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Abstract
We derive convex comparison inequalities for stochastic integrals of the form
T T
/ o;dB; and / otdBy, where 0 < gf < o, are adapted processes with re-
0 0

spect to the filtration generated by a standard Brownian motion (Bt)te[o,T}>

and (Bt)te[O,T] is an independent Brownian motion. Our method uses forward-
backward stochastic integration and the Malliavin calculus, and is also applied
to jump-diffusion processes.
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1 Introduction

Partial orderings of probability distributions via convex comparison inequalities have
been introduced in economics as a risk management tool that yields finer information
than mean-variance analysis, cf. e.g. [9]. Namely, a random variable X* is said to be

more concentrated than another random variable X if

Elp(X")] < E[p(X)], (1.1)
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for all sufficiently integrable convex functions ¢ : R — R.

As is well known, when X* and X are Gaussian random variables written as

T T
X* =z +/ o (t)dB;, X = +/ o(t)dBy,
0 0

where o(t) and 0*(t) are deterministic functions and (B;).c[o,7] is a standard Brownian

motion, (1.1) holds if and only if

/0|a*(t)|2dt§/0 () |2dt, (12)

as can be shown using conditioning and the Jensen inequality, cf. e.g. [2], or by the

Dubins-Schwarz theorem on time-changed Brownian motion.

In this paper we are interested in deriving sufficient conditions for the convex concen-
tration inequality (1.1) in the case where o; and o] are random processes. When o,
and o} become random, the above condition (1.2) alone cannot be expected to yield
(1.1), nevertheless some results already exist in that direction. When X* = X7 is the

terminal value of a diffusion process (X )icpo,r) solution of

s

t
X;‘:x0+/ o*(X?)dB,,  tel0,T], (1.3)
0

and X = Xy is given by
T
XT =X —|—/ UtdBt, (14)
0

where (0¢ )0, is square-integrable and adapted with respect to the filtration (F3)scpo,n

generated by (B).cjo.r], it is known from [4] that (1.1) holds, i.e. we have
E[¢(X7)] < Elo(Xr)],
for convex ¢ : R — R, under the almost sure bound
o (X)) < foul, €0, T7.

This result relies on the preservation of convexity by the Markov semigroup of (1.3),

and this method has been extended to multidimensional jump-diffusion processes in
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13].

Our goal in this paper is to state a different extension of the above results to the
case where (0} )¢cpo,r) does not have to be a diffusion coefficient. More precisely,
(07 )tejo,rp Will be an adapted process integrated against an independent Brownian

motion (Bet)te[oj], i.e. (1.3) is replaced with
t A
X, = xo +/ o1dBs, t €10,7],
0

while (1.4) still holds, i.e.
T
Xt =9 +/ odBy,
0

where (0¢):ejo,r1 is (F¢)-adapted as (07 )iejo17-

This question has also been investigated in the multidimensional case as an application
of forward-backward stochastic calculus in [2] Theorem 4.1, however the argument of

2] is valid only when (07 )icpo,r] is a deterministic function.

Clearly, the variance inequality

T T
Var[X3] = E V |af|2dt] <E [/ \ot|2dt} — Var[Xy]
0 0
holds under the bound
lof| < |oyl, dP —a.s., te€][0,T], (1.5)

however this does not suffice to yield the convex concentration inequality (1.1) with-

out additional assumptions, as noted from (1.8) below.

Our main tool will be Proposition 2.4 below, which states that
1 t
Bo06+ )] = Blo(t,+ )]+ 38 | [ 0"+ M7)(ou? = o)
1 t T
+5F [/ 0, ¢® (M, + M;;)/ D5|a:|2dvdu] , (1.6)
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0 <s <t forall ¢ € C3(R) with #®) bounded, where D? denotes the Malliavin
gradient on the Wiener space with respect to (By)ser, , cf. (2.10) below. From (1.6)

we show in Corollary 4.2 below that (1.1) holds for all convex functions ¢ with convex

p(fa)]seo(frm). o

provided that, in addition to (1.5), the processes o, and o} satisfy the condition

derivative, i.e.

o DPlor? >0, dP—as, 0<s<t<T. (1.8)
It can be checked from (1.6) that a condition of the form (1.8) can be necessary for
(1.1) to hold when ¢®(z) > 0, x € R, by taking for example 0 < o, = o7, t € [0, T].

