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Abstract

We derive normal approximation bounds in the Kolmogorov distance for sums of
discrete multiple integrals and weighted U -statistics made of independent Bernoulli
random variables. Such bounds are applied to normal approximation for the renor-
malized subgraph counts in the Erdős-Rényi random graph. This approach completely
solves a long-standing conjecture in the general setting of arbitrary graph counting,
while recovering recent results obtained for triangles and improving other bounds in
the Wasserstein distance.

Keywords : Normal approximation; central limit theorem; Stein-Chen method; Malliavin-
Stein method; Berry-Esseen bound; random graph; subgraph count; Kolmogorov distance.

Mathematics Subject Classification: 60F05, 60H07, 60G50, 05C80.

1 Introduction

The Mallavin approach to the Stein method introduced in [NP09] for general functionals

of Gaussian random fields has recently been extended to functionals of discrete Bernoulli

sequences. In [NPR10], normal approximation Stein bounds have been obtained in the

Wassertein distance for functionals of symmetric Bernoulli sequences, and such results have

been extended in particular to the Kolmogorov distance in [KRT16].

In [PT15], Stein bounds in the Wasserstein distance have been obtained for functionals

of not necessarily symmetric Bernoulli sequences, and bounds in the total variation distance
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have been derived for the Poisson approximation in [Kro17]. See also [DK19] for recent

results on the fourth moment in the non-symmetric discrete setting.

Still in the discrete not necessarily symmetric Bernoulli setting, Kolmogorov distance

bounds have been proved in [KRT17] using second order Poincaré inequalities for discrete

Bernoulli sequences, with application to the normal approximation of the renormalized count

of the subgraphs which are isomorphic to triangles in the Erdős-Rényi random graph.

In this paper we consider sums of weighted U -statistics (or discrete multiple stochastic

integrals) of the form

n∑
k=1

∑
i1,...,ik∈N

ir 6=is,1≤r 6=s≤k

fk(i1, . . . , ik)Yi1 · · ·Yik , (1.1)

where (Yk)k∈N is a normalized sequence of Bernoulli random variables. By the Malliavin ap-

proach to the Stein and Stein-Chen methods we derive new Kolmogorov distance bounds to

the normal distribution for the distribution of functionals of the form (1.1), see Theorem 3.1.

Our approach is based on results of [KRT16] and [KRT17] for general functionals of discrete

i.i.d. renormalized Bernoulli sequences (Yn)n∈N.

Normal approximation in the Kolmogorov distance has been studied in various special

cases of (1.1). In Theorem 3.1 of [CS07], bounds were obtained for non weighted U -statistics,

and in [KRT16] the authors dealt with weighted first order U -statistics in the symmetric case

p = 1/2. See also [LRP13a]-[LRP13b] for the normal approximation of U -statistics written

as multiple Poisson stochastic integrals, with applications provided to subgraph counting

and boolean models.

Our second goal is to apply Theorem 3.1 to the normal approximation of the renormal-

ized count of the subgraphs which are isomorphic to an arbitrary graph in the Erdős-Rényi

random graph Gn(p) constructed by independently retaining any edge in the complete graph

Kn on n vertices with probability p ∈ (0, 1). The random graph Gn(p) was introduced by

Gilbert [Gil59] in 1959 and popularized by Erdős and Rényi in [ER59], it has been intensively

studied and has become a classical model in discrete probability, see [JLR00] and references

therein.
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Necessary and sufficient conditions for the asymptotic normality of the renormalization

ÑG
n :=

NG
n − E[NG

n ]√
Var[NG

n ]
,

where NG
n is the number of graphs in Gn(pn) that are isomorphic to a fixed graph G, have

been obtained in [Ruc88] where it is shown that

ÑG
n

D−→ N iff npβn →∞ and n2(1− pn)→∞,

as n tends to infinity, where N denotes the standard normal distribution,

β := max{eH/vH : H ⊂ G},

and eH , vH respectively denote the numbers of edges and vertices in the graph H. Those

results have been made more precise in [BKR89] by the derivation of explicit convergence

rates in the Wasserstein distance

dW (F,G) := sup
h∈Lip(1)

|E[h(F )]− E[h(G)]|,

between the laws of random variables F , G, where Lip(1) denotes the class of real-valued

Lipschitz functions with Lipschitz constant less than or equal to 1. Bounds on the total

variation distance of subgraph counts to the Poisson distribution have also been derived in

Theorem 5.A of [BHJ92].

In the particular case where the graph G is a triangle, such bounds have been recently

strengthened in [Röl17] using the Kolmogorov distance

dK(F,G) := sup
x∈R
|P (F ≤ x)− P (G ≤ x)|,

which satisfies the bound dK(F,N ) ≤
√
dW (F,N ). Still in the case of triangles, Kolmogorov

distance bounds had also been obtained by second order Poincaré inequalities for discrete

Bernoulli sequences in [KRT17] when pn takes the form pn = n−α, α ∈ [0, 1). Kolmogorov

bounds have also been obtained for triangles in § 3.2.1 of [Ros11], however such bounds

apply only in the range α ∈ [0, 2/9) when pn takes the form pn = n−α.
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In this paper we refine the results of [BKR89] by using the Kolmogorov distance instead of

the Wasserstein distance. As in [BKR89] we are able to consider any graph G, and therefore

our results extend those of both [KRT17] and [Röl17] which only cover the case where G is a

triangle. Instead of using second order Poincaré inequalities [KRT17], [LPS16], our method

relies on an application of Kolmogorov distance bounds of Proposition 4.1 in [KRT17], see

also Theorem 3.1 in [KRT16], to derive Stein approximation bounds for sums of multiple

stochastic integrals.

Furthermore, we note that various random functionals on the Erdős-Rényi random graph

Gn(p) admit representations as sums of multiple integrals (1.1). This includes the number

of vertices of a given degree, and the count of subgraphs that are isomorphic to an arbitrary

graph.

Our second main result Theorem 4.2 is a bound for the Kolmogorov distance between

the normal distribution and the renormalized graph count ÑG
n . Namely, we show that when

G is a graph without isolated vertices it holds that

dK(ÑG,N ) ≤ CG

(
(1− pn) min

H⊂G
eH≥1

nvHpeHn

)−1/2

, (1.2)

where CG > 0 is a constant depending only on eG, which improves on the Wasserstein

estimates of [BKR89], see Theorem 2 therein. This result relies on the representation of

combined subgraph counts as finite sums of multiple stochastic integrals, see Lemma 4.1,

together with the application of Theorem 3.1 on Kolmogorov distance bounds for sums of

multiple stochastic integrals.

In the sequel, given two positive sequences (xn)n∈N and (yn)n∈N we write xn ≈ yn whenever

c1 < xn/yn < c2 for some c1, c2 > 0 and all n ∈ N, and for f and g two positive functions we

also write f . g whenever f ≤ CGg for some constant CG > 0 depending only on G. Using

the equivalence

Var
[
NG
n

]
≈ (1− pn) max

H⊂G
eH≥1

n2vG−vHp2eG−eH
n (1.3)

as n tends to infinity, see Lemma 3.5 in [JLR00], the bound (1.2) can be rewritten in terms
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of the variance Var
[
NG
n

]
as

dK
(
ÑG
n ,N

)
.

√
Var
[
NG

]
(1− pn)nvGpeGn

. (1.4)

Note that when pn is bounded away from 0, the bound (1.2) takes the simpler form

dK
(
ÑG
n ,N

)
.

1

n
√

1− pn
. (1.5)

Next, in Corollary 4.6 we show that the bound (1.4) can be specialized as

dK(ÑG
n ,N ) .

