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Bünyamin Kızıldemir Nicolas Privault
Division of Mathematical Sciences

School of Physical and Mathematical Sciences

Nanyang Technological University

637371 Singapore

August 5, 2017

Abstract

We construct a dependence structure for binomial, Poisson and Gaussian
random vectors, based on partially ordered binary trees and sums of indepen-
dent random variables. Using this construction, we characterize the supermod-
ular ordering of such random vectors via the componentwise ordering of their
covariance matrices. For this, we apply Möbius inversion techniques on partially
ordered trees, which allow us to connect the Lévy measures of Poisson random
vectors on the discrete d-dimensional hypercube to their covariance matrices.
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1 Introduction

A d-dimensional random vector X = (X1, . . . , Xd) is said to be dominated by another

random vector Y = (Y1, . . . , Yd) in the supermodular order, and one writes X ≤sm Y ,

if

E[Φ(X)] ≤ E[Φ(Y )],

for all integrable supermodular functions, i.e., for all functions Φ : Rd −→ R such that

Φ(x) + Φ(y) ≤ Φ(x ∧ y) + Φ(x ∨ y), x, y ∈ Rd,
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where the maximum ∨ and the minimum ∧ are defined with respect to the componen-

twise order of x, y ∈ Rd. The supermodular stochastic ordering is used in particular

to capture a preference for greater inter-dependence in economic variables. In other

words, we have X ≤sm Y if the (positive) dependence among the components of Y is

greater than the (positive) dependence among the components of X. See for example

[2], [3] for applications of supermodular ordering in insurance, and [9] for applications

to portfolio risk management, cf. also [8] and references therein for applications in

economics.

In the case where X and Y are multivariate Gaussian vectors, the supermodular or-

dering of X and Y has been characterized by the componentwise ordering of their

covariance matrices in [10]. Sufficient conditions for the supermodular ordering of

general random vectors have been given in [4] for general random vectors, including

Poisson and Gamma vectors, cf. § 4.2 therein. We note that our recursive update

of Bernoulli random vectors in (5.8) consists in an implementation on binary trees of

the formulas of § 4.2 of [4] for Poisson and Gamma vectors.

In this paper, we construct a tree-based covariance structure for binomial and Pois-

son random vectors, under which the supermodular ordering can be characterized by

the ordering of covariance matrices, cf. Theorems 4.2 and 5.1. This approach uses

Möbius inversion techniques which allow us to connect partially ordered binary trees

on the discrete unit hypercube {0, 1}d to supermodular ordering. We also show the

necessity of this type of dependence structure in the Counterexample 9. Other types

of tree-based dependence structures in the setting of Bernoulli random vectors have

been developed in [5] and references therein.

We proceed as follows. In Section 2 we construct a general dependence structure

based on independent variables arranged according to a binary tree on the vertices

of the d-dimensional hypercube. In Section 3 we describe the Möbius inversion that

allows one to recover the parameters of individual random variables from the covari-

ance matrix of the considered random vector. In Section 4 we deal with the case of

Poisson random vectors via the use of Lévy measures on the vertices of the discrete
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unit hypercube {0, 1}d, cf. Theorem 4.2. In Section 5 we apply this dependence

structure to the characterization of the binomial supermodular ordering via the com-

ponentwise ordering of covariances, cf. Theorem 5.1. This result naturally extends to

the supermodular ordering of sums of binomial, multivariate Gaussian and Poisson

random vectors.

2 Tree-based correlation structures

In this section we introduce the general dependence structure used in this paper. Let

(e1, . . . , ed) denote the canonical basis of Rd, and let

Cd := {0, 1}d =
{
x = (x1, . . . , xd) : xi ∈ {0, 1}, i = 1, . . . , d

}
denote the discrete set of vertices of the d-dimensional unit hypercube.

Every x = (x1, . . . , xd) ∈ {0, 1}d is identified to its index set

Sx :=
{
i ∈ {1, . . . , d} : xi = 1

}
,

and we endow Cd = {0, 1}d with the partial inclusion ordering of index sets, i.e., we

write

x � y when 0 ≤ xi ≤ yi ≤ 1, i = 1, . . . , d,

and x ≺ y when x � y and x 6= y , we also let x \ {a} denote (xi1{i 6=a})i=1,...,d for

x ∈ Cd.

Random vectors

Given (Xi,j)1≤i≤j≤d a family of independent random variables and (ek,l)1≤k≤l≤d ⊂ Cd

with ek,k = ek, k = 1, . . . , d, we define the random vector X = (X1, . . . , Xd) by

Xi :=
∑

1≤k≤l≤d
ei�ek,l

Xk,l, i = 1, . . . , d.

In other words, we have

X =
d∑

i=1

eiXi
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=
d∑

i=1

ei
∑

1≤k≤l≤d
ei�ek,l

Xk,l

=
∑

1≤k≤l≤d

Xk,l

∑
1≤i≤d
ei�ek,l

ei

=
∑

1≤k≤l≤d

Xk,lek,l, (2.1)

which implies

E[Xi] =
∑

1≤k≤l≤d
ei�ek,l

E[Xk,l], i = 1, . . . , d,

and

Cov (Xi, Xj) =
∑

1≤k≤l≤d
ei�ek,l,ej�ek,l

σ2
k,l, 1 ≤ i ≤ j ≤ d, (2.2)

where σ2
k,l := Var [Xk,l], 1 ≤ k ≤ l ≤ d.