T
Note also that (1.8) is invariant only under change of sign of o} as the law of / o1dBy
0

is not symmetric in general.

The pure jump and mixed jump-diffusion cases are treated in Corollary 4.3 and The-
orem 4.1. Next, we consider some examples of applications of (1.7) in the continuous

case.

Examples

As a first example of application of (1.7), when o} and o, have the form
O': = f*(t7 Bt) and Oy = f(t, Bt)a t e [07T],

for f, f* € C}(R, x R), we have

a *
7207 Do} = f(s, B (1, B)

Xz

(t7 Bt)l[o,t]<8)7 Sut € [O,T],

and we find that .
X* = J,’O + / f*(t, Bt)dBt
0

is more concentrated than

T
X = Ty + / f(t, Bt)dBt,
0



provided
0< f(tx) < flt,x), t€[0,T], zeR,

and x — f*(¢,x) is non-decreasing for all ¢ € [0, .

As a second example, when
T R T
X7 = xg +/ o/ (X)dBy, and Xp=x¢+ / o0.dB;,
0 0

i.e. of takes the form o} = o;(X;), where z +— o} (x) is Lipschitz uniformly in ¢,
Condition (1.5) holds if

o7 (Xo)| < o], dP —a.s., te][0,T],
and (1.8) reads
’ / t
0,07 (X)or (X,)DEX, = 0,07 (X))o} (Xy) (/ D56,dB, + 05> >0, (1.9)

0<s<t<T.

When o and o} both take the form of = o7 (X;) and o, = 04(Xy), i.e.
T R T
X" :m0+/ o/ (Xy)dB; and X :x0+/ o (Xy)dBy,
0 0
Condition (1.5) reads
of ()| < ow(x)],  xeR, te[0,T],
and since
Djoy(X:) = a;"(Xt)Dth
/ ¢ 1/
= o, (Xy)os(Xs) exp (/ o, (X,)dB, — 5/ |0;(Xu)|2du) ,
0 0
s,t € [0,T], cf. e.g. Exercise 2.2.1 page 124 of [7], Condition (1.8) is equivalent to

(04(X)) 207 (X)o! (X)) >0,  s,te0,T], (1.10)



hence (1.1) holds when z — |0 (z)| is non-decreasing on the state space of X;. This

is the case in particular when X7} and X are represented as
T R T
X7 =1z +/ Xio*(t)dBy and Xp=x0+ / Xio(t)dBy,
0 0
where zy > 0 and o*(¢), o(t) are deterministic functions such that
(@) < le@)l,  te[0,T].

The remaining of this paper is organized as follows. In Section 2 we state the main
prerequisites on forward-backward stochastic calculus and on the Malliavin calculus,
including Proposition 2.3 on increasing forward-backward martingales in the convex
order. Next we derive convex concentration inequalities for forward-backward mar-

tingales in Section 3, and for stochastic integrals in Section 4.

2 Forward-backward integrals and the Malliavin
calculus

In this section we present the forward-backward Ito formula and the associated iden-
tities in expectation that will be used to derive our main results. We denote by
(Bt)tepo,r) and p(dt, dx) a forward Brownian motion and jump measure on [0, 7] x R,
and by (B} )iejo,r] and p*(dt, dx) a backward Brownian motion and jump measure on
[0,7] x Ry, such that {By, u(dt,dx)} is independent of {B}, u*(dt,dxz)}. However,
(Bt)tejo,r) may not be independent of ju(dt,dx), and (B} )i,y may not be indepen-
dent of p*(dt, dx).

The forward and backward jump measures p(dt,dx) and p*(dt,dz) on [0,7] x R,
are assumed to have respective dual predictable projections of the form dtv,(dz) and
dtvy (dx). We also let (F;)icpo,r) denote the forward filtration generated by (By)icpo,1]
and pu(dt,dz), and we let (F})icor) denote the backward filtration generated by
(B} )teo,r) and p*(dt, dx).



