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Abstract

Quantum stochastic calculus is applied to the proof of Skorokhod and Weitzenböck
type identities for functionals of a Lie group-valued Brownian motion. In con-
trast to the case of Rd-valued paths, the computations use all three basic quan-
tum stochastic differentials.
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1 Introduction

Quantum stochastic calculus [4], [7], and anticipating stochastic calculus [6] have been

linked in [5], where the Skorokhod isometry is formulated and proved using the anni-

hilation and creation processes. On the other hand, a Skorokhod type isometry has

been constructed in [3] for functionals on the path space over Lie groups. This isome-

try yields in particular a Weitzenböck type identity in infinite-dimensional geometry.

We refer to [1], [2] for the case of path spaces over Riemannian manifolds.

We will prove such a Skorokhod type isometry formula on the path space over a Lie

group, using the conservation operator which is usually linked to stochastic calculus

for jump processes. In this way we will recover the Weitzenböck formula established
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in [3]. This provides a link between the non-commutative settings of Lie groups and

of quantum stochastic calculus.

This paper is organised as follows. In Sect. 2 we recall how the Skorokhod isometry

can be derived from quantum stochastic calculus in the case of Rd-valued Brownian

motion. In Sect. 3 the gradient and divergence operators of stochastic analysis on

path groups are introduced, and the Skorokhod type isometry of [3] is stated. The

proof of this isometry is given in Sect. 4 via quantum stochastic calculus on the path

space over a Lie group. Sect. 4 ends with a remark on the links between vanishing of

torsion and quantum stochastic calculus.

2 Skorokhod isometry on the path space over Rd

In this section we recall how the Skorokhod isometry is linked to quantum stochastic

calculus. Let (B(t))t∈R+ denote an Rd-valued Brownian motion on the Wiener space

W with Wiener measure µ. Let

S = {G = g(B(t1), . . . , B(tn)) : g ∈ C∞b ((Rd)n), t1, . . . , tn > 0},

and

U =

{
n∑

i=1

uiGi : Gi ∈ S, ui ∈ L2(R+;Rd), i = 1, . . . , n, n ≥ 1

}
.

Let D : L2(W )→ L2(W × R+;Rd) be the closed operator given by

DtG =
n∑

i=1

1[0,ti](t)∇ig(B(t1), , . . . , B(tn)), t ≥ 0,

for G = g(B(t1), . . . , B(tn)) ∈ S, and let δ denote its adjoint. Thus

E[Gδ(u)] = E[〈DG, u〉], G ∈ Dom(D), u ∈ Dom(δ),

where Dom(D) and Dom(δ) are the respective domains of D and δ. We let 〈·, ·〉 denote

the scalar product in both L2(R+;Rd) and L2(W × R+;Rd), and let (·, ·) denote the

scalar product on Rd. Since D is a derivation, we have the divergence relation

δ(uG) = Gδ(u)− 〈u,DG〉, G ∈ S, u ∈ U .
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Given u ∈ L2(R+;Rd), the quantum stochastic differentials da−(t) and da+(t) are

defined from

a−uG =

∫ ∞
0

u(t)da−(t)G = 〈DG, u〉, G ∈ Dom(D), (2.1)

and

a+v G =

∫ ∞
0

v(t)da+(t)G = δ(vG), G ∈ Dom(D). (2.2)

They satisfy the Itô table

· dt da−v (t) da+v (t)
dt 0 0 0

da+u (t) 0 0 0
da−u (t) 0 0 (u(t), v(t))dt

with da−u (t) = u(t)da−(t) and da+v (t) = v(t)da+(t). Using the Itô table we have

a−u a
+
v =

∫ ∞
0

∫ t

0

da+v (s)da−u (t) +

∫ ∞
0

∫ t

0

da−u (s)da+v (t) +

∫ ∞
0

u(t)v(t)dt

and

a+v a
−
u =

∫ ∞
0

∫ t

0

da−u (s)da+v (t) +

∫ ∞
0

∫ t

0

da+v (s)da−u (t),

which implies the canonical commutation relation

a−u a
+
v = 〈u, v〉+ a+v a

−
u . (2.3)

