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Abstract

Quantum stochastic calculus is applied to the proof of Skorokhod and Weitzenbdck
type identities for functionals of a Lie group-valued Brownian motion. In con-
trast to the case of R?%-valued paths, the computations use all three basic quan-
tum stochastic differentials.
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1 Introduction

Quantum stochastic calculus [4], [7], and anticipating stochastic calculus [6] have been
linked in [5], where the Skorokhod isometry is formulated and proved using the anni-
hilation and creation processes. On the other hand, a Skorokhod type isometry has
been constructed in [3] for functionals on the path space over Lie groups. This isome-
try yields in particular a Weitzenbock type identity in infinite-dimensional geometry.
We refer to [1], [2] for the case of path spaces over Riemannian manifolds.

We will prove such a Skorokhod type isometry formula on the path space over a Lie
group, using the conservation operator which is usually linked to stochastic calculus

for jump processes. In this way we will recover the Weitzenbock formula established



in [3]. This provides a link between the non-commutative settings of Lie groups and
of quantum stochastic calculus.

This paper is organised as follows. In Sect. 2 we recall how the Skorokhod isometry
can be derived from quantum stochastic calculus in the case of R?-valued Brownian
motion. In Sect. 3 the gradient and divergence operators of stochastic analysis on
path groups are introduced, and the Skorokhod type isometry of [3] is stated. The
proof of this isometry is given in Sect. 4 via quantum stochastic calculus on the path
space over a Lie group. Sect. 4 ends with a remark on the links between vanishing of

torsion and quantum stochastic calculus.

2 Skorokhod isometry on the path space over R

In this section we recall how the Skorokhod isometry is linked to quantum stochastic
calculus. Let (B())ier, denote an R%valued Brownian motion on the Wiener space

W with Wiener measure p. Let
S={G=g(B(t),....,Bt,) : ge€C(RH™), t1,...,t, >0},
and

i=1

U= {iule L GyES, u € PRRY, i=1,...,n, n> 1}.
Let D : L* (W) — L*(W x R, ;R?) be the closed operator given by
D,G = zn: Lo (OVig(B(t1),, ..., B(t,), >0,
i=1
for G = g(B(t1),...,B(t,)) € S, and let § denote its adjoint. Thus

E[Gé(u)] = E[(DG,u)], G € Dom(D), u € Dom(d),

where Dom(D) and Dom(6) are the respective domains of D and . We let (-, -) denote
the scalar product in both L*(R;;R%) and L2(W x R;R%), and let (-,-) denote the

scalar product on R?. Since D is a derivation, we have the divergence relation
I(uG) = Go(u) — (u, DG), G €S, uel.
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Given u € L*(R,;R?), the quantum stochastic differentials da~(t) and da™(t) are
defined from

a, G = / u(t)da™ (t)G = (DG, u), G € Dom(D), (2.1)
0
and
atG = / v(t)da (t)G = §(vG), G € Dom(D). (2.2)
0
They satisfy the Ito table
. dt | da; (t) da; (t)
dt 0 0 0
dar@ 0] 0 0
da; (t) | 0 0 (u(t),v(t))dt

with da;, (t) = u(t)da™(t) and da; (t) = v(t)da™(t). Using the It6 table we have

O / /da s)da, / /da s)da} / u(t)v(t)dt
/ / da,, (s)da; / / da} (s)da;,

which implies the canonical commutation relation

an

L0l = (u,v) +atay. (2.3)
This relation and its proof can be abbreviated as
dla, , ay](t) = [da, (), day (t)] = (u(t),v(t))dt,

where [-,-] denotes the commutator of operators. Relation (2.3) is easily translated

back to the Skorokhod isometry:

E6(uF)i(v@)] = (aF, afG)=(F a,a’G)
= (u ®F,U®G> (F,avauG>

_ [@vFG+E{/‘/ 1) @ DuF, DG ® v(s))dsdt|



F.G €S8, u,ve L*(R,;RY), which implies

Ew(hf]:E[||h||%z(R+;Rd)]+E[ || @a. pheyasie| . neu,

where (D;h(s))* denotes the adjoint of D;h(s) in R? ® R?. In this note we carry over
this method to the proof of a Skorokhod type isometry on the path space over a Lie
group, using the calculus of all the annihilation, creation and gauge (or conservation)

process and the Ito table

. dt | da; (t) da; (t) q(t)dA(t)

dt 0 0 0 0
dar(t) |0 0 0 0
da,(t) | O 0 (u(t),v(t))dt | ¢*(t)u(t)da(t)
P0G | 0| 0 | ple(da’ ()| p)g(n)dA)

where (q(t)):er. is a (bounded) measurable operator process on R? and q(¢)dA(t) is

defined from

| atwanr = sa)p.p),
for F' € Dom(D) such that (q(t)D¢F)ier, € Dom(6).

3 Skorokhod isometry on the path space over a Lie
group

Let G be a compact connected d-dimensional Lie group with associated Lie algebra
G identified to R? and equipped with an Ad-invariant scalar product on R¢ ~ G,
also denoted by (+,-). The commutator in G is denoted by [-,-]. Let ad(u)v = [u,v],
u,v € G, with Ad e* = e u € G.

The Brownian motion (v(t)):cr, on G is constructed from (B(t))icr, via the Strato-

novich differential equation

7(0) =e,

where e is the identity element in G. Let P(G) denote the space of continuous G-

{ dry(t) = ~(t) © dB(1)

valued paths starting at e, with the image measure of the Wiener measure by I :

(B(t))ier, — (7(t))ier, . Let
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and

Z/N[:{ZUZFz : EGS, uiELQ(RJr;g),Z':L“"n’nZl}'
=1

Definition 3.1 For F = f(y(t)),...,v(t,)) € S, f € C°(G"), we let DF € L*(W x
Ry;G) be defined as

~ d t1 tn
(DF,v) = d_f (’y(tl)esfo vds (L, )ef o ”(S)d3)| , v € L*(Ry, Q).
9 e=0
In other terms, D acts as a natural gradient on the cylindrical functionals on P(G)
with .
DiF =Y 0 f(y(t), -y (ta) g (), >0,

=1

Let & denote the adjoint of D, that satisfies

E[Fé(v)] = E[(DF,v)], FeS, veL*R.;G), (3.1)

(that & exists and satisfies (3.1) can be seen as a consequence of Lemma 4.1 below).

Given v € L*(R;;G) we define

¢(t) = /Ot ad(v(s))ds, t>0.

Definition 3.2 (/3]) The covariant derivative of u € L*(Ry;G) in the direction v €
L3(Ry;G) is the element V,u of L*(Ry;G) defined as follows:

Vou(t) = q,(t)u(t) = /o ad(v(s))u(t)ds, t>0.

In the following we will distinguish between V, which acts on L*(R,;G) and ¢,(t)
which acts on G and is needed in the quantum stochastic integrals to follow.

The operators ¢,(t) and V, are antisymmetric on G and L*(R,;G) respectively, be-
cause (-,-) is Ad-invariant.

The Skorokhod isometry on the path space over G holds for the covariant derivative

V. The definition of V, extends to U, as

Vo (uF)(t) = u(t)(DF,v) + Fq,(Hu(t), t>0, FeS8, ue L*R.:G).



Let V4(uF)(t) € G ® G be defined as
(e; @ ej, Vs(uF)(t)) = (u(t), e;)(ei, DsF) + 1 4(s)Flej, ad(e;)u(t)), i,j=1,...,d.
In this context the following isometry has been proved in [3].

