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Abstract

We derive quantitative bounds in the Wasserstein distance for the approxi-
mation of stochastic integrals with respect to Hawkes processes by a normally
distributed random variable. In the case of deterministic and non-negative in-
tegrands, our estimates involve only the third moment of integrand in addition
to a variance term using a square norm of the integrand. As a consequence,
we are able to observe a “third moment phenomenon” in which the vanishing
of the first cumulant can lead to faster convergence rates. Our results are also
applied to compound Hawkes processes, and improve on the current literature
where estimates may not converge to zero in large time, or have been obtained
only for specific kernels such as the exponential or Erlang kernels.
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1 Introduction

Nourdin and Peccati [NP09] opened the way to a new methodology mixing Stein’s
method and the Malliavin calculus, to provide bounds on the distance between the dis-
tribution of a functional of a Gaussian field and a target Gaussian distribution. This
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analysis, which relies on a specific Gaussian structure, has been successfully trans-
ferred to the Gaussian approximation of Poisson functionals in [PSTU10]. Since then,
several developments of the initial result of [PSTU10] have been obtained, for instance,
Stein Gaussian approximation bounds have been obtained in [Pri18] in terms of the
third cumulants for Poisson functionals expressed as the divergence of an adapted pro-
cess with respect to an homogeneous Poisson process. Another development important
for our analysis has been presented in [Tor16] for counting processes with stochastic
intensity (including the Hawkes process) using the so-called Poisson imbedding rep-
resentation, see1 [BM96]. This technique, also known as the “Thinning Algorithm”,
allows one to represent a counting process and its intensity process as a solution to
an SDE driven by an auxiliary Poisson random measure, and to adapted the general
methodology of [PSTU10] to this framework. Following here the path of [Tor16] in
the case of a linear Hawkes process H, i.e. a counting process with intensity process
λ := (λt)t≥0 given as

λt = µ+

∫
(0,t)

ϕ(t− s)dHs,

with µ > 0, ϕ : R+ → R+ and ∥ϕ∥1 < 1, a specific Malliavin calculus for Hawkes
processes have been developed in [HRR20, HHKR21], based on Relation (2.8) below
on the simplification of the Malliavin integration by parts. As a consequence, a new
bound has been obtained in [HHKR21] for the Gaussian approximation of Hawkes
functionals.

In [BDHM13], a functional convergence result has been obtained for linear Hawkes
processes, implying the (non-quantitative) convergence in distribution

FT :=
HT −

∫ T

0
λsds√

T

L−→
T→+∞

N (0, σ2),

see Lemma 7 therein, with σ2 := µ/(1− ∥ϕ∥1).

In this paper, we propose to quantify this convergence in the Wasserstein distance.
In Theorem 3.1 of [Tor16], see also Relations (5.2) and (5.4) therein, the estimates

dW

(
HT −

∫ T

0
λsds√

T
,N (0, σ2)

)
≤ B(T ), with B(T ) ≥

√
8

π
∥ϕ∥1

2− ∥ϕ∥1
1− ∥ϕ∥1

1The term used in this reference is indeed "Poisson imbedding" whereas "Poisson embedding"
refers to a specific technique in analysis based on Poisson-type PDEs.
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have been derived, however they do not converge to 0 as T tends to +∞, see Re-
mark 3.5 below. Related bounds have been derived independently in [HHKR21, The-
orem 3.4] for Hawkes processes, with in particular

dW

(
HT −

∫ T

0
λsds√

T
,N (0, σ2)

)
≤ Cµ,ϕ√

T
+RT ,

see Theorems 3.10 and 3.12 therein, where RT is an additional term involving the
Malliavin derivative of FT , see also Proposition 2.10 below.

In case ϕ is the exponential kernel ϕ(x) := αe−βx, α < β, or the Erlang kernel
ϕ(x) := αxe−βx, α < β2, the remainder term RT can be bounded to obtain more
accurate bounds of the form

dW

(
HT −

∫ T

0
λsds√

T
,N (0, σ2)

)
≤ C̃µ,ϕ√

T
. (1.1)

In this paper, we extend those results by deriving bounds of the form (1.1) for Hawkes
processes with general kernel ϕ satisfying the condition ∥ϕ∥1 < 1, see Theorem 3.4,
where Cµ,ϕ > 0 is a constant and σ2 an explicit asymptotic variance depending on
µ, ϕ.

For this, in Theorem 3.1 we improve the bounds of [Tor16] and [HHKR21] for
Hawkes functionals of the form

∫∞
0
z(t)(dHt − λtdt), where z(t) is a deterministic

function. In particular, in Theorem 3.1-(ii) we provide an estimate involving only
the third moment of

∫∞
0
z(t)(dHt−λtdt) when z(t) is deterministic and non-negative,

and an estimate on a modified second moment of z(t) where the Malliavin derivative
is not involved, see (3.3) and the discussion in Remark 3.2. A discussion on the
comparison of results and methods with the papers [Tor16] and [HHKR21] is presented
in Remark 3.5.

In addition, these results are presented for a generalization of the Hawkes process,
that is the compound Hawkes process S given by

St :=
Ht∑
i=1

Xi, t ≥ 0,

where the random variables (Xi)i are independent and identically distributed (i.i.d.)
square integrable random variables independent of H. Furthermore, in the spirit of
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Theorem 3.7 in [CGS11], in Theorem 3.7 we obtain faster rates of convergence for the
compound Hawkes process S when the third cumulant of the jump sizes on the random
variables (Xi)i vanishes in the framework of the “third moment phenomenon”, see
Section 4.8 of [CGS11]. Finally, we provide an alternative version of our quantitative
limit theorems as Theorem 3.8.

We proceed as follows. First, in Section 2 we present the main elements of
stochastic analysis on the Poisson space and we recall the approach developed in
[HRR20, HHKR21] regarding the linear Hawkes process. Main results are collected
in Section 3. Proofs and technical lemmata are collected in Section 4.

2 Notations and preliminaries

For E a topological space, we set B(E) the σ-algebra of Borel sets. We denote by dt
the Lebesgue measure on (R,B(R)).

2.1 Stochastic analysis on the Poisson space

The notation and definitions stated in this section can be found for instance in [Pic96]
or [Pri09]. Let ν be a Borel measure on R with ν(R) = 1 and ν({0}) = 0, and consider
the space of configurations

ΩN :=

{
ωN =

n∑
i=1

δ(ti,θi,xi), 0 = t0 < t1 < · · · < tn, (θi, xi) ∈ R+ × R, n ∈ N ∪ {+∞}

}
.

Each path of a counting process is represented as an element ωN in ΩN which is a
N-valued measure on R2

+×R. Let FN
∞ be the σ-field associated to the vague topology

on ΩN , and PN the Poisson measure under which the counting process N defined as

N([0, t]× [0, θ]× (−∞, y])(ω) := ω([0, t]× [0, θ]× (−∞, x]), (t, θ, x) ∈ R2
+ × R,

is an homogeneous Poisson process with intensity measure dt⊗dθ⊗ν, that is, for any
(t, θ, x) ∈ [0, T ] × R+ × R, N([0, t] × [0, θ] × (−∞, x]) is a Poisson random variable
with intensity θ t ν((−∞, x]). We also let FN := (FN

t )t≥0 denote the natural history
of N , that is

FN
t := σ(N(T ×B), T ⊂ B([0, t]), B ∈ B(R+ × R)), t ≥ 0,
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hence FN
∞ coincides with limt→+∞ FN

t . The expectation with respect to PN is denoted
by E[ · ], and the conditional expectation knowing FN

t is denoted by Et[ · ].

We also write L0
(
Ω,FN

∞,P
)

for the space of FN
∞-measurable random variables, and

for any p ≥ 1 we let Lp
(
Ω,FN

∞,P
)

the subspace made of F ∈ L0
(
Ω,FN

∞,P
)

such that
E[|F |p] < +∞.

Next, we introduce the stochastic integral with respect to the Poisson point process
N , which will be related to the gradient operator D defined below.

Definition 2.1. We set

PN :=
{
ρ := (ρ(t,θ,x))(t,θ,x)∈R3

+
(FN

t )t≥0-predictable
}
.

For ρ := (ρ(t,θ,x))(t,θ,x)∈R3
+
∈ PN

2 we define its divergence

δN(ρ) :=

∫
R2
+×R

ρ(t,θ,x) (N(dt, dθ, dx)− dtdθν(dx)) ,

which belongs to L2
(
Ω,FN

∞,P
)

if E
[∫

R3
+
|ρ(t,θ,x)|2dtdθν(dx)

]
< +∞.

Next, we introduce the Malliavin derivative, first with respect to the Poisson point
process N , using the adding point operator defined below. For any A ∈ B(R+×R+×
R), we let

1A(t, θ, x) :=

{
1, if (t, θ, x) ∈ A,
0, otherwise.

Definition 2.2 (Adding point operator). We define for (t, θ, x) in R+ × R+ × R the
measurable maps

ε+(t,θ,x) : ΩN → ΩN

ω 7→ ε+(t,θ,x)(ω),

where we let

(ε+(t,θ,x)(ω))(A) := ω(A \ (t, θ, x)) + 1A(t, θ, x), A ∈ B(R+ × R+ × R).