This relation and its proof can be abbreviated as

d[a−u , a
+
v ](t) = [da−u (t), da+v (t)] = (u(t), v(t))dt,

where [·, ·] denotes the commutator of operators. Relation (2.3) is easily translated

back to the Skorokhod isometry:

E [δ(uF )δ(vG)] = 〈a+uF, a+v G〉 = 〈F, a−u a+v G〉

= 〈u⊗ F, v ⊗G〉+ 〈F, a+v a−uG〉

= 〈u⊗ F, v ⊗G〉+ 〈a−v F, a−uG〉

= E[〈u, v〉FG] + E

[∫ ∞
0

∫ ∞
0

(u(t)⊗DsF,DtG⊗ v(s))dsdt

]
,
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F,G ∈ S, u, v ∈ L2(R+;Rd), which implies

E[δ(h)2] = E[‖h‖2L2(R+;Rd)] + E

[∫ ∞
0

∫ ∞
0

(Dsh(t), (Dth(s))∗)dsdt

]
, h ∈ U ,

where (Dth(s))∗ denotes the adjoint of Dth(s) in Rd ⊗Rd. In this note we carry over

this method to the proof of a Skorokhod type isometry on the path space over a Lie

group, using the calculus of all the annihilation, creation and gauge (or conservation)

process and the Itô table

· dt da−v (t) da+v (t) q(t)dΛ(t)
dt 0 0 0 0

da+u (t) 0 0 0 0
da−u (t) 0 0 (u(t), v(t))dt q∗(t)u(t)da−(t)
p(t)dΛ(t) 0 0 p(t)v(t)da+(t) p(t)q(t)dΛ(t)

where (q(t))t∈R+ is a (bounded) measurable operator process on Rd and q(t)dΛ(t) is

defined from ∫ ∞
0

q(t)dΛ(t)F = δ(q(·)D·F ),

for F ∈ Dom(D) such that (q(t)DtF )t∈R+ ∈ Dom(δ).

3 Skorokhod isometry on the path space over a Lie

group

Let G be a compact connected d-dimensional Lie group with associated Lie algebra

G identified to Rd and equipped with an Ad-invariant scalar product on Rd ' G,

also denoted by (·, ·). The commutator in G is denoted by [·, ·]. Let ad(u)v = [u, v],

u, v ∈ G, with Ad eu = eadu, u ∈ G.

The Brownian motion (γ(t))t∈R+ on G is constructed from (B(t))t∈R+ via the Strato-

novich differential equation {
dγ(t) = γ(t)� dB(t)
γ(0) = e,

where e is the identity element in G. Let IP(G) denote the space of continuous G-

valued paths starting at e, with the image measure of the Wiener measure by I :

(B(t))t∈R+ 7→ (γ(t))t∈R+ . Let

S̃ = {F = f(γ(t1), . . . , γ(tn)) : f ∈ C∞b (Gn)},
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and

Ũ =

{
n∑

i=1

uiFi : Fi ∈ S̃, ui ∈ L2(R+;G), i = 1, . . . , n, n ≥ 1

}
.

Definition 3.1 For F = f(γ(t1), . . . , γ(tn)) ∈ S̃, f ∈ C∞b (Gn), we let D̃F ∈ L2(W ×
R+;G) be defined as

〈D̃F, v〉 =
d

dε
f
(
γ(t1)e

ε
∫ t1
0 v(s)ds, . . . , γ(tn)eε

∫ tn
0 v(s)ds

)
|ε=0

, v ∈ L2(R+,G).

In other terms, D̃ acts as a natural gradient on the cylindrical functionals on IP(G)

with

D̃tF =
n∑

i=1

∂if(γ(t1), . . . , γ(tn))1[0,ti](t), t ≥ 0.

Let δ̃ denote the adjoint of D̃, that satisfies

E[F δ̃(v)] = E[〈D̃F, v〉], F ∈ S̃, v ∈ L2(R+;G), (3.1)

(that δ̃ exists and satisfies (3.1) can be seen as a consequence of Lemma 4.1 below).