Example 1. Taking d = 5, the subset (ek,l)1≤k≤l≤5 of C5 given by

e1,2 = (1, 1, 0, 0, 1),
e1,3 = (1, 1, 1, 0, 1),
e1,4 = (1, 0, 0, 1, 0),
e1,5 = (1, 0, 0, 0, 1),
e2,3 = (0, 1, 1, 0, 0),
e2,4 = (0, 1, 0, 1, 0),
e2,5 = (0, 1, 0, 0, 1),
e3,4 = (0, 1, 1, 1, 0),
e3,5 = (0, 1, 1, 0, 1),
e4,5 = (1, 0, 0, 1, 1),

corresponds, under (2.1), to the random vector
X1 = X1,1 +X1,2 +X1,3 +X1,4 +X1,5 +X4,5

X2 = X2,2 +X1,2 +X1,3 +X2,3 +X2,4 +X2,5 +X3,4 +X3,5

X3 = X3,3 +X1,3 +X2,3 +X3,4 +X3,5

X4 = X4,4 +X1,4 +X2,4 +X3,4 +X4,5

X5 = X5,5 +X1,2 +X1,3 +X1,5 +X2,5 +X3,5 +X4,5.

(2.3)

Binary tree structure

From now on, we work under the following Hypothesis (H) that builds a tree on the

set (ek,l)1≤k<l≤d. Note that not all random vectors admit a tree-based representation
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according to Hypothesis (H), see Examples 5, 6 and Counterexample 9 below.

(H) The family (ek,l)1≤k≤l≤d ⊂ {0, 1}d forms an ordered binary tree for the partial

order �, in which every node ek,l, k < l, has exactly two children ek,l\{k} and

ek,l\{l}.

We note that the tree (ek,l)1≤k≤l≤d has size d(d+ 1)/2 and height at most d.

The random vector (2.3) of Example 1 satisfies Hypothesis (H) with the following tree

structure:

e1,3

11101

e4,5

10011

e1,2

11001

e3,4

01110

e3,5

01101

e1,4

10010

e1,5

10001

e2,3

01100

e2,4

01010

e2,5

01001

e1

10000

e2

01000

e3

00100

e4

00010

e5

00001

e1,3

11101

e4,5

10011

e1,2

11001

e3,4

01110

e3,5

01101

e1,4

10010

e1,5

10001

e2,3

01100

e2,4

01010

e2,5

01001

e1

10000

e2

01000

e3

00100

e4

00010

e5

00001

Lemma 2.1. Under Hypothesis (H) we have the equivalence

ei,j � ek,l ⇐⇒ (ei � ek,l and ej � ek,l),

for all 1 ≤ i ≤ j ≤ d and 1 ≤ k ≤ l ≤ d.

Proof. (i) Assume that ei,j � ek,l. Since both children ei,j\{i} and ei,j\{j} of ei,j satisfy

ei,j\{i} ≺ ei,j and ei,j\{j} ≺ ei,j, we have ei � ei,j and ej � ei,j, which implies ei � ek,l

and ej � ek,l since ei,j � ek,l.

(ii) Assume that ei � ek,l and ej � ek,l. We work by decreasing induction on the

height of nodes in the tree. If ek,l = ek is a leaf, i.e. k = l, then (ei � ek,l and

ej � ek,l) implies i = j = k = l, hence ei,j = ei = ek = ek,l. Next, assuming that the

conclusion holds for all nodes of height at least h ≥ 2, consider a node ek,l of height

h− 1, with k 6= l. If (ei � ek,l and ej � ek,l) and {i, j} 6= {k, l}, we must have either
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i 6= l and j 6= l, or i 6= k and j 6= k. In the first case, (ei � ek,l and ej � ek,l) implies

ei � ek,l\{l} and ej � ek,l\{l}, where ek,l\{l} has height h, hence ei � ek,l\{l} � ek,l and

ej � ek,l\{l} � ek,l by the induction hypothesis. The conclusion is similar in the second

case, by replacing l with k.

Based on Lemma 2.1, for all 1 ≤ i ≤ j ≤ d we can now rewrite (2.2) as the sum

Cov (Xi, Xj) =
∑

1≤k≤l≤d
ei,j�ek,l

σ2
k,l, 1 ≤ i ≤ j ≤ d, (2.4)

over all couples (k, l) such that ei,j � ek,l. In other words, ( Cov (Xi, Xj))1≤i≤j≤d is

the Möbius transform of (σ2
k,l)1≤k≤l≤d on the partially ordered set

(
(ek,l)1≤k≤l≤d,�

)
,

cf. [13] or § 2.5 of [12] for details.

3 Möbius inversion

By Möbius inversion, cf. Proposition 2.6.3 of [12], the coefficients (σ2
k,l)1≤k≤l≤d in (2.2)

can be recovered using the covariances ( Cov (Xi, Xj))1≤i≤j≤d as the sum

σ2
k,l =

∑
1≤i≤j≤d
ek,l�ei,j

µ(ei,j, ek,l) Cov (Xi, Xj), 1 ≤ k ≤ l ≤ d, (3.1)

over all couples (i, j) such that ek,l � ei,j, 1 ≤ i ≤ j ≤ d, where µ(x, y) is the Möbius

function defined recursively by µ(x, x) := 1 and

µ(x, y) := −
∑

y≺z�x

µ(x, z), x, y ∈ {0, 1}d, (3.2)

cf. Proposition 2.6.1 of [12].

Proposition 3.1. The Möbius function µ(x, y) on the tree
(
(ek,l)1≤k≤l≤d,�

)
is given

by 

µ(ek,l, ek,l) = 1,

µ(ek,l, ek,l\{k}) = −1,

µ(ek,l, ek,l\{l}) = −1,

µ(ek,l, ek,l\{k, l}) = 1, 1 ≤ k ≤ l ≤ d,

(3.3a)

(3.3b)
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with µ(ek,l, ei,j) = 0 in all other cases.

Proof. Given ek,l ∈ {0, 1}d, we clearly have µ(ek,l, ek,l) = 1, µ(ek,l, ek,l\{k}) = −1,

and µ(ek,l, ek,l\{l}) = −1. Next, since the two children ek,l\{k}, and ek,l\{l} of ek,l have

themselves a unique common child ek,l\{k, l}, (3.2) yields µ(ek,l, ek,l\{k, l}) = 1.

