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Abstract

The purpose of this paper is to construct a stochastic calculus with respect
to a class V of anticipating processes which is wider than the class of Skorohod
integral processes. The main tool of this approach is the definition of a Skoro-
hod type integral operator that acts with respect to (X (t));cp0,1) € V- Under
regularity assumptions on (X (t));c[o,1) We obtain an anticipating It6 formula,
with sufficient conditions for the existence of quadratic variations and pathwise
integrals with respect to (X (t)).c(0,1]-
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1 Introduction

The Ito6 formula, originally stated in the adapted case for It6 processes, has been
extended to anticipating processes in mainly two directions. The pathwise approach
using the forward, backward, and Stratonovich integrals is valid for a large class of
processes, cf. [3], [12], [13], but such integrals do not retain an important property
of the It6 integral which is useful in the applications of stochastic calculus, namely
their expectation differs from zero in general. The Skorohod (or Hitsuda-Skorohod)
integral operator d, cf. [5], [14], conserves the latter property, moreover it can be
used to give sufficient conditions for the existence of pathwise integrals, cf. [10].
Given a smooth non-adapted process u, the Skorohod integral process associated to
u is defined as

X(t) = 5(“(')1[0,t]('))’ te [07 1]7 (1)
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cf. [6], [9], [10]. In the particular case where u is adapted, Skorohod integral processes

include Ito processes of the form

X(t) = /0 u(s)dB(s), te]l0,1],

where (B(t)):c)0,1) denotes Brownian motion. However, in the anticipating case Sko-
rohod integral processes form a relatively restricted class of anticipating processes,
cf. [2], due to the separation of the variables s and ¢ in h(s)1j(s). The Ito calculus
for such processes has been developed in [10], [15], and an extension of this calculus
to processes given as X (t) = d(u(-)g(+,t)), where g is a deterministic function, has
been been considered in [7]. In this paper we work with a general class of processes

of the form
X(t)=0(u(1), telo,1], (2)

where u(-,t) belongs (for fixed t) to the domain of §. This formulation is more
general than (1) and it is not restrictive since every centered process (X (t))cjo1] €

L?([0,1] x W) with multiple stochastic integral expansion

X(t) = L(fa1), te€0,1],
n=1
possesses such a representation, the process u being given by

u(s,t) =Y L(fur(-s.1), teo,1].

This paper is organized as follows. Sect. 2 contains notation and preliminaries on
the Skorohod integral operator §. In Sect. 3 we state the definition and the basic
properties of our generalized Skorohod integral operator 6% that acts with respect
to the process (X (t))ep,1). We also introduce a gradient operator DX which is the
adjoint of §%. The extension of 6% as a continuous operator on Sobolev spaces is
studied in Sect. 4. In Sect. 5 we link 6% to the forward, backward and Stratonovich
anticipating integrals with respect to (X (t)):cj0,1. In particular we obtain sufficient
conditions for the existence of pathwise integrals with respect to (X ()):cjo,1) using
the operators DX+ and DX~ defined from D¥ by left and right limits. The pathwise
quadratic covariation [X,Y](t) of L? processes is considered in Sect. 6 where we

obtain sufficient conditions for its existence, and the relation

d[X, X|(t) = (DX X(t) — DX (t))dt, te][0,1].



In Sect. 7 we prove the following anticipating It6 formula for (X (¢)):cjo,1], using the

extended Skorohod integral 6% and its associated gradient operator (Th. 2):

FX@®) = fX(0) + 0" (f (X ()L () /f” X](s)

/ 71X X(s)ds.

This result is also stated in the multidimensional case, and can be formulated with

pathwise anticipating integrals.

2 Notation

Let (W, H, ;1) denote the classical Wiener space with Brownian motion (B(t)).c0,1],

where W = Cy([0, 1]) is the space of continuous functions starting at 0 and

H= {/O h(s)ds : he L*(]0, 1])}

is the Cameron-Martin space, with norm ||h|y = HhHL2([0,l})7 where /i denotes the
derivative of the absolutely continuous function h € H. Let & denote the set of

smooth random variables defined as
S={f(B(t1),...,B(t,)) : 0<t; <1, i=0,...,n, f€C(R"},

which is dense in L*(WW), and let

i=n—1
= { Z El]ti,tu»l] : Fl,...,FnES, 0§t1,,tn§1},
=0

which is also dense in L*([0,1] x W). We denote by D : L*(W) — L?([0,1] x W)

the closable gradient operator defined on § as

D, f(B(t), .. Z lios ()0 f(B(th), ..., B(ta), s€[0,1].
Let Dy ,, p € [1,00], denote the L? domain of D, defined by the norm
1E e = 1Eloowy + IDF o2 oy,  F €S,

and let IL'? be defined by the norm

lullip = llulleow 2oy + | Dulloqw,z2qoayxo,yy), v € U.



Let 0 denote the adjoint of D, which satisfies
E[Fi(h)] = E(DF,h)1201p], F € Dom(D), h € Dom(9).
We recall the relation
0(Fu) = Fo(u) — (DF,u) 2,1, (3)

for F' € Dom(D) and u € Dom(d) such that F(u) € L*(W), and the isometry

El§(u)(v)=F {/1 u(s)v(s)ds] +F [/1 /1 Dgu(t)Dyv(s)dsdt|, wu,veU. (4)

0 o Jo
Throughout this paper, © denotes a partition
T={0=ty <t <ty <---<t,=1},

of the interval [0, 1] and |7| = supy<;<,,_;(ti+1 — ;). The notation limj;_o denotes

the limit over all sequences {m, },en of partitions such that |m,| — 0 as n — oo.