(
(1− p) min{n2pn, n

vGpeGn }
)−1/2

=


1

n
√
pn(1− pn)

if n−(vG−2)/(eG−1) < pn,

1

nvG/2p
eG/2
n

if 0 < pn ≤ n−(vG−2)/(eG−1),

for any graph G with at least three vertices, under the balance condition

max
H⊂G
vH≥3

eH − 1

vH − 2
=
eG − 1

vG − 2
, (1.6)

see also [ER61, RV86] for related conditions and their use in subgraph counting. Finally,

we note that (1.6) is satisfied by important examples of subgraphs such as complete graphs,

cycles and trees, with at least 3 vertices, which are dealt with in Corollaries 4.8, 4.9 and 4.10.

In the particular case where the graph G is a triangle, the next consequence of (1.2) and

(1.5) recovers the main result of [Röl17], see Theorem 1.1 therein.

Corollary 1.1 For any c ∈ (0, 1), the normalized number ÑG
n of the subgraphs in Gn(pn)

that are isomorphic to a triangle satisfies

dK
(
ÑG
n ,N

)
.



1

n
√

1− pn
if c < pn < 1,

1

n
√
pn

if n−1/2 < pn ≤ c,

1

(npn)3/2
if 0 < pn ≤ n−1/2.
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When pn takes the form pn = n−α, α ∈ [0, 1), Corollary 1.1 similarly improves on the con-

vergence rates obtained in Theorem 1.1 of [KRT17] using second order Poincaré inequalities.

This paper is organized as follows. In Section 2 we recall the construction of random function-

als of Bernoulli variables, together with the construction of the associated finite difference

operator and their application to Kolmogorov distance bounds obtained in [KRT16]. In

Section 3 we derive general Kolmogorov distance bounds for sums of multiple stochastic

integrals. In Section 4 we show that graph counts can be represented as sums of multiple

stochastic integrals, and we derive Kolmogorov distance bounds for the renormalized count

of subgraphs in Gn(pn) that are isomorphic to a fixed graph.

2 Notation and preliminaries

In this section we recall some background notation and results on the stochastic analysis

of Bernoulli processes, see [Pri08] for details. Consider a sequence (Xn)n∈N of independent

identically distributed Bernoulli random variables with P (Xn = 1) = p and P (Xn = −1) = q,

n ∈ N, built as the sequence of canonical projections on Ω := {−1, 1}N. For any F :

Ω → R we consider the L2(Ω × N)-valued finite difference operator D defined for any ω =

(ω0, ω1, . . .) ∈ Ω by

DkF (ω) =
√
pq(F (ωk+)− F (ωk−)), k ∈ N, (2.1)

where we let

ωk+ := (ω0, . . . , ωk−1,+1, ωk+1, . . .)

and

ωk− := (ω0, . . . , ωk−1,−1, ωk+1, . . .),

k ∈ N, and DF := (DkF )k∈N. The L2 domain of D is given by

Dom(D) = {F ∈ L2(Ω) : E[‖DF‖2
`2(N)] <∞}.

We let (Yn)n≥0 denote the sequence of centered and normalized random variables defined by

Yn :=
q − p+Xn

2
√
pq

, n ∈ N.

Given n ≥ 1, we denote by `2(N)⊗n = `2(Nn) the class of square-summable functions on Nn,

we denote by `2(N)◦n the subspace of `2(N)⊗n formed by functions that are symmetric in n
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variables. We let

In(fn) =
∑

(i1,...,in)∈∆n

fn(i1, . . . , in)Yi1 · · ·Yin

denote the discrete multiple stochastic integral of order n of fn in the subspace `2
s(∆n) of

`2(N)◦n composed of symmetric kernels that vanish on diagonals, i.e. on the complement of

∆n = {(k1, . . . , kn) ∈ Nn : ki 6= kj, 1 ≤ i < j ≤ n}, n ≥ 1.

The multiple stochastic integrals satisfy the isometry and orthogonality relation

E[In(fn)Im(gm)] = 11{n=m}n!〈fn, gm〉`2s(∆n), (2.2)

fn ∈ `2
s(∆n), gm ∈ `2

s(∆m), cf. e.g. Proposition 1.3.2 of [Pri09]. The finite difference operator

D acts on multiple stochastic integrals as follows:

DkIn(fn) = nIn−1(fn(∗, k)11∆n(∗, k)) = nIn−1(fn(∗, k)),

k ∈ N, fn ∈ `2
s(∆n), and it satisfies the finite difference product rule

Dk(FG) = FDkG+GDkF −
Xk√
pq
DkFDkG, k ∈ N. (2.3)

for F,G : Ω→ R, see Propositions 7.3 and 7.8 of [Pri08].

Due to the chaos representation property of Bernoulli random walks, any square inte-

grable F may be represented as F =
∑

n≥0 In(fn), fn ∈ `2
s(∆n), and the L2 domain of D can

be rewritten as

Dom(D) =

{
F =

∑
n≥0

In(fn) :
∑
n≥1

nn!‖fn‖2
`2(N)⊗n <∞

}
.

The Ornstein-Uhlenbeck operator L is defined on the domain

Dom(L) :=

{
F =

∑
n≥0

In(fn) :
∑
n≥1

n2 n!‖fn‖2
`2(N)⊗n <∞

}
by

LF = −
∞∑
n=1

nIn(fn).

The inverse of L, denoted by L−1, is defined on the subspace of L2(Ω) composed of centered

random variables by

L−1F = −
∞∑
n=1

1

n
In(fn),
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with the convention L−1F = L−1(F −E[F ]) in case F is not centered. Using this convention,

the duality relation (2.5) shows that for any F,G ∈ Dom(D) we have the covariance identity

Cov(F,G) = E[G(F − E[F ])] = E
[
〈DG,−DL−1F 〉`2(N)

]
. (2.4)

The divergence operator δ is the linear mapping defined as

δ(u) = δ(In(fn+1(∗, ·))) = In+1(f̃n+1), fn+1 ∈ `2
s(∆n)⊗ `2(N),

for (uk)k∈N of the form

uk = In(fn+1(∗, k)), k ∈ N,

in the space

U =

{
n∑
k=0

Ik(fk+1(∗, ·)), fk+1 ∈ `2
s(∆k)⊗ `2(N), 0 ≤ k ≤ n, n ∈ N

}
⊂ L2(Ω× N)

of finite sums of multiple integral processes, where f̃n+1 denotes the symmetrization of fn+1

in n+ 1 variables, i.e.

f̃n+1(k1, . . . , kn+1) =
1

n+ 1

n+1∑
i=1

fn+1(k1, . . . , kk−1, kk+1, . . . , kn+1, ki).

The operators D and δ are closable with respective domains Dom(D) and Dom(δ), built as

the completions of S and U , and they satisfy the duality relation

E[〈DF, u〉`2(N)] = E[Fδ(u)], F ∈ Dom(D), u ∈ Dom(δ), (2.5)

see e.g. Proposition 9.2 in [Pri08], and the isometry property

E[|δ(u)|2] = E[‖u‖2
`2(N)] + E

[
∞∑

k,l=0
k 6=l

DkulDluk −
∞∑
k=0

(Dkuk)
2

]

≤ E[‖u‖2
`2(N)] + E

[
∞∑

k,l=0
k 6=l

DkulDluk

]
, u ∈ U , (2.6)

cf. Proposition 9.3 of [Pri08] and Satz 6.7 in [Man15]. Letting (Pt)t∈R+ = (etL)t∈R+ denote

the Orsntein-Uhlenbeck semi-group defined as

PtF =
∞∑
n=0

e−ntIn(fn), t ∈ R+,
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on random variables F ∈ L2(Ω) of the form F =
∞∑
n=0

In(fn), the Mehler’s formula states that

PtF = E[F (X(t)) | X(0)], t ∈ R+, (2.7)

where (X(t))t∈R+ is the Ornstein-Uhlenbeck process associated to the semi-group (Pt)t∈R+ ,

cf. Proposition 10.8 of [Pri08]. As a consequence of the representation (2.7) of Pt we can

deduce the bound

E[|DkL
−1F |α] ≤ E[|DkF |α], (2.8)

for every F ∈ Dom(D) and α ≥ 1, see Proposition 3.3 of [KRT17]. The following Proposi-

tion 2.1 is a consequence of Proposition 4.1 in [KRT17], see also Theorem 3.1 in [KRT16].