Our results rely on the 1t6 type change of variable formula (2.3) for the (F;)-forward,
resp. (F; V Fr)-backward martingales

t t 00
M, = / osdBg + / / Js- o(p(ds, dx) — dsvg(dz)), t€0,7], (2.1)
0 0 J—-oo

resp.

M;:/ otd* B + // pH(d*s,dx) — dsvi(de)),  te€[0,T], (2.2)

in which (Us)se[O,T}v (Js,z)(s,x)e[O,T]X]Ra (Uz)se[O,T} and (J:,m)(s,x)e[O,T}xR are all square-

integrable (F;)-forward adapted processes.

For all ¢ € C*(R x R) we have the change of variable formula

* * ! a¢ * 82¢ * 2
O(My, M) = ¢(Mg, M) + N — (M-, M})dM, + pe 2(MU,JW )|ow|“du
/ / S( M+ Ty M) — S(M,y, M) — Ju,,z%(Mu,, M) pldu, dz)
st
— (M M )d* M — (92(M“’M)| u\ du
MuaMqu + Jqu,y) - ¢(Mu7 Mu+) — dyt, ya (M M ) K (d U,dy),
(2.3)
0 < s <'t, in which the forward integrals
¢
M,,—, M*dM, 2.4
[ Sy (2.4
¢(Mu* + Ju*,:m Mu> - ¢(Mu*7 Mu) - Ju*,x%(Mu*7 Mu) ,u(du, dCC)
st J—00
(2.5)

are anticipating and assumed to exist as limits in probability of Riemann sums, since
in general M is only (FV Fr)-measurable, and not F,-measurable, 0 < u < T.
In the sequel, sufficient conditions for the existence of the forward integrals will be

provided using the Malliavin calculus.



The proof of the change of variable formula (2.3) follows the same lines as the proof
of the forward-backward It6 formula of [5], to the exception that the forward integrals
(2.4) and (2.5) with respect to dM; and pu(dt,dx) are defined using limits in prob-
ability since they are anticipating. On the other hand, the backward integrals with
respect to d*M; and p*(d*t,dr) are backward integrals defined in the adapted sense
since (B )icp,r and p*(dt, dx) are independent of Fy.

In the sequel the (F;)-forward martingale (M;)icpo,r of (2.1) and the (F;)-backward
martingale (M;).co.r) of (2.2) will be given by

t ¢
M, = / oudB, + / Jy- (AN, — \ydu) , (2.6)
0 0

and
T T
My — / o' B: + / (dNY — Mdu)| 2.7)
t t
where (N;)icpp,r) and (N} )i, are respectively a forward Poisson process with inten-

sity (A¢)eejo,r] and a backward Poisson process independent of (N;)yco,r) with intensity

(A} )tefo,1), so that we have
vi(dr) = M6y, (dx) and v (dr) = A, (dz),

where (0¢)co.11: (07 )tcjor)s (Je)ecor]s (J5 )i, are square-integrable (F;)-adapted

processes. The filtrations (F)icjo,r) and (F¢)iejo,r) are now given by
Fi=0(Bs,Ns:0<s<t) and F =0(B;,N;:t<s<T), tel0,7]. (2.8)

Recall also that {(By):cjo,17, (Ne)tepo,r} is independent of {(B})icio,r1: (N )eco}-

In this case the It6 formula (2.3) rewrites as
t t=
OM+ 207) = oM.+ M) + [ (M MM, = [ S+ MM
st s

t t—
+ / Ju (M, + M?, J, )dN, / To (M + My, J5)d* N
st s

1 t
45 [ @O+ Mo~ 03 du, (2.9
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0 < s <t, where

O y) = ¢(x +y) — ﬁZ(x) LA G R

Next, we recall some results on the computation of the expectation of forward integrals
for continuous and jump processes by the Malliavin calculus. We let DP denote the

Malliavin gradient with respect to the Brownian motion (Bt)te[oj], defined from
17 Y n — N2 azz 1 Y n/) 9 bl

f € CL(R™). We also define the partial finite difference operator DY with respect to

the Poisson process (N¢):ejo,1], as
DYF(N) = F(N. + 1;00)(-)) — F(N.), t € [0,7),

for any random variable F': €2 — R, and consider the space Ly, defined by the norm

