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Abstract

We present exact analytical expressions of moments of all orders for neu-
ronal membrane potentials in the multiplicative nonstationary Poisson shot noise
model. As an application, we derive closed-form Gram-Charlier density expan-
sions that show how the probability density functions of potentials in such mod-
els differ from their Gaussian diffusion approximations. This approach extends
the results of Brigham and Destexhe (2015a;b) by the use of exact combinatorial
expressions for the moments of multiplicative nonstationary filtered shot noise
processes. Our results are confirmed by stochastic simulations, and apply to
single and multiple noise source models.

Key words: Filtered shot noise processes; Poisson point processes; moments; cumu-
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1 Introduction

Neuronal synaptic input can be modeled using multiplicative shot noise driven by

random conductance spikes, see for example Verveen and DeFelice (1974), Tuckwell

(1988) for the use of filtered Poisson shot noise. In the case of constant Poisson arrival
∗nprivault@ntu.edu.sg
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rates, the stationary limit of those systems has been analyzed in Kuhn et al. (2004),

Rudolph and Destexhe (2005), Richardson and Gerstner (2005), Burkitt (2006a), via

approximations formulas. In Wolff and Lindner (2008; 2010), exact analytical expres-

sions for the time-dependent mean and standard deviation of membrane potentials

have been derived in filtered Poisson shot noise models.

Poisson shot noise processes with time-dependent intensities have been used for

the modeling of time-inhomogeneous synaptic input in e.g. Amemori and Ishii (2001),

Burkitt (2006b), Cai et al. (2006). In this framework, the time evolution of the prob-

ability density functions of membrane potentials has been modeled by Gram-Charlier

density expansions based on moment and cumulant estimates in Brigham and Des-

texhe (2015a;b). It has been observed in Brigham and Destexhe (2015a) that Gram-

Charlier density expansions can provide a better fit of the actual densities generated

by Monte Carlo simulations, in comparison to the Gaussian diffusion approxima-

tion. However, only the first and second cumulants have been computed explicitly in

Brigham and Destexhe (2015a;b), while higher-order cumulants and moments have

been approximated by other means such as Monte Carlo simulations.

In this paper, we present closed-form expressions of moments and cumulants of

all orders for the solutions of first-order linear inhomogeneous Ordinary Differential

Equations (ODEs) driven by Poisson shot noise processes. As a result, we are able to

derive closed-form Gram-Charlier density expansions for the probability density func-

tions of membrane potentials. We work in the multiple source model of Brigham and

Destexhe (2015a), which is based on a Poisson point process ξ on X = IR× [0, N ] and

N shot noise conductance processes Qk(t, ξ) representing the inputs of N conductance

synapses. This paper can be regarded as a continuation of the moment computations

of Brigham and Destexhe (2015a;b), based on iterations of the Slivnyak-Mecke formula

(Slivnyak (1962), Mecke (1967)). Similar extensions to higher moments are possible

by the method of Wolff and Lindner (2008), based on multiple differentiations of the

Laplace transform of the integrated shot noise.

In Proposition 2.2 and Relation (2.6) we compute the joint moments of the mem-

brane potentials YN(t1, ξ), . . . , YN(tn, ξ) modeled according to the filtered shot noise

(2.1) below, with exact analytical expressions given for third and fourth moments

2



in Relations (3.3)-(3.4). Our results are based on closed-form moment identities for

stochastic integrals of random integrands with respect to Poisson point processes

which are stated in Proposition 5.6 in the appendix, see Privault (2009; 2012), and

Privault (2016) for a review. In comparison with Monte Carlo simulation estimates,

explicit expressions are suitable for algebraic manipulations and tabulation, e.g. they

can be differentiated in closed form with respect to time to yield the dynamics of the

cumulants, or with respect to any system parameter to yield sensitivity measures.

Those expressions are then applied in Section 3 to the explicit derivation of

cumulant-based Gram-Charlier expansions for the probability density function of the

membrane potentials YN(t, ξ) at any time t > 0, with numerical simulations pro-

vided in Section 4 in single and double source models. The simulation results show

significant differences, in particular in terms of skewness of densities, between the

Poisson shot noise model and its Gaussian diffusion approximation, cf. Figures 9

and 20. Namely, densities appear negatively skewed with positive excess kurtosis in

the single source model, and positively skewed with negative excess kurtosis in the

nonstationary multiple source model which involves excitatory and inhibitory leak

potentials of opposite signs, see Figure 23. We also note that higher-order cumulant

estimates obtained by Monte Carlo simulations can be subject to numerical instabili-

ties not observed with the closed-form expressions, see Figures 16-a,b), and 17-a) and

19. In addition, a single high-precision Monte Carlo simulation over a large number

of samples can be slower than the numerical evaluation of the corresponding exact

expression.

We proceed as follows. In Section 2 we review the construction of nonstation-

ary filtered shot noise processes in the multiple source model of Brigham and Des-

texhe (2015a), followed by its single source specialization, see Brigham and Destexhe

(2015b). We also discuss their diffusion approximation and a result on existence of

probability densities. Exact expressions for the joint moments and cumulants of the

potential VN(t) are then presented in Sections 3 and 4.1. In Section 4 we present nu-

merical experiments based on cumulant-based Gram-Charlier expansions in the single

source and double source models. Section 5 reviews the derivation of moment iden-

tities for the moments of Poisson stochastic integrals with random integrands, and
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includes the technical proofs of Propositions 5.3 and 5.6.

2 Nonstationary multiplicative shot noise model

In this section we consider the multiple source model of Brigham and Destexhe

(2015a), based on a Poisson point process ξ(dx) on the space

Ω :=
{
ξ = {xi}i∈I ⊂ X : #(A ∩ ξ) <∞ for all compact A ∈ B(X)

}
of locally finite configurations with the intensity measure µ(dt, dθ) on X = IR × S,

where S = [0, N ]. We consider N shot noise conductance processes

Qk(t, ξ) =

∫
(−∞,t]×S

gk(t− s, θ)ξ(ds, dθ) =
∑

(sj ,θj)∈ξ

gk(t− sj, θj), k = 1, . . . , N,

which represent the inputs of N conductance synapses. The shot noise kernels gk(u, θ)

represent the impulse response functions and are such that gk(u, θ) = 0 for u < 0,

where gk(t−s, θ) represents the leak conductance, the sj’s are the presynaptic events,

and the θj’s are modeling possible synaptic inhomogeneities. In this framework, the

moment generating function of the conductance process Qk(t, ξ) is known to be given

by

〈exp (Qk(t, ξ))〉 = exp

(∫
(−∞,t]×S

(egk(t−u,θ) − 1)µ(du, dθ)

)
,

see the Lévy-Khintchine formula (5.2). The system response is modeled by the mem-

brane potential YN(t, ξ) satisfying the unit-less shot noise Stochastic Differential Equa-

tion (SDE)

τ
dYN
dt

(t, ξ) = −YN(t, ξ) +
N∑
k=1

(wk − YN(t, ξ))Qk(t, ξ), (2.1)

where τ > 0 is the membrane time constant and wk ∈ IR, k = 1, . . . , N , represent the

(renormalized) leak potentials.

The solution of (2.1) is derived in the next proposition, which can be proved by

standard calculations, see § 2.1 of Brigham and Destexhe (2015a).

Proposition 2.1 The solution of (2.1) is given by the filtered shot noise process

YN(t, ξ) =
1

τ

N∑
k=1

wk

∫ t

−∞
Qk(z, ξ)e

−
∫ t
z Q0(u,ξ)dudz, t ∈ IR, (2.2)
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where

Q0(u, ξ) :=
1

τ
+

1

τ

N∑
k=1

Qk(u, ξ).

Letting

f(z, θ) :=
N∑
k=1

gk(z, θ) and f (w)(z, θ) :=
N∑
k=1

wkgk(z, θ), z ∈ IR, θ ∈ S,

we can also write

Q0(t, ξ) =
1

τ
+

1

τ

∫
(−∞,t]×S

f(t− s, θ)ξ(ds, dθ) =
1

τ
+

1

τ

∑
(sj ,θj)∈ξ

f(t− sj, θj),

and

YN(t, ξ) =
1

τ

∫ t

−∞
e−

∫ t
z Q0(s,ξ)ds

∫
(−∞,z]×S

f (w)(z − s, θ)ξ(ds, dθ)dz. (2.3)

Computation of joint moments

The next proposition gives a general formula for the computation of the joint moments

of YN(t1, ξ), . . . , YN(tn, ξ) in the multiple source model as a direct consequence of (2.3).

Proposition 2.2 We have the joint moment identity

〈YN(t1, ξ) · · ·YN(tn, ξ)〉 =
1

τn

∫ t1

−∞
· · ·
∫ tn

−∞
mn,N(z1, . . . , zn; t1, . . . , tn)dz1 · · · dzn,

(2.4)

where

mn,N(z1, . . . , zn; t1, . . . , tn) :=

〈 n∏
k=1

(
e
−

∫ tl
zl
Q0(u,ξ)du

∫
(−∞,zk]×S

f (w)(zk − u, θ)ξ(du, dθ)
)〉

.