The next graph, in which y /∈ {k, l}, summarizes the result of Proposition 3.1.

µ(ek,l, ek,l) = 1

µ(ek,l, ek,l\{k}) = −1 µ(ek,l, ek,l\{l}) = −1

µ(ek,l, ek,y) = 0 µ(ek,l, ek,l\{k, l}) = 1 µ(ek,l, ey,l) = 0

Using (3.1) we can now solve (2.2) for (σ2
k,l)1≤k≤l≤d starting from ( Cov (Xi, Xj))1≤i≤j≤d.

However, not all covariance matrices ( Cov (Xi, Xj))1≤i≤j≤d may lead to a positive so-

lution (σ2
k,l)1≤k≤l≤d, meaning that not all random vectors admit a representation of

the form (2.1), see Example 5 below.

Example 2. Comonotonic vectors.

The comonotonic vector (Xk,l, Xk,l, . . . , Xk,l) can be represented using a binary tree

with a single node ek,l = 111 · · · 11 and letting σ2
i,j = 0 for (i, j) 6= (k, l), since

Cov (Xi, Xj) = σ2
k,l for all (i, j).

Example 3. Pairwise dependence.

The binary tree is reduced to the d leaves e1, . . . , ed, and to their parents (d− 1)d/2

ek,l = (0, . . . , 0, 1,
↑
k

0, . . . , 0, 1
↑
l

, 0, . . . , 0), 1 ≤ k ≤ l ≤ d,

as in the following example with d = 4:

e1,2

1100

e1,3

1010

e1,4

1001

e2,3

0110

e2,4

0101

e3,4

0011

e1

1000

e2

0100

e3

0010

e4

0001
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Here, the vector (Xi)i=1,...,d is given by
X1 = X1,1 +X1,2 +X1,3 +X1,4

X2 = X2,2 +X1.2 +X2,3 +X2,4

X3 = X3,3 +X1,3 +X2,3 +X3,4

X4 = X4,4 +X1,4 +X2,4 +X3,4,

(3.4)

and for any d ≥ 1, by (2.2) we have

Cov (Xi, Xj) = σ2
i,j, 1 ≤ i < j ≤ d,

and

Var [Xi] =
i−1∑
j=1

σ2
j,i +

d∑
j=i

σ2
i,j, i = 1, . . . , d. (3.5)

Here, the inversion of (3.5) by the Möbius transform (3.1) reads

σ2
k,k = Var [Xk]−

d∑
l=1
l 6=k

Cov (Xk, Xl), k = 1, . . . , d.

Example 4. Recombining trees.

In dimension d = 3, the only available tree structure in addition to the pairwise

dependence of Example 3 is the recombining (or binomial) full tree

e1,2

111

e1,3

101

e2,3

011

e1

100

e2

010

e3

001

which is associated to the following random vector:
X1 = X1,1 +X1,3 +X1,2

X2 = X2,2 +X2,3 +X1,2

X3 = X3,3 +X1,3 +X2,3 +X1,2

with the inversion formula (3.1) written as

σ2
1,1 = Cov (X1, X1)− Cov (X1, X3)
σ2

2,2 = Cov (X2, X2)− Cov (X1, X3)− Cov (X2, X3) + Cov (X1, X2)
σ2

3,3 = Cov (X3, X3)− Cov (X2, X3)
σ2

1,3 = Cov (X1, X3)− Cov (X1, X2)
σ2

2,3 = Cov (X2, X3)− Cov (X1, X2)
σ2

1,2 = Cov (X1, X2).

(3.6)
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Example 5. Multivariate Gaussian vectors.

If (Xi,j)1≤i≤j≤d is a family of independent Gaussian random variables, then X =

(X1, . . . , Xd) in (2.1) is a multivariate Gaussian vector with matrix ( Cov (Ui, Uj))1≤i≤j≤d

of nonnegative covariances given by (2.4). However, not all Gaussian vectors can fit

into a tree-based structure under Hypothesis (H) above. For example, when d = 3,

consider the multivariate Gaussian vector
X1 = X1,1 +X1,3 +X1,2 +Z
X2 = X2,2 +X2,3 +X1,2 +Z
X3 = X3,3 +X1,3 +X2,3 +X1,2

(3.7)

where (Xk,l)1≤k≤l≤d are standard normal random variables and Z is an independent

Gaussian random variable with variance four. Here, (X1, X2, X3) has the (positive

definite) covariance matrix Cov (X1, X1) Cov (X1, X2) Cov (X1, X3)
Cov (X1, X2) Cov (X2, X2) Cov (X2, X3)
Cov (X1, X3) Cov (X2, X3) Cov (X3, X3)

 =

 7 5 2
5 7 2
2 2 4

 ,

in which case (3.6) cannot yield a nonnegative solution (σ2
k,l)1≤k≤l≤3, e.g. when

(k, l) = (1, 3). In this case, the multivariate Gaussian vector (X1, X2, X3) given

by (3.7) admits no binary tree-based representation as the inversion formula (3.6)

is based on a full tree.

Example 6. As in Example 5 above, binomial, Poisson and gamma random vectors

having a given matrix of nonnegative covariances can be constructed on a binary tree,

provided that (3.1) admits a nonnegative solution (σ2
k,l)1≤k≤l≤3 since their marginals

are characterized by their variance parameters and they are stable by summation.

However in this case the construction may not be unique depending on the chosen bi-

nary tree structure, as their joint distribution is not characterized by their covariance

matrices.

