and management for future generation wireless
systems. In this framework, mobile users can buy cyber insurance
from a third-party insurer by paying a certain amount of premium.
The insurer then affords the risk of the users and compensates
indemnities to the users when damage occurs to them because of
cyber risks. In particular, considering a massive MIMO-enabled
cellular network in the presence of eavesdroppers, the insured
users’ risks are indicated as service unavailability (represented
by the service outage probability) and data breach (represented
by the secrecy outage probability). Meanwhile, the insurer’s risk
is measured by the ruin probability [6], i.e., the chance that the
insurer is unable to cover all the indemnities. The goal of the
cyber insurance framework is to quantify the risks of both the
insured users and insurer. To this end, we focus on investigating
the user performance in a large-scale cellular network based
on the stochastic geometry analysis. With the novel stochastic
geometry model which is able to capture the repulsion among
points, we can characterize the long-term performance of a user
in presence of the cyber risks by exploiting statistics of random
spatial network distribution and broadcast channels. For cyber
insurance, as the damages occur randomly to a population of
insured users, we model the stochastic claim process based on
Cr´amer-Lundberg model (i.e., compound Poisson model) from
collective risk theory [7]. Utilizing the analytical results for user
performance, we introduce a quantitative approach to evaluate the
ruin probability of the insurer.

Notations: In the following, we use E[·] to denote coverage
over all the random variables in [·], EX [·] to denote the ex-
pectation over the random variable X , and P[Z] to denote the
probability that an event Z occurs. xa denotes the location of a,
and ‖xa − xb‖ is used to represent the Euclidean norm between
the coordinates xa and xb. γ(z, a) ,

∫ a
0

e−ttz−1 dt, z ∈ C, a ≥ 0
denotes the lower incomplete Gamma function.



Fig. 1. Illustration of risk transfer of wireless users in the cyber insurance framework.

II. A CYBER INSURANCE FRAMEWORK AND NETWORK
MODEL

A. Cyber Insurance Framework

As shown in Fig. 1, cyber insurance is a mechanism to transfer
the risks associated with an insured, e.g., a network user, to a
third-party insurer. To establish a cyber insurance contract, an
insured pays an upfront premium, in exchange for the insurer’s
liability for an indemnity payment upon a cyber loss occurrence.
For the insured, cyber insurance serves as a hedge to provide
financial compensation in the event of a cyber loss at a cost,
i.e., premium, to get insurance protection. For the insurer, cyber
insurance allows to obtain monetary benefit from the insured in
advance, for affording uncertain future risks of the insured.

B. Massive MIMO-enabled Cellular Network Model

We consider a massive MIMO-enabled cellular network in
which all the BSs provision downlink wireless service for users.
Each BS is equipped with a large-scale antenna array of L
antennas while each of user adopts single antenna. Meanwhile,
there exists randomly distributed single-antenna eavesdroppers
intending to wiretap the transmitted data from the BSs. The
spatial locations of the BSs and eavesdroppers are assumed to be
following independent homogeneous α-Ginibre point processes
(GPPs), denoted as ΦB and ΦE , with spatial densities ρB and
ρE and repulsion factors αB and αE , respectively.

We consider time division duplex (TDD) at the BSs. The
channel state information (CSI) estimation can be obtained
through uplink training by exploiting the uplink-downlink channel
reciprocity [8]. Each BS is considered to have several time-
frequency resource blocks. Let Ns denote the maximum number
of wireless data flows that can be supported simultaneously
on each resource block. For TDD, Ns is dependent on the
dimension of the uplink pilot field which decides the number
of downlink channels to be estimated [9]. The BSs adopt linear
zero-forcing beamforming (ZFBF) [10] with equal power per
wireless downlink to serve Ns legitimate UEs simultaneously
over a time-frequency resource block. As a result, Gaussian noise
or uncorrelated intra-cell interference does not have effects in
the massive MIMO regime (i.e., L � Ns � 1). For spectrum
allocation of each BS, we consider frequency reuse with a factor
ξ ∈ (0, 1]. The factor represents the percentage of BSs in the
network that are allocated with the same spectrum frequency.