(2.5)

By Proposition 5.6 in the appendix, the function mn,N(z1, . . . , zn; t1, . . . , tn) can be

evaluated as a sum over the set Π[n] of partitions π = {π1, . . . , πk} of {1, . . . , n} with
cardinality k = |π| = 1, . . . , n, as

mn,N(z1, . . . , zn; t1, . . . , tn) (2.6)

=
〈

e
−

∑n
l=1

∫ tl
zl
Q0(u,ξ)du

〉 ∑
π∈Π[n]

|π|∏
j=1

∫
(−∞,ẑπj ]×S

n∏
l=1

e
− 1
τ

∫ tl
zl
f(u−y,η)du

∏
i∈πj

f (w)(zi − y, η)µ(dy, dη),

5



(z1, . . . , zn) ∈ (−∞, t1] × · · · × (−∞, tn], with ẑπj = mini∈πj zi, where, by the Lévy-

Khintchine formula (5.2),〈
e
−

∑n
l=1

∫ tl
zl
Q0(u,ξ)du

〉
(2.7)

= e−
1
τ

∑n
l=1(tl−zl) exp

(∫
(−∞,max(t1,...,tn)]×S

(
e
− 1
τ

∑n
l=1

∫ tl
zl
f(u−s,θ)du − 1

)
µ(ds, dθ)

)
.

In the case of ordinary moments 〈(YN(t, ξ))n〉, the function mn,N(z1, . . . , zn; t1, . . . , tn)

is symmetric in (z1, . . . , zn) hence we can replace the sum over partitions in (2.6) with

the summation over integer compositions

mn,N(z1, . . . , zn; t, . . . , t) =
〈

e
−

∑n
l=1

∫ t
zl
Q0(u,ξ)du

〉
(2.8)

×
n∑
k=1

∑
l1+···+lk=n
l1≥1,...,lk≥1

n!

k!l1! · · · lk!

k∏
j=1

∫
(−∞,ẑk]×S

n∏
l=1

e
− 1
τ

∫ t
zl
f(u−y,η)du

l1+···+lk∏
i=1+l1+···+lk−1

f (w)(zi − y, η)µ(dy, dη)

with ẑk = minl1+···+lk−1<j≤l1+···+lk zj ∈ (−∞, t], k = 1, . . . , n. Explicit formulas for the

first four moments of YN(t, ξ) in the multiple source model (2.2) will be presented in

Section 3 as a consequence of (2.8). Such formulas allow for the explicit computation

of joint moment dynamics instead of solving the differential equation (2.9).

Dynamics of moments

The dynamics of moments 〈(YN(t, ξ))n〉 of YN(t, ξ) can be determined in terms of the

joint moments 〈(YN(t, ξ))n−1Qk(t, ξ)〉, 〈(YN(t, ξ))nQk(t, ξ)〉.

Proposition 2.3 The moment 〈(YN(t, ξ))n〉 of order n ≥ 1 of YN(t, ξ) satisfy the

differential equation

τ
d〈(YN(t, ξ))n〉

dt
= −nτ〈(YN(t, ξ))n〉 (2.9)

+n
N∑
k=1

wk〈(YN(t, ξ))n−1Qk(t, ξ)〉 − n
N∑
k=1

〈(YN(t, ξ))nQk(t, ξ)〉.

Proof. From (2.1), we have

τ(YN(t, ξ))n = τ(YN(0, ξ))n + τ

∫ t

0

d(YN(s, ξ))n

= τ(YN(0, ξ))n + nτ

∫ t

0

(YN(s, ξ))n−1dYN(s, ξ)
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= τ(YN(0, ξ))n − nτ
∫ t

0

(YN(s, ξ))nds

+n
N∑
k=1

wk

∫ t

0

(YN(s, ξ))n−1Qk(s, ξ)ds− n
N∑
k=1

∫ t

0

(YN(s, ξ))nQk(s, ξ)ds.

We conclude by taking expectations on both sides of the above expression, and by

differentiating with respect to t. �

The joint moments appearing in (2.9) can be computed using Corollary 5.5. Alterna-

tively, the dynamics of moments can be derived by differentiating closed-form moment

expressions (2.4) and (2.6) with respect to time.

Diffusion approximation

Our density estimates in Poisson shot noise models will be compared in the sequel

to their Gaussian diffusion approximation. A classical method to derive a diffusion

approximation for the evolution of membrane potentials, see e.g. Lánský and Lánská

(1987), is to use a Gaussian diffusion process ZN(t) matching the first and second

moments of YN(t) at any time t ≥ 0. For example, one can choose a mean-reverting

SDE of the form

dZN(t) = (a(t)− b(t)ZN(t))dt+ σ(t)dW (t), (2.10)

with respect to a standard Brownian motion (W (t))t∈IR+ , with solution

ZN(t) = ZN(0)e−
∫ t
0 b(s)ds +

∫ t

0

a(s)e−
∫ t
s b(u)duds+

∫ t

0

σ(s)e−
∫ t
s b(u)dudW (s),

and moments of first and second order given by

〈ZN(t)〉 = ZN(0)e−
∫ t
0 b(s)ds +

∫ t

0

a(s)e−
∫ t
s b(u)duds, (2.11)

and

〈(ZN(t)− 〈ZN(t)〉)2〉 =

∫ t

0

σ2(s)e−2
∫ t
s b(u)duds. (2.12)

The diffusion approximation of (YN(t))t∈IR+ by (ZN(t))t∈IR+ can then be constructed

by identifying the coefficients a(t), b(t) and σ(t) after matching (2.11)-(2.12) to the

first and second moments of YN(t), t ∈ IR+.
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Single source shot noise model

Before proceeding to the computation of moments in the multiple source case, we make

some comments on the single source case withN = 1. We have f (w)(z, θ) := w1g1(z, θ),

f(z, θ) = g1(z, θ), z ∈ IR, θ ∈ S, and

Y1(t, ξ) =
w1

τ

∫ t

−∞
Q1(z, ξ)e−

∫ t
z Q0(u,ξ)dudz,

with

Q0(u, ξ) :=
1

τ
+

1

τ
Q1(u, ξ) =

1

τ
+

1

τ

∫
(−∞,u]×S

g1(u− s, θ)ξ(ds, dθ).

In this case, the membrane potential

Y1(t, ξ) =
1

τ

∫ t

−∞
Q1(z, ξ) exp

(
−
∫ t

z

Q0(u, ξ)du

)
dz, (2.13)

solution of (2.1) for N = 1 can be rewritten by integration by parts on (−∞, t] as

Y1(t, ξ) = 1− 1

τ

∫ t

−∞
exp

(
−
∫ t

z

Q0(u, ξ)du

)
dz (2.14)

with Q0(u, ξ) := 1/τ +Q1(u, ξ)/τ , see Relation (4) in Brigham and Destexhe (2015b).

Figure 1 presents random simulations of the shot noise process Q1(t, ξ) and membrane

potential Y1(t, ξ) in the unit-less single source model (2.13) with the parameters of

Brigham and Destexhe (2015b), i.e. N = 1, X = IR × {0}, µ(dt) = 1[0,∞)(t)λ(t)dt,

plotted together with the intensity λ(t) := λ1[ta,tb](t), see also Figure 1 therein. Here,

we take T = 0.1s, w1 = 1 and g1(u) = he−u/τs1[0,∞)(u), with ta = 0.01s, tb = 0.05s,

τ = 0.02s, λ = 500Hz, h = 2, and τs = 0.0025s.
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(a) Shot noise process Q1(t, ξ).
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(b) Membrane potential Y1(t, ξ).

Figure 1: Filtered shot noise processes and intensity function λ(t) = λ1[ta,tb](t).
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Defining

Z(t, ξ) :=

∫ t

−∞
exp

(
−
∫ t

z

Q0(u, ξ)du

)
dz

=

∫ t

−∞
exp

(
−t− z

τ
− 1

τ

∫ t

z

Q1(u, ξ)du

)
dz,

the moments of

Y1(t, ξ) = 1− 1

τ
Z(t, ξ) (2.15)

can then be computed from the moments of Z(t, ξ). Relation (2.15) can be used

to estimate all joint moments of Y1(t, ξ) in (2.14) and to recover its joint cumulants

from (4.1) as in Relation (13) of Brigham and Destexhe (2015b), based on the joint

moments of Z(t1, ξ), . . . , Z(tn, ξ) given from the Lévy-Khintchine formula (5.2) as

〈Z(t1, ξ) · · ·Z(tn, ξ)〉

=

∫ t1

−∞
· · ·
∫ tn

−∞

〈
n∏
i=1

e
−

∫ ti
zi
Q0(u,ξ)du

〉
dz1 · · · dzn

=

∫ t1

−∞
· · ·
∫ tn

−∞
exp

(
−1

τ

n∑
l=1

(tl − zl) +

∫
X

(
e
− 1
τ

∑n
i=1

∫ ti
zi
g1(u−x,θ)du − 1

)
µ(dx, dθ)

)
dz1 · · · dzn,

see Relation (13) in Brigham and Destexhe (2015b). For n = 1 this yields

〈Y1(t, ξ)〉 = 1− 1

τ
〈Z(t, ξ)〉

= 1− 1

τ

∫ t

−∞
e−(t−z)/τ exp

(∫
(−∞,t]×S

(
e−

1
τ

∫ t
z g1(u−x,θ)du − 1

)
µ(dx, dθ)

)
dz,

see Equation (12) in Brigham and Destexhe (2015b). However, estimating the ex-

pression (2.14) requires to integrate over x in (−∞, t], which appears to be more

demanding from a numerical point of view. In addition, the integration by parts

method that leads to (2.14) is only available in the case of N = 1 source. For this

reason, in Section 3 we develop a different approach to the computation of moments

in both the multiple and single source models (2.2) and (2.13), by only using integrals

of continuous bounded functions on compact intervals.