T T T T
Hu”im = HUH%Q(QX[O,T]) + E |:/ / |D8But‘2d5dt:| + E |:/ / |D£V’U,t‘2d8dt:| .
0 0 0 0

Let (DP~u); denote the trace of (DP " )steio,r] defined by the left limit

T
lim sup B [|DPu, — (DPu)s?] ds = 0, (2.11)

"o Jo (s—Lyvo<i<s

cf. Relation (3.7) in Definition 3.1.1 of [7], for u a process in Ly ;.

By Proposition 3.2.3 page 193 of [7], the expectation of the forward anticipating

integral with respect to Brownian motion can be computed as in the next lemma.*

Lemma 2.1. Assume that (Ut)te[o,T] is continuous in Loy and that the process DB~y

T
defined by (2.11) exists. Then the anticipating forward integral / udBy; exists in
0

L2(Q) and we have , .
E{ /0 utdBt} :E[ /O (DBu)tdt].

*Note that a sign has to be changed in Proposition 3.2.3 page 193 of [7].




By Corollary 2.9 of [1] or Corollary 4.1 of [8], see also Proposition 3.1 of [6], we also
have the following lemma, in which (DY~ u),, t € [0,T] is defined by

T
lim sup  E[|DNu, — (DY w),|*] ds =0,

n—=oe Jo (s—%)v0§t<s
as in (2.11).

Lemma 2.2. Let T > 0 and assume that u € Loy and (DY~ u)y)ieppr) € L* (2 %
[0,T7]). Then we have

E VOT utht] =F UOT utAtdt] +E UOT At(DN‘u)tdt} :

The operators DB", DP'* and DV, DN'* are similarly defined for the backward

Brownian motion (B} ).cjo,7] and Poisson process (N;)icp,77, from
B* * * - af * *
DFf(B,....B;)=>_ lyn ()5 -(B, . B, e (0,7,
i=1 !
f € CLHR™), and

DY F(N) = F(N. + 1pg)() - F(N),  t€ 0,71,

and they satisfy the backward analogs of Lemmas 2.1 and 2.2, i.e.

E UOT utd*Bf} = {/OT(DB*Jru)tdt} , (2.12)

E UOT utd*Nt*] =F UOT utA;dt] +E UOT A;;(DN*W)tdt] : (2.13)

The next proposition is the main result of this section.

and

Proposition 2.3. Assume that the processes (07 )icjo,r) and (J;)icor) belong to the
space Ly ;. For all ¢ € C*(R) with ¢ bounded we have

Eo(M; +M7)| = E [o(M, + M;)]

1 t
T3t [/ ¢"(My + M) (ol = |o3]*)du
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u’u

t
+FE U (JudatO( My, + M, Jy) — JENAb(M, + M J*))du}
1
+2E[/ o, (M, + M) / D55 dvdu}
+E { / O / JINH(DE g% / gzﬁ(?’)(Mu—f—M;—i—TJ;‘)devdu}
0

1
+FE [ / Ao / (DNg?) / (a;;+¢D;Va;)¢<3>(Mu+M;+¢D5Mg)d¢dudu]

+EUAJ/ MDY T /(J5+TD5VJ:)

/ ¢ (M, + M + DY M + p(J: + DY J;‘))dpdevdul

+EUAJ/ (DY) /(J;+TD5J:)

2
gﬁf (M, + M+ 7DNM* + p(J: + DY), Ju)dpdrdvdu}
0

t o2
+E [/ )\uJu/ (Divcr;‘)/ o +1DY ;)aqﬁ(M + M +7DNM? )devdu} :
s U 0

0 < s <t, where

blay) = d(z +y) — fz;(fv) —v®) L eR

Proof.  First we note that by the Itd formula (2.9) and the fact that the backward

stochastic integral of a backward adapted process has zero expectation, we get

t

B[00+ M)] = B (601, + 3]+ B| [ o0 + b2)as

st

1 t
v3E | [ #0020 - 0Py
tS t
+E [/ Juetb(M,- + M;‘,Ju)dNu} B U T (M, +M:,J;)A*du] .
st s