Theorem 3.3 (/3]) We have for h € U:

E[5(h)*] = Elllh] 72 0) + £ [/Ooo /Om(Vsh(t), (Vih(s))")dtds| . (3.2)

The proof in [3] is clear and self-contained, however its calculations involve a number
of coincidences which are apparently not related to each other. In this paper we

provide a short proof which offers some explanation for these. Let the analogs of
(2.1)-(2.2) be defined as

and

alF = / dat(t)F = 6(uF), FeS,
0

u e L2(Ry;G), ie. da; (t)F = (u(t), D,F)dt.

Our proof relies on
a) the relation
da, (t) = da, (t) + qu(t)dA(t), t>0, wueL*(R,;G), (3.3)
see Lemma 4.1 below,

b) the commutation relation between a; and a; which is analogous to (2.3) and is

proved via quantum stochastic calculus in the following lemma.
Lemma 3.4 We have on S:
ay —aya, = (u,v) +ag,, + a3, (3.4)

u,v € LA (Ry; G).



Proof. Using the quantum It6 table, Relation (3.3), Lemma 4.2 below and the fact
that ¢’ (t) = —qu(t), we have

da, (t) - day (t) — day (t) - da, (t)
= (day (t) + qu(t)dA(t)) - (da (t) — qu(t)dA(2))
= (day (t) — qu()dA(t)) - (dag (t) + qu(t)dA(?))
= (u(t), v(t))dt + qu(t)u(t)da™ (t) — qu(t)qu(t)dA (1)
+qu(t)v(t)da™ (t) + qu(t)qu(t)dA(?)
), v(t))dt +V, U(t)da (t) + qv,u()dA[) + Vyu(t)da™ () — gv,.(t)dA(L)
), v(t)) Jul

t) + av (1)
O

This commutation relation can be interpreted to give a proof of the Skorokhod isom-

etry (3.2):

Proof of Th. 3.3. Applying Lemma 3.4 we have

u v

= (w® F,v®G)+ (a, F,a,G) + (FV,u, DG) + (DF, GV ,v)
= E[(u,v)FG|+ FE {/OO(FVSU( )+ DF @ u(t), G(V(s)* +v(s) @ D,G)dsdt

E [S(UF)S(M;)} — (atF,arG) = (F,a;a: G)

_ E[<u,v>FG1+E{ v am @, (96 o) s

F.GeS, u,ve LX(R,;G). O

We mention that a consequence of Th. 3.3 is the following Weitzenbock type identity,
cf. [3], which extends the Shigekawa identity [8] to path spaces over Lie groups:

Theorem 3.5 ([3]) We have for u € U:

E[(u)?]+ E ‘|duH%2(R+;g)/\L2(R+;g) = E[H““%?(Rg] +E [‘|VUH%2(R+;Q)®L2(R+;Q) :
(3.5)

The next section is devoted to two lemmas that are used to prove (3.3).
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4 Quantum stochastic differentials on path space

The following expression for D using quantum stochastic integrals can be viewed as

an intertwining formula between D, D and I.

Lemma 4.1 We have for v € L*(Ry;G):

da, (t) = da, (t) + q,(t)dA(2), t>0.

Proof.  The process t — v(t)efot v(s)ds gatisfies the following stochastic differential

equation in the Stratonovich sense:

d<7(t)ef0t ”<5>d3> = y(t)elo v <@Ade—f3 v$)ds B (¢) +v(t)dt>
— ()l V) (@e @ DdB(t) + v(t)dt) , t> 0.
Let I;(u) denote the Wiener integral of u € L?(R;;R?) with respect to (B(t))ser, ,

and let G = g(Ii(uy),...,1(uy)) € S, and F = f(y(t1),...,7(t,)) € S. Since

exp(qy(t)) : G — G is isometric, we have from the Girsanov theorem:

12

E [f (v(tl)efﬂtl “(S)ds7 . ,7(tn)efgn ”(S)ds> G} =F [Fefl(”)_%”“ @vG’} ,

where
0.G — g(/oooul(s)eq“(s)dB(s)—<u1,v),...,/Oooun(s)eq”(s)dB(s)—(un,v>>.