3 Joint moments of Poisson shot noise SDEs

In this section, we present the computation of the first four moments of YN(t, ξ) in the

multiple source model, based on the results of Section 5. We start with the first two
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moments, in which case our results coincide with Brigham and Destexhe (2015a;b).

First moment

When n = 1 we have π1 = {1}, hence by (2.4) the moment 〈YN(t1, ξ)〉 can be computed

from

m1,N(z1, t1) =

〈
e
−

∫ t1
z1
Q0(u,ξ)du

∫
(−∞,z1]×S

f (w)(z1 − u, θ)ξ(du, dθ)
〉

(3.1)

=

∫ t1

−∞

〈
e
−

∫ t1
z1
Q0(u,ξ)du

〉 N∑
k=1

wk

∫
(−∞,z1]×S

e
− 1
τ

∫ t1
z1
gk(u−y,η)du

gk(z1 − y, η)µ(dy, dη)dz1,

see Equations (6) and (8) page 3 of Brigham and Destexhe (2015b), and Equation (19)

page 8 of Brigham and Destexhe (2015a).

Second joint moment

When n = 2 the two partitions of {1, 2} can be listed as π1 = ‘12’, and π1|π2 = ‘1|2’,

hence by (2.4) the joint moment 〈YN(t1, ξ)YN(t2, ξ)〉 can be computed from

m2,N(z1, z2; t1, t2)

=

〈
e
−

∫ t1
z1
Q0(u,ξ)du−

∫ t2
z2
Q0(u,ξ)du

∫
(−∞,z1]×S

f (w)(z1 − u, θ)ξ(du, dθ)
∫

(−∞,z2]×S
f (w)(z2 − u, θ)ξ(du, dθ)

〉
=
〈

e
−

∫ t1
z1
Q0(u,ξ)du−

∫ t2
z2
Q0(u,ξ)du

〉
×
(∫

(−∞,min(z1,z2)]×S
e
− 1
τ

∫ t1
z1
f(u−y,η)du− 1

τ

∫ t2
z2
f(u−y,η)du

f (w)(z1 − y, η)f (w)(z2 − y, η)µ(dy, dη)

+

∫
(−∞,z1]×S

e
− 1
τ

∑2
l=1

∫ tl
zl
f(u−y,η)du

f (w)(z1 − y, η)µ(dy, dη)

×
∫

(−∞,z2]×S
e
− 1
τ

∑2
l=1

∫ tl
zl
f(u−y,η)du

f (w)(z2 − y, η)µ(dy, dη)

)
=
〈

e
−

∫ t1
z1
Q0(u,ξ)du−

∫ t2
z2
Q0(u,ξ)du

〉
×

(
N∑
k=1

w2
k

∫
(−∞,min(z1,z2)]×S

e
− 1
τ

∫ t1
z1
gk(u−y,η)du− 1

τ

∫ t2
z2
gk(u−y,η)du

gk(z1 − y, η)gk(z2 − y, η)µ(dy, dη)

+
N∑

k,l=1

wkwl

∫
(−∞,z1]×S

e
− 1
τ

∫ t1
z1
gk(u−y,η)du− 1

τ

∫ t2
z2
gk(u−y,η)du

gk(z1 − y, η)µ(dy, dη)

×
∫

(−∞,z2]×S
e
− 1
τ

∫ t1
z1
gl(u−y,η)du− 1

τ

∫ t2
z2
gl(u−y,η)du

gl(z2 − y, η)µ(dy, dη)

)
, (3.2)
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which recovers Appendix A page 11 of Brigham and Destexhe (2015a).

Figure 2 presents numerical simulations of first moment and standard deviation in the

unit-less single source model (2.13) of Figure 1, together with the mean obtained by

Monte Carlo simulations, and is consistent with Figure 1 in Brigham and Destexhe

(2015b).
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Figure 2: Mean and standard deviation of Y1(t, ξ) with λ(t) = λ1[ta,tb](t).

The next Figure 3 presents estimates of the correlations Cor(Y1(t1, ξ), Y1(t1+t, ξ)) and

of the second joint moments 〈Y1(t1, ξ)Y1(t1 + t, ξ)〉, with t1 := 25ms and t ∈ [0, 20ms].
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(b) Second joint moments.

Figure 3: Correlation and second joint moments of Y1(t1, ξ) and Y1(t1 + t, ξ).

The following exact analytical formulas for third and fourth moments follow from the

application of Proposition 2.2 with n = 3, 4.
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Third joint moment

When n = 3 there are 5 partitions of {1, 2, 3}, which can be listed as

π1 = ‘123’,

π1|π2 = ‘12|3’; ‘1|23’; ‘13|2’,

π1|π2|π3 = ‘1|2|3’,

hence by (2.4) the third joint moment 〈YN(t1, ξ)YN(t2, ξ)YN(t3, ξ)〉 can be computed

from

m3,N(z1, z2, z3; t1, t2, t3) =

〈
e
−

∑3
l=1

∫ tl
zl
Q0(u,ξ)du

3∏
l=1

∫
(−∞,zl]×S

f (w)(zl − u, θ)ξ(du, dθ)
〉

=
〈

e
−

∑3
l=1

∫ tl
zl
Q0(u,ξ)du

〉 ∑
π∈Π[3]

|π|∏
j=1

∫
(−∞,ẑπj ]×S

e
− 1
τ

∑3
l=1

∫ tl
zl
f(u−y,η)du

∏
i∈πj

f (w)(zi − y, η)µ(dy, dη)

=
〈

e
−

∑3
l=1

∫ tl
zl
Q0(u,ξ)du

〉(∫
(−∞,min(z1,z2,z3)]×S

e
− 1
τ

∑3
l=1

∫ tl
zl
f(u−y,η)du

3∏
i=1

f (w)(zi − y, η)µ(dy, dη)

+
∑

π1∪π2={1,2,3}

2∏
j=1

∫ ∫
(−∞,ẑπj ]×S

e
− 1
τ

∑3
l=1

∫ tl
zl
f(u−y,η)du

∏
i∈πj

f (w)(zi − y, η)µ(dy, dη)

+
3∏
j=1

∫
(−∞,zj ]×S

e
− 1
τ

∑3
l=1

∫ tl
zl
f(u−y,η)du

f (w)(zj − y, η)µ(dy, dη)

)

=
〈

e
−

∑3
l=1

∫ tl
zl
Q0(u,ξ)du

〉(∫
(−∞,min(z1,z2,z3)]×S

e
− 1
τ

∑3
l=1

∫ tl
zl
f(u−y,η)du

3∏
i=1

f (w)(zi − y, η)µ(dy, dη)

+

∫
(−∞,min(z1,z2)]×S

e
− 1
τ

∑3
l=1

∫ tl
zl
f(u−y,η)du

f (w)(z1 − y, η)f (w)(z2 − y, η)µ(dy, dη)

×
∫

(−∞,z3]×S
e
− 1
τ

∑3
l=1

∫ tl
zl
f(u−y,η)du

f (w)(z3 − y, η)µ(dy, dη)

+

∫
(−∞,min(z2,z3)]×S

e
− 1
τ

∑3
l=1

∫ tl
zl
f(u−y,η)du

f (w)(z2 − y, η)f (w)(z3 − y, η)µ(dy, dη)

×
∫

(−∞,z1]×S
e
− 1
τ

∑3
l=1

∫ tl
zl
f(u−y,η)du

f (w)(z1 − y, η)µ(dy, dη)

+

∫
(−∞,min(z1,z3)]×S

e
− 1
τ

∑3
l=1

∫ tl
zl
f(u−y,η)du

f (w)(z1 − y, η)f (w)(z3 − y, η)µ(dy, dη)

×
∫

(−∞,z2]×S
e
− 1
τ

∑3
l=1

∫ tl
zl
f(u−y,η)du

f (w)(z2 − y, η)µ(dy, dη)

12



+
3∏
j=1

∫
(−∞,zj ]×S

e
− 1
τ

∑3
l=1

∫ tl
zl
f(u−y,η)du

f (w)(zj − y, η)µ(dy, dη)

)
.