We note that for any FN
t -measurable random variable F , t ≥ 0, we have

F ◦ ε+(v,θ,x) = F, P− a.s.,

for all v > t and (θ, x) ∈ R+ × R.
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Definition 2.3 (Malliavin derivative). For F in L0
(
Ω,FN

∞,P
)
, we define the Malli-

avin derivative DF of F as

D(t,θ,x)F := F ◦ ε+(t,θ,x) − F, (t, θ, x) ∈ R2
+ × R.

We conclude this section with the integration by parts formula on the Poisson space,
see e.g. [Pic96] or [Pri09].

Proposition 2.4. Let F be in L0
(
Ω,FN

∞,P
)

and ρ be in PN . We have

E
[
FδN(ρ)

]
= E

[∫
R2
+×R

ρ(t,θ,x)D(t,θ,x)Fdtdθν(dx)

]
, (2.1)

provided that FδN(ρ) ∈ Lp
(
Ω,FN

∞,P
)

and E
[∫

R2
+×R ρ(t,θ,x)D(t,θ,x)Fdtdθν(dx)

]
< +∞.

Remark 2.5. Let F in L0
(
Ω,FN

∞,P
)
. The definition of the Malliavin derivative

together with the the relation

a2 − b2 = (a− b)2 + 2b(a− b), ∀(a, b) ∈ R2,

entail that DF 2 rewrites as

D(t,θ,x)F
2 = F 2 ◦ ε+(t,θ,x) − F 2 = |D(t,θ,x)F |2 + 2FD(t,θ,x)F, (t, θ, x) ∈ R2

+ × R. (2.2)

2.2 Stochastic analysis for the compound Hawkes process

We first recall the definition of a Hawkes process.

Definition 2.6 (Standard Hawkes process, [Haw71]). Let µ > 0 and ϕ : R+ → R+ be
a bounded non-negative function with ∥ϕ∥1 :=

∫∞
0
ϕ(u)du < 1. The standard Hawkes

process H := (Ht)t≥0 with parameters µ and ϕ is the counting process such that

(i) H0 = 0, P-a.s.,

(ii) its (FN -predictable) intensity process is given by

λt := µ+

∫
(0,t)

ϕ(t− s)dHs, t ≥ 0, (2.3)

that is for any 0 ≤ s ≤ t and A ∈ FN
s ,

E [1A(Ht −Hs)] = E
[∫

(s,t]

1Aλrdr

]
.
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Note that the stochastic integral in (2.3) is defined pathwise, i.e.∫
(0,t)

ϕ(t− s)dHs :=
∑
0<s<t

ϕ(t− s)1{∆sH=1},

where the sum is well defined and finite P-a.s. for every t, where we used the notation
∆sH := Hs −Hs−. This definition can be generalized as follows.

Definition 2.7 (Compound Hawkes process). Consider a Hawkes process H with pa-
rameters µ > 0 and ϕ : R+ → R+ bounded non-negative with ∥ϕ∥1 < 1. Given (Xi)i≥1

an i.i.d sequence of random variables, independent of H, with common distribution ν,
the process

St :=
Ht∑
i=1

Xi, t ≥ 0, (2.4)

is called a compound Hawkes process.

Our approach uses the now classical construction of the Hawkes process by “thinning”
or “Poisson embedding” as the unique solution to an SDE with respect to a Poisson
random measure N , see e.g. [Oga81, DVJ88, BM96, CGMT20] and references therein.
We refer to [HRR20, Theorem 3.3] for a precise statement on the uniqueness of so-
lutions to the SDE (2.5). Here, we set FH := (FH

t )t≥0 (respectively FS := (FS
t )t≥0)

the natural filtration of H (respectively of S) and FH
∞ := lim

t→+∞
FH

t (respectively

FS
∞ := lim

t→+∞
FS

t ), and we have FH
t ⊂ FS

t ⊂ FN
t as H is completely determined by

the jump times of H, which coincide with those of S.

Theorem 2.8 (See Theorem 3.3 of [HRR20]). Let µ > 0 and ϕ : R+ → R+ such that
∥ϕ∥1 < 1. The system of stochastic differential equations

St =

∫
(0,t]×R+×R

x1{θ≤λs}N(ds, dθ, dx), t ≥ 0,

Ht =

∫
(0,t]×R+×R

1{θ≤λs}N(ds, dθ, dx), t ≥ 0,

λt = µ+

∫
(0,t)

ϕ(t− u)dHu, t ≥ 0.

(2.5)

admits a unique solution (X,H, λ) with H (resp. λ) FN -adapted (resp. FN -predictable),
where (H,λ) is a Hawkes process in the sense of Definition 2.6, and S is a compound
Hawkes process in the sense of Definition 2.7.
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We note that when ν(dx) = δ1(dx) equals the Dirac measure concentrated at x = 1,
i.e. Xi ≡ 1 in (2.4), then S ≡ H.

Notation 2.9. We let Z := (Z(t,θ))(t,θ)∈R2
+

denote the stochastic process defined as

Z(t,θ) := 1{θ≤λt}, (t, θ) ∈ R2
+. (2.6)

In this paper we consider stochastic integrals

F = δN(ZZ)

=

∫
R2
+×R

Z(t,x)Z(t,θ) (N(dt, dθ, dx)− dtdθν(dx))

=

∫
R+×R

Z(t,x) (dHt − λtdtν(dx))

against the (compensated) Hawkes process, with Z := (Z(t,x))(t,x)∈R+×R an element of
PN

2 . Most of our analysis will be carried out for a deterministic Z.

We now specify the Malliavin derivative and the integration by parts formula (2.1)
for functionals of the Hawkes process (the Hawkes itself H or the compound Hawkes
process X). For this, we note that by definition of H, any jump of N at an atom
(t, θ, x) turns out to be a jump of H if and only if θ ∈ [0, λt], as stated in the next
proposition.

Proposition 2.10 (Proposition 2.16 [HHKR21]). For any FH
∞-measurable random

variable F we have

D(t,0,x)F = D(t,θ,x)F, θ ∈ [0, λt], t ≥ 0, x ∈ R, P−a.s..

In view of Proposition 2.10, for any FH
∞-measurable random variable F , we set

D(t,x)F := D(t,0,x)F, t ≥ 0, x ∈ R. (2.7)

Next, we state an integration by part formula for functionals of Hawkes processes.
We recall below the integration by parts formula obtained in a particular case of
[HHKR21] for the Hawkes process.

Theorem 2.11. (Theorem 2.20 in [HHKR21]) Let Z := (Z(t,θ))(t,θ)∈R2
+

be the stochas-
tic process defined in (2.6) and Z := (Z(t,x))(t,x)∈R+×R be a FN -predictable process
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satisfying

E
[∫

R+×R
|Z(t,x)|2λtdtν(dx)

]
<∞ and E

[(∫
R+×R

Z(t,x)λtdtν(dx)

)2
]
<∞.

Then, for any F ∈ L2
(
ΩN ,FN

∞,P
)

we have

E
[
FδN(Z1{θ≤λ·})

]
= E

[∫
R+×R

λtZ(t,x)D(t,x)Fdtν(dx)

]
. (2.8)

We conclude this section with a commutation property for the operators D and δN .

Lemma 2.12. Let z := (z(t, x))(t,x)∈R+×R ∈ L2(R+ × R, dt ⊗ ν) and consider Z :=

(Z(t,θ))(t,θ)∈R2
+

given in (2.6). We have

D(t,x)δ
N(zZ) = z(t, x) + δN

(
zẐ t

)
, t ≥ 0, x ≥ 0, (2.9)

where
Ẑ t

(r,θ) := 1{r>t}1{λr<θ≤λr◦ε+(t,0,1)}
, r ∈ [t,+∞), θ ≥ 0.

Proof. The commutation relation (2.9) can be derived in the ramework of the Malli-
avin calculus with respect to N . In particular, according to [Pri09, Proposition 4.1.4],
for any (t, θ, x) ∈ R2

+ × R we have

D(t,θ,x)δ
N(zZ) = z(t, x)Z(t,θ) + δN(D(t,θ,x)(zZ)).

By the definition (2.7) of D(t,x) and the fact that z is deterministic, we obtain

D(t,0,x)δ
N(zZ) = z(t, x) + δN(zD(t,0,x)Z).