For cell association, each user is served by a massive MIMO-
based BS that provides the strongest reference signal received
power [11]. This is equivalent to the nearest BS association in
our considered system with homogeneous BSs. For the analysis
of this paper, we focus on a full-load network scenario in which
a typical user is served on a resource block with the maximum
number of flows Ns.

Let PB denote the transmit power of the BS on each resource
block and xz denote the location of z. If a typical user u
establishes a downlink connection with the serving BS, denoted
as BS 0, its received signal-to-interference-ratio (SIR) can be
calculated as follows [12]:

ηu =
PBGβ

Ns‖x0 − xu‖µIu
, (1)

where G = L − Ns + 1 represents the antenna array gain of
the massive MIMO-enabled BS1, β is a frequency dependent
constant typically calculated as 3×108

4πν [13] with carrier frequency
ν, and µ denotes the path-loss exponent. Iu represents the inter-
cell interference given by [14]

Iu =
∑
b∈ΦB

PBhb,uβ

Ns‖xb − xu‖µ
, (2)

where hb,u ∼ G(Ns, 1) [13] represents the channel gain between
interfering BS b ∈ ΦB and the typical user. Here G(a1, a2) means
a gamma distribution, in which a1 is the shape parameter and a2

is the scale parameter.
The eavesdroppers are considered as non-colluding devices

that overhear and intercept the secrecy information of legitimate
users individually without active attacks. The received signal-to-
interference-plus-noise ratio (SINR) at an eavesdropper e ∈ ΦE ,
is given by

ηe =
PBh0,eβ

Ns‖x0 − xe‖µ(Ie + σ2)
, (3)

where h0,e is an exponentially distributed random variable [13]
representing the small-scale fading channel gain between the
serving BS 0 of the typical user and an eavesdropper e ∈ ΦE , σ2

is the variance of additive white Gaussian noise (AWGN), and

1Due to the hardening effect of a massive MIMO channel, the transmitted
signals from the BS only undergo long-term effects.



Ie is the accumulated interference at e expressed as follows:

Ie =
∑
b∈ΦB

PBhb,eβ

Ns‖xb − xe‖µ
, (4)

where hb,e ∼ G(Ns, 1) [13] is the small-scale fading channel gain
between the interfering BS b ∈ ΦB and eavesdropper e ∈ ΦE .

We assume that the broadcast channel of each BS is exposed
to all the eavesdroppers. In presence of non-colluding eaves-
droppers, the secrecy outage probability of a legitimate user is
dominated by the most malicious eavesdropper [15], i.e., the
eavesdropper that achieves the highest receive SINR. Addition-
ally, we assume that the eavesdroppers’ density can be estimated.
This is reasonable as passive eavesdropper detection techniques,
e.g., energy detection of local oscillator power leakage from the
RF frontend of an eavesdropper [16], can be adopted in the
network.

In this paper, we perform the analysis of the massive MIMO-
enabled cellular network based on α-GPP [17] for its generosity
and tractability. α-GPP is a particular type of determinantal point
process that abstracts correlation among the randomly located
spatial points with a coefficient α (α = −1/κ for a positive
integer κ). α indicates the repulsion degree of the spatial points
which is largest when κ = 1. The repulsion monotonically
decreases with the increase of κ. This converts α-GPP into the
widely used Poisson point process when κ goes to infinity. Due to
its generosity and tractability, α-GPP has recently attracted much
attention in network modeling [18]–[21].

III. PERFORMANCE ANALYSIS

In this section, we analyze the performance of users in a large-
scale massive MIMO-enabled cellular network. In particular, we
consider service outage probability and secrecy outage probability
as the performance metrics of the user’s risk.

A. Performance Metrics

The BSs are considered to adopt the well-known Wyner’s
encoding scheme [2] to secure confidential information to the
legitimate users. Let Rt denote the transmission rate of the code-
words, which contains redundant codewords at a rate Re < Rt to
safeguard the secrecy information transfer against eavesdroppers.

The wireless service provided by a BS is considered to be
unsuccessful if the receive SINR at its user is lower than a target
threshold τu. Let η denote the receive SINR at the user from its
associated BS. The service outage probability of a typical user is
defined as P , P[η < τu], where τu = 2Rt − 1.