Third moment

In the case of the third moment 〈(YN(t, ξ))3〉, the functionm3,N(z1, z2, z3; t, t, t) in (2.6)

can be evaluated by (2.8), i.e. by symmetrizing in (z1, z2, z3) the simpler expression

〈
e
−

∑3
l=1

∫ t
zl
Q0(u,ξ)du

〉(∫
(−∞,min(z1,z2,z3)]×S

e
− 1
τ

∑3
l=1

∫ t
zl
f(u−y,η)du

3∏
i=1

f (w)(zi − y, η)µ(dy, dη)

+ 3

∫
(−∞,min(z1,z2)]×S

e
− 1
τ

∑3
l=1

∫ t
zl
f(u−y,η)du

f (w)(z1 − y, η)f (w)(z2 − y, η)µ(dy, dη)

×
∫

(−∞,z3]×S
e
− 1
τ

∑3
l=1

∫ t
zl
f(u−y,η)du

f (w)(z3 − y, η)µ(dy, dη)

+
3∏
j=1

∫
(−∞,zj ]×S

e
− 1
τ

∑3
l=1

∫ t
zl
f(u−y,η)du

f (w)(zj − y, η)µ(dy, dη)

)
. (3.3)

Fourth moment

For n = 4 there are 15 partitions of {1, 2, 3, 4}, which can be listed as

π1 = ‘1234’,

π1|π2 = ‘12|34’; ‘13|24’; ‘14|23’; ‘1|234’; ‘2|134’; ‘3|124’; ‘4|123’,

π1|π2|π3 = ‘1|2|34’; ‘1|3|24’; ‘2|3|14’; ‘2|4|12’; ‘1|4|23’; ‘3|4|12’,

π1|π2|π3|π4 = ‘1|2|3|4’.

Hence, in the case of the fourth moment 〈(YN(t, ξ))4〉 the functionm4,N(z1, z2, z3, z4; t, t, t, t)

can be evaluated by the symmetrization (2.8) of (2.6) in (z1, z2, z3, z4), as

m4,N(z1, z2, z3, z4; t, t, t, t) =

〈
e
−

∑4
l=1

∫ t
zl
Q0(u,ξ)du

4∏
l=1

∫
(−∞,zl]×S

f (w)(zl − u, θ)ξ(du, dθ)
〉

=
〈

e
−

∑4
l=1

∫ t
zl
Q0(u,ξ)du

〉(∫
(−∞,min(z1,z2,z3,z4)]×S

e
− 1
τ

∑4
l=1

∫ t
zl
f(u−y,η)du

4∏
i=1

f (w)(zi − y, η)µ(dy, dη)

+ 3

∫ ∫
(−∞,min(z1,z3)]×S

e
− 1
τ

∑4
l=1

∫ t
zl
f(u−y,η)du

f (w)(z1 − y, η)f (w)(z2 − y, η)µ(dy, dη)

×
∫ ∫

(−∞,min(z3,z4)]×S
e
− 1
τ

∑4
l=1

∫ tl
zl
f(u−y,η)du

f (w)(z3 − y, η)f (w)(z4 − y, η)µ(dy, dη)
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+ 4

∫ ∫
(−∞,z1]×S

e
− 1
τ

∑4
l=1

∫ tl
zl
f(u−y,η)du

f (w)(z1 − y, η)µ(dy, dη)

×
∫ ∫

(−∞,min(z2,z3,z4)]×S
e
− 1
τ

∑4
l=1

∫ tl
zl
f(u−y,η)du

f (w)(z2 − y, η)f (w)(z3 − y, η)f (w)(z4 − y, η)µ(dy, dη)

+ 6

∫ ∫
(−∞,z1]×S

e
− 1
τ

∑4
l=1

∫ tl
zl
f(u−y,η)du

f (w)(z1 − y, η)µ(dy, dη)

×
∫ ∫

(−∞,z2]×S
e
− 1
τ

∑4
l=1

∫ tl
zl
f(u−y,η)du

f (w)(z2 − y, η)µ(dy, dη)

×
∫ ∫

(−∞,min(z3,z4)]×S
e
− 1
τ

∑4
l=1

∫ tl
zl
f(u−y,η)du

(z3 − y, η)f (w)(z4 − y, η)µ(dy, dη)

+
4∏
j=1

∫
(−∞,zj ]×S

e
− 1
τ

∑4
l=1

∫ tl
zl
f(u−y,η)du

f (w)(zj − y, η)µ(dy, dη)

)
. (3.4)

When f(v, θ) = g1(v, θ) := he−v/τs1[0,∞)(v), the integral
∫ t

z

f(u− y, θ)du in (2.7) can

be computed for y < t as∫ t

z

f(u− y, θ)du =

∫ t

z

g1(u− y, θ)du

=

∫ t

max(y,z)

g1(u− y, θ)du

= hey/τs
∫ t

max(y,z)

e−u/τsdu

= hτs
(
e−(z−y)+/τs − e(y−t)/τs

)
, y, z ≤ t. (3.5)

The next Figure 4 presents numerical estimates of the exact third and fourth moment

expressions (3.3)-(3.4) for the membrane potential Y1(t, ξ) in the unit-less single source

model (2.13) of Figures 1-2.
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(a) Third moments of Y1(t, ξ).
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Figure 4: Third and fourth moments of Y1(t, ξ).

4 Cumulants and Gram-Charlier expansions

In this section we review the method of approximation of probability density functions

by Gram-Charlier expansions. Existence of the probability density of Y1(t, ξ) given

that ξ([0, t]×S) ≥ 1 can be proved when f (w)(z, θ) = w1g1(z, θ) is a decreasing function

of z ∈ IR, using e.g. the results of Privault and Torrisi (2011), see Lemma 7.2 and

Propositions 4.1-6.1 therein. Gram-Charlier expansions also make sense as smoothed

density approximations in the case of discrete distributions which do not admit a

probability density.

4.1 Joint cumulants

In this section, we present the computation of the first four cumulants of YN(t, ξ)

in the multiple source model, based on the results of Section 3. We start with the

first two cumulants, in which case our results coincide with Brigham and Destexhe

(2015a;b). The joint cumulants 〈〈YN(t1, ξ) · · ·YN(tn, ξ)〉〉 can be recovered from the

joint cumulant-moment relationship

〈〈X1 · · ·Xn〉〉 =
∑
π∈Π[n]

(|π| − 1)!(−1)|π|−1

|π|∏
j=1

〈∏
i∈πj

Xi

〉
, (4.1)

which can be obtained by Möbius inversion of moment-cumulant relation

〈X1 · · ·Xn〉 =
∑
π∈Π[n]

|π|∏
j=1

〈〈∏
i∈πj

Xi

〉〉
, (4.2)
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see Theorem 1 in Lukacs (1955) or Relation (2.9) in McCullagh (1987). In particular:

i) The first cumulant 〈〈YN(t1, ξ)〉〉 = 〈YN(t1, ξ)〉 is the mean of YN(t1, ξ).

ii) The second joint cumulant

〈〈YN(t1, ξ)YN(t2, ξ)〉〉 = 〈YN(t1, ξ)YN(t2, ξ)〉 − 〈YN(t1, ξ)〉 〈YN(t2, ξ)〉

= 〈(YN(t1, ξ)− 〈YN(t1, ξ)〉)(YN(t2, ξ)− 〈YN(t2, ξ)〉)〉

= Cov(YN(t1, ξ), YN(t2, ξ))

coincides with the covariance, or second joint central moment, of YN(t1, ξ), YN(t2, ξ).

iii) The third joint cumulant of YN(t1, ξ), YN(t2, ξ), YN(t3, ξ), given by

〈〈YN(t1, ξ)YN(t2, ξ)YN(t3, ξ)〉〉 (4.3)

=
∑

π1={1,2,3}

〈∏
i∈π1

YN(ti, ξ)

〉
−

∑
π1∪π2={1,2,3}

〈∏
i∈π1

YN(ti, ξ)

〉〈∏
i∈π2

YN(ti, ξ)

〉

+2
∑

π1∪π2∪π3={1,2,3}

〈∏
i∈π1

YN(ti, ξ)

〉〈∏
i∈π2

YN(ti, ξ)

〉〈∏
i∈π3

YN(ti, ξ)

〉
= 〈YN(t1, ξ)YN(t2, ξ)YN(t3, ξ)〉 − 〈YN(t1, ξ)YN(t2, ξ)〉 〈YN(t3, ξ)〉

− 〈YN(t1, ξ)YN(t3, ξ)〉 〈YN(t2, ξ)〉 − 〈YN(t2, ξ)YN(t3, ξ)〉 〈YN(t1, ξ)〉

+2 〈YN(t1, ξ)〉 〈YN(t2, ξ)〉 〈YN(t3, ξ)〉

=
〈(
YN(t1, ξ)− 〈YN(t1, ξ)〉

)(
YN(t2, ξ)− 〈YN(t2, ξ)〉

)(
YN(t3, ξ)− 〈YN(t3, ξ)〉

)〉
,

coincides with the third joint central moment of YN(t1, ξ), YN(t2, ξ), YN(t3, ξ),

while
〈〈(YN(t, ξ))3〉〉

(〈〈(YN(t, ξ))2〉〉)3/2
=

〈(YN(t, ξ)− 〈YN(t, ξ)〉)3〉
(〈(YN(t, ξ)− 〈YN(t, ξ)〉)2〉)3/2

is the skewness of YN(t, ξ).

iv) The fourth joint cumulant of YN(t1, ξ), YN(t2, ξ), YN(t3, ξ), YN(t4, ξ) is given by