In addition, as ν does not appear in the expression of (H, λ) (see (2.5)), we have

D(t,0,x)Z(r,θ) = (Z ◦ ε(t,0,x)+})(r,θ) −Z(r,θ)

= 1{r>t}
(
1{θ≤λr◦ε+(t,0,x)}

− 1{θ≤λr}
)

= 1{r>t}1{λr<θ≤λr◦ε+(t,0,x)}

= 1{r>t}1{λr<θ≤λr◦ε+(t,0,1)}
.

where for the last equality, as remarked in the proof of Lemma 4.2, see also (4.3),
λr ◦ε+(t,0,x) does not depend on the value x which thus can be taken equal to x = 1.
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3 Main results

3.1 A general estimate

In Theorem 3.1 we present our main estimate for functionals of the form

F = δN(zZ)

=

∫
R2
+×R

z(t, x)Z(t,θ) (N(dt, dθ, dx)− dtdθν(dx))

=

∫
R+×R

z(t, x) (dHt − λtdtν(dx)) ,

where
Z(t,θ) = 1{θ≤λt}, (t, θ) ∈ R2

+,

and z(t, x) is a deterministic square-integrable function.

Theorem 3.1. Let z := (z(t, x))(t,x)∈R+×R ∈ L2(R+ × R, dt ⊗ ν), F := δN(zZ) and
Nγ2 ∼ N (0, γ2) with γ2 > 0. It holds that:

(i) dW
(
F,Nγ2

)
≤ E

[∣∣∣∣γ2 − ∫
R+×R

|z(t, x)|2λtdtν(dx)
∣∣∣∣]

+E
[∫

R+×R
|z(t, x)||D(t,x)F |2λtdtν(dx)

]
. (3.1)

(ii) If in addition, E[|F |3] < +∞ and z(t, x) satisfies

z(t, x) ≥ 0, for dt⊗ ν almost every (t, x), (3.2)

then
dW
(
F,Nγ2

)
≤ E

[∣∣∣∣γ2 − ∫
R+×R

|z(t, x)|2λtdtν(dx)
∣∣∣∣]+ E

[
F 3
]
. (3.3)

Remark 3.2. We note that the term E
[
F 3
]

in (3.3) is also the third cumulant of
the centered random variable F , see Section 4.8 of [CGS11] on the “third moment
phenomenon”. In particular, the vanishing of the first cumulant can lead to faster
convergence rates, see, e.g. [Pri18, Pri19], [Dun21], and Theorem 3.7 below.
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3.2 Quantitative limit theorem for compound Hawkes pro-
cesses

Throughout this section we consider

St =
Ht∑
i=1

Xi, t ≥ 0,

defined through the system (2.5), where (Xi)i is a sequence of independent and iden-
tically distributed random variables with common distribution ν, independent of the
Hawkes process H with intensity λ given by (2.3). We will assume in addition that
the kernel ϕ satisfies the following condition.

Assumption 3.3. The function ϕ : R+ → R+ is such that

∥ϕ∥1 =
∫ ∞

0

ϕ(u)du < 1, and
∫ ∞

0

uϕ(u)du < +∞.

Assumption 3.3 allows us to define

ψ :=
∑
n≥1

ϕ(∗n), (3.4)

where ϕ(∗n) is the n-th convolution of ϕ with itself, with∫ ∞

0

ψ(t)dt =

∫ ∞

0

∑
n≥1

ϕ(∗n)(t)dt =
∑
n≥1

∫ ∞

0

ϕ(∗n)(t)dt =
∑
n≥1

∥ϕ∥n1 =
∥ϕ∥1

1− ∥ϕ∥1
.

In the remainder of this paper, C denotes a positive constant that depends only on
µ, ϕ, ϑ and ν, and may change from place to place.

Theorem 3.4 (Quantitative limit theorem for the Hawkes process). Assume that
E[X2

1 ] < +∞ and that Assumption 3.3 holds, and set

γ2 := µ
ϑ2

1− ∥ϕ∥1
and FT :=

ST − E[X1]
∫ T

0
λtdt√

T
, T > 0.

Then, there exists C > 0 depending only on µ, ∥ϕ∥1, ϑ, such that

dW (FT ,N (0, γ2)) ≤ C√
T
, T > 0.
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Remark 3.5. As noted in its proof, the above bound relies on the approach of [Tor16,
HHKR21] to bound the Wasserstein distance between the distribution of F := δN(zZ)

and Nγ2 ∼ N (0, γ2). However, [Tor16, Theorem 3.1] only implies

dW (FT ,N (0, σ2)) ≤ B(T ), with B(T ) ≥
√

8

π
∥ϕ∥1

2− ∥ϕ∥1
1− ∥ϕ∥1

,

which does not converge to zero as T tends to +∞ when ϕ only satisfies Assump-
tion 3.3. The situation is similar in [HHKR21] which derives the bound

dW (FT ,N (0, σ2)) ≤ C√
T

+RT , (3.5)

where RT may not converge to 0 as T goes to +∞, except when ϕ is an exponential
or Erlang kernel, in which case we have RT = O(T−1/2), see Theorems 3.10 and 3.12
therein. Here, in the case of a deterministic integrand z we are able to remove RT in
(3.5) via a better estimate of∣∣E [γ2f ′(F )− f(F )F

]∣∣ ≤ ∣∣∣∣E [f ′(F )

(
γ2 −

∫
R+×R

z(t, x)λtD(t,x)Fdtν(dx)

)]∣∣∣∣
+

1

2

∣∣∣∣E [∫
R+×R

z(t, x)λtf
′′(F t,x

)
|D(t,x)F |2dtν(dx)

]∣∣∣∣
in (4.11), uniformly in f ∈ FW . While in [HHKR21] the first term is controlled only
for specific kernels ϕ with z a predictable process, in this paper, when z is deterministic
we write ∣∣∣∣E [f ′(F )

(
γ2 −

∫
R+×R

z(t, x)λtD(t,x)Fdtν(dx)

)]∣∣∣∣
≤
∣∣∣∣E [f ′(F )

(
γ2 −

∫
R+×R

|z(t, x)|2λtdtν(dx)
)]∣∣∣∣

≤ E
[∣∣∣∣γ2 − ∫

R+×R
|z(t, x)|2λtdtν(dx)

∣∣∣∣] ,
see Lemma 4.1 and (4.12), and as a consequence we derive explicit convergence rates
for compound Hawkes processes with general kernels ϕ. In addition, this approach
yields third order cumulant-type estimates when z is deterministic, see Theorem 3.1-
(ii), that were not obtained in [HHKR21].

In Theorem 3.7 we provide a faster rate of convergence by considering a set of smoother
test functions in the definition of the distance d4,∞ (see Notation A.1 in Appendix A)
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under additional conditions on the moments of the random variables Xi, as in the
following quantitative central limit theorem given of [CGS11].

Proposition 3.6. ([CGS11, Corollary 4.4 in Section 4.8]) Assume that

E[X1] = E
[
X3

1

]
= 0, E[X2

1 ] = 1, and E[X4
1 ] =

∫ ∞

−∞
x4ν(dx) < +∞.

Then, letting Wn := n−1/2
∑n

i=1Xi, n ≥ 1, we have

d4,∞(Wn,N (0, 1)) ≤ 11 + E[X4
1 ]

24n
.

The next result improves the rate of convergence T−1/2 of Theorem 3.4 to T−1 under
additional assumptions on the random sequence (Xi)i.

Theorem 3.7. Assume that Assumption 3.3 holds, that µ ≥ 0, and that

E[X1] = E
[
X3

1

]
= 0, E[X4

1 ] =

∫ ∞

−∞
x4ν(dx) < +∞,

and let
γ2 := µ

ϑ2

1− ∥ϕ∥1
and ϑ2 := E[X2

1 ].

Then, there exists C > 0 depending only on µ, ∥ϕ∥1, ϑ, such that

d4,∞(ST/
√
T ,N (0, γ2)) ≤ C

T
, T > 0.

Finally, as [HHKR21], we provide an alternative quantitative limit theorem by re-
placing the intensity process in the renormalisation with its asymptotic expectation.
This result extends the Wasserstein bound of [HHKR21, Theorem 3.13] from simple
Hawkes processes to compound Hawkes processes.

Theorem 3.8. Assume that E[X2
1 ] < +∞ and that Assumption 3.3 holds, and let

ϖ := µ
E[X1]

1− ∥ϕ∥1
and ΓT :=

ST −ϖT√
T

, T > 0.

Then, there exists C > 0 depending only on µ, ∥ϕ∥1, ϑ, such that

dW (ΓT ,N (0, ζ2)) ≤ C√
T
, T > 0,

where
ζ2 := µ

ϑ2 + ∥ϕ∥1(ϑ2 − (E[X1])
2)(∥ϕ∥1 − 2)

(1− ∥ϕ∥1)3
.
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4 Proofs

4.1 Technical lemmata

Lemma 4.1. Let z := (z(t, x))(t,x)∈R+×R ∈ L2(R+×R, dt⊗ ν) and consider Z defined
in (2.6). Then for any t ≥ 0 and φ : R → R such that φ

(
δN(zZ)

)
belongs to

L2
(
ΩN ,P

)
, we have Et

[
φ
(
δN(zZ)

)
δN
(
zẐ t

)]
= 0.