In the presence of non-colluding eavesdroppers, a secrecy
outage occurs to a typical user when the most malicious eaves-
dropper, denoted as e?, achieves a receive SINR greater than
τe = 2Re − 1. Thus, the secrecy outage probability is defined as
O , P[ηe? > τe].

B. Analytical Results

According to the Slivnyak’s theorem [22], the analysis of user’s
performance is performed for an arbitrary user considered to be
located at the origin. We characterize the service outage proba-
bility and secrecy outage probability based on α-GPP modeling
introduced in Section III-B as follows.

Theorem 1. The service outage probability of a typical user in
the massive MIMO-enabled cellular network in the presence of
malicious eavesdroppers can be expressed as follows:

P=1−2

∫ R

0

exp(−πξρBr2)
∏
n≥0

(
1+α

γ(n+1, πξρBr
2)

n!

)− 1
α

×
∑
n≥0

(πξρBr)
n+1rn

n!

(
1+α

γ(n+1, πξρBr
2)

n!

)−1

×L−1

{
1

s

∏
k≥0

(
1+

2αB(πξρB)k+1

k!

∫ R

r

exp
(
−πξρBl2

)
r2k+1

×
(

1−
(

1+
sβ

Nslµ

)−Ns)
dl

)− 1
αB
}(
β(L−Ns+1)

τuNsrµ

)
dr. (5)

Proof. Let r0,u = ‖x0−xu‖. Following the definition of service
outage probability, we have

P = P
[
PBβ(L−Ns + 1)r−µ0,u

NsIu
< τu

]
= Er0,u

[
P

[
Iu
PB
≥ β(L−Ns + 1)

τuNsr
µ
0,u

∣∣∣∣r0,u

]]

= 1−
∫ ∞

0

F Iu
PB
|r0,u

(
β(L−Ns + 1)

τuNsr
µ
0,u

)
fr0,u(r)dr, (6)

where F Iu
PB
|r0,u(x) is the conditional cumulative distribution

function (CDF) of Iu
PB

given r0,u and fr0,u(r) is the PDF of
r0,u which can be expressed as [23]

fr0,u(r) = exp(−πξρBr2)
∏
n≥0

(
1+α

γ(n+1, πξρBr
2)

n!

)− 1
α

×
∑
n≥0

(πξρBr)
n+1rn

n!

(
1+α

γ(n+1, πξρBr
2)

n!

)−1

. (7)

Let LIu(s) = E[exp(−sIu)|r0,u] denote the Laplace transform
of Iu evaluated at s given r0,u, and L−1{z}(x) denote the inverse
Laplace transform of z evaluated at x. By the definition of
Laplace transform, the conditional CDF of Iu

PB
can be calculated

as follows:

F Iu
PB
|r0,u(x) = L−1

{
1

s
L Iu
PB

(s)

}
(x)

=L−1

{
1

s
EΦuB ,hb,u

[
exp

(
− s

∑
b∈ΦuB

hb,uβ

Ns‖xb − xu‖µ

)∣∣∣∣r0,u

]}
(x)

=L−1

{
1

s
EΦuB

[ ∏
b∈ΦeB

(
1+

sβ 1
(
‖xb − xu‖ > r0,u

)
Ns‖xb − xu‖µ

)−Ns]}
(x)

(a)
=L−1

{
1

s

∏
k≥0

(
1+

2αB(πξρB)k+1

k!

∫ R

r0,u

(
1−
(

1+
sβ

Nslµ

)−Ns)

× exp
(
−πξρBl2

)
r2k+1dl

)− 1
αB

}
(x), (8)

where (a) follows by applying [24, Lemma 3].
Plugging (8) and (7) into (6), we have the result in (5), which



concludes the proof.

Theorem 2. The secrecy outage probability of a typical user in
the massive MIMO-enabled cellular network in the presence of
malicious eavesdroppers can be expressed as follows:

O = 1−
∏
k≥0

(
1+

2αE(πρE)k+1

k!

∫ R

0

∏
k≥0

(
1+

2αB(πξρB)k+1

k!