Next we note that we have the relations D" M7 = o711, 71(v), DY M = J*. 11,7 (v),
(D% 0), =0,0<u<wv,and

DSBM;*:/ DEo* d*B: + / DEJ* (d*N; — Xidv),  0<u<s,
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hence by the same argument as in Proposition 3.1.1 of [7], i.e. by the bound

T 2
/ sup FE ’DBM* / DEo* a*Br — / DEJ* (d* N} — Xidv)| | ds
0 (s—Li)vo<u<s
T 2
= / sup ds
0 (s—f Wo<u<s
T
2/ E [/ |DEgx|? dv] ds+2/ E V \ij;+|2/\;idv] ds,
0 (s—1/n)VO 0 (s—1/n)VvO0

(2.14)

/DBU* d* B + /DB (d* N} — Nidv)

IA

we have
T T

(DB~ M), = DB M :/ DEs* d*B: +/ DB J* (d* N} — \idv).

Similarly we have the relation
T T
DN M = / DYNo* d*B; +/ DN T (d*NF — Xidv),  0<u<s,

which shows that

(DN~ M™), / DNo* d*B? + / DN J* (d* N} — Xtdv) = DY M,

by the same bound as (2.14). Hence by Lemmas 2.1 and 2.2 and (2.12)-(2.13) the

expectation of the forward integral can be computed as follows:
t t
E {/ @' (M, + M;j)dBu} =F {/ (DB~ (0,0 (M, + M?))),du
r pt
_ B / 0o (DB ¢ (M, + M{j))udu}

- B _ / t o, (M, + MJ)(DB‘M*)udu}

rprt T
- E / ou¢" (M, + M) / Dfajd*B;ﬁdul
LY S .
+E [ / 0@ (M, + M) Du - (d*N;—/\Zdv)du}

- {/ / ou@" (M, +M*)Dfa$dud*B§]
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T VAL
+FE { / / 0@ (M, + MYDE T du (d* N} —)\jjdv)}
Zf ’ VAt
E { / DB / augzﬁ”(MquM;)Dfa:jdudv}
’ T . ’ VAL
+E [/ DY +/ auqb"(Mu—Fqu)Dijdu)\;’jdv}
U / o.DZ ¢"(M, + M) DEo *dudv}
+FE {/ / o DY ¢" (M, + M} )DBJ*du)\*dv}
VAL .
E { / / o, B (M, + M) (DB M;‘)Dfa;‘dudv}
+E [/ / ¢"(M, + M+ D) M) — ¢" (M, + M})) DfJ;duA;dv]
T *
E [/ W3 (M, + M )/ (D M;)Dfa:dvdu}
1
+E { / Ou / JINH(DE g / ¢<3>(Mu+M;+TJ;)devdu}
0
T
E [ / o, 0P (M, + M) / ;;D{f’a;;dvdu]

1
+E { / Ou / JINH(DE g / ¢(3)(Mu+M:—I—TJ;‘)devdu}
0

Similarly, by Lemma 2.2 we have, since DY J,- = 0,

E { / S/ (Mo + M) (AN, — AudU)}

= K

= K

t

(DN~ (J¢/ (M + M*>>>uxudu}

t

J(DN¢' (M + M*))uAudu}

t

Ju (¢'(My + M + DY M) — ¢/ (M, + M) Audﬂ

t

Ju/\u(DNM* / ¢" (M, + M} +TDNM*)deu}

J A / DYo *d*B*/ ¢" (M, —I—M*+7'DNM*)d7'du}
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1
[/ Judu / DN J*, d*N;-A;’;dv)/ ¢"(MU+M;+TD{XM;;)deu]
— U / JuAu (DY g% / ¢" (M, —|—M*+TDNM*)deud*B*]
+E [/ / JuAu (DY T, / ¢" (M, + M + DN M*)drdu (d* N} — )\*dv)]
VAL .
= E{ / / JuAu(DYo?) / ¢® (M, + M; + 7DY M) DP (M;“—l—TDiVMJ)drdudv}