3 Skorohod integral with respect to an L? process

We define an extended Skorohod integral operator 6% : L?([0,1] x W) — L*(W)
that acts with respect to a given stochastic process (X (t))cjo1] written as
Definition 1 Let (v(s,t))scp0,1] be a two-parameter process such that

a)t —v(s,t) € H andt — v(t,s) € H, ds X dP-a.e.,

b)t — (s, t) = 0sv(s,t) and t — 0(t,s) := Osv(t, s) have finite variation, ds x dP

a.e.,

¢) (-, t) == 0,(-,t) € Dom(d), t € [0,1].

We call v-process the process (X(t))epo) defined as
X(t) =68(0(-1), telo1].

Under assumptions a) and b), v possesses the following important property which

will be used throughout this paper:
0(s,dt)ds = v(ds,t)dt, s,te0,1], a.s.

Brownian motion is obtained from the deterministic process v(s,t) = sAt, s,t € [0, 1].

We define a Skorohod type integral with respect to (X(t)):cp,1-



Definition 2 We define the generalized Skorohod integral operator 5% : L*([0,1] x
W) — L*(W) on U as

5 (u) =& (/01 u(s)i;(-,ds)) . uel. (5)

For w € U of the form

n—1

u(t,w) =Y Fi(w)ljpe.t), te[01], weW, (6)

1=0

the expression (5) is well-defined as:

—_

n—

5 (u) = S(E;(0(-s tign) — (-, 1)),

7

Il
=)

and (X (t)):cp0,1) has the representation
X(t) = 5X(1[07t]), t e [O, 1].

Note that in general 5% (u) does not coincide with the sum

n—1

Z Fio (X(tiy1) — X(t:)),

i=0
where ¢ denotes the Wick product, except if v(s, t) is deterministic. In the Brownian

case (v(s,t) =sAt, s, t €[0,1]) we have
D(Sat) = 1[0,t](s>7 @(5775) = 1[t,oo[(8)7 s,t € [07 1]7
and
0(s,dt)ds = e4(dt)ds, v(ds,t)dt = e(ds)dt, (7)
where ¢, denotes the Dirac measure at x € R. Consequently, fol u(t)o(s, dt) = u(s),
s €[0,1], and
1
§B(u) =6 (/ u(t)i)(~,dt)> =0(u), uel,
0
i.e. 0% =4 is the classical Skorohod integral. If (X (f))ieo,1] is a Skorohod integral

process of the form
X(t) = 5(h1[0,t])7 S [07 1]a h e L1,47

ie. v(s,t) = fOSAt hado, s,t € [0,1]. We have (s, t) = 1j94(s)h(s), and 0(s,dt) =

h(s)e,(dt), hence 1
0¥ (u) = 6 ( /O u(s)o(-, ds)) = 5(hu),



and this formula coincides with the definition of [6] of the Skorohod integral with

respect to (X (t)):ep0,1). In particular, if u is adapted then (X (t)):co1) is an It6 process

with Ito differential dX (t) = h(t)dB(t) and the operator §% coincides on adapted

processes with the It6 integral with respect to h(t)dB(t).

If (X ( ))icjo,1) has absolutely continuous trajectories, e.g. X (¢ fo ))ds with
fo a(s,a)da, then

() = 6 ( / u(s)a. s)ds) |

Le. 6% defines a centered stochastic integral with respect to (X (t))seo,1), which

necessarily differs from pathwise integrals. We now define the adjoint DX of 6%.

Definition 3 The (X (t))ep1-derivative operator D* : L*(W) — L*([0,1] x W)
is defined on S by

1
DfF:/ D,Fi(da,s), s€]0,1], FeS.
0

For F' € § of the form F = f(B(t1),...,B(t,)) we have

DYF - i&-f(B(tl), B (6t s) — 0(0,8)), s € [0,1].

The operator DX is a derivation on S, i.e. D*(FG)= FDXG +GDXF, F,G € S.
In the Brownian case (0(s,t) = 1jo,4(%), s,t € [0,1]), we have

1=n

DP()F = Lo ()0 f(B(tr),..., B(t,)), s € 0,1,

i=1
ie. DP = D is the classical gradient on the Wiener space. If (X(t))iecpo,1 =
(0(h1j4))ecpo is a Skorohod integral process, then 9(s, t) = 1j9 4 (¢)h(t), and v(ds,t) =
h(t)e;(ds), hence D¥ = h(t)D;, t € [0,1].

Proposition 1 The operators DX and 6% are closable and the following duality

relation holds:
E[F6*(u)] = E(DXF,u)2o1p), F €S, uel. (8)

Proof: We have

E[F§*(u)] = E{F& (/Ulu(s)i}(-,ds))]



:E/DF/ i(a, ds)d ]
:E/ /Dmdw ]

- B / DfFu(s)dS} = E (DX Fu) 20,1 -
L/ O

The closability of 6% and DX follows from (8) and the fact that 6% and DX are
densely defined, respectively on U and S.
(]

We may now extend ¢% to its closed domain Dom(d%) which is the set of u €

L*([0,1] x W) such that there is a constant K > 0 with
|E(D*Fu) 2ol < KIF |2y, F €S,
For u € Dom(6%), §*(u) is the unique random variable that satisfies
E[(D*F,u)12(0,))] = E[F6¥(u)], F€S.
Proposition 2 Let u € Dom(6%) and F € Dom(D*) such that
F&* (u) — (u, DXF) 1201 € L*(W).