Example 7. The particular dependence structure considered in [7] for Poisson ran-

dom vectors corresponds to the binary tree built on the d(d− 1)/2 nodes

ei,j = (1, . . . , 1, 1
↑
i

, 0, . . . , 0, 1
↑
j

, 0, . . . , 0), 1 ≤ i < j ≤ d,

and on the d leaves e1, . . . , ed.
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4 Poisson random vectors

In this section we provide a characterization of the supermodular ordering of Poisson

random vectors, based on their covariance matrices in Theorem 4.2. This extends the

results of [7], cf. Example 7 above, to more general dependence structures.

Recall that any d-dimensional infinitely divisible Poisson random vectorX = (X1, . . . , Xd)

is defined by its characteristic function

E[ei〈t̄,X〉] = exp

(∫
Rd

(ei〈t̄,x〉 − 1)µ(dx)

)
,

where t̄ = (t1, . . . , td) ∈ Rd, 〈·, ·〉 denotes the scalar product in Rd, and the Lévy

measure

µ(dx) :=
∑

y∈{0,1}d
ayδy(dx),

is supported on Cd = {0, 1}d, where δy denotes the Dirac measure at the point

y ∈ {0, 1}d, and (ay)y∈Cd
is a family of nonnegative coefficients with a(0,...,0) = 0.

Equivalently, X = (X1, . . . , Xd) can be represented as

Xi =
∑

y∈{0,1}d
1{i∈y}Zy =

∑
y∈Cd
ei�y

Zy, i = 1, . . . , d, (4.1)

where (Zy)y∈Cd\{0} is a family of 2d − 1 independent Poisson random variables with

respective intensities (ay)y∈Cd\{0}, cf. also Example 4.3 of [4] and Theorem 3 of [6].

In order to characterize the ordering of Poisson random vectors based on the data

of their covariance matrices which contain only d(d + 1)/2 components, we consider

Lévy measures of the form

µ(dx) =
∑

1≤k≤l≤d

ak,lδek,l(dx), (4.2)

on {0, 1}d, where ak,l ∈ R+, 1 ≤ k ≤ l ≤ d. In this case, (4.1) rewrites as

Xi =
∑

1≤k≤l≤d
ei�ek,l

Xk,l, (4.3)
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where (Xk,l)1≤k≤l≤d is a family of independent Poisson random variables whose re-

spective intensities (ai,j)1≤i≤j≤d satisfy Var [Xk,l] = E[Xk,l] = ak,l, 1 ≤ k ≤ l ≤ d.

In the remaining of this section we assume that the family (ek,l)1≤k≤l≤d ⊂ {0, 1}d

forms a binary tree according to Hypothesis (H). In this case, the Möbius inversion

formula (3.1) shows that

ak,l =
∑

1≤i≤j≤d
ek,l�ei,j

µ(ei,j, ek,l) Cov (Xi, Xj), 1 ≤ k ≤ l ≤ d. (4.4)

Supermodular ordering of Poisson random vectors

Theorem 4.2 below is a direct consequence of the following Lemma 4.1 which yields

the decomposition

µ(dx)

=
d∑

i=1

Var [Xi]δei(dx) +
∑

1≤i<j≤d

Cov (Xi, Xj)
(
δei,j + δei,j\{i, j} − δei,j\{i} − δei,j\{j}

)
(dx)

of a Lévy measure µ(dx) of the form (4.2) under Hypothesis (H).

Lemma 4.1. Let (X1, . . . , Xd) be an infinitely divisible Poisson random vector written

as in (4.3) under Hypothesis (H), with Lévy measure µ(dx) on Cd. Then we have∫
Rd

φ(x)µ(dx) (4.5)

=
d∑

i=1

E[Xi]φ(ei) +
∑

1≤i<j≤d

Cov (Xi, Xj)(φ(ei,j) + φ(ei,j\{i, j})− φ(ei,j\{i})− φ(ei,j\{j})),

for any function φ : {0, 1}d −→ R such that φ(0) = 0.

Proof. By the Möbius inversion formula (3.1) we have∫
Rd

φ(x)µ(dx) =
∑

1≤k≤l≤d

ak,lφ(ek,l)

=
∑

1≤k≤l≤d

φ(ek,l)
∑

1≤i≤j≤d
ek,l�ei,j

µ(ei,j, ek,l) Cov (Xi, Xj)
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=
d∑

i=1

Cov (Xi, Xi)
∑
1≤k≤d
ek�ei

µ(ei, ek)φ(ek) +
∑

1≤i<j≤d

Cov (Xi, Xj)
∑

1≤k<l≤d
ek,l�ei,j

µ(ei,j, ek,l)φ(ek,l)

=
d∑

i=1

E[Xi]φ(ei) +
∑

1≤i<j≤d

Cov (Xi, Xj)(φ(ei,j) + φ(ei,j\{i, j})− φ(ei,j\{i})− φ(ei,j\{j})),

where we used (3.3a)-(3.3b) and the fact that ek � ei if and only if k = i.

Example 8. For d = 4, the tree structure

e1,4

1111

e1,3

1110

e2,4

0111

e1,2

1100

e2,3

0110

e3,4

0011

e1

1000

e2

0100

e3

0010

e4

0001

is satisfied by the random vector
X1 = X1,1 +X1,2 +X1,3 +X1,4

X2 = X2,2 +X1,2 +X1,3 +X1,4 +X2,3 +X2,4

X3 = X3,3 +X1,3 +X1,4 +X2,3 +X2,4 +X3,4

X4 = X4,4 +X1,4 +X2,4 +X3,4,

and Relation (4.5) reads∫
Rd

φ(x)µ(dx) = a1,4φ(1, 1, 1, 1) + a1,3φ(1, 1, 1, 0) + a2,4φ(0, 1, 1, 1)

+a1,2φ(1, 1, 0, 0) + a2,3φ(0, 1, 1, 0) + a3,4φ(0, 0, 1, 1)

+a1,1φ(1, 0, 0, 0) + a2,2φ(0, 1, 0, 0) + a3,3φ(0, 0, 1, 0) + a4,4φ(0, 0, 0, 1)