[/ / T\ DNJ*)/ (¢" (M, + M 4+ 7DYM: + DN (M + DY M?))
(M, + M+ TDNM*))deu/\*dv]

= {/J)\/ (DNo?) / ¢ (M, + M* + DY M) (oF + DN )devdu]

+E U Judu / (DY T / (JF +7DNJ)
/ ¢ (M, + M + 7DY M + p(J; + 7DY Jj))dpdevdul :
0
On the other hand, still applying Lemma 2.2, we have

E [ / o (M, + ML) (AN, — )\udu)}

r t
= FE /Jqu@Z)(MquMJ,Ju)/\udu}

LS S

r t
= B | [ D04 0+ DY) = 0, + M) M

O

rprt
_ N q r*
_E/J(DM)Oax

(M, + M} +7DYNM*, J )dmudu]

= E/ /DNJ* (d* N} — Xidv /a (M, +M*+TDNM*J)dT/\udu}
X

+E { / Ju / DYNo*d* B! / gf(M + M +7DNM:, T )dT)\udu}
0

_ / / { 9 (M, + M? + DV M, J / DN I (d* N* — A;;dv)] drhudu

/ / { — (M, + M} +7DNM?, J,) / Divajjd*B;j} dr Mydu

= / / { u/ A DNJ*)DN*ZWM +M*+7D5MJ,Ju)dv} dr A\ du

14



/ / { u/ (DNo *)DB*gw(M + M +7DNM: )dv} dr M\ du

— U Aoy / / N{(DN g DN*Z¢(M + M + DY M7, J)dvdeu]

+E U )\uJu/ / (Df)’a:)Df*g—iﬁ(Mu%—M:+7D5M5,Ju)dvd7du}

- [/AJ// DNJ*( (M, + M +7DNM* + DN (M + DN M), J,)

—Z—WMU + M+ DVM?, Ju)> )\Zdvdeu]

+E U A / / (Do) M + M+ 7DYN M, J)Df*(M;%—TDiVM;‘)dvdeu}
= UAJ// (DN DN (M + 7D M)
aQw * N * N* * N *
(M + M; + 7D, M;+ pD, (M;+ 71D, M), J,)dp Nydvdrdu
0
+E U A / / (DNo) M + M+ 7DY M, J)Df*(]\/[;jLTDiVM;)dvdeu}

= E[/ )\uju/ A;D{LVJ;

1
/ (J: +7DNJ*) o f(M + M} + 7DY M + p(J: + DY), Ju)dpdfdvdu]
0

+E [/ A / / (DN o) M + M + DN M7, J)(crz—l—TDivaz)dvdeu]

4

Next we consider the application of Proposition 2.3 to the particular cases of con-
tinuous and pure jump processes, with respectively J, = J: = 0 and 0, = 0, = 0,
u € [0,7].

Continuous case

In the next proposition we assume that

Jy=J:r=0 or A, =X\ =0, u € [0,7]. (2.15)

15



Proposition 2.4. Assume that the process (o} )cor) belongs to the space Lo . Under

Condition (2.15), for all ¢ € C*(R) with ¢3) bounded we have
1 ! !/ * *
Blo(+ )] = Blo(420)] + 58 | [ 60+ Mol - lop o]

1 t T
+5E V au¢<3>(Mu+M;)/ D5|a;|2dvdu],

S

0<s<t.
Pure jump case
In the next proposition we assume that
o, =0, =0, u € [0,T]. (2.16)

Proposition 2.5. Assume that the process (J; )te[o 1) belongs to the space Ly ;. Under
Condition (2.16), for all ¢ € C3(R) with ¢* bounded we have

E[¢(M; + M7)| = E [o(M, + M7))]

u’u

t T 1
+EU AuJu/ AZ(DiYJ::)/ (Jy +7DL )
s u 0

1
/ ¢ (M, + M + DN M + p(JF + DY J{f))dpdrdvdu}

+E [//\J/ NA(DY T /(J;+TD;VJ;;)

(M + M+ 7DNM: + p(JF +7DY ), J, )dpdevdu] :

+E [ / Oudutd (Mo + M 1) — N T (Mo + M J*))du}

0 02
0<s<t.