〈〈YN(t1, ξ)YN(t2, ξ)YN(t3, ξ)YN(t4, ξ)〉〉 =

〈
4∏
i=1

(
YN(ti, ξ)− 〈YN(ti, ξ)〉

)〉
(4.4)

−
〈
(YN(t1, ξ)− 〈YN(t1, ξ)〉)(YN(t2, ξ)− 〈YN(t2, ξ)〉)

〉
×
〈
(YN(t3, ξ)− 〈YN(t3, ξ)〉)(YN(t4, ξ)− 〈YN(t4, ξ)〉)

〉
16



−
〈
(YN(t1, ξ)− 〈YN(t1, ξ)〉)(YN(t3, ξ)− 〈YN(t3, ξ)〉)

〉
×
〈
(YN(t2, ξ)− 〈YN(t2, ξ)〉)(YN(t4, ξ)− 〈YN(t4, ξ)〉)

〉
−
〈
(YN(t1, ξ)− 〈YN(t1, ξ)〉)(YN(t4, ξ)− 〈YN(t4, ξ)〉)

〉
×
〈
(YN(t2, ξ)− 〈YN(t2, ξ)〉)(YN(t3, ξ)− 〈YN(t3, ξ)〉)

〉
,

and the excess kurtosis of YN(t, ξ) is defined as

〈〈(YN(t, ξ))4〉〉
(〈〈(YN(t, ξ))2〉〉)2

=

〈
(YN(t, ξ)− 〈YN(t, ξ)〉)4

〉
(〈(YN(t, ξ)− 〈YN(t, ξ)〉)2〉)2

− 3.

4.2 Gram-Charlier expansions

Let now

ϕ(x) :=
1√
2π

e−x
2/2, x ∈ IR,

denote the standard normal density function, and let

Hn(x) :=
(−1)n

ϕ(x)

∂nϕ

∂xn
(x), x ∈ IR,

denote the Hermite polynomial of degree n, with H0(x) = 1, H1(x) = x, H3(x) =

x3−3x, H4(x) = x4−6x2 +3, H6(x) = x6−15x4 +45x2−15. Next, we summarize the

Gram-Charlier expansion method to obtain series expansion of a probability density

function, see § 17.6 of Cramér (1946).

Proposition 4.1 The Gram-Charlier expansion of the continuous probability density

function φX(x) of a random variable X is given by

φX(x) =
1
√
κ2

ϕ

(
x− κ1√

κ2

)
+

1
√
κ2

∞∑
n=3

cnHn

(
x− κ1√

κ2

)
ϕ

(
x− κ1√

κ2

)
, (4.5)

where the sequence (cn)n≥3 is given from the cumulants (κn)n≥1 of X as

cn =
1

κ
n/2
2

[n/3]∑
m=1

∑
l1+···+lm=n
l1,...,lm≥3

κl1 · · ·κlm
m!l1! · · · lm!

, n ≥ 3.

In particular, the coefficients c3 and c4 can be expressed from the skweness κ3/κ
3/2
2

and the excess kurtosis κ4/κ
2
2 as

c3 =
κ3

3!κ
3/2
2

and c4 =
κ4

4!κ2
2

,
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with

c5 =
κ2

5

5!κ5

, and c6 =
κ6

6!κ3
2

+
κ2

3

2(3!)2κ3
2

.

In the sequel we will only use c3, c4 and c6 = κ2
3/(2(3!)2κ3

2) due to the unavailability

of κ5 and κ6 in our approach. The first-order expansion

φ
(1)
X (x) =

1
√
κ2

ϕ

(
x− κ1√

κ2

)
(4.6)

corresponds to the diffusion approximation (2.10), and the third and fourth-order

expansions are given by

φ
(3)
X (x) =

1
√
κ2

ϕ

(
x− κ1√

κ2

)(
1 + c3H3

(
x− κ1√

κ2

))
(4.7)

and

φ
(4)
X (x) =

1
√
κ2

ϕ

(
x− κ1√

κ2

)(
1 + c3H3

(
x− κ1√

κ2

)
+ c4H4

(
x− κ1√

κ2

)
+ c6H6

(
x− κ1√

κ2

))
.

(4.8)

4.3 Single source model

Figure 5 presents time-dependent numerical estimates of the third and fourth cu-

mulant formulas (4.3)-(4.4) for the membrane potential Y1(t, ξ), based on the exact

moment expressions (3.1)-(3.4) in the unit-less single source model (2.13) of Figures 1

and 2.
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(a) Third cumulants of Y1(t, ξ).
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Figure 5: Third and fourth cumulants of Y1(t, ξ).
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The next Figures 6 and 7 present estimates of the third joint cumulants and third

joint moments of
(
Y1(t1, ξ), Y1(t1, ξ), Y1(t1 + t, ξ)

)
and

(
Y1(t1, ξ), Y1(t2, ξ), Y1(t1 + t, ξ)

)
respectively, with t1 := 25ms, t2 := 35ms, and t ∈ [0, 20ms].
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Figure 6: Third joint cumulants and moments of
(
Y1(t1, ξ), Y1(t1, ξ), Y1(t1 + t, ξ)

)
.
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Figure 7: Third joint cumulants and moments of
(
Y1(t1, ξ), Y1(t2, ξ), Y1(t1 + t, ξ)

)
.

Figure 8 presents numerical estimates of skewness 〈〈X3〉〉/(〈〈X2〉〉)3/2 and excess kur-

tosis 〈〈X4〉〉/(〈〈X2〉〉)2 obtained from the exact moment expressions (3.2)-(3.4) in the

single source model (2.13). Negative skewness and positive excess kurtosis are ob-

served starting after t = 20ms.
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Figure 8: Skewness and excess kurtosis of Y1(t, ξ).

The next Figure 9 presents second, third and fourth-order Gram-Charlier expansions

(4.5) based on the exact moment expressions (3.1)-(3.4) computed at different times,

for the probability density function of the membrane potential Y1(t, ξ) in the single

source model (2.13) of Figures 1 and 2. The purple areas correspond to probability

density estimates obtained by Monte Carlo simulations of the numerical solution of

(2.1). The second-order expansions correspond to the Gaussian diffusion approxima-

tion (2.10) obtained by matching (2.11)-(2.12) to the first and second-order moments

(3.1)-(3.2).
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Figure 9: Gram-Charlier density expansions vs Monte Carlo density estimation.

The actual probability density estimates obtained by simulation show significant dif-

ferences from their Gaussian diffusion approximations when skewness and kurtosis

take their largest absolute values. In addition, in Figure 9 the fourth-order Gram-

Charlier expansions appear to give the best fit to the actual probability densities,
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which have negative skewness and positive excess kurtosis, see Figure 8, and the

impact of the fourth cumulant remains minimal.

Figure 10 presents time-dependent fourth-order Gram-Charlier expansions (4.5),

based on the exact moment formulas (3.2)-(3.4) at different times, for the probability

density function of Y1(t, ξ) in the single source model (2.13) of Figure 1 and 2.
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Figure 10: Fourth-order Gram-Charlier expansions vs simulated densities.

As can be checked from Figure 10, the fourth-order Gram-Charlier expansions fit the

purple areas obtained by Monte Carlo simulation of the numerical solution of (2.1).

Figure 11-a) compares the Gaussian diffusion (blue) approximation to the fourth-order

Gram-Charlier expansion (purple) for the probability density function of Y1(t, ξ) in

the unit-less single source model (2.13), while Figure 11-b) represents the relative

difference between the Gaussian diffusion and fourth-order approximations.
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Figure 11: Fourth-order Gram-Charlier expansion vs diffusion approximation.
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4.4 Double source model

In this section we consider the Gram-Charlier probability density expansions obtained

in a nonstationary double source model, with N = 2 and S = [0, 2]. In this case,

Proposition 5.6 in the appendix reads

mn,2(z1, . . . , zn; t1, . . . , tn)

=
〈

e
− 1
τ

∑n
l=1

∫ tl
zl
Q0(u,ξ)du

〉 ∑
π∈Π[n]

|π|∏
j=1

∫
(−∞,ẑπj ]×[0,1]

n∏
l=1

e
− 1
τ

∫ tl
zl
g1(u−y,η)du

∏
i∈πj

g1(zi − y, η)λ1(y)dydη

+
〈

e
− 1
τ

∑n
l=1

∫ tl
zl
Q0(u,ξ)du

〉 ∑
π∈Π[n]

|π|∏
j=1

∫
(−∞,ẑπj ]×[1,2]

n∏
l=1

e
− 1
τ

∫ tl
zl
g2(u−y,η)du

∏
i∈πj

g2(zi − y, η)λ2(y)dydη,

(z1, . . . , zn) ∈ (−∞, t1]× · · · × (−∞, tn], where〈
e
− 1
τ

∑n
l=1

∫ tl
zl
Q0(u,ξ)du

〉
= e−

1
τ

∑n
l=1(t−zl) exp

(∫
(−∞,t]×[0,1]

(e
− 1
τ

∑n
l=1

∫ tl
zl
g1(u−y,η)du − 1)λ1(y)dydη

)
× exp

(∫
(−∞,t]×[1,2]

(e
− 1
τ

∑n
l=1

∫ tl
zl
g2(u−y,η)du − 1)λ2(y)dydη

)
,

and the third and fourth moments are computed from the exact expressions (3.3)-

(3.4). We have

f (w)(z, θ) = w1g1(z, θ) + w2g2(z, θ), f(z, θ) = g1(z, θ) + g2(z, θ),

with

µ(dx, dθ) = λ1(x)1[0,1](θ)dxdθ + λ2(x)1[1,2](θ)dxdθ, x ∈ IR, θ ∈ [0, 2],

where

g1(v, θ) = h1e−v/τs1[0,∞)(v)1[0,1](θ), g2(v, θ) = h2
v

τs
e−v/τs1[0,∞)(v)1[1,2](θ),

and

Q0(t, ξ) = 1 +

∫
(−∞,t]×[0,1]

g1(t− u, θ)ξ(du, dθ) +

∫
(−∞,t]×[1,2]

g2(t− u, θ)ξ(du, dθ).