We have
(5X (FU) = F§X(u) — <u, DXF>L2([O71D. (9)

Proof: Let u € U be a simple process of the form u = 1), 4G. We have

o(r [ 1 u(s)it ds) )

)=
= 0(FG(0(, 1) —0(9)))
= Fo(G(o(1) = 0(-,5))) = (DE,G(0(-, 1) = 0(- 8))) 20,1

= F§*(u / / (v, dB)dax
= F&%(u / / Do Fu(B)d(de, B)dS

= F&(u /DXFu da, F€S.

5X(Fu) = 5X(FG1]8t]

Hence (9) holds for F;,G € S and v € U. The conclusion follows by closability of

DX and §¥.
|



Relation (9) can also be obtained using the duality between DX and 6% and the

derivation property of DX, as

E[G§*(uF)] = E[{u, FD*G)12qo1)] = E[{u, DX(FG) — GD*F) 12(0.1})]
= E[G(F(SX(U)—<U,D F>L2([071D)]7 FGeS uel.

Finally we notice that DX and §% have the locality property.

Proposition 3 For F' € Dom(D*) we have DXF = 0 a.s. on the set {F = 0}.
If w € Dom(6%X) is such that E[||DXu||L2 (0a2)) < oo then 0 (u) = 0 a.s. on

{Ilell 2o } = 0.

Proof: The proof of this proposition uses the duality between DX and 6% and is
identical to the proof of the analog result in [1], [8], [10].

O
Consequently the operator 6% may, as the usual Skorohod integral operator 4, be

extended by a localisation argument.

4 The extended Skorohod integral as a continuous
operator on Sobolev spaces

In this section we give a more precise description of the domain of §% via a bound

in Sobolev norm. We assume that (0(s,1))stco,1] satisfies the following hypothesis.

Definition 4 We denote by V the set of two-parameter processes (v(s,t))secjo,1) Sat-
isfying Def. 1, such that 0(-,t) € IL14, t € [0,1], and there is a constant C, > 0
with

i) JJo(,t) =0, 8)ia <Covt—s, 0<s<t <1,
and for0 <a<b<s<t<1:

i0) ([0 8) =0 8),0(,b) = 0(, a)) 2o || oy < Co(t = 5)(b = @),

1/2

/(/D (1,1) — (u,5)) (5, ) — (Ta))dr>2du] < Ct—)b—a)

’LZZ

F(0(u, t) — 0(u, 8)) Dy (0(r,b) — 0(r, a))dudr < C(t—s)(b—a).

L2(W)




Assumption c¢) is satisfied by Brownian motion since in this case v(s,t) = s A t.
Our main interest is in the case of random w(s,t), but we mention that the first
chaos process given by (s, t) = (t — s)*1j4(s), a > 1/2, also satisfies c), since

(b= 1) = (s—7)* < a(t—s)(s— 1), 0 <7 <5 <1, hence

/ (0(r,t) — 0(r, 8))0(r,b)dr < a(t — s)(b— a)**

and
/o (0(r,t) — 0(r,8))(0(r,b) — (r,a))dr < a*(t — s)(b— a).

The following lemma allows to extend §% as a continuous operator from L?([0, 1], D 4)

into L?(W) by density of U in L*([0,1], D1 4).
Lemma 1 For any simple process u € U we have
16% @l 2wy < 2C, el 2 oy Doy

Proof: We start by the following:
Lemma 2 We have for F' € D 4:

16% (s ) |z2wy < 2CuVE=s[|Flla, 0<s<t <1
and for F,G € Dy 4:
|E [0X (1o F)6* (159 G)]| < 2C2||F[l14]|Gll1a(t —s)(b—a) 0<a<b<s<t<l
Proof: We have for 0 < s<t<land0<a<b<1:

[E[0(F(0(t) = 0(,5)))0(G(0(-, b) — (-, a)))]|
= ‘E [FG<®("t) - 'D('? 5)77}(3[)) - b("a»L?([O,I])]

(0(u, t) — v(u, s))(v(r,b) — o(r, a))DTFDquudr}
F(o(r,b) — o(r,a))D,GD,(0(u,t) — 0(u, 3))dudr]

1
/
0

+E /0 1 /0 G0 1) — 6w, $)) DDy (0 ) — i(r a))dudr]




+EU/FGD (u,t) — 0a, ))Du(i;(r,b)—b(r,a))dudr]

< NF s Gl [| 60 1) = i, 5),80,) = 5, Do) gy

+ [[IDGll 2o l19C8) = 4C, )z o) [ oy [P F N2 8¢, 8) =, @)ll 2ol gz o

2

E o 1 DG sz 0.1 E /0 (/0 Dy(i(u, ) — (u, ))(0(r, b) — o(r, a))dr) du

2

G 2y | DF|| Laew,z2 o) £ /0 (/0 Dy (v(r,b) — o(r,a))(0(u,t) — 0(u, s))du) dr

(/01 /01 Dy (6(u,t) = 0(u, 5)) Dy (0(r,b) — i (r, a))dudr) 2] 1/2

If F =G, a=sandb=t, then ¢ — i) implies

/01 </01D (0(u,t) — v(u, s))(0(r,t) — o(r, s))dr>2du] " < CH(t —s),

HFG|| 2w E

E
and
1,1 2] 1/2
(/0 /0 Dy (i(u, ) — (u, )) Da(0(r, b)—?’)(r,a))dudr) ] < C2(t—s),
hence
E[6(F(0(t) = 0(-8))*] < CIFN 2t = ) + CIIDFI L agw, 20,17t — )