Proof. Letting F := δN(zZ), we have

Et

[
φ(F )δN

(
zẐ t

)]
=

∫ ∞

t

∫
R+×R

Et

[
z(s, y)1{λs<θ≤λs◦ε+(t,0,x)}

D(s,θ,y)φ(F )
]
dθν(dy)ds,

with, by definition,

1{λs<θ}D(s,θ,y)φ(F ) = 1{λs<θ}

[
φ

((∫
R2
+×R

z(t, x)Zt,ρ(N(dt, dρ, dx)− dtdρν(dx))

)
◦ ϵ+(s,θ,y)

)

−φ

(∫
R2
+×R

z(t, x)Z(t,ρ)(N(dt, dρ, dx)− dtdρν(dx))

)]
(4.1)

= 0,

as 1{λs<θ}Z(s,θ) = 0. More precisely, let

Ft :=

∫
[0,t]×R+×R

z(s, x)Zs,ρ(N(ds, dρ, dx)− dsdρν(dx)), t ≥ 0,

so that
F∞ =

∫
R2
+×R

z(s, x)Zs,ρ(N(ds, dρ, dx)− dsdρν(dx)),

and (Ft, λt)t∈R is solution to the SDE
Ft =

∫
(0,t]×R+×R

z(s, x)1{ρ≤λs}(N(ds, dρ, dx)− dsdρν(dx)), t ≥ 0,

λt = µ+

∫
(0,t)

ϕ(t− u)dHu, t ≥ 0.

Next, fix (s, θ, y) ∈ R2
+ × R. As 1{λs<θ}Z(s,θ) = 0, we have

Ft ◦ ε+(s,θ,y) = Ft, λt ◦ ε+(s,θ,y) = λt, 0 ≤ t < s,

and
1{λs<θ}Fs ◦ ε+(s,θ,y) = 1{λs<θ}Fs, 1{λs<θ}λs+ ◦ ε+(s,θ,y) = 1{λs<θ}λs+ .

14



As the process λs+ ◦ ε+(s,θ,y) triggers the jumps of F ◦ ε+(s,θ,y) and since it coincides
with λ on [0, s], the pair (F ◦ ε+(s,θ,y), λ ◦ ε+(s,θ,y)) solves the same SDE as (F, λ) and
thus coincides with it by uniqueness of the solution2; which yields the last equality
in (4.1).

Lemma 4.2. For all (t, η, x) ∈ R2
+ × R, it holds that:

D(t,η,x)λs ≥ 0, ds⊗ ν − a.e..

Proof. The main proof idea relies on a comparison principle for the specific SDE
involved, assessing that if intensity processes are ordered over the whole past (and
not at some given time only), then this ordering between counting processes and
intensities is preserved at future times. We recall that D(t,η,x)λs = λs ◦ ϵ+(t,η,x) − λs.
The conclusion follows from the definition of the intensity process λ which is the
unique solution to an SDE with respect to N derived from (2.5):

λs = µ+

∫
(0,s)×R+×R

ϕ(s− u)1{θ≤λu}N(du, dθ, dx).

Note that we can write for s ≥ t,

λs = µ+

∫
(0,t)×R+×R

ϕ(s− u)1{θ≤λu}N(du, dθ, dx)

+

∫
(t,s)×R+×R

ϕ(s− u)1{θ≤λu}N(du, dθ, dx), (4.2)

Similarly, for s ≥ t ≥ 0 we have

λs ◦ ϵ+(t,η,x) = µ+

∫
(0,t)×R+×R

ϕ(s− u)1{θ≤λu}N(du, dθ, dx)

+ ϕ(t− s) +

∫
(t,s)×R+×R

ϕ(s− u)1{θ≤λu◦ϵ+(t,η,x)}
N(du, dθ, dx), (4.3)

and λs ◦ ϵ+(t,η,x) = λs for all 0 ≤ s ≤ t, η ∈ R+ and x ∈ R. In addition, λt+ ◦ ϵ+(t,η,x) =
λt+ + ϕ(0) ≥ λt+ . Note that λs ◦ ϵ+(t,η,x) does not depend on x in Equation (4.3). Let
now

τ1 := inf
{
s > t : ∆sH ◦ ϵ+(t,η,x) ̸= 0

}
∧ inf

{
s > t : ∆sH ̸= 0

}
,

2As F is a counting process and λ is deterministic between two jumps times of F , the uniqueness
property is proved pathwise by considering the jump times of F which are completely determined
by the Poisson point process N and the intensity process λ. We provide the details on the method
of proof in the proof of Lemma 4.2 below where a comparison principle is derived.
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where we use the notation ∆sH := Hs+ −Hs. So τ1 is the first jump of the Hawkes
process H or of the shifted Hawkes process H ◦ ϵ+(t,η,x) after t. Hence, from (4.2)-(4.3)
we have

λs ◦ ϵ+(t,η,x) ≥ λs, s ∈ [0, τ1).

Thus, at time τ1 (note that since N is a Poisson point process we have τ1 < +∞, P-
a.s.), N jumps at an atom (τ1, θ1, x1) which, by the previous ordering between λ◦ϵ+(t,η,x)
and λ, imposes that τ1 is either a common jump time of H ◦ ϵ+(t,η,x) and H, or a jump
time of H ◦ ϵ+(t,η,x) only, but it cannot be a jump time for H and not for H ◦ ϵ+(t,η,x).
In both situations (common jump or only a jump for the shifted Hawkes process) we
have

λs ◦ ϵ+(t,η,x) ≥ λs, s ∈ [0, τ2),

where
τ2 := inf

{
s > τ1 : ∆sH ◦ ϵ+(t,η,x) ̸= 0

}
∧ inf

{
s > t : ∆sH ̸= 0

}
is the next possible candidate jump time of H and H ◦ ϵ+(t,η,x). Defining

τn+1 := inf
{
s > τn : ∆sH ◦ ϵ+(t,η,x) ̸= 0

}
∧ inf

{
s > t : ∆sH ̸= 0

}
, n ≥ 0,

and letting n go to +∞ concludes the proof.

In what follows, for ease of notation we recall the notation Et[ · ] := E[ · |FN
t ], t ∈ R+,

and recall that by (4.3) we have λ ◦ ε+(t,0,x) = λ ◦ ε+(t,0,1) for any (t, x) ∈ R+ × R.

Lemma 4.3. For fixed any 0 ≤ t < s ≤ T , let λ̂ts := λs ◦ ε+(t,0,1) − λs, and

Ĥ t
s := D(t,x)Hs − 1 =

∫
(t,s]×R+×R

1{λr<θ≤λr◦ε+(t,0,1)}
N(dr, dθ, dx). (4.4)

Then
(
Ĥ t, λ̂t

)
is a generalized Hawkes process (with a baseline intensity ϕ(· − t)) in

the sense that Ĥ t is a counting process starting at time t with stochastic intensity
process λ̂t. In addition, λ̂t satisfies

λ̂ts = ϕ(s− t) +

∫
(t,s)

ϕ(s− u)dĤ t
u, s > t, λ̂tt = 0, (4.5)

and the following relations hold true:

(i) for any p > 0

esssupt∈[0,T ]

(
Et

[∫ T

t

λ̂tsds

])p

≤ (∥ϕ∥1(1 + ∥ψ∥1))p, P− a.s.. (4.6)
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(ii)
∫ T

t

(
λ̂ts−Et

[
λ̂ts
])
ds =

∫ T

t

ψ(T −s)M̂t
sds, s ∈ (t, T ], where M̂t

s = Ĥ t
s−
∫ s

t
λ̂trdr.

(iii) For any p > 0, there exists Cp > 0 depending on p only and such that

esssupt∈[0,T ]Et

[∣∣∣∣∫ T

t

λ̂tsds

∣∣∣∣2
]
≤ Cp∥ψ∥21 < +∞. (4.7)

Proof. We note that
(
Ĥ t, λ̂t

)
is a generalized Hawkes process (with baseline inten-

sity 0) in the sense that Ĥ t is a counting process starting at time t with stochastic
intensity process λt. Indeed, the process M̂t defined as

M̂t
s := δN

(
1{t<r≤s}1{λr<θ≤λr◦ε+(t,0,1)}

)
=

∫
(t,s]×R+×R

1{λr<θ≤λr◦ε+(t,0,1)}
(N(dr, dθ, dx)− drdθν(dx))

= Ĥ t
s −

∫ s

t

λ̂trdr,

is a (FN
s )s≥t-martingale by (4.4)-(4.5). We refer to [HHKR21, Proposition 2.19] for

more details regarding the link between
(
Ĥ t, λ̂t

)
and the Malliavin derivative of (H, λ).

(i) A direct computation leads to (see [HHKR21, Proof of Lemma 4.2])

Et

[∫ T

t

λ̂tsds

]
=

∫ T

t

ϕ(s− t)ds+

∫ T

t

∫ T

u

ψ(T − u)dsϕ(u− t)du,

and in turns to (see [HHKR21, Lemma 4.2])

Et

[∫ T

t

λ̂tsds

]
≤ ∥ϕ∥1(1 + ∥ψ∥1), P− a.s.,

which gives (4.6).
(ii) This result is similar to the one for a Hawkes process with constant baseline
intensity µ. However, to make this paper self-contained we present the proof below.
Recall first that from [BDHM13, Lemma 3], given a locally bounded map h : R+ → R,
the unique solution to equation

f(s) = h(s) +

∫ s

0

ϕ(s− u)f(u)du,

is given by

f(s) = h(s) +

∫ s

0

ψ(s− u)h(u)du. (4.8)
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As M̂t
s = Ĥ t

s −
∫ s

t
λ̂trdr, we have

λ̂ts = ϕ(s− t) +

∫ s

t

ϕ(s− u)dM̂t
u +

∫ s

t

ϕ(s− u)λ̂tudu.