Proposition 2.1 For F ∈ Dom(D) with E[F ] = 0 we have

dK(F,N ) ≤ |1− E[F 2]|+
√

Var[〈DF,−DL−1F 〉`2(N)]

+
1

2
√
pq

√√√√ ∞∑
k=0

E[(DkF )4]

√E
[
F 2
]

+

√√√√ ∞∑
k=0

E[(FDkL−1F )2]


+

1
√
pq

sup
x∈R

E[〈D1{F>x}, DF |DL−1F |〉`2(N)].

Proof. By Proposition 4.1 in [KRT17] we have

dK(F,N ) ≤ E[|1− 〈DF,−DL−1F 〉`2(N)|]

+

√
2π

8
(pq)−1/2E[〈|DF |2, |DL−1F |〉`2(N)] (2.9)

+
1

2
(pq)−1/2E[〈|DF |2, |FDL−1F |〉`2(N)] (2.10)

+(pq)−1/2 sup
x∈R

E[〈D1{F>x}, DF |DL−1F |〉`2(N)].

On the other hand, it follows from the covariance identity (2.4) that it holds VarF =

E[|〈DF,−DL−1F 〉l2(N)|], hence by the Cauchy-Schwarz and triangular inequalities we get

E
[∣∣∣1− 〈DF,−DL−1F 〉`2(N)

∣∣∣] ≤ ∥∥∥1− 〈DF,−DL−1F 〉`2(N)

∥∥∥
L2(Ω)

≤ |1− ‖F‖2
L2(Ω)|+ ‖〈DF,−DL−1F 〉`2(N) − ‖F‖2

L2(Ω)‖L2(Ω)

= |1− Var[F ]|+
√

Var[〈DF,−DL−1F 〉`2(N)].

Next, we have

E
[
‖DL−1In(fn)‖2

`2(N)

]
=
∞∑
k=0

E[(In−1(fn(k, ·)))2]
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= (n− 1)!
∞∑
k=0

‖fn(k, ·)‖2
`2(N)⊗(n−1)

= (n− 1)!‖fn‖2
`2(N)⊗n

≤ n!‖fn‖2
`2(N)⊗n

= E
[
|In(fn)|2

]
,

and consequently, by the orthogonality relation (2.2) we have

E
[
‖DL−1F‖2

`2(N)

]
≤ E

[
F 2
]

for every F ∈ L2(Ω), hence (2.9) is bounded by

E[〈|DL−1F |, |DF |2〉`2(N)] ≤ E

√√√√ ∞∑
k=0

|DkL−1F |2
∞∑
k=0

|DkF |4


≤

√√√√E

[
∞∑
k=0

|DkL−1F |2
]√√√√E

[
∞∑
k=0

(DkF )4

]

=
√

E
[
‖DL−1F‖2

`2(N)

]√√√√E

[
∞∑
k=0

(DkF )4

]

≤
√
E[F 2]

√√√√E

[
∞∑
k=0

(DkF )4

]
.

Eventually, regarding the third term (2.10), by the Cauchy-Schwarz inequality we find

E
[
〈(DF )2, |FDL−1F |〉`2(N)

]
≤

√√√√ ∞∑
k=0

E
[
(DkF )4

]√√√√ ∞∑
k=0

E
[
(FDkL−1F )2

]
.

�

Finally, given fn ∈ `2
s(∆n) and gm ∈ `2

s(∆m) we have the multiplication formula

In(fn)Im(gm) =

2 min(n,m)∑
s=0

In+m−s(hn,m,s), (2.11)

see Proposition 5.1 of [PT15], provided that the functions

hn,m,s :=
∑

s≤2i≤2 min(s,n,m)

i!

(
n

i

)(
m

i

)(
i

s− i

)(
q − p
√
pq

)2i−s

fn?̃
s−i
i gm

10



belong to `2
s(∆n+m−s), 0 ≤ s ≤ 2 min(n,m), where fn?̃

l
kgm is defined as the symmetrization

in n+m− k − l variables of the contraction fn ?
l
k gm defined as

fn ?
l
k gm(al+1, . . . , an, bk+1, . . . , bm) = 11∆n+m−k−l

(al+1, . . . , an, bk+1, . . . , bm)

×
∑

a1,...,al∈N

fn(a1, . . . , an)gm(a1, . . . , ak, bk+1, . . . , bm),

0 ≤ l ≤ k, and the symbol
∑

s≤2i≤2 min(s,n,m) means that the sum is taken over all the integers

i in the interval [s/2,min(s, n,m)]. We close this section with the following Proposition 2.2.

Proposition 2.2 Let fn ∈ `2
s(∆n) and gm ∈ `2

s(∆m) be symmetric functions. For 0 ≤ l <

k ≤ min(n,m) we have∥∥fn ?lk gm∥∥2

`2(N)⊗(m+n−k−l) ≤
1

2

∥∥fn ?l+n−kn fn
∥∥2

`2(N)⊗(k−l) +
1

2

∥∥gm ?l+m−km gm
∥∥2

`2(N)⊗(k−l) , (2.12)

and ∥∥fn ?kk gm∥∥2

`2(N)⊗(m+n−2k) ≤
1

2

∥∥fn ?n−kn−k fn
∥∥2

`2(N)⊗2k +
1

2

∥∥gm ?m−km−k fm
∥∥2

`2(N)⊗2k (2.13)

+
1

2

k∑
i=1

(
k

i

)2 (
‖fn ?n−in fn‖`2(N)⊗i + ‖gm ?m−im fm‖`2(N)⊗i

)
.

Proof. Hölder’s inequality applied twice gives us∥∥fn ?lk gm∥∥2

`2(N)⊗(m+n−k−l)

=
∑

z1∈Nn−k

∑
z2∈Nm−k

∑
y∈Nk−l

11∆n+m−k−l
(y, z1, z2)

(∑
x∈Nl

fn(x, y, z1)gm(x, y, z2)

)2

≤
∑

y∈Nk−l

11∆k−l
(y)

∑
z1∈Nn−k

∑
z2∈Nm−k

(∑
x∈Nl

f 2
n(x, y, z1)

∑
x∈Nl

g2
m(x, y, z2)

)

≤

 ∑
y∈Nk−l

11∆k−l
(y)

 ∑
z1∈Nn−k

∑
x∈Nl

f 2
n(x, y, z1)

2 ∑
y∈Nk−l

11∆k−l
(y)

 ∑
z1∈Nm−k

∑
x∈Nl

g2
m(x, y, z2)

21/2

=
∥∥fn ?l+n−kn fn

∥∥
`2(N)⊗(k−l)

∥∥gm ?l+m−km gm
∥∥
`2(N)⊗(k−l)

≤ 1

2

∥∥fn ?l+n−kn fn
∥∥2

`2(N)⊗(k−l) +
1

2

∥∥gm ?l+m−km gm
∥∥2

`2(N)⊗(k−l) .