F2C || F || o)l DF || aw,p2 o,y (t = s)
+OINF 2w (t = s)
2C7||F |3 4(t — s)

IN

If0<a<b<s<t, then

[E[0(F(0(-t) = (-, 5))8(G(0(,0) = (-, a))]| < CHIF I aqw) |Gl pagwy (¢ — 5)(b — a)
+CQHDGHL4 w,r2(0.) | DF || Law,z2(jo,11)) (¢t — ) (b — a)
+02HDFHL4 w.r2(o) | Gllzagw (t — 8)(b — a)
+C I DG paow 2o, | F | aqw (E = 5)(b — a)
O E |l paon |Gl nawy (t = 5)(b — a)
< 203 Fll1allGllialt = )(b — a).

10
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Proof of Lemma 1. Let u € U be of the form (6). We have

16X @) ey = (26 Stign) — z><~,tz->>>)

j=n—1li=75—-1

< 4C2 Y Y IFal Fillaltion — ) (ta —t;)
j=0 =0
i=n—1
+2C2 N IF 4t — )
1=0
i=n—1 2
< 202 ( S Bl —m) 202l o
< QCQHUHLQ ([0,1], ]D + 2C2||u|lL1 (j0,1],4D 4 = 402||UHL2 (j0,1],4D 4

5 Existence of pathwise integrals

In this section we give conditions for the existence in L'(WW) of pathwise integrals
with respect to (X (¢))ep,1), and obtain their expressions with 0% and D¥. For any

u € L*([0,1] x W) and any partition 7 of [0,1] we define the processes

N~ 1 tirt
U = Z g — T (/ u<8)d5) 1]ti7ti+1](t)7
i t ti

-0 tz—i—l
N~ L t
n—2 tito
=) L ( / U(S)ds) Lt 4o (t),  t€[0,1].
— tiva — i1 \Jt,,

We know, cf. [9], that (u™),, (u™ ), and (u™), converge to u in L%([0,1] x W) as
|| — 0, and if w € ILy 4, then the convergence holds in IL; 4. The Riemann sums

associated to ™, u™ and u™" are

n—1

ST{'O i
=0
- 1

=3 < /t t u(s)ds) (X (tis1) — X (1)),

—ti—tia

n—2

S (u) = ; ﬁ (/: u(s)ds) (X(h1) — X(8)).

The following is a definition of pathwise type anticipating integrals with respect

(/ “WS) (X(tigr) = X (2),

t1+1

to (X ())scpo,1), cf. [9] for the Stratonovich case. Another family of approximating

sequences is used in [12].

11



Definition 5 The process u is Stratonovich, resp. forward, backward integrable with

respect to (X (t))cpo,1) 4f the family {S™ (u)}r, resp. {S™ (u)}x, {S™ (u)}r converges
in probability as x| — 0 to a limit denoted by [ u(s)d°X (s), resp. fo s)d~X(s),

fol u(s)dTX(s).
Let ILc be the subspace of L?([0, 1], ID; 4) such that for u € IL¢ the limits
Dfu(t) = lgiﬁ)l Duwu(t+¢), Dju(t)= lgiLr]l Dyu(t —¢),
exist in L2(W), uniformly in ¢ € [0,1]. For u € IL¢ we let
Vau(B) = Dyu(B) + Dyu(B), «o,B € [0,1].

We now define a subspace I, of ILs whose elements will be pathwise integrable with
respect to (X ())sep0,1)- The total variation of the finite measure o(da, s) is denoted

by |0|(de, s), ds x dP a.e.

Definition 6 Let v € V. We denote by IL, the set of processes u € ILo such that

there is a version of Du with

lim  sup /1 |Dyu(s) — DFu(B)||9|(de, B) = 0 in L*(W),

€20 0<B<cs<Bre<l

lim  sup /1 |Dou(s) — Du(B)||9](da, B) = 0 in L*(W).

€20 0<B—c<s<B<1

We also define the operators VX, DX+ and DX~
DX u(s / DFu(s)d(da, s), DX u(s / D u(s)o(da, s),
and .
VEu(s) = / Vou(s)i(da, s) = DX Tu(s) + DX u(s), u € L,
0
From (7), we have in the Brownian case:

vi=v, DF =D;

S

and DP* = Df se]0,1]. (10)

S )

Remark 1 We can also define IL, as the set of processes u € L*([0,1], D14) such
that there is a version of DXu such that s < DX, u(t As) and s — Dis u(tV s) are

continuous from [0, 1] into L*(W), uniformly in t € [0,1]. Then one can define
Dt = liingtXu(t +e), Df = lig)lDtXu(t — ).

In this case the proofs of Prop. 4 and Th. 2 below would stay closer to [9] but the

representation of DX, DX~ in terms of DY, D~ would not necessarily hold.

12



The following proposition gives sufficient conditions for the existence of the Stratonovich,
forward and backward integrals with respect to (X (t)):c[0,1], and links these integrals

to the Skorohod integral operator 6.