Given v ∈ L2(R+;G) we define

qv(t) =

∫ t

0

ad(v(s))ds, t > 0.

Definition 3.2 ([3]) The covariant derivative of u ∈ L2(R+;G) in the direction v ∈
L2(R+;G) is the element ∇vu of L2(R+;G) defined as follows:

∇vu(t) = qv(t)u(t) =

∫ t

0

ad(v(s))u(t)ds, t > 0.

In the following we will distinguish between ∇v which acts on L2(R+;G) and qv(t)

which acts on G and is needed in the quantum stochastic integrals to follow.

The operators qv(t) and ∇v are antisymmetric on G and L2(R+;G) respectively, be-

cause (·, ·) is Ad-invariant.

The Skorokhod isometry on the path space over G holds for the covariant derivative

∇. The definition of ∇v extends to Ũ , as

∇v(uF )(t) = u(t)〈D̃F, v〉+ Fqv(t)u(t), t > 0, F ∈ S̃, u ∈ L2(R+;G).
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Let ∇s(uF )(t) ∈ G ⊗ G be defined as

〈ei ⊗ ej,∇s(uF )(t)〉 = 〈u(t), ej〉〈ei, D̃sF 〉+ 1[0,t](s)F 〈ej, ad(ei)u(t)〉, i, j = 1, . . . , d.

In this context the following isometry has been proved in [3].

Theorem 3.3 ([3]) We have for h ∈ Ũ :

E[δ̃(h)2] = E[‖h‖2L2(R+;G)] + E

[∫ ∞
0

∫ ∞
0

(∇sh(t), (∇th(s))∗)dtds

]
. (3.2)

The proof in [3] is clear and self-contained, however its calculations involve a number

of coincidences which are apparently not related to each other. In this paper we

provide a short proof which offers some explanation for these. Let the analogs of

(2.1)-(2.2) be defined as

ã−uF =

∫ ∞
0

dã−u (t)F = 〈D̃F, u〉, F ∈ S̃,

and

ã+uF =

∫ ∞
0

dã+u (t)F = δ̃(uF ), F ∈ S̃,

u ∈ L2(R+;G), i.e. dã−u (t)F = (u(t), D̃tF )dt.

Our proof relies on

a) the relation

dã−u (t) = da−u (t) + qu(t)dΛ(t), t > 0, u ∈ L2(R+;G), (3.3)

see Lemma 4.1 below,

b) the commutation relation between ã−u and ã+v which is analogous to (2.3) and is

proved via quantum stochastic calculus in the following lemma.

Lemma 3.4 We have on S̃:

ã−u ã
+
v − ã+v ã−u = 〈u, v〉+ ã−∇vu

+ ã+∇uv
, (3.4)

u, v ∈ L2(R+;G).
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Proof. Using the quantum Itô table, Relation (3.3), Lemma 4.2 below and the fact

that q∗v(t) = −qv(t), we have

dã−u (t) · dã+v (t)− dã+v (t) · dã−u (t)

=
(
da−u (t) + qu(t)dΛ(t)

)
·
(
da+v (t)− qv(t)dΛ(t)

)
−
(
da+v (t)− qv(t)dΛ(t)

)
·
(
da−u (t) + qu(t)dΛ(t)

)
= (u(t), v(t))dt+ qv(t)u(t)da−(t)− qu(t)qv(t)dΛ(t)

+qu(t)v(t)da+(t) + qv(t)qu(t)dΛ(t)

= (u(t), v(t))dt+∇vu(t)da−(t) + q∇vu(t)dΛ(t) +∇uv(t)da+(t)− q∇uv(t)dΛ(t)

= (u(t), v(t))dt+ dã−∇vu
(t) + dã+∇uv

(t).