3 Convex increasing forward-backward martingales

In this section we derive sufficient conditions for the forward-backward martingale
(M4 M )iepo,r) defined from (2.6) and (2.7) to be non-decreasing in the convex order
(1.1). The forward and backward filtrations (F;)cjo,r) and (F; )ejo,r) are given by
(2.8).
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Theorem 3.1. Assume that the processes (07 )icjo,r) and (J; )icpo,m belong to the space
]Lf271, and

i) ok < loy|, dPdu-a.e.,
i) 0 < Jr < .J,, dPdu-a.e,
iii) 0 < XEJ* < A\, Jy, dPdu-a.e,
w) (0 +7DNo*)DNo* > 0, dPdudv-a.e, 0 <u <wv, 7 €0,1],
v) 0,0:DPc* >0, 0,D2J* >0, DY J* > 0, dPdudv-a.e., 0 < u < v.
Then we have
Elp(M, + M)} < E[p(My+ M;)],  0<s<t, (3.1)
for all convex functions ¢ € C*(R) such that ¢’ and ¢" are convexz.
Proof. We start by assuming that ¢ € C3(R). Clearly, the terms
1 ! U * 2 * |2
38| [ 008+ Mol = o

t
B [ [ TN+ M) = TN+ M )

in Proposition 2.3 are non-negative due to Conditions (i) — (i7i) and the convexity of

¢, which show that the function

¢(z +y) — o) — yd'(x)
y

Y(x,y) =

= y/o (1—7)¢"(x + Ty)dr > 0, (3.2)

is non-negative in (x,y) € R x R, and non-decreasing in y > 0 for all fixed x € R.

Next, by Conditions (iv) and (v) we have
-t T
E / o, (M, + M{:)/ Df|a:|2dvdu} > 0,

- t T 1
E / 0w / JXNS(DEB ) / ¢(3)(MU+M;+TJv)devdu} >0,
LJ s u 0

r t T 1
E / Ju\y / (DY o¥) / ¢(3)(MU+M:+¢D5M§)(a§+7D50§)d¢dvdu] >0,
LJ s u 0
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U A / / (DN o) M + M +7DNM? )(a:+erja;)dvdeu} >0,

since

aZw ¢// T4y ¢1/ ¢(3)
@(x,y) A )= y( z) = @) >0,
(z,y) € R x Ry, by (3.2) and the convexity of ¢”, and

t T 1
EV )\UJU/ A:(D;VJ;)/ (J:+TD;VJ;)/1 <¢<3>(X )+ ;f(XM,J)> dpdevdu}
s u 0 0

Z 07

where

Xup =M, + M} +7DYM: + p(J; + 7D} ),

since

— (1 — T)J:: -+ TJ:(B., N. + 1[u,+00)('))
_— (3.3)

Jr+ TDiv(]:f = Jy+7(J;(B,N. + 1[u,+oo)(')) - J;)

dudvdP-a.e., 7 € [0,1]. The conclusion then follows from Proposition 2.3 when ¢ €
C3(R), and (3.1) finally extends to functions ¢ € C*(R). O

Next we consider the particular cases of continuous and pure jump processes, in which

some of the above assumptions can be relaxed.

Continuous case

Theorem 3.2. Assume that the process (O’Z‘)te[oj] belongs to the space Ly . Under

Condition (2.15), assume |o}| < |oy|, dPdu-a.e., and
o.DBoi? >0, dPdudv — a.e., 0<u<w. (3.4)
Then for all 0 < s <t <T, we have
Elp(M, + MJ)] < E[¢p(My+ M;)],  0<s<t<T, (3.5)
for all convex functions ¢ € C(R) with convex derivative ¢'.

18



Replacing (3.4) with
o.DBlo?|? <0, dPdudv — a.e.,

we find that (3.5) holds true for all convex function ¢ € C!(R) with concave derivative

¢
Pure jump case

Theorem 3.3. Assume that the process (J; )icjor) belongs to the space Loq. Under

Condition (2.16), assume that the following conditions are satisfied:
i) 0 < Jr<J,, dPdu-a.e,
i) 0 < NJF < A\ Jy, dPdu-a.e,
i) DNJ* >0, dPdudv-a.e, 0 < u < v,
then we have
Elp(M;+ M) < E[p(My + M{)],  0<s<t<T, (3.6)

for all convex functions ¢ € C*(R) such that ¢' and ¢" are convex.