Proposition 4 Let u € IL,. Then u is forward, backward and Stratonovich inte-

grable, and the following relations hold in L'(W):
5X(u):/01u(s)d°X(s)—%/Ol V¥u(s)ds. (11)
5 (u) = /0 (s)d- X (s) — /0 DX u(s)ds. (12)
(5X(u):/01u(s)d+X(s)—/Ol DXt u(s)ds. (13)

Proof: For simplicity of notation we assume that the measure 0(da, s) is positive,

ds x dP a.e. The general case follows easily from this particular case. We will prove

5% (u) = /Olu( - —/ / au(s)v(day, s)ds,
5X(u):/01u() / / D=u(s)i(da, s)ds.
5X(u):/01 (5)dTX(s) / / DFu(s)d(da, s)ds.

From Prop. 2 we have

n—1 1+1 i1
™) = S™(u Z / / s)dsda
1=0
1

terl

n—

tit1 tit1
= S D .
S ; Oj tl+1 / / / wu(s)o(da, B)dsdp

We will show the convergence in L'(W) of the last term to

//Vau i(ov, ds)d //Vau i(dav, s)ds.

m—tz/ - /BZH / (Dat( ——D+ (B))0(da, B)dsdfs
y ti 1—tz/m/ﬁm/ | Dau( Fu(B)|o(da, B)dsdp

St ]

=0

We have

,_.

<

I\
=)

A

+

13



which converges to 0. (The weak convergence in L*([0,1]) of § < > 7" 01 fill i to =

as || — 0 is used as in [9]). Hence the convergence of

n—1

; tiv1 = / t/ / Dyu(s)o(da, B)dsds3

/ / Du(8)b(da, B)dB.
Similarly we prove that

m—t /+/ / (Do ——D ~u(B))d(da, B)dsdp3

converges to 0 in L'(W) as || — 0. Concerning (12) we use the relation

to

X(u™) = 8™ (u) —

=1

//Du ola, tin) — o(a, t;))dads

tz_tz 1

n—1 1 i1 i
-y / / / Dou(s)i(da, B)dsds.
i=0 ti —ti1 t; t;—1 JO

The convergence in L'(W) of the last term to

1 1
|| pauitda.syas
o Jo

follows then from the bound

S [ [ o) - yoatonitae. syasas

1=0

= S (u)

< / sup /|Dau — Dy u(B)[6(da, B)dB.

s€[B,B+|m]

Relation (13) is proved analogously.

6 Quadratic variation of L? processes

In this section we obtain sufficient conditions for the existence of the pathwise
quadratic variation of the wv-process (X(t))icppi], v € V. It is known that the
quadratic variation of the Skorohod integral process (X (t)):cjo,1] = (6(h1jo))teoq) is

d[X, X](t) = h(t)*dt.

14



Moreover, D X (t) = h(t) + 0(D;hly) and Dy X(t) = §(Dihlpy), ¢ € [0,1], and
this suggests the identity

d[ X, X](t) =h(t)(DTX(t)— D~ X(t)), tel0,1],
which can also be written as
d[X, X](t) = D*TX(t) - DX~ X(t), te€]l0,1],

since 0(s,t) = h(s)1eo((s), D(ds, t) = h(t)ei(ds), D T X (t) = h(t)Df X (t) = h(t)? +
h(t)d(Dihlpy) and DX~ X (t) = h(t)D; X(t) = h(t)0(Dihlpy), t € [0,1]. We give
a more general meaning to this formula, extending it to (X (¢)).co,1) € L, by use of

the operators DX and DX~

Definition 7 Let v € V, let (X (t))ico,1) be a v-process, and let (Y (t))icpoa) € L.
We define the absolutely continuous process ([X,Y](t))iejo1 by

d[X,Y](t) = /0 I(D;“Y(t)—D;Y(t))@(da,t}dt, telo1].

The bracket considered here corresponds to the pathwise quadratic variation of the
process, as in e.g. [12]. In this respect it differs from other brackets that may be
not symmetric or not positive and act as a correcting term for the Skorohod integral

term of the It6 formula, cf. [4], [11].

Theorem 1 Let v € V, let (X(t))icp) be a v-process, and let (Y (t))icpo1) € L, be

continuous in Dy 4. The sequence (V™). defined as

VT = i(XtH—l — th)<Y(tz+1) - Y<tl))

=0

converges in L*(W) to
| Py - DX Vs = X0,

Proof: We have from Prop. 2:

n—1 n—1
V= SV 1) = V() (X — Xa) = SOV (1) = V()6 (L)
=0 1=0
i=n—1 x it1 Liv1
= > W ) = V() b) — [ DXVltdst [ DXV (s
=0 ti t;

15



= Z(SX (tit1) ('))l]ti,tiﬂ])
0

1=

/jl/DY o(da, B)dS — /M/DYl+1 o, 8)dB

= Ji+Jy+ Js.

For the term J; we have the inequalities

n—1
T2y = | (Y (tir) = Y (E) Dt )
=0 L2(W)
1 2
< H—l ))1]ti7ti+1]
i=0 £2([0,1],dD1 4)
-1
_ 2 2
= 4G, Z” tit1) ))1]ti7ti+1}HLQ([O,l]JDM)
n—1
= ACYY (tisr — )Y (i) = Y ()4
i=0
< 40y sup [[Y(t) = Y (s)lla,
[s—t|<|m]

hence J; — 0 in L*(W). The convergence of J, to [, [\ D}V (8)d(da, 5)dS follows

from

n=1 .t el 1
3 / / DY (t)~ DY (B)i(dor, B)dB < / sup | DaY (s)— DY (8)i(dov, B)dp.
o Jt 0 0

BE[s,s+]rl]

Similarly, J3 converges to fol fol DY (s)0(da, f)dB. Finally we use the relation

/t(DfJFY(s) — DX7Y (s))ds = /t /I(D;LY(s) — DY (s))i(da, s)ds. O
The b(;acket [X,Y](t) being symmetric(:) by0 definition, this leads to the relation
(DY*X (1) — DY ~X(1) = (DXFY(5) - DEY(1), teo,1]
In the case of a quadratic variation [X, X](¢) this result also implies that

DX (t) > D X(t), te]lo,1].