To derive the second assertion, we proceed as follows:∥∥fn ?kk gm∥∥2

`2(N)⊗(m+n−2k)
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=
∑

y∈Nn−k

∑
z∈Nm−k

11∆m+n−2k
(y, z)

∑
x1∈∆k

∑
x2∈∆k

fn(x1, y)gm(x1, z)fn(x2, y)gm(x2, z)

≤
∑
x1∈∆k

∑
x2∈∆k

 ∑
y∈Nn−k

fn(x1, y)fn(x2, y)

( ∑
z∈Nm−k

gm(x1, z)gm(x2, z)

)

≤ 1

2

∑
x1,x2∈∆k

 ∑
y∈Nn−k

fn(x1, y)fn(x2, y)

2

+
1

2

∑
x1,x2∈∆k

( ∑
z∈Nm−k

gm(x1, z)gm(x2, z)

)2

,

where we have used the inequality ab ≤ a2 + b2. Finally we get

∑
x1∈∆k

∑
x2∈∆k

 ∑
y∈Nn−k

fn(x1, y)fn(x2, y)

2

=
k∑
i=0

(
k

i

)2 ∑
x∈∆i

∑
x′,x′′∈∆k−i

11∆2k−i
(x, x′, x′′)

 ∑
y∈Nn−k

fn(x, x′, y)fn(x, x′′, y)

2

=
k∑
i=0

(
k

i

)2

‖fn ?n−kn−k+i fn‖`2(N)⊗(2k−i)

≤ ‖fn ?n−kn−k fn‖`2(N)⊗(2k) +
k∑
i=1

(
k

i

)2

‖fn ?n−in fn‖`2(N)⊗i

by (2.12), which ends the proof. �

3 Kolmogorov bounds for sums of multiple stochastic

integrals

Wasserstein bounds have been obtained for discrete multiple stochastic integrals in Theo-

rem 4.1 of [NPR10] in the symmetric case p = q and in Theorems 5.3-5.5 of [PT15] in the

possibly nonsymmetric case, and have been extended to the Kolmogorov distance in the sym-

metric case p = q in Theorem 4.2 of [KRT16]. The following consequence of Proposition 2.1

provides a Kolmogorov distance bound which further extends Theorem 4.2 of [KRT16] from

multiple stochastic integrals to sums of multiple stochastic integrals in the nonsymmetric

case.

12



Theorem 3.1 For any finite sum

F =
m∑
k=1

Ik(fk)

of discrete multiple stochastic integrals with fk ∈ `2
s(∆k), k = 1, . . . ,m, we have

dK(F,N ) ≤Cm
(
|1− Var[F ]|+

√
RF

)
,

for some constant Cm > 0 depending only on m, where

RF :=
∑

0≤l<i≤m

(pq)l−i
∥∥fi ?li fi∥∥2

`2(N)⊗(i−l) (3.1)

+
∑

1≤l<i≤m

(∥∥fl ?ll fi∥∥2

`2(N)⊗(i−l) +
∥∥fi ?ll fi∥∥2

`2(N)⊗2(i−l)

)
.

Proof. We introduce

R′F :=
∑

1≤i≤j≤m

i∑
k=1

k∑
l=0

1{i=j=k=l}c(pq)
l−k ∥∥fi ?lk fj∥∥2

`2(N)⊗(i+j−k−l) .

Since it holds that R′F . RF , it is enough to prove the required inequality with R′F instead

of RF . Indeed, by the inequality (2.12), all the components of R′F for 0 ≤ l < k ≤ i, j,

are dominated by those for 0 ≤ l < k = i = j, and also, by the inequality (2.13), the ones

where 1 ≤ k = l < i ≤ j, are dominated by the components where 1 ≤ l = k < i = j or

1 ≤ l < k = i = j. Finally, the components for 1 ≤ k = l = i < j remain unchanged.

We will estimate components in the inequality from Proposition 2.1. We have

DrF =
m−1∑
i=0

(i+ 1)Ii (fi+1(r, ·)) and DrL
−1F =

m−1∑
i=0

Ii (fi+1(r, ·)) , r ∈ N,

hence by the multiplication formula (2.11) we find

(DrF )2 =
∑

0≤i≤j≤m−1

i∑
k=0

k∑
l=0

ci,j,l,k

(
q − p
√
pq

)k−l
Ii+j−k−l

(
fi+1(r, ·)?̃lkfj+1(r, ·)

)
(3.2)

and

DrFDrL
−1F =

∑
0≤i≤j≤m−1

i∑
k=0

k∑
l=0

di,j,l,k

(
q − p
√
pq

)k−l
Ii+j−k−l

(
fi+1(r, ·)?̃lkfj+1(r, ·)

)
, (3.3)

13



for some ci,j,l,k, di,j,l,k ≥ 0. Applying the isometry relation (2.2) to (3.2) and using the bound

‖f̃m‖`2(N)⊗n ≤ ‖fm‖`2(N)⊗m , fm ∈ `2(N)⊗m, we get, writing f . g whenever f < Cmg for some

constant Cm > 0 depending only on m,

∞∑
r=0

E
[
|DrF |4

]
.

∑
0≤i≤j≤m−1

i∑
k=0

k∑
l=0

∞∑
r=0

(
q − p
√
pq

)2k−2l ∥∥fi+1(r, ·) ?lk fj+1(r, ·)
∥∥2

`2(N)⊗(i+j−k−l)

=
∑

0≤i≤j≤m−1

i∑
k=0

k∑
l=0

(
q − p
√
pq

)2k−2l ∥∥fi+1 ?
l
k+1 fj+1

∥∥2

`2(N)⊗(i+j−k−l+1)

=
∑

1≤i≤j≤m

i∑
k=1

k−1∑
l=0

(
q − p
√
pq

)2k−2l−2 ∥∥fi ?lk fj∥∥2

`2(N)⊗(i+j−k−l)

≤ pqR′F . (3.4)

Furthermore, by (3.3) it follows that

〈DF,DL−1F 〉 − E
[
〈DF,DL−1F 〉

]
=
∞∑
r=0

∑
0≤i≤j≤m−1

i∑
k=0

k∑
l=0

ci,j,l,k1{i=j=k=l}c

(
q − p
√
pq

)k−l
× Ii+j−k−l

(
fi+1(r, ·)?̃lkfj+1(r, ·)

)
=

∑
0≤i≤j≤m−1

i∑
k=0

k∑
l=0

ci,j,l,k1{i=j=k=l}c

(
q − p
√
pq

)k−l
× Ii+j−k−l

(
∞∑
r=0

fi+1(r, ·)?̃lkfj+1(r, ·)

)

=
∑

0≤i≤j≤m−1

i∑
k=0

k∑
l=0

ci,j,l,k1{i=j=k=l}c

(
q − p
√
pq

)k−l
Ii+j−k−l

(
fi+1?̃

l+1
k+1fj+1

)
,

thus we get

Var
[
〈DF,−DL−1F 〉

]
.