= E[X1]φ(1, 0, 0, 0) + E[X2]φ(0, 1, 0, 0) + E[X3]φ(0, 0, 1, 0) + E[X4]φ(0, 0, 0, 1)

+ Cov (X1, X2)(φ(1, 1, 0, 0) + φ(0, 0, 0, 0)− φ(1, 0, 0, 0)− φ(0, 1, 0, 0))

+ Cov (X1, X3)(φ(1, 1, 1, 0) + φ(0, 1, 0, 0)− φ(1, 1, 0, 0)− φ(0, 1, 1, 0))

+ Cov (X1, X4)(φ(1, 1, 1, 1) + φ(0, 1, 1, 0)− φ(1, 1, 1, 0)− φ(0, 1, 1, 1))
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+ Cov (X2, X3)(φ(0, 1, 1, 0) + φ(0, 0, 0, 0)− φ(0, 1, 0, 0)− φ(0, 0, 1, 0))

+ Cov (X2, X4)(φ(0, 1, 1, 1) + φ(0, 0, 1, 0)− φ(0, 1, 1, 0)− φ(0, 0, 1, 1))

+ Cov (X3, X4)(φ(0, 0, 1, 1) + φ(0, 0, 0, 0)− φ(0, 0, 1, 0)− φ(0, 0, 0, 1)).

Consider now two Poisson random vectors X and Y whose respective Lévy measures

µ and ν are represented as in (4.2), i.e.,

µ(dx) =
∑

1≤i≤j≤d

ai,jδei,j(dx) and ν(dx) =
∑

1≤i≤j≤d

bi,jδei,j(dx).

If Xi has the same distribution as Yi for all i = 1, . . . , d then E[Xi] = E[Yi], i =

1, . . . , d, and Lemma 4.1 shows that∫
Rd

φ(y)ν(dy)−
∫
Rd

φ(x)µ(dx) (4.6)

=
∑

1≤i<j≤d

( Cov (Yi, Yj)− Cov (Xi, Xj))(φ(ei,j) + φ(ei,j\{i, j})− φ(ei,j\{i})− φ(ei,j\{j}))

under Hypothesis (H). Relation (4.6) shows in particular that the nonnegativity of

the coefficients

Cov (Yi, Yj)− Cov (Xi, Xj) ≥ 0, 1 ≤ i < j ≤ d, (4.7)

becomes a necessary and sufficient condition for the supermodular ordering of the

Lévy measures µ and ν.

The next Theorem 4.2 reformulates (4.7) as a necessary and sufficient condition for

supermodular ordering of infinitely divisible Poisson random vector, based on Theo-

rem 4.5 of [1] which allows one to carry over the notion of supermodularity from the

setting of Lévy measures on the discrete cube Cd = {0, 1}d to the setting of Poisson

random variables.

Theorem 4.2. Consider two Poisson random vectors X and Y both represented as

in (4.3) under Hypothesis (H). Then the conditions

E[Xi] = E[Yi], 1 ≤ i ≤ d, (4.8)

and

Cov (Xi, Xj) ≤ Cov (Yi, Yj), 1 ≤ i < j ≤ d, (4.9)

are necessary and sufficient for the supermodular ordering X ≤sm Y .
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Proof. It is well-known, cf. e.g. Theorem 3.9.5 of [11], that for any couple (X, Y )

of d-dimensional random vectors, the condition X ≤sm Y implies (4.8) and (4.9),

therefore it suffices to show sufficiency. For this, by Theorem 4.5 in [1] it suffices to

show that we have ∫
Rd

φ(x)µ(dx) ≤
∫
Rd

φ(y)ν(dy) (4.10)

for all supermodular functions φ : Rd −→ R, where µ(dx) and ν(dy) respectively

denote the Lévy measures of X and Y . By Lemma 4.1 we have the identity∫
Rd

φ(y)ν(dy)−
∫
Rd

φ(x)µ(dx)

=
∑

1≤i<j≤d

( Cov (Yi, Yj)− Cov (Xi, Xj))(φ(ei,j) + φ(ei,j\{i, j})− φ(ei,j\{i})− φ(ei,j\{j}))

under Condition (4.9), which allows us to conclude to (4.10) for all supermodular

functions φ.

Next, we consider a situation where Hypothesis (H) is not satisfied and the equivalence

of Theorem 4.2 does not hold.

Counterexample 9. Taking d = 4, the tree

e2,3

1110

e3,4

0111

e1,2

1100

e1,3

1010

e1,4

1001

e2,4

0101

e1

1000

e2

0100

e4

0001

does not satisfy Hypothesis (H), and for its corresponding random vector
X1 = X1,1 +X1,2 +X1,3 +X1,4 +X2,3

X2 = X2,2 +X1,2 +X2,3 +X2,4 +X3,4

X3 = +X1,3 +X2,3 +X3,4

X4 = X4,4 +X1,4 +X2,4 +X3,4,

(4.11)
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Relation (4.1) reads∫
Rd

φ(x)µ(dx) = a2,3φ(1, 1, 1, 0) + a3,4φ(0, 1, 1, 1)

+a1,2φ(1, 1, 0, 0) + a1,3φ(1, 0, 1, 0) + a2,4φ(0, 1, 0, 1) + a1,4φ(1, 0, 0, 1)

+a1,1φ(1, 0, 0, 0) + a2,2φ(0, 1, 0, 0) + a4,4φ(0, 0, 0, 1)

= E[X1]φ(1, 0, 0, 0) + E[X2]φ(0, 1, 0, 0) + E[X3]φ(0, 0, 1, 0) + E[X4]φ(0, 0, 0, 1)

+ Cov (X1, X2)(φ(1, 1, 0, 0) + φ(0, 0, 0, 0)− φ(1, 0, 0, 0)− φ(0, 1, 0, 0))