7 Anticipating It6 formula

In this section we prove the anticipating It6 formula
FX(@) = FX(0) + 6 (f(X()1p.
1 ! " //
+§/0 f(X(s)) / (X X(s)ds.
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for a v-process (X (t))icp,1] satisfying certain regularity conditions. This formula uses
the operator 6% and it is linked to pathwise approaches in Cor. 1. We first notice that
even if (X (t)).epo,1) has absolutely continuous trajectories, 6% can be used to write a
change of variable formula that contains a zero expectation term. Let a(-,s) € L 4,

s € [0,1], and assume that X (¢) has the form

We have

FX (D) = / FX()3(al-,9)ds (14

_ +5( / F(x ) / X (5)(D X (s), (e 8)) 2oy ds

—FX(0)) + 55 (1 / (X (s)DXX (s)ds, f € CE(R),

which allows to identify a zero expectation component given by 4% in the process
t — f(X(t)). The processes considered in the next theorem do not necessarily have

absolutely continuous trajectories.

Theorem 2 Letv € V. We assume that (X (t))icp,1) € Ly has a continuous version
and is continuous in IDy 4 with sup,co ) ([ DX (8)[|Laqw, Lo (o,1y)) < o0, and [[0(+,t) —
QIJ(~, 5>HL4(W,L1([0,1])) S Oy(t — 8). Then fOT’ f - Cg(R),

FX0) = FOEO) + 5 (X g + 3 [ FX )T ).
Before proving Th. 2 we make the following remarks.

e The v-processes considered in Th. 2 are centered by definition, but the formula
is easily extended with an additional deterministic drift. On the other hand,

the initial value X (0) of (X (t))tcjo,1) may be random.

e Most versions of the anticipating It6 formula for Skorohod integral processes,
cf. [9], consider an additional random absolutely continuous drift term. This
is not needed in Th. 2 because the class of processes it applies to is sufficiently

large to contain such drifts, e.g. as in Relation (14).

e If we assume that (D X (t))sei0.1] € L*([0,1]* x W) then using Prop. 3 and a
classical locality argument, Th. 2 can be extended to f € C*(R).
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Proof of Th. 1: We will prove the formula

FX(1) = F(X(0)) + 0™ (f'( / (X )/0 VaX(s)o(de, s)ds
Following the method of [10] we write Taylor’s formula
fX(@) = f(X(0)+ _23 X E))(X (i) — X(t:))
23 (X ) — X (1)

where X (¢;) denotes a random point located between X (¢;) and X (¢;41). We have

X)) = FX0) + if&fxxaz-))(o(-,w —0(11:)))
+i2§ FUXE)DX (t:), 00 tigr) = (-, 1)) £20.1)
%2 PR ENS(X (fir) — X (6 tirn) — 60, 1))
% :zi; FIXE)UDX (tig1) = DX (1), 0(,tig1) — 00, 1)) r2(0.1))
_ f(X(O))+Z:ZXZ;5(JC'(X(’%))(U( tir) = 9, 13)))
+Z§;1(f”(X(ti)) = [U(XE))NDX (), (- tigr) — 0(,:)) 2o,
. Zf DX (tis1), 00 ti11) — 05 20
i Zzn:lf”X X(t:), 0( tivr) = 0(- ) 2o,
ik Zznjlf”)‘( X(tiv1) = X () (0, tivr) — 0, 1))

= f(X(O))+J1+J2+J3+J4+J5.

We start by proving that J, and J5 converge to 0 in L'(W) as |r| tends to zero. We

|

have, using the a.s. continuity of the trajectories of (X ()):ejo,1):

i=n—1

> (X /D X () (0(a, tipr) — v(a, t;))da

1=0

EHJ2|] = B

18



< E S ||J"“”(X(a))—f”(X(b))l
a—o|<|m
i=n—1 1
3 / |DaX(t-)(1)(a,ti+1)—D(a,ti))|da]
i=0 70
< || sup [f"(X(a)) = f1(X(D))]
la—b|<|m| L2(W)
1=n—1 1
<3 /|DaX(t-)(1}(a,ti+1)—z’;(a,ti))\da
— 1lJo L2(W)
< || sup [f(X(a)) = f(X(D))]
la—b|<|m| L2(W)
i=n—1
Xtil[épl]”DX( )HL4 W,L>([0,1])) Z [0 tipa) — o, ti)HL“(WyLl([OJ]))
< Cofl sup [fY(X(a)) — f7(X(D))| sup | DX (@) paw,zo=(jo.1) -
|a—b\<\7r| L2(W) te[ovl]

hence J, converges to 0 in L'(W). Concerning J;5 we have from Lemma 2:

i=n—1 2
1 1"~
1517200 = 1 Z FUX (D)) ((X (tigr) — X (8) gt 1401
=0 L2(W)
i=n—1
< ||f”||2 Z |E 5X H—l)_X(ti))1}ti7ti+1])5X((X(tj+1)_X(tj))l]tj7tj+1])”
7,7=0
i=n—1j=i—1
< G DD D0 X (tisn) = Xt lall X (1) = X () altion — ) (E1 — 1))
i=0  j=0
i=n—1