Taking the conditional expectation Et[ · ], we get

Et

[
λ̂ts
]
= ϕ(s− t) +

∫ s

t

ϕ(s− u)Et

[
λ̂tu
]
du,

which leads to

λ̂ts − Et

[
λ̂ts
]
=

∫ s

t

ϕ(s− u)dM̂t
u +

∫ s

t

ϕ(s− u)
(
λ̂tu − Et

[
λ̂tu
])
du.

This expression is true for any s > t, and can be extended to any s > 0 as follows:

1{s>t}
(
λ̂ts−Et

[
λ̂ts
])

= 1{s>t}

∫ s

t

ϕ(s−u)dM̂t
u+1{s>t}

∫ s

0

ϕ(s−u)1{u>t}
(
λ̂tu−E

[
λ̂tu
])
du.

Letting ft(s) := 1{s>t}
(
λ̂ts − Et

[
λ̂ts
])

being defined for any s > 0, and vanishing if
0 ≤ s ≤ t, and ht(s) := 1{s>t}

∫ s

t
ϕ(s − u)dM̂t

u, the above previous relation rewrites
as

ft(s) = ht(s) + 1{s>t}

∫ s

0

ϕ(s− u)ft(u)du.

As {s < t} implies {u < t} and so ft(u) = 0, the indicator function can be removed
and thus

ft(s) = ht(s) +

∫ s

0

ϕ(s− u)ft(u)du.

Applying (4.8) we thus get ft(s) = ht(s) +
∫ s

0
ψ(s− u)ht(u)du, which means

1{s>t}
(
λ̂ts − Et

[
λ̂ts
])

= 1{s>t}

∫ s

t

ϕ(s− u)dM̂t
u +

∫ s

0

ψ(s− u)1{u>t}

∫ u

t

ϕ(u− v)dM̂t
vdu.

Next, using Fubini’s theorem, the fact that the stochastic integrals are defined path-
wise, and the definition (3.4) of ψ, we have∫ T

t

(
λ̂ts − Et

[
λ̂ts
])
ds =

∫ T

t

∫ s

t

ϕ(s− u)dM̂t
uds

+

∫ T

t

∫ s

0

ψ(s− u)1{u>t}

∫ u

t

ϕ(u− v)dM̂t
vduds

=

∫ T

t

∫ s

t

ϕ(s− u)dM̂t
uds+

∫ T

t

∫ s

t

∫ s

t

ψ(s− u)1{u>v>t}ϕ(u− v)dM̂t
vduds
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=

∫ T

t

∫ s

t

ϕ(s− u)dM̂t
uds+

∫ T

t

∫ s

t

∫ s

v

ψ(s− u)ϕ(u− v)dudM̂t
vds

=

∫ T

t

∫ s

t

ϕ(s− u)dM̂t
uds+

∫ T

t

∫ s

t

(∫ s−v

0

ψ(s− v − z)ϕ(z)dz

)
dM̂t

vds

=

∫ T

t

∫ s

t

ϕ(s− u)dM̂t
uds+

∫ T

t

∫ s

t

(ψ ∗ ϕ) (s− v)dM̂t
vds

=

∫ T

t

∫ s

t

ϕ(s− u)dM̂t
uds+

∫ T

t

∫ s

t

(∑
n≥1

ϕ∗n ∗ ϕ

)
(s− v)dM̂t

vds

=

∫ T

t

∫ s

t

ϕ(s− u)dM̂t
uds+

∫ T

t

∫ s

t

(∑
n≥2

ϕ∗n

)
(s− v)dM̂t

vds

=

∫ T

t

∫ s

t

ϕ(s− u)dM̂t
uds+

∫ T

t

∫ s

t

(ψ(s− v)− ϕ(s− v)) dM̂t
vds

=

∫ T

t

∫ s

t

ψ(s− v)dM̂t
vds

=

∫ T

t

∫ T

v

ψ(s− v)dsdM̂t
v

=

∫ T

t

ψ(T − v)M̂t
vdv,

where we applied again Fubini’s theorem, and integration by parts over [t, T ].
(iii) By the Burkholder-Davis-Gundy inequality, we have

esssup{(t,s) : 0≤t≤s≤T}Et

[∣∣M̂t
s

∣∣2] ≤ Cesssupt∈[0,T ]Et

[
Ĥ t

T

]
= Cesssupt∈[0,T ]Et

[∫ T

t

λ̂tsds

]
leading to

esssup{(t,s) : 0≤t≤s≤T}Et

[∣∣M̂t
s

∣∣2] < +∞, P− a.s..

This relation shows that (iii) is a consequence of (ii). Indeed, if (ii) is satisfied, then
Cauchy-Schwarz’s inequality implies

Et

[(∫ T

t

(
λ̂ts − Et

[
λ̂ts
])
ds

)2
]
= Et

[(∫ T

t

ψ(T − s)M̂t
sds

)2
]

= 2

∫ T

t

∫ T

s

ψ(T − s)ψ(T − u)Et

[
M̂t

sM̂t
u

]
duds

≤ C∥ψ∥21.
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Combining this estimate with (4.6) we get immediately that for any p > 0,

esssupt∈[0,T ]

(
Et

[∣∣∣∣∫ T

t

λ̂tsds

∣∣∣∣2
])p

≤ C < +∞,

which proves (iii).

Lemma 4.4. Letting

Rt,T :=

∫
(t,T ]×R+×R

y1{λr<θ≤λr◦ε+(t,0,1)}
(N(dr, dθ, dy)− drdθν(dy)) , 0 ≤ t ≤ T,

we have
esssupt∈[0,T ]Et

[
|Rt,T |3

]
<∞, P− a.s..

Proof. Throughout this proof, C > 0 denotes a positive constant that may change
from line to line, and is independent of t and T considered below. By the Burkholder-
Davis-Gundy inequality, and the Jensen inequality we have

Et

[
|Rt,T |3

]
≤ CEt

[∣∣∣∣∫
(t,T ]×R+×R

y21{λr<θ≤λr◦ε+(t,0,1)}
N(dr, dθ, dy)

∣∣∣∣3/2
]

≤ C

(
Et

[∣∣∣∣∫
(t,T ]×R+×R

y21{λr<θ≤λr◦ε+(t,0,1)}
N(dr, dθ, dy)

∣∣∣∣2
])3/4

≤ C

(
Et

[∣∣∣∣∫
(t,T ]×R+×R

y21{λr<θ≤λr◦ε+(t,0,1)}
(N(dr, dθ, dy)− drdθν(dy))

∣∣∣∣2
])3/4

+ C

(∫ ∞

−∞
y2ν(dy)

)3/2
(
Et

[∣∣∣∣∫ T

t

λ̂trdr

∣∣∣∣2
])3/4

= C

(∫ ∞

−∞
y4ν(dy)

)3/4(
Et

[∫ T

t

λ̂trdr

])3/4

+ C

(∫ ∞

−∞
y2ν(dy)

)3/2
(
Et

[∣∣∣∣∫ T

t

λ̂trdr

∣∣∣∣2
])3/4

,

and the conclusion follows from (4.6)-(4.7).

Lemma 4.5. For T > 0, set

RT :=
HT −

∫ T

0
E[λs]ds√
T

− MT√
T (1− ∥ϕ∥1)

, and MT := HT −
∫ T

0

λudu.

Under the assumptions of Theorem 3.8, there exists a constant C > 0 such that

E[R2
T ] ≤

C

T
.
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Proof. Using [BDHM13, Lemma 4], we have

YT :=
1√
T
(HT − E[HT ])

=
1√
T

(
HT −

∫ T

0

E[λt]dt
)

=
1√
T

(
MT +

∫ T

0

ψ(T − s)Msds

)
,

hence

YT − MT√
T (1− ∥ϕ∥1)

=
MT√
T

(
1− 1

1− ∥ϕ∥1

)
+

1√
T

∫ T

0

ψ(T − s)Msds

= − 1√
T

∫ +∞

0

ψ(s)MTds+
1√
T

∫ T

0

ψ(T − s)Msds,

because
∫ +∞
0

ψ(s)ds = ∥ϕ∥1/(1− ∥ϕ∥1). Thus, if we set

RT =
1√
T

(∫ T

0

ψ(s)(MT−s −MT )ds−MT

∫ +∞

T

ψ(s)ds

)
.

We have that

E[R2
T ] ≤ 2

(
1

T
E[M2

T ]

(∫ +∞

T

ψ(s)ds

)2

+
1

T
E

[(∫ T

0

ψ(s)(MT −MT−s)ds

)2
])

= 2(A1 + A2).