4 Convex ordering for stochastic integrals

In this section we apply the results of Section 3 to the derivation of convex concen-

tration inequalities for random variables represented as stochastic integrals, as

T T
/ oudB, + / Ju- (AN, — Aydu),
0 0

and
T R T R
/ o.dB, —|—/ Jr_(dN, — X, du),
0 0
where (0¢)icio,17, (07 )tejo,r1s (Je)teo 11, (J;)iepp,r are square-integrable and (F;)-adapted,
(Bt)te[O,T] is a standard (forward) Brownian motion and (Nt)te[oj] is a standard (for-

ward) Poisson process with intensity (A})¢co,r), mutually independent and indepen-

dent of (By)tco,r) and (Ny)iejo,r1-
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Theorem 4.1. Assume that the processes (07 )icjo,r) and (J; )icpo,m belong to the space

Ly, and
i) ok < lou|, dPdu-a.e.,
i) 0 < Jr < .J,, dPdu-a.e,
iii) NiJE < Ay Ju, dPdu-a.e,
w) (0f +7DNo*)DNo* > 0, dPdudv-a.e, 0 <u <w, 7 €[0,1],
v) 0,0 DBo* >0, 0,DBJ* >0, DNJ* >0, dPdudv-a.e., 0 < u < v.

Then we have

T T T T
E [gﬁ ( / oidB, + / J: (dN, — )\Zdu))] <E {qﬁ ( / 0.dB, + / Ju—(dN, — )\udu)ﬂ :
0 0 0 0

(4.1)

for all convex functions ¢ € C3(R) such that ¢' and ¢" are convex.

Proof. Consider the (forward) martingale

t t
M, = / otdB, + / J: (AN, — XNedu),  te[0,T],
0 0

A

where the processes (07 )icpo,r) and (J;)iepo,r) are (F;)-adapted. Defining the backward

Brownian motion (B} )icjo,r) and Poisson process (N )cjo.r] by
B =Br—B, N=Np—N, tel0,T], (4.2)
we have the identity in law
~ T A T A
Myp = / ondB, + / Jr_ (AN, — A du)
0 0

T T

= / otd B + / * (dNF — N du)
0 0

= MJ,

which holds since the integrands (o} )icpo,r) and (J;)icjo,r) are independent of the in-

tegrators (Bt)te[gﬂ“], (Nt)te[07T]7 and by the definition (4.2) of (Bf)te[o,T] and (Nt*>te[0,T]-
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We conclude by Theorem 3.1 which shows that
E[¢(Mr)] = E[¢(Mo + Mg)] < E[¢(Mr + M7)] = E[$(M)],
t € [0,7]. O
Note that if ¢ > 0 then Condition (iv) above can be replaced with
iv') DNo* > 0, dPdudv-a.e,

by the same argument as in (3.3) above.

The following results can be proved in a similar way in the continuous and pure jump

cases.

Corollary 4.2. Assume that the process (07 )icor) belongs to the space Lo y. Under
Condition (2.15), assume that |0 < |oy|, dPdudv-a.e. and

o.DB|o?|? >0, dPdudv — a.e., 0<u<w. (4.3)

b s b (o). e

for all convex functions ¢ € C(R) with convex derivative ¢'.

Then we have

The next corollary is stated in the pure jump case.

Corollary 4.3. Assume that the process (J; )icpo,m belongs to the space Ly ;. Under

Condition (2.16), assume that the following conditions are satisfied
i) 0 < Jr <J,, dPdu-a.e,
i) 0 < NJF < A\ Jy, dPdu-a.e,

iwi) DN J* >0, dPdudv-a.e., 0 < u < v.

Then for all 0 < s <t < T, we have

E {¢ < /O - A;;du))] <E {¢ ( /0 " (N, - )\udu))l @)

for all convex functions ¢ € C*(R) such that ¢’ and ¢" are convez.
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