Here, the integral
∫ t
z
g1(u− y, θ)du is given for y < t by (3.5), θ ∈ [0, 1], and we have∫ t

z

g2(u− y, θ)du =

∫ t

max(y,z)

g2(u− y, θ)du

22



=
h2

τs
ey/τs

∫ t

max(y,z)

ue−u/τsdu− h2

τs
yey/τs

∫ t

max(y,z)

e−u/τsdu

= h2e−(z−y)+/τs(max(y, z) + τs − y)− h2e(y−t)/τs(t+ τs − y),

θ ∈ [1, 2]. The following numerical examples use the parameters of Brigham and

Destexhe (2015a) for excitatory and inhibitory shot noise conductances, i.e. τ = 0.02s,

τs = 0.0025s, h1 = he = 2e−9/10e−9 = 0.2, h2 = hi = 15e−9/10e−9 = 1.5, E1 =

Ee = 0.0V , E2 = Ei = −0.08V , El = −0.06V , w1 = we = (Ee−El)/(Ee−Ei) = 0.75,

w2 = wi = (Ei − El)/(Ee − Ei) = −0.25, while λ2(t) = λi(t) = 500Hz, t ∈ [0, 100],

and λ1(t) = λe(t) is the nonstationary intensity

λe(t) = 200×
(

max

(
0,
∣∣∣sin(4π

u

T

)∣∣∣− 3

4

))(
5− sin

(
4π
u

T

))(
7 + sin

(
2πu

T

))
,

t ∈ [0, 100]. The next figures are plotted for the voltage potential

V2(t, ξ) = El + (Ee − Ei)Y2(t, ξ), (4.9)

which solves the equation

τ
dVN
dt

(t, ξ) = El − VN(t, ξ) +
N∑
k=1

(Ek − VN(t, ξ))Qk(t, ξ) (4.10)

for N = 2. Figure 12 presents random simulations of the shot noise processes Q1(t, ξ)

and Q2(t, ξ).
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Figure 12: Shot noise processes Q1(t, ξ) and Q2(t, ξ).

Figure 13 presents numerical simulations of first moment and standard deviation,

together with the mean obtained by Monte Carlo simulation for V2(t, ξ) = El + (Ee−
Ei)Y2(t, ξ), and is consistent with Figure 3 in Brigham and Destexhe (2015a).
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Figure 13: Sample of V2(t, ξ) with mean, standard deviation and intensities λ1(t), λ2(t).

Figure 14 presents estimates of the correlations Cor(V2(t1, ξ), V2(t1 + t, ξ)) and of the

second joint moments 〈V2(t1, ξ)V2(t1 + t, ξ)〉 with t1 := 35ms and t ∈ [0, 20ms].
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Figure 14: Correlations and second joint moments of V2(t1, ξ) and V2(t1 + t, ξ).

The next Figure 15 presents numerical estimates of the exact third and fourth moment

expressions (3.3)-(3.4) for the membrane potential V2(t, ξ) in the double source model.
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Figure 15: Third and fourth moments of V2(t, ξ).

Figure 16 presents time-dependent numerical estimates of third and fourth cumu-

lants (4.3)-(4.4) of the membrane potential V2(t, ξ), based on the exact expressions

(3.2)-(3.4) in the double source model (2.2) of Figure 13. The numerical instabilities

observed in Figure 16-b) for the Monte Carlo computation of fourth cumulants with

one million samples appear to remain even after increasing the number of samples up

to 100 million.
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(a) Third cumulant of V2(t, ξ).
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Figure 16: Third and fourth cumulants of V2(t, ξ).

The next Figures 17 and 18 present estimates of third joint cumulants and third

joint moments of
(
V2(t1, ξ), V2(t1, ξ), V2(t1 + t, ξ)

)
and

(
V2(t1, ξ), V2(t2, ξ), V2(t1 + t, ξ)

)
respectively, with t1 := 35ms, t2 := 45ms and t ∈ [0, 20ms].
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Figure 17: Third joint cumulants and moments of
(
V2(t1, ξ), V2(t1, ξ), V2(t1 + t, ξ)

)
.

The third and fourth cumulant estimates obtained by Monte Carlo simulations with

one million samples and above can be subject to numerical instabilities not observed

with the closed-form expressions, see Figures 16-a,b), 17-a), 18-a), and Figure 19

below.
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Figure 18: Third joint cumulants and moments of
(
V2(t1, ξ), V2(t2, ξ), V2(t1 + t, ξ)

)
.

Figure 19 presents numerical estimates of skewness 〈〈X3〉〉/(〈〈X2〉〉)3/2 and excess kur-

tosis 〈〈X4〉〉/(〈〈X2〉〉)2 of V2(t, ξ), using the exact expressions (3.2)-(3.4) in the double

source model (2.2) of Figure 13. As noted above, the kurtosis estimates obtained in

Figure 19 from Monte Carlo simulations are subject to numerical instabilities, and

positive skewness/negative excess kurtosis are observed starting after t = 10ms.
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Figure 19: Skewness and excess Kurtosis of V2(t, ξ).

The next Figure 20 presents the Gram-Charlier density expansions (4.5) based on

the exact third and fourth moment expressions (3.3)-(3.4) at different times for the

estimation of the probability density function of the membrane potential V2(t, ξ) in

the double source model (2.2) of Figure 13. In comparison with the Gaussian diffusion

approximation, the actual probability densities obtained by Monte Carlo simulation

have positive skewness, and the best approximations are obtained from fourth-order

Gram-Charlier expansions, which appear to correctly fit the purple areas obtained

by Monte Carlo simulation of the numerical solution of (2.2). As in Figure 9, the

difference between third and fourth-order Gram-Charlier expansion remains minimal,

and the biggest differences between actual probability densities and their Gaussian

diffusion approximations are observed when skewness and kurtosis take the largest

absolute values.
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Figure 20: Gram-Charlier density expansions vs simulated densities.

Figure 21 below presents time-dependent fourth-order Gram-Charlier expansions (4.5)
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of second and fourth orders based on the exact moment expressions (3.1)-(3.4) at

different times, for the probability density function of V2(t, ξ) in the double source

model (2.2) of Figure 13.
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Figure 21: Fourth-order Gram-Charlier expansions vs simulated densities.

Figure 22-a) shows the discrepancies over time between second (blue) and fourth-order

(purple) Gram-Charlier expansions for the probability density function of V2(t, ξ) in

the double source model (2.2) of Figure 13, while Figure 22-b) represents the relative

difference between the Gaussian diffusion and fourth-order approximations.
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Figure 22: Fourth-order Gram-Charlier expansions vs diffusion approximation.

Impact of leak potentials and intensities on skewness and kurtosis

We consider a double source model of the form (2.1)-(4.10) based on the parameters of

Section 2, with N = 2, X = IR+ × [0, 2], ta = 0.01, tb = 0.05, τ = 0.02s, τs = 0.0025s,
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he = hi = 2, we = 1, ge(u) = gi(u) = he−u/τs1[0,∞)(u), λe(t) = λi(t) = λ1[ta,tb](t) with

λ = 250Hz, and µ(dx, dθ) = λe(x)1[0,1](θ)dxdθ+λi(x)1[1,2](θ)dxdθ. We note that this

model coincides with the single source model of Section 4.3 when wi = we.
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Figure 23: Skewness and excess kurtosis plots as functions of wi.

Figure 23 plots the skewness and excess kurtosis of V2(t, ξ) as functions of the poten-

tial wi, at time t := 0.03. We check that skewness and kurtosis evolve in opposite

directions, and reach their absolute maxima with negative skewness and positive ex-

cess kurtosis when wi = we, i.e. in the single source model, cf. Figure 8. The

positive skewness and negative excess kurtosis observed in the double source model

of Figure 19 can be obtained with positive we and negative wi.
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Figure 24: Skewness and excess kurtosis plots as functions of λi.

Figure 24 shows the evolution of the skewness and kurtosis of V2(t, ξ) in opposite

directions as functions of the intensity parameter λi when λe(t) = λe1[ta,tb](t) and

λi(t) = λi1[ta,tb](t), with λe = 250Hz, we = wi = 1, and t = 0.03. Here, the impact of

λe coincides with that of λi due to the symmetry of the parameters.
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Figure 25: Skewness and excess kurtosis plots as functions of λi with λe = 250Hz.