∑
0≤i≤j≤m−1

i∑
k=0

k∑
l=0

1{i=j=k=l}c

(pq)k−l
∥∥fi+1 ?

l+1
k+1 fj+1

∥∥2

`2(N)⊗(i+j−k−l)

=
∑

1≤i≤j≤m

i∑
k=1

k∑
l=1

1{i=j=k=l}c
1

(pq)k−l
∥∥fi ?lk fj∥∥2

`2(N)⊗(i+j−k−l)

≤ R′F .
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Next, we have

∞∑
k=0

E
[
(FDkL

−1F )2
]

= E

[
F 2

∞∑
k=0

(DkL
−1F )2

]

≤
√

E [F 4]

√√√√√E

( ∞∑
k=0

(DkL−1F )2

)2


and (2.11) and (2.2) show that

E
[
F 4
]
. E

( ∑
1≤i≤j≤m

i∑
k=0

k∑
l=0

∣∣∣∣q − p√
pq

∣∣∣∣k−l Ii+j−k−l (fi?̃lkfj)
)2


.
∑

1≤i≤j≤m

i∑
k=0

k∑
l=0

(pq)l−k‖fi ?lk fj‖2
`2(N)⊗(i+j−k−l)

. R′F +
m∑
i=1

∥∥fi ?ii fi∥∥2

`2(N)⊗0 +
∑

1≤i<j≤m

‖fi ?0
0 fj‖2

`2(N)⊗(i+j)

= R′F +
m∑
i=1

‖fi‖4
`2(N)⊗i +

∑
1≤i<j≤m

‖fi‖2
`2(N)⊗i‖fj‖2

`2(N)⊗j

. R′F + (Var[F ])2,

while as in (3.2) and (3.3) we have

E

( ∞∑
k=0

(DkL
−1F )2

)2


= E

[(
∞∑
k=0

∑
0≤i≤j≤m−1

i∑
k=0

k∑
l=0

d̃i,j,l,k

(
q − p
√
pq

)k−l

× Ii+j−k−l

(
fi+1(k, ·)?̃lkfj+1(k, ·)

))2 ]

.
∑

0≤i≤j≤m−1

i∑
k=0

k∑
l=0

(pq)l−k‖fi+1 ?
l+1
k+1 fj+1‖2

`2(N)⊗(i+j−k−l)

=
∑

1≤i≤j≤m

i∑
k=1

k∑
l=1

(pq)l−k‖fi ?lk fj‖2
`2(N)⊗(i+j−k−l)

. R′F +
m∑
i=1

∥∥fi ?ii fi∥∥2

`2(N)⊗0 +
∑

1≤i<j≤m

‖fi ?0
0 fj‖2

`2(N)⊗(i+j)

= R′F +
m∑
i=1

‖fi‖4
`2(N)⊗i +

∑
1≤i<j≤m

‖fi‖2
`2(N)⊗i‖fj‖2

`2(N)⊗j
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. R′F + (Var[F ])2,

hence we get

∞∑
k=0

E[(FDkL
−1F )2] . R′F + (Var[F ])2. (3.5)

We now deal with the last component in Proposition 2.1 similarly as it is done in proof

of Theorem 4.2 in [KRT16]. Precisely, by the integration by parts formula (2.5) and the

Cauchy-Schwarz inequality we have

sup
x∈R

E
[
〈D1{F>x}, DF |DL−1F |〉`2(N)

]
= sup

x∈R
E
[
1{F>x}δ

(
DF |DL−1F |

)]
≤
√
E
[
(δ (DF |DL−1F |))2]. (3.6)

Then, by the bound (2.6), the Cauchy-Schwarz inequality and the consequence (2.8) of

Mehler’s formula (2.7), we have

E
[ (
δ
(
DF |DL−1F |

))2 ]
≤ E

[
‖DF |DL−1F |‖2

`2(N)

]
+ E

[
∞∑

k,l=0

∣∣Dk

(
DlF |DlL

−1F |
)
Dl

(
DkF |DkL

−1F |
) ∣∣]

≤
√
E
[
‖DF‖4

`4(N)

]
E
[
‖DL−1F‖4

`4(N)

]
+ E

[
∞∑

k,l=0

(
Dk

(
DlF |DlL

−1F |
))2

]

≤ E
[
‖DF‖4

`4(N)

]
+

∞∑
k,l=0

E
[ (
Dk

(
DlF |DlL

−1F |
))2 ]

.

The first term in the last expression in bounded by pqR′F as shown in (3.4), and it remains

to estimate the last expectation. By the product rule (2.3) and the bound |Dk|F || ≤ |DkF |
obtained from the definition (2.1) of D and the triangle inequality, we get

E
[ (
Dr

(
DsF |DsL

−1F |
))2 ]

= E

[( (
DrDsF |DsL

−1F |
)

+
(
DsFDr|DsL

−1F |
)
− Xr√

pq

(
DrDsFDr|DsL

−1F |
) )2

]
. E

[
(DrDsF )2 (DsL

−1F
)2

+ (DsF )
(
DrDsL

−1F
)2

+
1

pq
(DrDsF )2 (DrDsL

−1F
)2
]
,

(3.7)

r, s ∈ N. By the Cauchy-Schwarz inequality we get

∞∑
r,s=0

E
[

(DrDsF )2 (DsL
−1F

)2 ]
= E

[
∞∑
s=0

(
DsL

−1F
)2
∞∑
r=0

(DrDsF )2

]
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≤

√√√√√E

[
∞∑
s=0

(DsL−1F )4

]
E

 ∞∑
s=0

(
∞∑
r=0

(DrDsF )2

)2
.

The term E
[∑∞

s=0 (DsL
−1F )

4 ]
can be bounded by pqR′F as in (3.4). To estimate the other

term we use the multiplication formula (2.11) as in (3.2) to obtain

E

 ∞∑
s=0

(
∞∑
r=0

(DrDsF )2

)2


.
∞∑
s=0

E

[(
∞∑
r=0

∑
0≤i≤j≤m−2

i∑
k=0

k∑
l=0

∣∣∣∣q − p√
pq

∣∣∣∣k−l Ii+j−k−l (fi+2(s, r, ·)?̃lkfj+2(s, r, ·)
))2]

= c
∞∑
s=0

E

[( ∑
0≤i≤j≤m−2

i∑
k=0

k∑
l=0

∣∣∣∣q − p√
pq

∣∣∣∣k−l Ii+j−k−l (fi+2(s, ·)?̃l+1
k+1fj+2(s, ·)

))2]

.
∞∑
s=0

∑
0≤i≤j≤m−2

i∑
k=0

k∑
l=0

(pq)l−k‖fi+2(s, ·) ?l+1
k+1 fj+2(s, ·)‖2

`2(N)⊗(i+j−k−l)

=
∑

0≤i≤j≤m−2

i∑
k=0

k∑
l=0

(pq)l−k‖fi+2 ?
l+1
k+2 fj+2‖2

`2(N)⊗(i+j−k−l+1)

=
∑

2≤i≤j≤m

i∑
k=2

k−1∑
l=1

(pq)l+1−k‖fi ?lk fj‖2
`2(N)⊗(i+j−k−l)

≤ pqR′F .

The term
∑∞

r,s=0 E
[
(DsF )2(DrDsL

−1F )2
]

from (3.7) is similarly bounded by pqR′F . Regard-

ing the last term, we have

∞∑
r,s=0

E
[
(DrDsF )2(DrDsL

−1F )2
]
≤

√√√√ ∞∑
r,s=0

E
[
(DrDsF )4] ∞∑

r,s=0

E
[
(DrDsL−1F )4

]
.

Using the multiplication formula (2.11), both sums inside the above square root can be

estimated as

∞∑
r,s=0

E

[( ∑
0≤i≤j≤m−2

i∑
k=0

k∑
l=0

∣∣∣∣q − p√
pq

∣∣∣∣k−l Ii+j−k−l (fi+2(s, r, ·)?̃lkfj+2(s, r, ·)
))2]

.
∞∑

r,s=0

∑
0≤i≤j≤m−2

i∑
k=0

k∑
l=0

(pq)l−k‖fi+2(s, r, ·) ?lk fj+2(s, r, ·)‖2
`2(N)⊗(i+j−k−l)

=
∑

0≤i≤j≤m−2

i∑
k=0

k∑
l=0

(pq)l−k‖fi+2 ?
l
k+2 fj+2‖2

`2(N)⊗(i+j−k−l+2)
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=
∑

2≤i≤j≤m

i∑
k=2

k−2∑
l=0

(pq)l+2−k‖fi ?lk fj‖2
`2(N)⊗(i+j−k−l)

. (pq)2R′F .