+ Cov (X1, X3)(φ(1, 0, 1, 0) + φ(0, 0, 0, 0)− φ(1, 0, 0, 0)− φ(0, 0, 1, 0))

+ Cov (X1, X4)(φ(1, 0, 0, 1) + φ(0, 0, 0, 0)− φ(1, 0, 0, 0)− φ(0, 0, 0, 1))

+ Cov (X2, X3)(φ(1, 1, 1, 0) + φ(1, 0, 0, 0)− φ(1, 1, 0, 0)− φ(1, 0, 1, 0))

+ Cov (X2, X4)(φ(0, 1, 0, 1) + φ(0, 0, 0, 0)− φ(0, 1, 0, 0)− φ(0, 0, 0, 1))

+ Cov (X3, X4)(φ(0, 1, 1, 1) + φ(0, 0, 0, 0)− φ(0, 1, 0, 1)− φ(0, 0, 1, 0))

−Cov (X3, X4)(φ(1, 1, 1, 0) + φ(1, 0, 0, 0)− φ(1, 0, 1, 0)− φ(1, 1, 0, 0)).

In this case, the conclusion of Theorem 4.2 cannot hold for vectors of the form (4.11)

as the sum of the above two terms in factor of Cov (X3, X4) can become negative,

e.g. for the supermodular function φ(x1, x2, x3, x4) = x1x2x3 on the unit cube.

The next proposition replaces the equality of means in (4.8) with an inequality, and is

obtained as in Proposition 4.3 of [7] by extending Theorem 4.5 of [1] to nondecreasing

supermodular functions φ on Rd satisfying φ(0) = 0, using the same approximation

as in Lemma 4.4 therein.

Proposition 4.3. Consider two Poisson random vectors X and Y both represented

as in (4.3) under Hypothesis (H), and assume that

E[Xi] ≤ E[Yi], 1 ≤ i ≤ d,

and

Cov (Xi, Xj) ≤ Cov (Yi, Yj), 1 ≤ i < j ≤ d.

Then we have

E[Φ(X)] ≤ E[Φ(Y )]

for all nondecreasing supermodular functions Φ : Rd −→ R.
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Convex ordering

The next result is a remark on the convex ordering of Poisson random vectors repre-

sented as in (4.3).

Proposition 4.4. Consider two Poisson random vectors X and Y both represented

as in (4.3) under Hypothesis (H). Then we have X ≤cx Y if and only if X and Y

have the same distribution.

Proof. We assume that X ≤cx Y , i.e., we have E[Φ(X)] ≤ E[Φ(Y )] for all convex

functions Φ : Rd −→ R. Clearly, this implies E[Xk] = E[Yk], k = 1, . . . , d, and by the

same argument as in part (b) of the proof of Theorem 4.5 in [1] we also have µ ≤cx ν.

Assume now that Cov (Yk, Yl) > Cov (Xk, Xl) for some 1 ≤ k < l ≤ d. The function

(x1, . . . , xd) 7→ φk,l(x1, . . . , xd) := max

0, xl − xk −
∑
a/∈ek,l

xa


is convex on Rd and satisfies φk,l(ei,j) = 1 when ei,j is a (non-strict) descendant of

ek,l\{k} that contains l, and φk,l(ei,j) = 0 in all other cases. This shows that

φk,l(ek,l) + φk,l(ek,l\{k, l})− φk,l(ek,l\{k})− φk,l(ek,l\{l}) = −1,

and

φk,l(ei,j) + φk,l(ei,j\{i, j})− φk,l(ei,j\{i})− φk,l(ei,j\{j}) = 0

when (i, j) 6= (k, l). Therefore, since Cov (Yk, Yl) > Cov (Xk, Xl), Lemma 4.1 shows

that∫
Rd

φ(y)ν(dy)−
∫
Rd

φ(x)µ(dx)

=
∑

1≤i<j≤d

( Cov (Yi, Yj)− Cov (Xi, Xj))(φ(ei,j) + φ(ei,j\{i, j})− φ(ei,j\{i})− φ(ei,j\{j}))

= ( Cov (Yk, Yl)− Cov (Xk, Xl))(φ(ek,l) + φ(ek,l\{k, l})− φ(ek,l\{k})− φ(ek,l\{l}))

< 0,

which contradicts the fact that µ ≤cx ν, hence Cov (Yk, Yl) ≤ Cov (Xk, Xl). If

Cov (Yk, Yl) < Cov (Xk, Xl) we can proceed similarly with the convex function

(x1, . . . , xd) 7→ −φk,l(x1, . . . , xd),

and conclude that Cov (Yk, Yl) = Cov (Xk, Xl) for all 1 ≤ k ≤ l ≤ d, hence by (4.4)

the vectors X and Y have the same distribution.
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5 Binomial random vectors

In this section we provide a characterization of the supermodular ordering of binomial

random vectors, based on their covariance matrices, cf. Theorem 5.1.

Consider (Z1, . . . , Zn) independent Bernoulli random variables with parameter p ∈
[0, 1] and (A(ek,l))1≤k≤l≤d a partition of {1, . . . , n}. Let (Xk,l)1≤k≤l≤d = (XA(ek,l))1≤k≤l≤d

denote the family of independent binomial random variables given by

Xk,l = XA(ek,l) :=
∑

i∈A(ek,l)

Zi, 1 ≤ k ≤ l ≤ d,

with

E[XA(ek,l)] = p|A(ek,l)|, 1 ≤ k ≤ l ≤ d,

where |A(ek,l)| denotes the cardinality of A(ek,l), and

σ2
k,l = Var [XA(ek,l)] = pq|A(ek,l)|, 1 ≤ k ≤ l ≤ d,

where q := 1− p. Let now

Ai :=
⋃

1≤k≤l≤d
ei�ek,l

A(ek,l), i = 1, . . . , d,

and consider the vector (X1, . . . , Xd) = (XA1 , . . . , XAd
) of binomial random variables

defined by

Xi = XAi
:=
∑
k∈Ai

Zk =
∑

1≤k≤l≤d
ei�ek,l

XA(ek,l), i = 1, . . . , d. (5.1)