+CN% D X (tia) = X (117 atin — 1)
< Cf\lf”Hiol sup ‘HX(S)—X(t)H?A,
s—t|<|m

from Lemma 1, hence the convergence of J; to 0. Next we show that J3 converges to
We have

/ / D, X (s)o(da, s)ds.
i=n—1

> [ [ XD ) - KDL (it s)ds

i=n—1

S [ [ a)m.x ) - DX ) otdas)as
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i=n—1

22 / [ IR ) - Ot s
< su D,X(a) — D X(s)|v(da, s)ds
< |/ /{ s DX ()~ DX (0
+|aSII;TE|7T\’f( \/ / |D., X (s)|0(de, s)d
< |If IIOO/ . slfpsw}/ DX (a X (s)|6(dov, s)ds

+ sup |f(X |//|DX )o(da, s)ds

la—b|< ||
The convergence of Jy to & [ [ f"(X(s)) D} X (s)i(dev, s)ds in L*(W) is proved sim-
ilarly. Concerning J;, we will show the convergence of

1=n—1

D X)) = XN et ()

i=0
to 0in L?([0, 1], Dy 4). The convergence in L*([0, 1], L*(TW)) clearly holds. Regarding

the convergence in L*([0, 1], D1 4) we have

/ 1 i:ZZ;Da(f%X(ti)) PO 0] do
- / 2 X~ DX OV 6] o
< PN DX ) (0] 0
2 / 1 f XONDLX(8) ~ DX (@) o
< 2‘a§;‘11<>|ﬂ||f”(X( a)) — (ZznjlllDX M e2(io,1) Lt i) (8 ))2
+2 Sw (X <i1 IDX(t; X(1) HLQ([Oyl])l]tithl](ﬂ) 2 :

Hence

X(t:) = f X0t (8)

2
dadr]
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i=n—1
< 2FE B |\J"‘”(X< a)) — b))I? Z I DX ()72 (p0,1)) (i1 — 1)
a—o|<|m
1=n—1
+2 sup f" (X ()] Z IDX (t:) = DX (t)| 720,17y (i1 — L)
ac
< 2|| sup |f”(X(a)) —f”(X(b))’Q sup |’DX(75)H%4(W,L2([0,1]))
la—b|<|7]| L2(w) te[0,1]
+2 SI&)P”U"(X(G))F | S;Tp‘ |||DX(G)—DX(b)||%4(W,L2([0,1]))-
ae|0, a—b|<|m

Both terms converge to zero in L*([0, 1] x [0, 1], L*(W)) since sup,c(o 1 | X (8)[l1,4 < 00

and (X ()):ef0,1) is continuous in Dy 4.
O

In the Brownian case, VEB(s) = V,B(s), s € [0,1], from (10), hence we obtain the

classical Ito formula for Brownian motion:

FBO) = 50)+81pgOF BN+ 5 [ FBEVI B

= 10+ [ FBENBE) + / £(B(s))ds

Th. 2 can be rewritten using the quadratic variation of (X(t))c0,1) and pathwise

integrals as in the following Corollary which is a consequence of Th. 1.

Corollary 1 Letv € V. We assume that (X (t))icp,1) € Iy has a continuous version
and is continuous in D14 with supye 1) DX (t)| Law,Lo (o)) < o0, and |[o(-,t) —
’[](', S>‘|L4(WL1([0,1D) S Cv(t — S). Then fOT‘ f € Cg(R),

fX@) = 0)) + 6™ (f"(X ()1,

/ 11X / 71X X (s)ds.

As a corollary we obtain the pathwise extensions of the It6 formula, cf. [13], which

are linked by Cor. 1 to the generalized Skorohod integral §%:

fX@) = f(X(O))+/0tf'(X(S))d°X(8),

FX() = FX(0) + / (X (3))dX(s) + = / £7(X ())d[X, X](5).
fX(1) = / FX(s)d" X (s / (X X](s).

We now state a multidimensional version of our formula.
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Theorem 3 Let n > 1. Let v',...,v" € V and let X* € ﬂ;z’flw be a v;-process,
continuous in 1D 4 and having a continuous version, i = 1,..., n. Then for f €

Cy(R™),

FOCE), LX) = FX X3>+25X"<aif<xl<~> ..... X)) 1)

5 Z / 00, f(X X7(s))d[X", X7](s)
+Zl / 00,1 (X (5), ... X*(5)) DX " XI(s)ds.  (15)

Proof: We do the computation in the case n = 2, the limiting arguments being the

same as in the proof of Th. 2. We have

FXH(E), X2(1)

)

= f(X'(t0), X*(to) + (F(X'(1), X*(t)) — F(X'(t0), X*(t0)))
(
);

) =
HAXH(), X2(1) — FXH(E), X2 (1))
F(XH(t0), X2(to)) + Ouf (X (to), X2 (1)) (X () — X (t0))

+02 f(X(t), X?(t0))(X3(t) — X3(t0))

+%3131f(Xt10>X2( to)) (X (1) — X'(to))” +%923#()(1(?5)»Xz(to))(XQ(t)—XQ(to))z
= F(X"(t0), X7(t0)) + 0% (D f (X (t0), X(t0)) ) + 6™ (0af (X (£), X*(t0)) 1jt0.1))