Figures 25 and 26 show the evolution of the skewness and kurtosis of V2(t, ξ) as

functions of λi and λe with the biological parameter values we = 1 and wi = −0.25 at

t = 0.03.
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Figure 26: Skewness and excess kurtosis plots as functions of λe with λi = 250Hz.

Conclusion

We investigated the estimation of probability densities of neuronal membrane poten-

tials at fixed times using Gram-Charlier density expansions in nonstationary multi-

plicative shot noise models with single source and multiple sources. Our method relies

on closed-form expressions for moments and cumulants which are numerically more

stable than their Monte Carlo simulation counterparts, and shows that the probability

density functions of membrane potentials can significantly differ from their continu-

ous Gaussian diffusion approximations. In the nonstationary double source model,

positive skewness and negative excess kurtosis of actual probability densities can be
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obtained with potentials we and wi of opposite signs. Negative skewness and positive

excess kurtosis are observed when we = wi have same positive sign (after identifying

corresponding neuron types with such characteristics), and in this setting the skewness

and kurtosis of V2(t, ξ) evolve in opposite directions as functions of λi, λe.

5 Appendix - moments of Poisson shot noise pro-
cesses

In this section we apply the results in Privault (2012; 2016) to the derivation of exact

expressions for the moments of shot noise stochastic integrals∫
X
u(x, ξ)ξ(dx) =

∑
xj∈ξ

u(xj, ξ) (5.1)

of random integrands u(x, ξ), with respect to a Poisson point process ξ(dx) with

intensity measure µ(dx) on

Ω :=
{
ξ = {xi}i∈I ⊂ X : #(A ∩ ξ) <∞ for all compact A ∈ B(X)

}
of locally finite configurations on a subset X ⊂ IRd. In this framework, the moment

generating function of the Poisson stochastic integral (5.1) is known to be given by

the Lévy-Khintchine formula〈
exp

(∫
X
f(x)ξ(dx)

)〉
= exp

(∫
X
(ef(x) − 1)µ(dx)

)
, (5.2)

see e.g. Theorem 1.2.14 in Applebaum (2009), provided that f is a sufficiently inte-

grable deterministic function. The moment of order n ≥ 1 of the Poisson stochastic

integral of a deterministic function f can be expressed from (5.2) as〈(∑
x∈ξ

f(x)

)n〉
= n!

∑
r1+2r2+···+nrn=n

r1,...,rn≥0

n∏
k=1

(
1

(k!)rkrk!

(∫
X
fk(x)µ(dx)

)rk)
(5.3)

when f ∈
⋂n
p=1 L

p(X, µ), see Bassan and Bona (1990). For convenience we will use

the following notation.

Definition 5.1 For any x1, . . . , xk ∈ X, we let ε+x1 · · · ε
+
xk

denote the operator

(ε+x1 · · · ε
+
xk
F )(ξ) = F (ξ ∪ {x1, . . . , xk})
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acting on random variables F by addition of points at locations x1, . . . , xk to the point

process ξ(dx).

The following moment identity, see Theorem 1 in Privault (2016), rewrites the identity

(5.3) using sums over partitions {π1, . . . , πk} of {1, . . . , n}, and extends it to random

integrands u : X × Ω −→ IR. It can be regarded as a nonlinear extension of the

Slivnyak-Mecke formula (Slivnyak (1962), Mecke (1967)) which treats the case n = 1.

Proposition 5.2 Let u : X×Ω −→ IR denote a stochastic process u(x, ξ) indexed by

x ∈ X. For any n ≥ 1, we have〈(∑
x∈ξ

u(x, ξ)

)n〉
(5.4)

=
n∑
k=1

∑
π1∪···∪πk={1,...,n}

IE
[∫

Xk
ε+x1 · · · ε

+
xk

(
u|π1|x1
· · ·u|πk|xk

)
µ(dx1) · · ·µ(dxk)

]
,

where the power |πi| denotes the cardinality of the subset πi.

The sum (5.4) runs over all partitions π1, . . . , πk of {1, . . . , n}, and |πi| denote the

cardinality of the block πi, i = 1, . . . , k. This result can be more generally stated as the

next joint moment identity for Poisson stochastic integrals with random integrands,

cf. Proposition 7 in Privault (2016).

Proposition 5.3 Let u1, . . . , up : X × Ω −→ IR be random processes, p ≥ 1. For all

n1, . . . , np ≥ 0 and n := n1 + · · ·+ np, We have〈(∑
x1∈ξ

u1(x1, ξ)

)n1

· · ·

∑
xp∈ξ

up(xp, ξ)

np〉
(5.5)

=
n∑
k=1

∑
π1∪···∪πk={1,...,n}

IE

[∫
Xk
ε+x1 · · · ε

+
xk

(
k∏
j=1

p∏
i=1

u
lni,j
i (xj, ξ)

)
µ(dx1) · · ·µ(dxk)

]
,

where the sum runs over all partitions π1, . . . , πk of {1, . . . , n} and the power lni,j is

the cardinality

lni,j := |πj ∩ (n1 + · · ·+ ni−1, n1 + · · ·+ ni]|, i = 1, . . . , k, j = 1, . . . , p.
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Proof. For the sake of completeness, we provide a short proof of this proposition,

based on the recursion applied in Decreusefond and Flint (2014) in the case of point

processes. Without loss of generality, we assume that n1 = · · ·np = 1 with n = p, and

we note that for p = 1, (5.5) is the Slivnyak-Mecke formula (Slivnyak (1962), Mecke

(1967)). Next, we note that〈∑
x1∈ξ

u1(x1, ξ) · · ·
∑
xp+1∈ξ

up+1(xp+1, ξ)

〉
=

〈
p∏
i=1

(( ∑
xp+1∈ξ

up+1(xp+1, ξ)

)1/p∑
xi∈ξ

ui(xi, ξ)

)〉
.

Hence, by applying (5.5) at the rank p ≥ 1 to the random sums
∑
xi∈ξ

( ∑
xp+1∈ξ

up+1(xp+1, ξ)

)1/p

ui(xi, ξ),

i = 1, . . . , p, we find〈∑
x1∈ξ

u1(x1, ξ) · · ·
∑
xp+1∈ξ

up+1(xp+1, ξ)

〉

=

p∑
k=1

∑
π1∪···∪πk={1,...,n}

IE

[∫
Xk
ε+x1 · · · ε

+
xk

( ∑
xp+1∈ξ

up+1(xp+1, ξ)
k∏
j=1

∏
i∈πj

ui(xj, ξ)

)
µ(dx1) · · ·µ(dxk)

]
,

with, by Definition 5.1,

ε+x1 · · · ε
+
xk

∑
xp+1∈ξ

up+1(xp+1, ξ) =
∑
xp+1∈ξ

ε+x1 · · · ε
+
xk
up+1(xp+1, ξ) +

k∑
l=1

ε+x1 · · · ε
+
xk
up+1(xl, ξ).

Hence, by the Slivnyak-Mecke formula we have〈∑
x1∈ξ

u1(x1, ξ) · · ·
∑
xp+1∈ξ

up+1(xp+1, ξ)

〉

=

p∑
k=1

∑
π1∪···∪πk={1,...,p}

IE

[∫
Xk

∑
xp+1∈ξ

ε+x1 · · · ε
+
xk

(
up+1(xp+1, ξ)

k∏
j=1

∏
i∈πj

ui(xj, ξ)

)
µ(dx1) · · ·µ(dxk)

]

+

p∑
k=1

k∑
l=1

∑
π1∪···∪πk={1,...,p}

IE

[∫
Xk
ε+x1 · · · ε

+
xk

(
up+1(xl, ξ)

k∏
j=1

∏
i∈πj

ui(xj, ξ)

)
µ(dx1) · · ·µ(dxk)

]

=

p∑
k=1

∑
π1∪···∪πk={1,...,p}

IE

[∫
Xk+1

ε+x1 · · · ε
+
xk+1

(
up+1(xk+1, ξ)

k∏
j=1

∏
i∈πj

ui(xj, ξ)

)
µ(dx1) · · ·µ(dxk+1)

]

+

p∑
k=1

k∑
l=1

∑
π1∪···∪πk={1,...,p}

IE

[∫
Xk
ε+x1 · · · ε

+
xk

(
up+1(xl, ξ)

k∏
j=1

∏
i∈πj

ui(xj, ξ)

)
µ(dx1) · · ·µ(dxk)

]
,

and we conclude to (5.5) by a rearrangement of the sum over partitions π1, . . . , πk of

{1, . . . , p+ 1}, see e.g. Lemma 3.1 in Decreusefond and Flint (2014). �
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The next joint moment identity is a particular case of Proposition 5.3.