From the derivation property of D and the divergence relation §(vG) = Gd(v) —
(v, DG we have

d & d
—@atha:o = Z 0ig (I (u1), ..., i (uy)) _@avll(ui)hs:o

de — de
= Y o). i) (<) + [ o)
= - Z 9ig (I(ur), ..., Ii(un)) ((v, DI (u;)) + 6(V, DI (u;)))

= —(u,Dg(L(u), ..., Ii(uy))) — Z 8,9 (Iy(uy), .., Iy (un)) 0(Vy DI (u;))
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n

= —(,DG) = > 8(dig (I(w),.. ., I (uy)) VDI (1))

—3 D7 %0 () Fo)) (G, Vo) + s, Vi)

ij=1

= —(v,DG) - §(V,DG),

since V, is antisymmetric. Hence

~ d t t
- e [ h(s)ds e [y™ h(s)ds
EUDF0)G) = 2B |f (y()e i HO% q(e i O0) 6]
_ 4 [ P01l _ g
de le=0

= E[F(GL(v) = (v,DG) = §(V,DG))] .
Using the identity d(v) = I;(v) we have

E[(DF,v)G] = E[F(Gé(v)— (v, DG) — §(V,DQ))]

5(vG) — 6(V,DQ))]
F (aj — /OOO qv(t)dA(t)) G]
(

ay + /0 N qv(t)dA(t)> F] .

It follows from the proof of Lemma 4.1 that D admits an adjoint § that satisfies

§(uF) = ot F — / WAANDE, Fed,
0

and
E[Fj(u)] = E[(DF,u)], FeS, uel.
Letting
atF = / daf (t)F = 6(uF),
0
we have

da, (1) = day, (t) — qu(t)dA(t).

The following Lemma shows that
[Vm vu] = Vvvu - Vvuv-
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This means that the Lie bracket {u,v} associated to the gradient V on L*(R,;G) via
[V, Vo] = Vi satisfies {u,v} = V, 0 — Vyu, i.e. the connection defined by V on
L*(R,; @) has vanishing torsion.

Lemma 4.2 We have

[qu(t)7 Qv(t>] = qvuv(t) - qvvu(t>, t> 0, u,v € L2(R+; g)

Proof. 'The Jacobi identity on G shows that

() qu(t)] = [ /0 " ad(u(s))ds, /0 t ad(v(s))ds] ~ ad q /O u(s)ds, /0 tv(s)dsD
_ /0 t /0 “ad([u(r), v(s)])drds — /0 t /0 " ad([u(r), u(s)))drds

= /Oad(qu(s)v(s))ds—/ ad(qu(s)u(s))ds

~ tenl) el

O

The Lie derivative on P(G) in the direction u € L*(R,;G), introduced in [3], can be
written a, in our context. Finally we show that the vanishing of torsion discovered in
[3] can be obtained via quantum stochastic calculus. Precisely, the Lie bracket {u, v}
associated to a, via [a,,a,] = ag, , satisfies {u, v} = V,v—V,u, i.e. the connection

defined by V on P(G) also has a vanishing torsion.

Proposition 4.3 We have on S:

a. a

< |
|
IS
< |
jSH
g |
|
<
<
<
<
<
<
g
<

u,v € LA(Ry; G).
Proof. Using Lemma 4.2, the quantum Ito table implies
da, (t) - da, (t) — da, (t) - da, (t)
= (day (t) + qu(t)dA(t)) - (day (t) + q.(t)dA(t))
= (day, (t) + q,(t)dA (1)) - (da, (1) + qu(t)dA(1))
= qu(t)v(t)da”(t) + qu(t)qu(t)dA(t) — qu(t)u(t)da™(t) — qu(t)qu(t)dA(t)
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= Vwu(t)da™ (1) = gv,o(O)dAR) = (Vyu(t)da™ (1) = gu,u(t)dA(L))

— dig, (1) — dig, (1),

from Lemma 4.1. O
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