×
∫ R

0

(
1−
(

1+
τer

µ

lµ

)−Ns)
exp

(
−πξρBl2

)
l2k+1dl

)− 1
αB

× exp

(
− τeNsr

µσ2

PBβ
−πρEr2

)
r2k+1dr

)− 1
αE

. (9)

Theorem 2 can be proved following a similar approach to the
proof of Theorem 1. We omit the proof of Theorem 2 here due
to the space limit.

IV. CYBER-INSURANCE AND RUIN PROBABILITY

We consider an insurer offering a cyber-insurance plan to users.
The insurer can be an insurance company. Each user pays the
same premium denoted by c to the insurer. In the event of
a service outage, e.g., because of fading and interference, or
a secrecy outage, e.g., because of eavesdropping, the insurer
will compensate the user with the corresponding amount of
indemnities denoted by mP and mO, respectively. For the insurer,
its income is from U users buying the insurance plan and paying
the premium periodically. On the contrary, the expense is the
indemnities generated randomly from the user population given
outage probabilities. The insurer is therefore interested in the
ruin which is an event that its reserve, i.e., accumulated income
minus accumulated indemnities, is negative. In the following, we
analyze the ruin probability of the insurer [25].

A. Cyber-Insurance Model

Consider that the arrival moments of claims are independent.
Denote Nt as the number of claims that arrive from time 0 to time
t ≥ 0. We model (Nt)t≥0 as a homogeneous Poisson process,
and denote its intensity as λ. Let Ck (k ≥ 1) denote the kth
claim’s amount. Ck’s are independent and identically-distributed.
Sequence (Ck)k≥1 is independent of (Nt)t∈R+ . Also, let

Yk :=

k∑
j=1

Cj , k ∈ N,

where Y0 = 0. Here, Yk is the aggregate amount of k claims.
The income of the insurer can be represented by a non-

decreasing, time-dependent premium function f : R+ → R+.
The function maps t > 0 to the aggregated premium income
f(t). The aggregated premium income is received during time
0 and time t given that f(0) = 0. We assume that the insurer
sells an insurance plan with a constant premium rate c > 0, i.e.,
f(t) = ct.

Considering cyber insurance for the users in the network
introduced in Section II-B, we assume that Ck can take two
values a and a + b with respective probabilities p and 1 − p.
Here, p and q := 1 − p denote the conditional probabilities of
service outage and secrecy outage, respectively. They are defined

as p = P
P+Opd , where P is the service outage probability obtained

from Theorem 1, and O is the secrecy outage probability obtained
from Theorem 2. pd is the probability that secrecy outage causes
damage to the legitimate user, i.e., the eavesdropper exploits the
received information for its own benefit and incurs a loss to
the user. Then, the intensity of (Nt)t≥0 can be calculated as
λ = P +Opd.

According to the compound Poisson risk model, the claim
process (S(t))t∈R+

represents the aggregate claim amount. The
claim process is then modeled by the compound Poisson process.
The claim process is defined as follows:

S(t) = YNt =

Nt∑
k=1

Ck, t ∈ R+,

in which we have S(t) = 0 if Nt = 0. The surplus process
(Ry(t))t≥0 is defined as follows:

Ry(t) = y + f(t)− S(t) (10)

= y + ct−
Nt∑
k=1

Ck, t ≥ 0,

where y ≥ 0 is the amount of initial reserve and f(t) is the
aggregated premium obtained during time 0 and time t > 0.

We consider a finite time horizon denoted by T > 0. Then,
a formula for the finite-time ruin probability is expressed as
follows [7]:

ψ(y, T ) = P
[
∃ t ∈ [0, T ] : Ry(t) < 0

]
.

Let M[0,T ] denotes the lowest level of the reserve process
in (10) between time 0 and some fixed time horizon T > 0,
expressed as follows:

M[0,T ] = inf{y + f(t)− S(t), t ∈ [0, T ]}, (11)

which is an explicit probabilistic representation expression for
a compound Poisson process. It corresponds to the classical
Crámer-Lundberg risk model that can be used for simulation
purposes. Note that alternative analytical expressions for the
density of M[0,T ] are also available in [26] and [27].