Combining this together we get

∞∑
r,s=0

E
[(
Dr

(
DsF |DsL

−1F |
))2]

. pqR′F .

and consequently, by (3.6) we find

sup
x∈R

E
[
〈D1{F>x}, DF |DL−1F |〉`2(N)

]
. pqR′F . (3.8)

Applying (3.4)-(3.5) and (3.8) to Proposition 2.1, we get

dK(F,N ) . |1− Var[F ]|+
√
R′F
(
1 + Var[F ] +

√
Var[F ] +

√
R′F
)
.

If R′F ≥ 1, or if R′F ≤ 1 and Var[F ] ≥ 2, it is clear that dK(F,N ) . |1−Var[F ]|+
√
R′F since

dK(F,N ) ≤ 1 by definition. If R′F ≤ 1 and Var[F ] ≤ 2, we estimate Var[F ]+
√

Var[F ]+
√
R′F

by a constant and also get the required bound. �

4 Application to random graphs

4.1 General result

In the sequel fix a numbering (1, . . . , eG) of the edges in G and we denote by EG
n ⊂

{1, ...,
(
n
2

)
}eG the set of sequences of (distinct) edges of a complete graph Kn that create

a graph isomorphic to G, i.e. a sequence (ek1 , . . . , ekeG ) belongs to EG
n if and only if the

graph created by edges ek1 , . . . , ekeG is isomorphic to G. The next lemma allows us to rep-

resent the number of subgraphs as a sum of multiple stochastic integrals, using the notation

P (Xk = 1) = p, P (Xk = −1) = 1− p = q, k ∈ N.

Lemma 4.1 We have the identity

ÑG
n =

NG
n − E[NG

n ]√
Var[NG

n ]
=

eG∑
k=1

Ik(fk), (4.1)

where

fk(b1, . . . , bk)

:=
qk/2peG−k/2

(eG − k)!k!
√

Var[NG]

∑
(a1,...,aeG−k)∈NeG−k

1(a1,...,aeG−k,b1,...,bk)∈EG
n
.
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Proof. We have

NG =
1

eG!2eG

∑
b1,...,beG∈N

1(b1,...,beG )∈EG
(Xb1 + 1) · · · (XbeG

+ 1)

=
1

eG!2eG

eG∑
m=0

(eG
m

) ∑
b1,...,bm∈N

gm(b1, . . . , bm)Xb1 · · ·Xbm

=
1

eG!2eG

eG∑
m=0

(eG
m

) m∑
k=0

(m
k

)
(p− q)m−k∑

b1,...,bk∈N

gk(b1, . . . , bk)(Xb1 + q − p) · · · (Xbk + q − p)

=
1

eG!2eG

eG∑
m=0

(eG
m

) m∑
k=0

(m
k

)
Ik(gk)(2

√
pq)k(p− q)m−k

=
1

eG!2eG

eG∑
k=0

(eG
k

)
(2
√
pq)kIk(gk)

eG∑
m=k

(
eG − k
m− k

)
(p− q)m−k

=
1

2eG

eG∑
k=0

(2
√
pq)k

(eG − k)!k!
Ik(gk)(1 + p− q)eG−k

=

eG∑
k=0

qk/2peG−k/2

(eG − k)!k!
Ik(gk),

where gk is the function defined as

gk(b1, . . . , bk) :=
∑

(a1,...,aeG−k)∈NeG−k

1EG
n

(a1, . . . , aeG−k, b1, . . . , bk), (b1, . . . , bk) ∈ Nk, (4.2)

which shows (4.1) with

fk(b1, . . . , bk) :=
qk/2peG−k/2

(eG − k)!k!
√

Var[NG
n ]
gk(b1, . . . , bk).

�

Next is the second main result of this paper.

Theorem 4.2 Let G be a graph without isolated vertices. Then we have

dK(ÑG
n ,N ) .

(
(1− p) min

H⊂G
eH≥1

nvHpeH

)−1/2

≈

√
Var
[
NG

]
(1− p)nvGpeG

.

Proof. By (4.1) and Theorem 3.1 we have

dK(ÑG
n ,N ) .

√
RG

Var[NG
n ]
, (4.3)
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where, taking gk as in (4.2), by (3.1) we have

RG =
∑

0≤l<k≤eG

p4eG−3k+lql+k
∥∥gk ?lk gk∥∥2

`2(N)⊗(k−l)

+
∑

1≤l<k≤eG

p4eG−2kq2k
∥∥gk ?ll gk∥∥2

`2(N)⊗2(k−l)

+
∑

1≤l<k≤eG

p4eG−l−kqk+l
∥∥gl ?ll gk∥∥2

`2(N)⊗(k−l)

≤ q
( ∑

0≤l<k≤eG

p4eG−3k+l
∥∥gk ?lk gk∥∥2

`2(N)⊗(k−l)

+
∑

1≤l<k≤eG

p4eG−l−k
∥∥gl ?ll gk∥∥2

`2(N)⊗(k−l)

+
∑

1≤l<k≤eG

p4eG−2k
∥∥gk ?ll gk∥∥2

`2(N)⊗2(k−l)

)
= (1− p)

(
S1 + S2 + S3

)
.

It is now sufficient to show that

S1 + S2 + S3 . max
H⊂G
eH≥1

n4vG−3vHp4eG−3eH . (4.4)

Indeed, applying (1.3) and (4.4) to (4.3) we get

√
RG

Var[NG
n ]
.

√
1− p

√
max
H⊂G
eH≥1

n4vG−3vHp4eG−3eH

(1− p) max
H⊂G
eH≥1

n2vG−vHp2eG−eH

=

(
min
H⊂G
eH≥1

nvHpeH

)−3/2

√
1− p

(
min
H⊂G
eH≥1

nvHpeH

)−1

=

(
(1− p) min

H⊂G
eH≥1

nvHpeH

)−1/2

.

Thus

dK(ÑG
n ,N ) .

√
RG

Var[NG
n ]
.

(
(1− p) min

H⊂G
eH≥1

nvHpeH

)−1/2

.

In order to estimate S1, let us observe that

∥∥gk ?lk gk∥∥2

`2(N)⊗(k−l) =
∑

a′′∈Nk−l

∑
a′∈Nl

 ∑
a∈NeG−k

1EG
n

(a, a′, a′′)

22
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≈
∑
A⊂Kn
eK=k−l

 ∑
A⊂B⊂Kn

eB=k

 ∑
B⊂G′⊂Kn

G′∼G

1


2

2

≈
∑
K⊂G

eK=k−l

nvK

 ∑
K⊂H⊂G
eH=k

nvH−vK
(
nvG−vH

)2


2

≈ max
K⊂H⊂G

eK=k−l, eH=k

n4vG−2vH−vK .

Hence we have

S1 .
∑

0≤l<k≤eG

p4eG−3k+l max
K⊂H⊂G

eK=k−l, eH=k

n4vG−2vH−vK

=
∑

0≤l<k≤eG

max
K⊂H⊂G

eK=k−l, eH=k

n4vG−2vH−vKp4eG−2eH−eK

. max
K⊂H⊂G
eK≥1

n4vG−2vH−vKp4eG−2eH−eK .