+%8181f(5(30,X2(o))( (1) - Xl(to))“r%azazf(Xl(t)a)_(Q(to))(XQ(lt)—Xz(to))2

thl(?lf(Xl(to), X2(t))ds + | DX°0,f (X' (1), X2(to))ds

= (X (to), X2(to)) + 0™ (D1 f (X (o), X2(t0)) Ljugy) + 0™ (B f (X (E), X2(t0)) Litg.0)
+13151f()_(t10 X2 (o)) (X (t) — X'(t0))? + 1(925210( X1(t), X2(t)) (X2(t) — X?(t0))”

/ 3181 t() X2 to))DX X (to d8—|—/ 8282f (),X2<t0))D§2X2(t0>dS
+/ A10xf (X (to), X2(to)) DX X2 (1, ds+/ 0L F(X(t), X2 (1)) DX X (t)ds,

where X} € [X'(to), X'(¢)] and X%(tg) € [X2(to), X*(t)]. As |x| — 0 we have for

general n > 1
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53 / D0f (X" (s)..., X" ())d[X", X7)(s)

+Zl/0 &&Lf(Xl(s), - ’Xn(s))D;XW_XZ(SﬁlS

i=n j=i—1

—|—; Z_; /0 @ajf(Xl(s),...,X”(S))Dfi—Xj<s)ds

i=n—1 j=n

> /0 8:0; F(X(s), ..., X"(s)) DX+ X9 (s)ds.

i=1 j=i+1

Using Th. 1 and Def. 7:
DX XI(t) = d[X7, X7](t) + DX~ X7 (t)dt,

we obtain

1=n

FXNE), .. X" (1) = f(X&,---,XS‘)+Zéxi(é‘if(Xl(-),---7X”(-))1[o,t](-))
1 . ! 1 n 7 7
+§Z/O %0 f(X2(s),. .., X"(s))d[X", X](s)

+ Z_l/ot 9,0, (X' (s),... X" () DX "X (s)ds

i=n—1 j=n

£33 [0 XX X 51,

i=1 j=itl

hence (15), from the symmetry of the bracket [X*, X7](t).
(]

We list below different versions of this formula using pathwise integrals and Prop. 4.
f(Xl(t)’ s 7Xn(t)) = f(X(}7 cee 7X(7)L) + Z(le(alf(Xl()v s 7Xn('))1[07t]('))
i=1

1 - ¢ 1 n Xt yrj
+§z/o 0,0, f(X1(s), ..., X"(s) V¥ XIds,

1,j=1

FXYHY),. .., X"™(t) = f(Xg,...,Xg)+Z/O 0if(X1(s),..., X"(s))d” X"(s)

#5320 [ 0000 (), X ()AX X (s),

4,j=1
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ﬂX%ﬂw~rXWﬂ)=:fM%w-AWL+§:/F0f X7(s))d* Xi(s)

——2:/88f X (s, X)),
f@%»wwm>:ﬂ%w4w+zjbf X ($) X ().

Finally we show how the It6 formula for Skorohod integral processes of [10], [15],
can be written as a particular case of our result. Let us first consider a Skorohod

integral process
X(1) = 6(hlpg), te0,1],

ie. wu(s,t) = ‘Wh da, s,t € [0,1], with h € ;4. In this case we have VX =
h(s)Vs, DX~ = h(s)D;, DX = h(s)D}, and we obtain the It6 formula of [10] for

s

Skorohod integral processes:

FX(1) = F(X(0) + 0(f (X ()A()pa () +%/0 he f"(X(5)) VX (s)ds.

The continuity condition on (X (£))sejo,1) in D14 is satisfied provided

1
mwmmm+/swwmmmmw<m (16)
0

a€l0,1] a€l0,1]

We then consider an additional absolutely continuous drift.

Proposition 5 Let h € ILy4 satisfy (16) and let a(-,t) € L4, t € [0,1]. Let
X(t) =6(hlpy) and Y(t) = fot V(s)ds with V(s) = d(a(-, s)), s € [0,1]. Then

FX@LY () = F(0,0)+ 80 F(X(), Y ()lpa() /ék Y (5))V (s)ds
f/aﬁﬁ<<>y<»M<w
t/&@f Y ())h(s)D.Y (s)ds
+A h(s)0r0n F(X (5), ¥ ())0(Dahlio,g)ds,

feCGR).
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Proof: We have 6% (u) = §(uh), 6" (u) = § <f1u(3)a(~,s)ds>, and DXt = h(t)D;,

0

hence
FIX(@),Y (1) = £(0,0) + (0 f(X(), Y (D) jog(-) + 8" (Ljo,g0af (X (5), Y (5)))
/alal Y (s))h3(s d5+2/ 8,0, (X (s),Y (s))DX"* X (s)ds

£(0.0) + (01 (X (), Y (5)) o) + / Buf(X(s),Y (s))V(s)ds
/ 2101 (X (5). Y ())2(5)ds
+/0 010 (X(s),Y(s)) DX d5+/ 001 f( Y (s)) DX~ X (s)ds
£(0,0) + (01 (X(), Y () 1p() + / Buf(X(5),Y ())V (s)ds
/ 2101 (X (5). Y (5))h2(s)ds
¥ / (X ()Y (D) DY (5)ds + [ h($)0101F(X(5), Y (5)) (Db 110 )ds

since DX~ X(s) = h(s)d(Dshlyy) and DY (s) = h(s)DsY (s), s € [0,1].
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