In the compound Poisson risk model, the ruin probability
ψ(y, T ) is computed as

ψ(y, T ) = P
[
M[0,T ] < −y

]
, y ≥ 0, (12)

and the density of M[0,T ] at −y < 0 is expressed as follows:

−∂ψ
∂y

(y, T ). (13)

The density of M[0,T ] in (13) indicates the sensitivity of the
ruin probability to the initial reserve y. In other words, it shows
how fast the ruin probability changes with a certain amount of
initial reserve. The density is useful to analyze how the insurer
is sensitive to a certain control parameter.

V. NUMERICAL RESULTS

In this section, we study the risk of the insurer by evaluating
the ruin probability ψ in (12). The simulations are performed with
the parameter setting shown in Table I unless otherwise stated.



TABLE I
PARAMETER SETTING.

Symbol µ PB ν ρB ρE NS L ξ mP mO y c pd
Value 3.5 40 dBm 1.8 GHz 5×10−5 10−5 20 200 0.5 3 7 10 1 1
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Fig. 2. Ruin probability as a function of Rt.

Additionally, the bandwidth of each resource block is 10 MHz.
The noise variance is -174 dBm/Hz. The transmission rate and
the redundant rate of the codewords are set at Rt = 2 bits/s/Hz
and Re = 0.5Rt, respectively.

We first focus on the influence of network parameters. Figure 2
depicts how the ruin probability varies with Rt under different
αB . We note that the ruin probability is a unimodal function
of Rt. This can be intuitively understood that the increase of the
code rate Rt (and thus Re proportionally) results in larger service
outage probability P and smaller secrecy outage probability O.
As a result, P and O result in the high ruin probability when
Rt is small and large, respectively. This indicates that the ruin
probability can be minimized by setting a proper code rate Rt.

Figure 3 compares the ruin probability under different fre-
quency reuse coefficient ξ. Similar to Fig. 3, the ruin probability
is also a unimodal function of Ns. Moreover, employing a larger
number of antennas contributes to smaller ruin probability as the
service outage probability can be mitigated. However, employing
more antennas would inevitably incur a cost for the service
provider. Interestingly, the ruin probability decreases with the
increase of ξ. This is due to the fact that the claim size of
secrecy outage probability O is much larger than that of service
outage probability P . Therefore, though a larger ξ increases P
and decreases O, the effect of O dominates that of P on the
ruin probability. This indicates that, in practice, heavy frequency
reuse in the emerging ultra-dense cellular networks benefits the
cyber insurer.

Figure 4 shows the impact of the density of eavesdroppers
ρE on the ruin probability ψ. It can be found that ψ increases
exponentially with ρE . This implies that increasing the density
of eavesdroppers is more disruptive to the insurer when ρE is
large than when ρE is small. Additionally, we observe that the
ruin probability is more susceptible to αE when the path-loss
exponent is large. For example, when µ = 3.2 and ρE = 10−4,
the difference between ψ under αE = −1 and that under αE =
−0.1 is 0.82%. Such a difference is increased to 3.68% when
µ = 3.8.

Next, we demonstrate the effects of claim size and initial
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Fig. 3. Ruin probability as a function of Nt.

reserve on the ruin probability in Fig. 5. The claim size of a
service outage cP is fixed at 3 while that of secrecy outage cO
varies from 4 to 8. It is found that the impact of cP on the ruin
probability becomes more pronounced with the increase of cP .
Additionally, it is evident that increasing the initial reserve is an
effective way to lower down the ruin probability especially when
the claim size is large. However, such a large initial reserve incurs
a substantial opportunity cost to the insurer as the reserve cannot
be used for financial investment to generate another stream of
revenue.
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VI. CONCLUSION

In this paper, we present a cyber insurance framework for
wireless services, in which the network users pay a premium
to the insurer in order to protect themselves from the loss
due to cyber risk. Specifically, considering eavesdropping as the
cyber risk, we introduce a quantitative approach to assess the
vulnerabilities of an insured user in the subscribed network and
in turn the capital risks carried by the third-party insurer. The
combination of network analysis and economic analysis provides
insights to understand the interplay between wireless systems
and cyber insurance business. Our proposed cyber insurance
framework is general and can be customized to different emerging
network scenarios for future generation networks. The analysis
can be useful for further optimization of the benefits of the insurer
and/or insureds.
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