For a fixed p, let H0 ⊂ G, eH0 ≥ 1, be the subgraph of G such that

nvH0peH0 = min
H⊂G,eH≥1

nvHpeH . (4.5)

Then it is clear that

S1 . max
K⊂H⊂G
eK≥1

n4vG−2vH−vKp4eG−2eH−eK

= n4vG−3vH0p4eG−3eH0

= max
H⊂G
eH≥1

n4vG−3vHp4eG−3eH ,

as required. We proceed similarly with the sum S2. For 1 ≤ l < k ≤ n we have∥∥gl ?ll gk∥∥2

`2(N)⊗2(k−l)

≈
∑
c∈Nk−l

∑
b∈Nl

 ∑
a∈NeG−l

1EG
n

(a, b)
∑

a′∈NeG−k

1EG
n

(a′, b, c)

2

≈
∑
A⊂Kn
eA=k−l

 ∑
A⊂B⊂Kn
eB=k

 ∑
B\A⊂G′′⊂Kn

G′′∼G

1
∑

B⊂G′⊂Kn

G′∼G

1




2

(4.6)
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.
∑
K⊂G

eK=k−l

nvK

 ∑
K⊂H⊂G, H′⊂G
eH=k, eH′=l

nvH−vK
(
nvG−vH′nvG−vH

)
2

(4.7)

. max
K,H′⊂G

eK=k−l, eH′=l

n4vG−2vH′−vK , (4.8)

where H ′ in (4.7) stands for B \A in (4.6), whereas in (4.8) the sum over H ′ extends to all

H ′ ⊂ G such that eH′ = l. It follows that

S2 .
∑

1≤l<k≤eG

p4eG−k−l max
K,H′⊂G

eK=k−l, eH′=l

n4vG−2vH′−vK

=
∑

1≤l<k≤eG

max
K,H′⊂G

eK=k−l, eH′=l

n4vG−2vH′−vKp4eG−2vH′−eK

. max
K′,H′⊂G
eK′ , eH′≥1

n4vG−2vH′−vK′p4eG−2vH′−eK′

= n4vG−3vH0p4eG−3eH0

= max
H⊂G
eH≥1

n4vG−3vHp4eG−3eH ,

where H0 is defined in (4.5). Finally, we pass to estimates of S3. For 1 ≤ l < k ≤ n we have∥∥gk ?ll gk∥∥2

`2(N)⊗(k−l)

.
∑

c,c′∈Nk−l

∑
b∈Nl

 ∑
a∈NeG−k

1EG
n

(a, b, c)

 ∑
a′∈NeG−k

1EG
n

(a′, b, c′)

2

≈
∑

A,A′⊂Kn

eA=eA′=k−l

 ∑
B⊂Kn

eB=l, eA∩B=eA′∩B=0

 ∑
A∪B⊂G′⊂Kn

G′∼G

1


 ∑

A′∪B⊂G′′⊂Kn

G′′∼G

1




2

≈
∑

K,K′,H⊂G
eK=eK′=k−l, eH=l
eK∩H=eK′∩H=0

∑
A,A′⊂Kn
A∼K
A′∼K′


∑
B⊂Kn
B∼H

A∩B∼K∩H
A′∩B∼K′∩H

 ∑
A∪B⊂G′⊂Kn

G′∼G

1


 ∑

A′∪B⊂G′′⊂Kn

G′′∼G

1




2

≈
∑

K,K′,H⊂G
eK=eK′=k−l, eH=l
eK∩H=eK′∩H=0

∑
A,A′⊂Kn
A∼K
A′∼K′


∑
B⊂Kn
B∼H

A∩B∼K∩H
A′∩B∼K′∩H

(
nvG−vA∪B

) (
nvG−vA′∪B

)


2

.
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Next, we note that given A,A′ ⊂ Kn it takes

vB − vA∩B − vA′∩B + vA∩A′∩B = vH − vK∩H − vK′∩H + vA∩A′∩B

vertices to create any subgraph B ∼ H such that A ∩ B ∼ K ∩ H and A′ ∩ B ∼ K ′ ∩ H,

with the bound

vA∩A′∩B ≤
1

2
vA∩A′ +

1

2
vA′∩B =

1

2
(vA∩A′ + vK′∩H).

Hence we have∥∥gk ?ll gk∥∥2

`2(N)⊗(k−l)

.
∑

K,K′,H⊂G
eK=eK′=k−l, eH=l
eK∩H=eK′∩H=0

∑
A,A′⊂Kn
A∼K
A′∼K′

(
nvH−vK∩H−vK′∩H+(vA∩A′+vK′∩H)/2

(
nvG−vK∪H

) (
nvG−vK′∪H

) )2

.

In order to estimate the above sum using powers of n, we need to consider the possible

intersections A ∩ A′ for A,A′ ⊂ Kn, as follows:∑
K,K′,H⊂G

eK=eK′=k−l, eH=l
eK∩H=eK′∩H=0

∑
A,A′⊂Kn
A∼K
A′∼K′

n4vG+2vH−2vK∩H−vK′∩H+vA∩A′−2vK∪H−2vK′∪H

.
∑

K,K′,H⊂G
eK=eK′=k−l, eH=l
eK∩H=eK′∩H=0

vK∑
i=0

nvK+vK′−in4vG+2vH−2vK∩H−vK′∩H+i−2vK∪H−2vK′∪H

.
∑

K,K′,H⊂G
eK=eK′=k−l, eH=l
eK∩H=eK′∩H=0

nvK+vK′+4vG+2vH−2vK∩H−vK′∩H−2vK∪H−2vK′∪H . (4.9)

Furthermore we have

vK + vK′ + 4vG + 2vH − 2vK∩H − vK′∩H − 2vK∪H − 2vK′∪H

= 4vG − vK − vH − vK′∪H ,

so the sum (4.9) can be estimated as∑
K,K′,H⊂G

eK=eK′=k−l, eH=l
eK∩H=eK′∩H=0

n4vG−vK−vH−vK′∪H . max
K,H,L⊂G

eK=k−l, eH=l, eL=k

n4vG−vK−vH−vL ,
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from which it follows

S3 .
∑

1≤l<k≤eG

p4eG−2k max
K,H,L⊂G

eK=k−l, eH=l, eL=k

n4vG−vK−vH−vL

=
∑

1≤l<k≤eG

max
K,H,L⊂G

eK=k−l, eH=l, eL=k

n4vG−vK−vH−vLp4eG−eK−eH−eL

. max
K,H,L⊂G
eK ,eH ,eL≥1

n4vG−vK−vH−vLp4eG−eK−eH−eL

≤ n4vG−3vH0p4eG−3eH0

= max
H⊂G
eH≥1

n4vG−3vHp4eG−3eH ,

which ends the proof. �

4.2 Special cases

In the next corollary we note that Theorem 4.2 simplifies if we narrow our attention to pn

depending of the complete graph size n and close to 0 or to 1.

Corollary 4.3 Let G be a graph without separated vertices. For pn < c < 1, n ≥ 1, we have

dK
(
ÑG
n ,N

)
.

(
min
H⊂G
eH≥1

nvHpeHn

)−1/2

.

On the other hand, for pn > c > 0, n ≥ 1, it holds

dK
(
ÑG
n ,N

)
.

1

n
√

1− pn
.

As a consequence of Corollary 4.3 it follows that if

npβn →∞ and n2(1− pn)→∞,

where β := max
{
eH/vH : H ⊂ G

}
, then we have the convergence of the renormalized

subgraph count
(
ÑG
n

)
n≥1

to N in distribution as n tends to infinity, which recovers the

sufficient condition in [Ruc88]. When p ≈ n−α, α > 0, Corollary 4.3 also shows that

dK
(
ÑG
n ,N

)
.