Corollary 5.4 Let f1, . . . , fp : X −→ IR be deterministic functions, p ≥ 1. For any

bounded random variable F and n1, . . . , np ≥ 0 and n := n1 + · · ·+ np, we have〈
F

(∑
x1∈ξ

f1(x1)

)n1

· · ·

∑
xp∈ξ

fp(xp)

np〉

=
n∑
k=1

∑
π1∪···∪πk={1,...,n}

∫
Xk

IE
[
ε+x1 · · · ε

+
xk
F
] k∏
j=1

p∏
i=1

f
lni,j
i (xj)µ(dx1) · · ·µ(dxk).

If n1 = · · · = np = 1 we have n = p, and〈
F
∑
x1∈ξ

f1(x1) · · ·
∑
xp∈ξ

fp(xp)

〉
(5.6)

=
n∑
k=1

∑
π1∪···∪πk={1,...,n}

∫
Xk

IE
[
ε+x1 · · · ε

+
xk
F
] k∏
j=1

∏
i∈πj

fi(xj)µ(dx1) · · ·µ(dxk).

When F = 1 this identity recovers the standard joint moment-cumulant relationship〈∑
x1∈ξ

f1(x1) · · ·
∑
xp∈ξ

fp(xp)

〉
=

n∑
k=1

∑
π1∪···∪πk={1,...,n}

∫
Xk

k∏
j=1

∏
i∈πj

fi(xj)µ(dx1) · · ·µ(dxk),

see Relation (4.2). The next consequence of Proposition 5.3 will be used to compute

the joint moments of shot noise processes in Proposition 5.6.

Corollary 5.5 Let f1, . . . , fp, g : X −→ IR be deterministic functions, p ≥ 1. We

have the joint moment identity〈
exp

(∑
x∈ξ

g(x)

)∑
x1∈ξ

f1(x1) · · ·
∑
xp∈ξ

fp(xp)

〉

= IE

[
exp

(∑
x∈ξ

g(x)

)]
n∑
k=1

∑
π1∪···∪πk={1,...,n}

k∏
j=1

∫
X

eg(x)
∏
i∈πj

fi(x)µ(dx).

Proof. Taking F of the form F = exp
(∑

x∈ξ g(x)
)
, we have the product expression

ε+x1 · · · ε
+
xk
F (ξ) = exp

(∑
x∈ξ

g(x)

)
k∏
l=1

eg(xl)
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hence by (5.6), we find〈
exp

(∑
x∈ξ

g(x)

)∑
x1∈ξ

f1(x1) · · ·
∑
xp∈ξ

fp(xp)

〉

=
n∑
k=1

∑
π1∪···∪πk={1,...,n}

∫
Xk

IE

[
ε+x1 · · · ε

+
xk

exp

(∑
x∈ξ

g(x)

)]
k∏
j=1

∏
i∈πj

fi(xj)µ(dx1) · · ·µ(dxk)

=

〈
exp

(∑
x∈ξ

g(x)

)〉
n∑
k=1

∑
π1∪···∪πk={1,...,n}

∫
Xk

k∏
j=1

(
eg(xj)

∏
i∈πj

fi(xj)

)
µ(dx1) · · ·µ(dxk)

=

〈
exp

(∑
x∈ξ

g(x)

)〉
n∑
k=1

∑
π1∪···∪πk={1,...,n}

k∏
j=1

∫
X

eg(x)
∏
i∈πj

fi(x)µ(dx).

�

In particular, when F is a random variable and f is a deterministic function, we find

IE

[
F (ξ)

(∑
x∈ξ

f(x)

)n]

=
n∑
k=1

∑
π1∪···∪πk={1,...,n}

∫
Xk
f |π1|(x1) · · · f |πk|(xk) IE

[
ε+x1 · · · ε

+
xk
F
]
µ(dx1) · · ·µ(dxk).

In Proposition 5.6 we provide the proof of the expression (2.6) ofmn,N(z1, . . . , zn; t1, . . . , tn)

used in the exact third and fourth moment expressions (3.3)-(3.4).

Proposition 5.6 For all (z1, . . . , zn) ∈ (−∞, t1]× · · · × (−∞, tn] we have

mn,N(z1, . . . , zn; t1, . . . , tn)

=
〈

e
− 1
τ

∑n
l=1

∫ tl
zl
Q0(u,ξ)du

〉 ∑
π∈Π[n]

|π|∏
j=1

∫
(−∞,ẑπj ]×S

n∏
l=1

e
− 1
τ

∫ tl
zl
f(u−y,η)du

∏
i∈πj

f (w)(zi − y, η)µ(dy, dη)

with ẑπj = mini∈πj zi, and
〈

e
− 1
τ

∑n
l=1

∫ tl
zl
Q0(u,ξ)du

〉
is given by the Lévy-Khintchine for-

mula (2.7).

Proof. By Corollary 5.5, we have〈 n∏
k=1

(
e
− 1
τ

∫ tk
zk
Q0(u,ξ)du

∫
(−∞,zk]×S

f (w)(zk − u, θ)ξ(du, dθ)
)〉
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=
∑
π∈Π[n]

∫
((−∞,t]×S)|π|

〈
ε+(y1,η1) · · · ε

+
(y|π|,η|π|)

e
− 1
τ

∑n
l=1

∫ tl
zl
Q0(u,ξ)du

〉 |π|∏
j=1

∏
i∈πj

f (w)(zi − yj, ηj)
|π|∏
j=1

µ(dyj, dηj).

(5.7)

On the other hand, using the notation ε+(y1,η1) · · · ε
+
(yk,ηk) introduced in Definition 5.1,

we find

ε+(y1,η1) · · · ε
+
(yk,ηk) exp

(
− 1

τ

n∑
l=1

∫ tl

zl

Q0(u, ξ)du

)
= ε+(y1,η1) · · · ε

+
(yk,ηk) exp

(
− 1

τ

n∑
l=1

∫ tl

zl

(
1 +

∫
(−∞,u]×S

f(u− y, η)ξ(dy, dη)

)
du

)

= exp

(
− 1

τ

n∑
l=1

∫ tl

zl

(
1 +

∫
(−∞,u]×S

f(u− y, η)ξ(dy, dη)

)
du− 1

τ

k∑
j=1

n∑
l=1

∫ tl

zl

f(u− yj, ηj)du
)

= e
− 1
τ

∑n
l=1

∫ tl
zl
Q0(u,ξ)du

k∏
j=1

e
− 1
τ

∑n
l=1

∫ tl
zl
f(u−yj ,ηj)du,

hence〈
ε+(y1,η1) · · · ε

+
(y|π|,η|π|)

e
− 1
τ

∑n
l=1

∫ tl
zl
Q0(u,ξ)du

〉
=
〈

e
− 1
τ

∑n
l=1

∫ tl
zl
Q0(u,ξ)du

〉 |π|∏
j=1

e
− 1
τ

∑n
l=1

∫ tl
zl
f(u−yj ,ηj)du,

therefore, by (2.5) and (5.7) we conclude to

mn,N(z1, . . . , zn; t1, . . . , tn)

=

〈 n∏
k=1

(
e
− 1
τ

∫ tk
zk
Q0(u,ξ)du

∫
(−∞,zk]×S

f (w)(zk − u, θ)ξ(du, dθ)
)〉

=
〈

e
− 1
τ

∑n
l=1

∫ tl
zl
Q0(u,ξ)du

〉
×
∑
π∈Π[n]

∫
((−∞,t]×S)|π|

|π|∏
j=1

(
e
− 1
τ

∑n
l=1

∫ tl
zl
f(u−yj ,ηj)du

∏
i∈πj

f (w)(zi − yj, ηj)
) |π|∏

j=1

µ(dyj, dηj)

=
〈

e
−

∑n
l=1

∫ tl
zl
Q0(u,ξ)du

〉 ∑
π∈Π[n]

|π|∏
j=1

∫
(−∞,ẑπj ]×S

n∏
l=1

e
− 1
τ

∫ tl
zl
f(u−y,η)du

∏
i∈πj

f (w)(zi − y, η)µ(dy, dη),

which shows (2.6). �

When N = 1, the function mn,1(z1, . . . , zn; t1, . . . , tn) in (2.6) can be written as

mn,1(z1, . . . , zn; t1, . . . , tn)
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= wn1 e−
1
τ

∑n
l=1(t−zl)

〈
e
− 1
τ

∑n
l=1

∫ tl
zl
Q1(u)du

n∏
k=1

∫
(−∞,zk]×S

g1(zk − y, η)ξ(dy, dη)

〉
= wn1 e−

1
τ

∑n
l=1(t−zl)

〈
e
− 1
τ

∑n
l=1

∫ tl
zl
Q1(u)du

〉
×
∑
π∈Π[n]

|π|∏
j=1

∫
(−∞,t]×S

n∏
l=1

e
− 1
τ

∫ tl
zl
g1(u−y,η)du

∏
i∈πj

g1(zi − y, η)µ(dy, dη),

which can be recovered by multiple differentiation of the Lévy-Khintchine formula, as

∂n

∂z1 · · · ∂zn

〈
e
− 1
τ

∑n
l=1

∫ tl
zl
Q1(u)du

〉
=

∂n

∂z1 · · · ∂zn
exp

(∫
(−∞,t]×S

(
e
− 1
τ

∑n
i=1

∫ ti
zi
g1(u−x,θ)du − 1

)
µ(dx, dθ)

)
.
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