�

This commutation relation can be interpreted to give a proof of the Skorokhod isom-

etry (3.2):

Proof of Th. 3.3. Applying Lemma 3.4 we have

E
[
δ̃(uF )δ̃(vG)

]
= 〈ã+uF, ã+v G〉 = 〈F, ã−u ã+v G〉

= 〈u⊗ F, v ⊗G〉+ 〈ã−v F, ã−uG〉+ 〈F∇vu, D̃G〉+ 〈D̃F,G∇uv〉

= E[〈u, v〉FG] + E

[∫ ∞
0

(F∇su(t) + D̃sF ⊗ u(t), G(∇tv(s))∗ + v(s)⊗ D̃tG)dsdt

]
= E[〈u, v〉FG] + E

[∫ ∞
0

〈∇s(uF )(t), (∇t(vG)(s))∗〉dsdt
]
,

F,G ∈ S̃, u, v ∈ L2(R+;G). �

We mention that a consequence of Th. 3.3 is the following Weitzenböck type identity,

cf. [3], which extends the Shigekawa identity [8] to path spaces over Lie groups:

Theorem 3.5 ([3]) We have for u ∈ Ũ :

E[δ̃(u)2] + E
[
‖du‖2L2(R+;G)∧L2(R+;G)

]
= E[‖u‖2L2(R+)] + E

[
‖∇u‖2L2(R+;G)⊗L2(R+;G)

]
.

(3.5)

The next section is devoted to two lemmas that are used to prove (3.3).
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4 Quantum stochastic differentials on path space

The following expression for D̃ using quantum stochastic integrals can be viewed as

an intertwining formula between D̃, D and I.

Lemma 4.1 We have for v ∈ L2(R+;G):

dã−v (t) = da−v (t) + qv(t)dΛ(t), t > 0.

Proof. The process t 7→ γ(t)e
∫ t
0 v(s)ds satisfies the following stochastic differential

equation in the Stratonovich sense:

d
(
γ(t)e

∫ t
0 v(s)ds

)
= γ(t)e

∫ t
0 v(s)ds

(
�Ade−

∫ t
0 v(s)dsdB(t) + v(t)dt

)
= γ(t)e

∫ t
0 v(s)ds

(
�e−qv(t)dB(t) + v(t)dt

)
, t > 0.

Let I1(u) denote the Wiener integral of u ∈ L2(R+;Rd) with respect to (B(t))t∈R+ ,

and let G = g (I1(u1), . . . , I1(un)) ∈ S, and F = f(γ(t1), . . . , γ(tn)) ∈ S̃. Since

exp(qv(t)) : G −→ G is isometric, we have from the Girsanov theorem:

E
[
f
(
γ(t1)e

∫ t1
0 v(s)ds, . . . , γ(tn)e

∫ tn
0 v(s)ds

)
G
]

= E
[
FeI1(v)−

1
2
‖v‖2ΘvG

]
,

where

ΘvG = g

(∫ ∞
0

u1(s)e
qv(s)dB(s)− 〈u1, v〉, . . . ,

∫ ∞
0

un(s)eqv(s)dB(s)− 〈un, v〉
)
.

From the derivation property of D and the divergence relation δ(vG) = Gδ(v) −
〈v,DG〉 we have

d

dε
ΘεvG||ε=0 =

n∑
i=1

∂ig (I1(u1), . . . , I1(un))
d

dε
ΘεvI1(ui)||ε=0

=
n∑

i=1

∂ig (I1(u1), . . . , I1(un))

(
−〈v, ui〉+

∫ ∞
0

q∗v(s)ui(s)dB(s)

)
= −

n∑
i=1

∂ig (I1(u1), . . . , I1(un)) (〈v,DI1(ui)〉+ δ(∇vDI1(ui)))

= −〈v,Dg (I1(u1), . . . , I1(un))〉 −
n∑

i=1

∂ig (I1(u1), . . . , I1(un)) δ(∇vDI1(ui))
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= −〈v,DG〉 −
n∑

i=1

δ(∂ig (I1(u1), . . . , I1(un))∇vDI1(ui))

−1

2

n∑
i,j=1

∂j∂ig (I1(u1), . . . , I1(un)) (〈uj,∇vui〉+ 〈ui,∇vuj〉)

= −〈v,DG〉 − δ(∇vDG),

since ∇v is antisymmetric. Hence

E[〈D̃F, v〉G] =
d

dε
E
[
f
(
γ(t1)e

ε
∫ t1
0 h(s)ds, . . . , γ(tn)eε

∫ tn
0 h(s)ds

)
G
]
|ε=0

=
d

dε
E
[
FeεI1(v)−

1
2
ε2‖v‖2ΘεvG

]
|ε=0

= E [F (GI1(v)− 〈v,DG〉 − δ(∇vDG))] .