Using the fact that the expected value of the square of a martingale is the expected
value of its quadratic variation which in this case is the process jumps we have, using
Assumption 3.3, that

A1 =
1

T
E [[M]T ]

(∫ +∞

T

ψ(s)ds

)2

=
1

T
E[HT ]

(∫ +∞

T

ψ(s)ds

)2

= O (1)

(∫ +∞

T

ψ(s)ds

)2

≤ O

(
1

T 2

)(∫ +∞

0

sψ(s)ds

)2

= O

(
1

T 2

)
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as in the proof of [BDHM13, Lemma 5]. By expanding the square, the second term
yields

A2 =
1

T
E

[(∫ T

0

ψ(s)(MT −MT−s)ds

)2
]

=
2

T
E
[∫ T

0

∫ s

0

ψ(s)(MT −MT−s)ψ(r)(MT −MT−r)drds

]
=

2

T

∫ T

0

∫ s

0

ψ(s)ψ(r)E
[
(M2

T −MTMT−s −MTMT−r +MT−rMT−s)
]
drds.

Since for any a ≤ b, E[MaMb] = E[M2
a] = E[Ha], we have that

A2 =
2

T

∫ T

0

∫ s

0

ψ(s)ψ(r)(E[HT ]− E[HT−s]− E[HT−r] + E[HT−s])drds

=
2

T

∫ T

0

∫ s

0

ψ(s)ψ(r)E[HT −HT−r]drds.

In order to bound the integral, we use once again [BDHM13, Lemma 4] to obtain

E[HT −HT−r] = rµ+

(
r

∫ T−r

0

ψ(u)du+

∫ T

T−r

ψ(u)(T − u)du

)
µ

= µr + µr

∫ T−r

0

ψ(u)du+ µ

∫ r

0

ψ(T − u)udu

≤ µr + µr∥ϕ∥1 + µ

∫ r

0

ψ(T − u)rdu

≤ Cr,

for some C > 0, and since ψ is nonnegative,

A2 ≤
C

T

∫ T

0

∫ s

0

ψ(s)ψ(r)rdrds

≤ C

T
∥ψ∥1

∫ T

0

rψ(r)dr,

which yields the desired result.

4.2 Proof of Theorem 3.1

According to Stein’s method, see Appendix A, the Wasserstein distance between F

and Nγ2 can be bounded by

dW
(
F,Nγ2

)
≤ sup

f∈FW

∣∣E[γ2f ′(F )− Ff(F )]
∣∣ ,
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see (A.1), where

FW :=
{
f : R → R, twice differentiable with ∥f ′∥∞ ≤ 1, ∥f ′′∥∞ ≤ 2

}
.

In addition, the right hand side is equal to 0 if and only if F ∼ N (0, γ2).
(i) We follow the beginning the Nourdin-Peccati’s methodology (see e.g. [PSTU10])and
apply the integration by parts formula to E[Ff(F )] for f in FW . More precisely,
according to [HHKR21, Proof of Theorem 3.4], and using the integration by parts
formula for the Hawkes process, see (2.8), we have

E [f(F )F ] = E
[
f(F )δN(zZ)

]
= E

[∫
R+×R

z(t, x)λtD(t,x)f(F )dtν(dx)

]
= E

[∫
R+×

z(t, x)λt

(
f(F ◦ ε+(t,0,x))− f(F )

)
dtν(dx)

]
.

By Taylor expansion, we have

f(F ◦ ε+(t,0,x))− f(F ) = f ′(F )D(t,x)F +
1

2
f ′′(F t,x

)
|D(t,x)F |2, (4.9)

where F t,x denotes a random element between F ◦ ε+(t,0,x) and F . Hence we have

E
[
γ2f ′(F )− f(F )F

]
= E

[
f ′(F )

(
γ2 −

∫
R+×R

z(t, x)λtD(t,x)Fdtν(dx)

)]
− 1

2
E
[∫

R+×R
z(t, x)λtf

′′(F t,x
)
|D(t,x)F |2dtν(dx)

]
. (4.10)

At this stage, we provide a different treatment of the first time by expanding D(t,x)F

according to (2.9). Thus

E
[
f ′(F )

(
γ2 −

∫
R+×R

z(t, x)λtD(t,x)Fdtν(dx)

)]
= E

[
f ′(F )

(
γ2 −

∫
R+×R

|z(t, x)|2λtdtν(dx)
)]

− E
[
f ′(F )

∫
R+×R

z(t, x)λtδ
N
(
zẐ t

)
dtν(dx)

]
,

so that

E
[
γ2f ′(F )− f(F )F

]
= E

[
f ′(F )

(
γ2 −

∫
R+×R

|z(t, x)|2λtdtν(dx)
)]

(4.11)

− 1

2
E
[∫

R+×R
z(t, x)λtf

′′(F t,x
)
|D(t,x)F |2dtν(dx)

]
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−
∫
R+×R

z(t, x)E
[
λtEt

[
f ′(F )δN

(
zẐ t

)]]
dtν(dx).

We now compute the last term in (4.11). By Lemma 4.1, we get

Et

[
f ′(F )δN

(
zẐ t

)]
= 0,

and the estimate (4.11) reads

E
[
γ2f ′(F )− f(F )F

]
=E

[
f ′(F )

(
γ2 −

∫
R+×R

|z(t, x)|2λtdtν(dx)
)]

− 1

2
E
[∫

R+×R
z(t, x)λtf

′′(F t,x
)
|D(t,x)F |2dtν(dx)

]
, (4.12)

which in turn implies∣∣E[γ2f ′(F )− f(F )F
]∣∣ ≤ ∣∣∣∣E [f ′(F )

(
γ2 −

∫
R+×R

|z(t, x)|2λtdtν(dx)
)]∣∣∣∣

+
1

2

∣∣∣∣E [∫
R+×R

z(t, x)λtf
′′(F t,x

)
|D(t,x)F |2dtν(dx)

]∣∣∣∣
≤ ∥f ′∥∞E

[∣∣∣∣γ2 − ∫
R+×R

|z(t, x)|2λtdtν(dx)
∣∣∣∣]+ ∥f ′′∥∞

2
E
[∫

R+×R
|z(t, x)||D(t,x)F |2λtdtν(dx)

]
,

which leads to (3.1) as f belongs to FW .
(ii) Using once again the integration by parts formula (2.8) for the Hawkes process and
the fact that (by an elementary algebraic computation) that D(F 2) = |DF |2+2FDF

(see Remark 2.5 and Relation (2.2)), we have

E
[
F 3
]
= E

[
δN(zZ)F 2

]
=

∫
R+×R

E
[
z(t, x)λtD(t,x)(F

2)
]
dtν(dx)

=

∫
R+×R

z(t, x)E
[
|D(t,x)F |2λt

]
dtν(dx) + 2

∫
R+×R

z(t, x)E
[
λt FD(t,x)F

]
dtν(dx)

=: T1 + 2T2. (4.13)

Note that T1 is exactly the second term in the right-hand side of (3.1), and thus the
result follows if we show that T2 ≥ 0. To this end we compute this term. Using
Relation (2.9) and integration by parts, we can expand this term as follows:

T2 =

∫
R+×R

z(t, x)E
[
λt FD(t,x)F

]
dtν(dx)
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=

∫
R+×R

|z(t, x)|2E [λt F ] dtν(dx) +

∫
R+×R

z(t, x)E
[
λt Fδ

N
(
zẐ t

)]
dtν(dx)

=

∫
R+×R

|z(t, x)|2E [λt F ] dtν(dx) +

∫
R+×R

z(t, x)E
[
λt Et

[
FδN

(
zẐ t

)]]
dtν(dx)

=

∫
R+×R

|z(t, x)|2E[λt F ]dtν(dx),

where we applied Lemma 4.1. By definition of F , we get that

T2 =

∫
R+×R

|z(t, x)|2E[λt F ]dtν(dx)

=

∫
R+×R

|z(t, x)|2E[λt δN(zZ)]dtν(dx)

=

∫
R+×R

|z(t, x)|2E
[∫

[0,t)×R
z(s, y)λsD(s,y)λtdsν(dy)

]
dtν(dx)

=

∫
R+×R

∫
[0,t)×R

z(s, y)|z(t, x)|2E
[
λsD(s,y)λt

]
dsν(dy)dtν(dx)

≥ 0, P− a.s.,

where for the last inequality we used Lemma 4.2 and the Assumption (3.2) on z(t, x).
To summarize, we have shown that

E
[
F 3
]
≥ E

[∫
R+×R

|z(t, x)||D(t,x)F |2λtdtν(dx)
]
. (4.14)

4.3 Proof of Theorem 3.4

Let T > 0, and note that we have FT = δN(zZ) with z(t, x) := 1{t∈[0,T ]}x/
√
T ,

(t, x) ∈ R+ × R. By Relation (3.1) in Theorem 3.1 we have

dW
(
F,Nγ2

)
≤ E

[∣∣∣∣γ2 − ϑ2

T

∫ T

0

λtdt

∣∣∣∣]+ 1√
T
E
[∫

R

∫ T

0

|x||D(t,x)FT |2λtdtν(dx)
]
.