In general, we have

E[XAi
] = p

∑
1≤k≤l≤d
ei�ek,l

|A(ek,l)|, i = 1, . . . , d,

and

Cov (XAi
, XAj

) = pq
∑

1≤k≤l≤d
ei,j�ek,l

|A(ek,l)|, 1 ≤ i ≤ j ≤ d.
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Assuming that the family (ek,l)1≤k≤l≤d ⊂ Cd forms a binary tree according to Hypoth-

esis (H), the Möbius inversion formula (3.1) shows that we have

pq|A(ek,l)| =
∑
1≤k≤d

ek,l�ei,j

µ(ei,j, ek,l) Cov (XAi
, XAj

), 1 ≤ k ≤ l ≤ d. (5.2)

Next is the main result of this section.

Theorem 5.1. Consider (XA1 , . . . , XAd
) and (XB1 , . . . , XBd

) two binomial random

vectors represented as in (5.1) under Hypothesis (H). Then the conditions

E[XAi
] = E[XBi

], 1 ≤ i ≤ d, (5.3)

and

Cov (XAi
, XAj

) ≤ Cov (XBi
, XBj

), 1 ≤ i < j ≤ d, (5.4)

are necessary and sufficient for the supermodular ordering

(XA1 , . . . , XAd
) ≤sm (XB1 , . . . , XBd

).

Proof. By Theorem 3.9.5 of [11], it suffices to show sufficiency. Using induction, it is

also sufficient to consider the case where

Cov (XBk
, XBl

) = Cov (XAk
, XAl

) + pq, (5.5)

for some given 1 ≤ k < l ≤ d, and

Cov (XBi
, XBj

) = Cov (XAi
, XAj

), 1 ≤ i ≤ j ≤ d, (i, j) 6= (k, l). (5.6)

By the Möbius inversion formula (5.2) there is a unique way (up to a permutation

of {1, . . . , n}) to choose (A(ei,j))1≤i≤j≤d and (B(ei,j))1≤i≤j≤d satisfying (5.5) and (5.6)

respectively. In this case, (3.1) shows that

pq|B(ei,j)| =
∑

1≤x≤y≤d
ei,j�ex,y

µ(ex,y, ei,j) Cov (XBx , XBy)

= pq1{ei,j�ek,l}µ(ek,l, ei,j) +
∑

1≤x≤y≤d
ei,j�ex,y

µ(ex,y, ei,j) Cov (XAx , XAy)

= pq1{ei,j�ek,l}µ(ek,l, ei,j) + pq|A(ei,j)|, 1 ≤ i ≤ j ≤ d,
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i.e.,

|B(ei,j)| = 1{ei,j�ek,l}µ(ek,l, ei,j) + |A(ei,j)|, 1 ≤ i ≤ j ≤ d. (5.7)

Given the children ek,l\{k}, ek,l\{l} ∈ {0, 1}d and grandchild ek,l\{k, l} of ek,l ∈ {0, 1}d,
by (3.3a)-(3.3b) and (5.7), we have

|B(ek,l)| = |A(ek,l)|+ 1,

|B(ek,l\{k})| = |A(ek,l\{k})| − 1,

|B(ek,l\{l})| = |A(ek,l\{l})| − 1,

|B(ek,l\{k, l})| = |A(ek,l\{k, l})|+ 1,

(5.8)

with |B(ei,j)| = |A(ei,j)|, since µ(ek,l, ei,j) = 0, in all other cases. We choose to realize

the above as 

A(ek,l) = B(ek,l) \ {k},

B(ek,l\{k}) = A(ek,l\{k}) \ {k},

B(ek,l\{l}) = A(ek,l\{l}) \ {l},

A(ek,l\{k, l}) = B(ek,l\{k, l}) \ {l},

(5.9)

for some given 1 ≤ k < l ≤ d, with k, l /∈ B(ei,j) = A(ei,j) in all other cases. Noting

that

l ∈ B(ek,l\{k, l}), k ∈ A(ek,l\{k}), l ∈ A(ek,l\{l}),

and

B(ek,l\{k, l}))∩Bk = ∅, B(ek,l\{k, l}))∩Bl = ∅, A(ek,l\{k}))∩Ak = ∅, A(ek,l\{l}))∩Al = ∅,

we find that

l /∈ Bk, l /∈ Bl, k /∈ Ak, l /∈ Al.

Hence, using the symmetric difference operator A \ B := A ∩ Bc, for i = 1, . . . , d we

have

Ai =


(Bk \B(ek,l) \B(ek,l\{k, l})) ∪ A(ek,l) ∪ {l}, i = k,

(Bi \B(ek,l) \B(ek,l\{k, l})) ∪ A(ek,l) ∪ {k} ∪ A(ek,l\{k, l}) ∪ {l}, i /∈ {k, l},

(Bl \B(ek,l) \B(ek,l\{k, l})) ∪ A(ek,l) ∪ {k}, i = l,
(5.10)
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and

Bi =


(Bk \B(ek,l) \B(ek,l\{k, l})) ∪B(ek,l), i = k,

(Bi \B(ek,l) \B(ek,l\{k, l})) ∪B(ek,l) ∪B(ek,l\{k, l}), i /∈ {k, l},

(Bl \B(ek,l) \B(ek,l\{k, l})) ∪B(ek,l), i = l.