Using the identity δ(v) = I1(v) we have

E[〈D̃F, v〉G] = E [F (Gδ(v)− 〈v,DG〉 − δ(∇vDG))]

= E [F (δ(vG)− δ(∇vDG))]

= E

[
F

(
a+v −

∫ ∞
0

qv(t)dΛ(t)

)
G

]
= E

[
G

(
a−v +

∫ ∞
0

qv(t)dΛ(t)

)
F

]
.

�

It follows from the proof of Lemma 4.1 that D̃ admits an adjoint δ̃ that satisfies

δ̃(uF ) = a+uF −
∫ ∞
0

qu(t)dΛ(t)F, F ∈ S̃,

and

E[F δ̃(u)] = E[〈D̃F, u〉], F ∈ S̃, u ∈ Ũ .

Letting

ã+uF =

∫ ∞
0

dã+u (t)F = δ̃(uF ),

we have

dã+u (t) = da+u (t)− qu(t)dΛ(t).

The following Lemma shows that

[∇v,∇u] = ∇∇vu −∇∇uv.
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This means that the Lie bracket {u, v} associated to the gradient ∇ on L2(R+;G) via

[∇u,∇v] = ∇{u,v} satisfies {u, v} = ∇uv −∇vu, i.e. the connection defined by ∇ on

L2(R+;G) has vanishing torsion.

Lemma 4.2 We have

[qu(t), qv(t)] = q∇uv(t)− q∇vu(t), t > 0, u, v ∈ L2(R+;G).

Proof. The Jacobi identity on G shows that

[qu(t), qv(t)] =

[∫ t

0

ad(u(s))ds,

∫ t

0

ad(v(s))ds

]
= ad

([∫ t

0

u(s)ds,

∫ t

0

v(s)ds

])
=

∫ t

0

∫ s

0

ad([u(τ), v(s)])dτds−
∫ t

0

∫ s

0

ad([v(τ), u(s)])dτds

=

∫ t

0

ad(qu(s)v(s))ds−
∫ t

0

ad(qv(s)u(s))ds

= q∇uv(t)− q∇vu(t).

�

The Lie derivative on IP(G) in the direction u ∈ L2(R+;G), introduced in [3], can be

written ã−u in our context. Finally we show that the vanishing of torsion discovered in

[3] can be obtained via quantum stochastic calculus. Precisely, the Lie bracket {u, v}
associated to ã−v via [ã−u , ã

−
v ] = ã−{u,v} satisfies {u, v} = ∇uv−∇vu, i.e. the connection

defined by ∇ on IP(G) also has a vanishing torsion.

Proposition 4.3 We have on S̃:

ã−u ã
−
v − ã−v ã−u = ã−∇vu

− ã−∇uv
.

u, v ∈ L2(R+;G).

Proof. Using Lemma 4.2, the quantum Itô table implies

dã−u (t) · dã−v (t)− dã−v (t) · dã−u (t)

=
(
da−u (t) + qu(t)dΛ(t)

)
·
(
da−v (t) + qv(t)dΛ(t)

)
−
(
da−v (t) + qv(t)dΛ(t)

)
·
(
da−u (t) + qu(t)dΛ(t)

)
= qu(t)v(t)da−(t) + qu(t)qv(t)dΛ(t)− qv(t)u(t)da−(t)− qv(t)qu(t)dΛ(t)
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= ∇uv(t)da−(t)− q∇uv(t)dΛ(t)− (∇vu(t)da−(t)− q∇vu(t)dΛ(t))

= dã−∇uv
(t)− dã−∇vu

(t),

from Lemma 4.1. �
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