(4.15)
On the other hand, by [HHKR21, Estimates on Term A2-Proof of Theorem 3.10] we
have

1√
T
E
[∫

R

∫ T

0

|x||D(t,x)FT |2λtdtν(dx)
]
= O(T−1/2),

for any ϕ satisfying Assumption 3.3. Regarding the first term in the right hand-side
of (4.15), we have

E
[∣∣∣∣γ2 − ϑ2

T

∫ T

0

λtdt

∣∣∣∣] ≤ ∣∣∣∣γ2 − ϑ2

T

∫ T

0

E[λt]dt
∣∣∣∣+ ϑ2

T
E
[∣∣∣∣∫ T

0

(λt − E[λt])dt
∣∣∣∣]
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= O(T−1/2),

since ∣∣∣∣γ2 − ϑ2

T

∫ T

0

E[λt]dt
∣∣∣∣ = O(T−1),

ϑ2

T
E
[∣∣∣∣∫ T

0

(λt − E[λt])dt
∣∣∣∣] = O(T−1/2),

by [HHKR21, Lemma 4.1] and [HHKR21, Estimate on Term A1,2 - Proof of Theo-
rem 3.10]. 2

As z(t, x) is non-negative, instead of (3.1) we could also have applied (3.3) which
involves the quantity E

[
F 3
T

]
, with

E
[
F 3
T

]
≥ 1√

T
E
[∫ T

0

∫
R
|x||D(t,x)FT |2λtdtν(dx)

]
,

by (4.14), which recovers the convergence with decay rate T−1/2 using the decompo-
sition (4.13), in which the first term coincides with the bound in (3.1) and the second
term is proved to decay as T−1/2 using [HHKR21, Lemma 4.2].

4.4 Proof of Theorem 3.7

Let T > 0. As m =
∫∞
−∞ xν(dx) = E[X1] = 0, ST = δN(zZ) with z(t, x) =

x1{t∈[0,T ]}/
√
T , using (A.1) in Appendix A it holds that :

∥ST −N (0, γ2)∥4,∞ ≤ sup
f∈F4

W

∣∣E[γ2f ′(ST )− STf(ST )
]∣∣,

with γ2 = ϑ2µ/(1 − ∥ϕ∥1), where ϑ2 = E[X2
1 ]. Following the lines of the proof of

Theorem 3.1 and using a Taylor expansion of order 3 for D(t,x)f(ST ), we have

f
(
ST ◦ε+(t,0,x)

)
−f(ST ) = f ′(ST )D(t,x)ST +

1

2
f ′′(ST )|D(t,x)ST |2+

1

6
f (3)
(
St,x
)
(D(t,x)ST )

3,

where St,x denotes a random element between ST and ST ◦ ε+(t,0,x). Relation (4.12)
then becomes

E
[
γ2f ′(ST )− f(ST )ST

]
= E

[
f ′(ST )

(
γ2 −

∫
R+×R

z(t, x)D(t,x)STλtdtν(dx)

)]
−1

2
E
[∫

R+×R
z(t, x)λtf

′′(ST )|D(t,x)ST |2dtν(dx)
]

−1

6
E
[∫

R+×R
z(t, x)λtf

(3)
(
St,x
)
(D(t,x)ST )

3dtν(dx)

]
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= E
[
f ′(ST )

(
γ2 −

∫
R+×R

|z(t, x)|2λtdtν(dx)
)]

−1

2
E
[∫

R+×R
z(t, x)λtf

′′(ST )|D(t,x)ST |2dtν(dx)
]

−1

6
E
[∫

R+×R
z(t, x)λtf

(3)
(
St,x
)
(D(t,x)ST )

3dtν(dx)

]
,

where we used Relation (2.9) for the Malliavin derivative of ST , i.e.

D(t,x)ST = z(t, x) + δN
(
zẐ t

)
, (4.16)

and Lemma 4.1. It is important to notice that the quantity δN
(
zẐ t

)
is independent

of x as λr ◦ ε+(t,0,x) is (see 4.3), and thus we have

δN
(
zẐ t

)
=

1√
T

∫
(t,T ]×R+×R

y1{λr<θ≤λr◦ε+(t,0,x)}
(N(dr, dθ, dy)− drdθν(dy))

=
1√
T

∫
(t,T ]×R+×R

y1{λr<θ≤λr◦ε+(t,0,1)}
(N(dr, dθ, dy)− drdθν(dy)).

Using the definition of z(t, x), we get

E
[
γ2f ′(ST )− f(ST )ST

]
= ϑ2E

[
f ′(ST )

(
µ

1− ∥ϕ∥1
− 1

T

∫ T

0

λtdt

)]
− 1

2
√
T
E
[∫ T

0

∫ ∞

−∞
xλtf

′′(ST )|D(t,x)ST |2dtν(dx)
]

− 1

6
√
T
E
[∫ T

0

∫ ∞

−∞
xλtf

(3)
(
St,x
)
(D(t,x)ST )

3dtν(dx)

]
= ϑ2E

[
f ′(ST )

(
µ

1− ∥ϕ∥1
− 1

T

∫ T

0

λtdt

)]
− 1

2T 3/2

∫ ∞

−∞
x3ν(dx)E

[∫ T

0

λtf
′′(ST )dt

]
−
∫∞
−∞ xν(dx)

2
√
T

E
[∫ T

0

λtf
′′(ST )

∣∣δN(zẐ t
)∣∣2dt]− ϑ2

T
E
[∫ T

0

λtEt

[
f ′′(ST )δ

N
(
zẐ t

)]
dt

]
− 1

6
√
T
E
[∫ T

0

∫ ∞

−∞
xλtf

(3)
(
St,x
)
(D(t,x)ST )

3ν(dx)dt

]
= ϑ2E

[
f ′(ST )

(
µ

1− ∥ϕ∥1
− 1

T

∫ T

0

λtdt

)]
− 1

6
√
T
E
[∫ T

0

∫ ∞

−∞
xλtf

(3)
(
St,x
)
(D(t,x)ST )

3ν(dx)dt

]
,
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where we used once again Lemma 4.1 and the fact that
∫∞
−∞ xν(dx) =

∫∞
−∞ x3ν(dx) =

0. Hence, we have

∣∣E [γ2f ′(ST )− f(ST )ST

]∣∣ ≤ ϑ2∥f ′∥∞
∣∣∣∣ µ

1− ∥ϕ∥1
− 1

T

∫ T

0

E[λt]dt
∣∣∣∣

+
1

T

∣∣∣∣E [f ′(ST )

∫ T

0

(λt − E[λt])dt
]∣∣∣∣+ 2∥f (3)∥∞

∫∞
−∞ x4ν(dx)

3T 2
E
[∫ T

0

λtdt

]
+
2∥f (3)∥∞

∫∞
−∞ |x|ν(dx)

3
√
T

E
[∫ T

0

λt
∣∣δN(zẐ t

)∣∣3dt]
= ϑ2∥f ′∥∞

∣∣∣∣ µ

1− ∥ϕ∥1
− 1

T

∫ T

0

E[λt]dt
∣∣∣∣+ 1

T

∣∣∣∣E [f ′(ST )

∫ T

0

(λt − E[λt])dt
]∣∣∣∣

+
2∥f (3)∥∞

∫∞
−∞ x4ν(dx)

3T 2
E
[∫ T

0

λtdt

]
+

2∥f (3)∥∞
∫∞
−∞ |x|ν(dx)

3T 2
E
[∫ T

0

|Rt,T |3λtdt
]

=: A1 + A2 + A3 + A4, (4.17)

where we set

Rt,T :=
√
TδN

(
zẐ t

)
=

∫
(t,T ]×R+×R

y1{λr<θ≤λr◦ε+(t,0,1)}
(N(dr, dθ, dy)− drdθν(dy)) .

We now treat the above three terms separately.