(
min
H⊂G
eH≥1

nvH−αeH

)−1/2

, (4.10)

and in order for the above bound (4.10) to tend to zero as n goes to infinity, we should have

α < min
H⊂G

vH
eH

=:
1

β
. (4.11)

Next, we specialize our results to the following class of graphs.
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Definition 4.4 Let B denote the set of graphs G with at least three vertices, and such that

max
H⊂G
vH≥3

eH − 1

vH − 2
=
eG − 1

vG − 2
.

We note that the set B is contained in the class of balanced graphs which satisfy

max
H⊂G

eH
vH

=
eG
vG
,

as well as in the class of strongly balanced graphs which satisfy

max
H⊂G

eH
vH − 1

=
eG

vG − 1
.

Both classes have been used in the framework of subraph counting, see e.g. [ER61, RV86],

however the authors have not found the class B in the literature.

Lemma 4.5 Let G be a graph with vH ≥ 3 and eH ≥ 1. Then G belongs to the class B if

and only if for any p ∈ (0, 1) and n ≥ vG we have

min
H⊂G
eH≥1

nvHpeH = min{n2p, nvGpeG}.

Proof. (⇒) If G ∈ B, then for any H ⊂ G such that vH ≥ 3 we have

nvHpeH = n2p
(
np

eH−1

vH−2

)vH−2

≥ n2p
(
np

eG−1

vG−2

)vH−2

. (4.12)

If n2p ≤ nvGpeG , then it holds np
eG−1

vG−2 ≥ 1 and we get

nvHpeH ≥ n2p,

as required. If n2p > nvGpeG , then
(
np

eG−1

vG−2

)vH−2

< 1, and consequently, using vH ≤ vG, we

obtain

nvHpeH ≥ n2p
(
np

eG−1

vG−2

)vG−2

= nvGpeG

from (4.12), which ends this part the proof.

(⇐) Proof by contradiction. Assume that the right-hand side of the equivalence in the thesis

is true and that there exists H0 ( G, vH0 ≥ 3, such that
eH0
−1

vH0
−2

> eG−1
vG−2

. Then, for pn := n−α

where α is such that
vH0
−2

eH0
−1

< α < vG−2
eG−1

, we get

nvH0p
eH0
n = n2pn

(
n

1−α
eH0
−1

vH0
−2

)vH0
−2

< n2p.
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Furthermore, since np
eG−1

vG−2
n > 1 and vH0 < vG, we obtain

nvH0p
eH0
n = n2pn

(
np

eH0
−1

vH0
−2

n

)vH0
−2

< n2pn

(
np

eG−1

vG−2
n

)vH0
−2

< n2pn

(
np

eG−1

vG−2
n

)vG−2

= nvGpeGn .

This means that

min
H⊂G
eH≥1

nvHpeHn ≤ nvH0p
eH0
n < min{n2pn, n

vGpeGn },

which contradicts the main assumption. The proof is complete. �

By virtue of Lemma 4.5, the bound in Theorem 4.2 simplifies significantly for graphs G in

the class B.

Corollary 4.6 For any G in the class B we have

dK(ÑG
n ,N ) .

(
(1− pn) min{n2pn, n

vGpeGn }
)−1/2

=


1

n
√
pn(1− pn)

if n−(vG−2)/(eG−1) < pn,

1

nvG/2p
eG/2
n

if 0 < pn ≤ n−(vG−2)/(eG−1).

Next, we note that B is quite a rich class as it contains other important classes of graphs.

Proposition 4.7 All complete graphs, cycles, and trees with at least 3 vertices belong to the

class B.

Proof. First, consider a complete graph Kr with r = vKr ≥ 3. For a subgraph H ⊂ Kr

with vH < r the maximal number of edges is
(
vH
2

)
in the case of a clique, thus we have

eH − 1

vH − 2
≤
(
vH
2

)
− 1

r − 2
=
vH + 1

2
<
r + 1

2
=
eKr − 1

vKr − 2
.

In case of a cycle graph Cr, r = vCr ≥ 3 the maximal number of edges of a subgraph H ⊂ Cr

with vH < r vertices is realized for a linear subgraph having vH − 1 edges, which yields

eH − 1

vH − 2
≤ (vH − 1)− 1

vH − 2
= 1 <

r − 1

r − 2
=
eCr − 1

vCr − 2
.

Finally, for a tree T with r ≥ 3 vertices, the maximal number of edges of a subgraph H ⊂ T ,

vH < vT is realized for a subtree with vH − 1 edges, which gives

eH − 1

vH − 2
= 1 =

eT − 1

vT − 2
.

This ends the proof. �
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Corollaries 4.8-4.10 follow directly form Corollary 4.6 and Proposition 4.7. Since the triangle

is a cycle as well as a complete graph, both of Corollaries 4.8 and 4.9 recover the Kolmogorov

bounds of [Röl17] as in Corollary 1.1 above.

Corollary 4.8 Let Cr be a cycle graph with r vertices, r ≥ 3. We have

dK
(
ÑCr
n ,N

)
.


1

n
√
pn(1− pn)

if n−(r−2)/(r−1) < pn,

1

(npn)r/2
if 0 < pn ≤ n−(r−2)/(r−1).

In case pn ≈ n−α we should have α ∈ (0, 1) by (4.11), and Corollary 4.8 also shows that

dK
(
ÑCr
n ,N

)
.


n−1+α/2 ≈ 1

n
√
pn

if 0 < α ≤ r − 2

r − 1
,

n−r(1−α)/2 ≈ 1

(npn)r/2
if

r − 2

r − 1
≤ α < 1.

when Cr is a cycle graph with r vertices, r ≥ 3. In the particular case r = 3 where C3 is a

triangle, this improves on the Kolmogorov bounds in Theorem 1.1 of [KRT17].

Corollary 4.9 Let Kr be a complete graph with r ≥ 3 vertices, r ≥ 3. We have

dK
(
ÑG
n ,N

)
.


1

n
√
pn(1− pn)

if n−2/(r+1) < pn,

1

nr/2p
r(r−1)/4
n

if 0 < pn ≤ n−2/(r+1).

When pn ≈ n−α with α ∈ (0, 2/(r − 1)) by (4.11), Corollary 4.9 shows that

dK
(
ÑG
n ,N

)
.


n−1+α/2 ≈ 1

n
√
pn

if 0 < α ≤ 2

r + 1
,

n−r/2+r(r−1)α/4 ≈ 1

nr/2p
r(r−1)/4
n

if
2

r + 1
≤ α <

2

r − 1
.

Finally, the next corollary deals with the important class of graphs which have a tree struc-

ture.

Corollary 4.10 Let T be any tree (a connected graph without cycles) with r edges, and

c ∈ (0, 1). We have

dK
(
ÑT
n ,N

)
.


1

n
√
pn(1− pn)

if
1

n
< pn,

1

n(r+1)/2p
r/2
n

if 0 < pn ≤
1

n
.
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In case pn ≈ n−α with α ∈ (0, 1 + 1/r), we get

dK
(
ÑG
n ,N

)
.


n−1+α/2 ≈ 1

n
√
pn

if 0 < α ≤ 1,

n−(r+1−rα)/2 ≈ 1

n(r+1)/2p
r/2
n

if 1 ≤ α < 1 +
1

r
.
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[DK19] C. Döbler and K. Krokowski. On the fourth moment condition for rademacher chaos. Ann. Inst.
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[ER59] P. Erdős and A. Rényi. On random graphs. I. Publ. Math. Debrecen, 6:290–297, 1959.
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