(5.11)

In other words, from (5.9) we can write

XB(ek,l) = XA(ek,l) + U,

XA(ek,l\{k}) = XB(ek,l\{k}) + U,

XA(ek,l\{l}) = XB(ek,l\{l}) + V,

XB(ek,l\{k, l}) = XA(ek,l\{k, l}) + V,

(5.12)

where U, V ∈ {Z1, . . . , Zn} are two independent Bernoulli random variables, while we

have XB(ei,j) = XA(ei,j) in all other cases, and from (5.10)-(5.11) we get

XAi
=


XBk\B(ek,l)\B(ek,l\{k, l}) +XA(ek,l) + V, i = k,

XBi\B(ek,l)\B(ek,l\{k, l}) +XA(ek,l) + U +XA(ek,l\{k, l}) + V, i /∈ {k, l},

XBl\B(ek,l)\B(ek,l\{k, l}) +XA(ek,l) + U, i = l,
(5.13)

and

XBi
=


XBk\B(ek,l)\B(ek,l\{k, l}) +XB(ek,l), i = k,

XBi\B(ek,l)\B(ek,l\{k, l}) +XB(ek,l) +XB(ek,l\{k, l}), i /∈ {k, l}.

XBl\B(ek,l)\B(ek,l\{k, l}) +XB(ek,l), i = l.

(5.14)

Now, for any supermodular function φ : Rd −→ R we have, using (5.14) and (5.12),

E
[
φ
(
(XBi

)1≤i≤d
)]

= E
[
φ
((
XBi\B(ek,l)\B(ek,l\{k, l}) +XB(ek,l) +XB(ek,l\{k, l})1{i/∈{k,l}}

)
1≤i≤d

)]
= E

[
φ
((
XBi\B(ek,l)\B(ek,l\{k, l}) +XA(ek,l) + U + (XA(ek,l\{k, l}) + V )1{i/∈{k,l}}

)
1≤i≤d

)]
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≥ E
[
φ
((
XBi\B(ek,l)\B(ek,l\{k, l}) +XA(ek,l) + U1{i 6=k} +XA(ek,l\{k, l})1{i/∈{k,l}} + V 1{i 6=l}

)
1≤i≤d

)]
= E

[
φ
(
(XAi

)1≤i≤d
)]
,

where we used (5.13) for the last equality. As for the inequality above, it follows from

E [φ (U,U + V, . . . , U + V, U))]

= p2φ (1, 2, . . . , 2, 1) + q2φ (0, 0, . . . , 0, 0) + pqφ (1, 1, . . . , 1, 1) + pqφ (0, 1, . . . , 1, 0)

≥ p2φ (1, 2, . . . , 2, 1) + q2φ (0, 0, . . . , 0, 0) + pqφ (1, 1, . . . , 1, 0) + pqφ (0, 1, . . . , 1, 1)

= E [φ (U,U + V, . . . , U + V, V )] ,

for all supermodular functions φ : R|ek,l| −→ R, where |ek,l| denotes the cardinality of

ek,l whose indices are arranged as {k, . . . , l} for convenience of notation, and we did

not consider indices j /∈ ek,l as U and V do not belong to Xj in this case.

Multivariate Gaussian vectors

From the central limit theorem, Theorem 5.1 can be used to deal with centered mul-

tivariate Gaussian random vectors (X1, . . . , Xd) and (Y1, . . . , Yd) represented as in

Example 5 as

X =
∑

1≤k≤l≤d

Xk,lek,l, Y =
∑

1≤k≤l≤d

Yk,lek,l, (5.15)

where (ek,l)1≤k≤l≤d ⊂ {0, 1}d satisfies Hypothesis (H). In this case we can apply the

Möbius inversion (3.1) in order to determine the variance coefficients (σ2
k,l)1≤k≤l≤d =

(Var [Xk,l])1≤k≤l≤d and (η2
k,l)1≤k≤l≤d = (Var [Yk,l])1≤k≤l≤d in the decomposition (5.15).

Those coefficients can then be obtained as the respective limits of normalized vari-

ances (Var [Xn
k,l]/n)1≤k≤l≤d and (Var [Y n

k,l]/n)1≤k≤l≤d of independent binomial random

variables (Xn
k,l)1≤k≤l≤d and (Y n

k,l)1≤k≤l≤d. In this case, the sequences (Xn
1 , . . . , X

n
d )n≥1

and (Y n
1 , . . . , Y

n
d )n≥1 of independent random vectors defined by

Xn
i :=

1√
n

∑
1≤k≤l≤d
ei�ek,l

(Xn
k,l−E[Xn

k,l]) and Y n
i :=

1√
n

∑
1≤k≤l≤d
ei�ek,l

(Y n
k,l−E[Y n

k,l]), i = 1, . . . , d,

converge in distribution to the multivariate Gaussian vectors (X1, . . . , Xd) and (Y1, . . . , Yd),

respectively. The condition Cov (Xi, Xj) ≤ Cov (Yi, Yj) shows that Cov (Xn
i , X

n
j ) ≤

Cov (Y n
i , Y

n
j ) for n sufficiently large, 1 ≤ i < j ≤ d, hence by Theorem 5.1 it becomes
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necessary and sufficient for (X1, . . . , Xd) ≤sm (Y1, . . . , Yd) to hold. This is consistent

with the general result proved for all multivariate Gaussian random vectors in [10],

Theorem 4.2, cf. also Theorem 3.13.5 of [11].

A similar limiting argument can be applied to recover Theorem 4.2 in the Poisson

case from Theorem 5.1 and the convergence in distribution of renormalized binomial

random variables to Poisson random variables.

Sums of binomial, Gaussian and Poisson vectors

By Theorem 4.2 of [10] on Gaussian random vectors, Theorems 5.1 and 4.2 above,

and the fact that the supermodular ordering is closed under convolution, cf. The-

orem 3.9.14-(C) of [11], we deduce that the supermodular ordering of a sum of in-

dependent binomial, Gaussian and Poisson vectors, is implied by the componentwise

ordering of their respective covariances. Proposition 4.3 admits an analog extension

to sums of binomial, Gaussian and Poisson random vectors.
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