First, note that by [HHKR21, Lemma 4.1] we have A1 = O(T−1). In addition, as
E
[∫ T

0
λtdt

]
= O(T ) and since Et [|Rt,T |3] is bounded uniformly in t, T by Lemma 4.4,

we have A3 + A4 = O(T−1). It remains to deal with the term A2. Using [BDHM13,
Relation (14)] and [HHKR21, Proof of Theorem 3.10, Term A1,2], we get that∫ T

0

(λs − E[λs])ds =
∫ T

0

ψ(T − s)Msds,

where Ms := Hs −
∫ s

0
λudu. Hence, using (4.9), we have

E
[
f ′(ST )

∫ T

0

(λt − E[λt])dt
]
= E

[
f ′(ST )

∫ T

0

ψ(T − s)Msds

]
=

∫ T

0

ψ(T − s)E [f ′(ST )Ms] ds

=

∫ T

0

ψ(T − s)E
[
f ′(ST )δ

N(Z1{·≤s})
]
ds

=

∫ T

0

ψ(T − s)

∫ s

0

∫
R
E
[
λuD(u,x)f

′(ST )
]
ν(dx)duds
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=

∫ T

0

ψ(T − s)

∫ s

0

∫
R
E
[
λuf

′′(ST )D(u,x)ST

]
ν(dx)duds

+
1

2

∫ T

0

ψ(T − s)

∫ s

0

∫
R
E
[
λuf

(3)
(
Su,x

)
|D(u,x)ST |2

]
ν(dx)duds

=
1√
T

∫
R
xν(dx)

∫ T

0

ψ(T − s)

∫ s

0

E [λuf
′′(ST )] duds

+

∫ T

0

ψ(T − s)

∫ s

0

∫
R
E
[
λuEu

[
f ′′(ST )δ

N
(
zẐu

)]]
ν(dx)duds

+
1

2

∫ T

0

ψ(T − s)

∫ s

0

∫
R
E
[
λuf

(3)
(
Su,x

)
|D(u,x)ST |2

]
ν(dx)duds

=
1

2

∫ T

0

ψ(T − s)

∫ s

0

∫
R
E
[
λuf

(3)
(
Su,x

)
|D(u,x)ST |2

]
ν(dx)duds,

as
∫
R xν(dx) = E[X1] = 0 and Eu

[
f ′′(ST )δ

N
(
zẐu

)]
= 0 by Lemma 4.1, where Su,x

denotes a random element between ST and ST ◦ ε+(u,0,x). Hence, by (4.16) we have

E
[
f ′(ST )

∫ T

0

(λt − E[λt])dt
]

=
1

2

∫ T

0

ψ(T − s)

∫ s

0

∫
R
E
[
λuf

(3)
(
Su,x

)
|D(u,x)ST |2

]
ν(dx)duds

≤ 1

2
∥f (3)∥∞

∫ T

0

ψ(T − s)

∫ s

0

∫
R
E
[
λu|D(u,x)ST |2

]
ν(dx)duds

≤ 1

T
∥f (3)∥∞∥ψ∥1

∫
R
x2ν(dx)

∫ T

0

E [λu] du

+ ∥f (3)∥∞
∫ T

0

ψ(T − s)

∫ T

0

E
[
λuEu

[∣∣δN(zẐu
)∣∣2]]duds.

Next, by the Itô isometry, see e.g., [Pri09, Proposition 6.5.4] and (4.6), for some
constant C > 0 it holds that

Eu

[∣∣δN(Ẑu
)∣∣2] = 1

T

∫
R
x2ν(dx)

∫ T

u

∫ +∞

0

Eu

[∣∣1{λr<θ≤λr◦ε+(t,0,1)}
∣∣2]dθds

=
1

T

∫
R
x2ν(dx)

∫ T

u

Eu

[
λ̂us
]
ds

≤ C

T
, u ∈ [0, T ].

Thus, for some constant C > 0 we have

esssupT>0

∣∣∣∣E [f ′(ST )

∫ T

0

(λt − E[λt])dt
]∣∣∣∣ ≤ C∥f (3)∥∞∥ψ∥1

∫
R
x2ν(dx) supT>0

∫ T

0

E[λu]
T

du
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as (E [λu])u∈R+ is continuous by [BDHM13, Lemma 3] and limT→+∞ T−1
∫ T

0
E [λu] du =

µ/(1− ∥ϕ∥1), which shows that A2 = O(T−1) and concludes the proof.

4.5 Proof of Theorem 3.8

We start by proving the upper bound on the Wasserstein distance between the distri-
bution of

VT :=
ST −m

∫ T

0
E[λs]ds√

T

and N (0, ζ2). For this, we consider the normalized martingale

Ft :=
St −m

∫ t

0
λsds√

t

associated to the compound process S, we write

FT =
1√
T

(
ST −m

∫ T

0

λsds

)
=

1√
T
(ST −mHT ) +m

MT√
T
,

where MT := HT −
∫ T

0
λudu. Similarly, we have

VT =
1√
T

(
ST −m

∫ T

0

E[λs]ds
)

=
1√
T
(ST −mHT ) +mYT ,

with YT := (HT −
∫ T

0
E[λs]ds)/

√
T . Thus,

(1− ∥ϕ∥1)VT − FT = −∥ϕ∥1
ST −mHT√

T
+m(1− ∥ϕ∥1)RT ,

where we let
RT := YT − MT√

T (1− ∥ϕ∥1)
.

Next, we note that

δN
(
((x−m)1t≤T )(t,x)∈(R+×R)Z

)
=

∫ T

0

∫
R+×R

(x−m)1{θ≤λt} (N(dt, dθ, dx)− dtdθν(dx))

=

∫ T

0

∫
R+×R

(x−m)1{θ≤λt}N(dt, dθ, dx)−
∫ T

0

∫
R+×R

x1{θ≤λt}dtdθν(dx)
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+m

∫ T

0

∫
R+×R

1{θ≤λt}dtdθν(dx)

= ST −mHT .

Hence, using the fact that F is also written as a divergence, we have

(1− ∥ϕ∥1)VT = δN
(
(z(t, x))(t,x)∈(R+×R)Z

)
+m(1− ∥ϕ∥1)RT ,

where
z(t, x) :=

x+ (m− x)∥ϕ∥1√
T

1[0,T ](t).

We now proceed in the same manner as the proof of Theorem 3.4, only by replacing
x by (1− ∥ϕ∥1)x+ ∥ϕ∥1m. This proves that δN

(
(z(t, x))(t,x)∈(R+×R)Z

)
converges to a

centered Gaussian random variable of variance
µ

1− ∥ϕ∥1

∫
R
((1− ∥ϕ∥1)x+ ∥ϕ∥1m)2ν(dx)

=
µ

1− ∥ϕ∥1

∫
R
((1− ∥ϕ∥1)2x2 + 2(1− ∥ϕ∥1)∥ϕ∥1xm+ ∥ϕ∥21m2)ν(dx)

=
µ

1− ∥ϕ∥1
(
(1− 2∥ϕ∥1 + ∥ϕ∥21)ϑ2 + 2(1− ∥ϕ∥1)∥ϕ∥1m2 + ∥ϕ∥21m2

)
=

µ

1− ∥ϕ∥1
(
ϑ2 + ∥ϕ∥1(ϑ2 −m2)(∥ϕ∥1 − 2)

)
where the Wasserstein distance between the two variables is bounded by O(T−1/2).
By proceeding as in the proof of Theorem 3.13 in [HHKR21] it is enough to show that
E[R2

T ] = O(T−1), which is done in Lemma 4.5, to obtain

dW
(
VT ,N (0, ζ2)

)
≤ C√

T
.

Finally, by [BDHM13, Lemma 5], we have

VT − ΓT =
m√
T

(∫ T

0

E[λt]dt−
µT

1− ∥ϕ∥1

)
= O(T−1/2),

which yields the desired result.

A Elements of Stein’s method

In this section we describe elements of Stein’s method, which was has been introduced
by C.M. Stein in [Ste72], that are relevant to our analysis and to the derivation of
bounds of the form (A.1). We let h(i), i ≥ 1, denotes the ith derivative of h.
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Definition A.1. In what follows H denotes one of the following Hilbert spaces :

1. HW :=
{
h : R → R differentiable a.e. with ∥h′∥∞ ≤ 1

}
,

2. H4,∞ :=
{
h : R → R four times differentiable a.e. with max

1≤i≤4
∥h(i)∥∞ ≤ 1

}
.

Given F and G two random variables on a probability space (Ω,FN
∞,P), we let

dH(F,G) := sup
h∈H

|E[h(F )− h(G)]|

denote the distance (with respect to the class of test functions H) between the laws LF

and LG of F and G. In addition,

1. if H = HW we write dW for dHW
and corresponds to the Wasserstein distance;

2. if H = H4,∞ we write d4,∞ for dH4,∞.

We also set

1. FW :=
{
f : R → R twice differentiable map , ∥f ′∥∞ ≤ 1, ∥f ′′∥∞ ≤ 2

}
,

2. F4,∞ :=
{
f : R → R four times differentiable map , ∥f (i)∥∞ ≤ 1/i, i = 1, 2, 3, 4

}
,

and

FH :=

{
FW if H = HW ,

F4,∞ if H = H4,∞.

Let Nσ2 ∼ N (0, σ2), let H be one of the spaces in 1.-2. above, and let h in H.
C.M. Stein proved in [Ste72] (see also [CGS11, Lemma 2.6 and Section 4.8] for the
H4,∞ distance), that there exists a function fh in FW solution to the functional Stein
equation

h(x)− E[h(Nσ2)] = σ2f ′
h(x)− xfh(x), x ∈ R.

For F a centered random variable, plugging F in this equation and taking expecta-
tions, we get

|E[h(F )− h(Nσ2)]| =
∣∣E[σ2f ′

h(F )− Ffh(F )]
∣∣ ,

which yields
dH(F,Nσ2) ≤ sup

f∈FH

∣∣E[σ2f ′(F )− Ff(F )]
∣∣ . (A.1)

In addition, the right hand side is equal to 0 if and only if F ∼ N (0, σ2).
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