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Abstract

The mixing and ergodicity of Gaussian measures have been characterized in terms
of their covariances, first for random sequences, and then in the framework of linear
dynamics on Banach spaces. In this paper, we extend the latter results to the setting
of infinitely divisible measures on Banach spaces, by deriving necessary and sufficient
conditions for the strong and weak mixing of linear operators. Our approach relies on
characterizations of mixing for infinitely divisible random sequences, and replaces the
use of using covariance operators with codifference functionals and control measures on
Banach spaces. Our results are then specialized in explicit form to α-stable measures,
with examples of linear operators satisfying the required measure invariance conditions.
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1 Introduction

The study of mixing of Gaussian processes in connection with the spectral properties of

unitary transformations started in [WA57], with the derivation of necessary and sufficient

conditions in terms of Gaussian covariances. Characterizations of mixing and ergodicity for

dynamical systems under a Gaussian measure have been obtained in [CFS82, Chapter 14,

§ 2, Theorems 1 and 2] on a space of real sequences, using spectral measures. On the Wiener
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space, the mixing of ergodicity of random isometries have been treated in [ÜZ00] using the

Skorohod integral.

On the other hand, characterizations of mixing and ergodicity of linear operators on

complex Banach spaces have been obtained in the framework of linear dynamics, see [BM09]

for an introduction to the field and to its connections with the notion of hypercyclicity. We

recall the following definition, see e.g. [BM09, Definition 5.23].

Definition 1.1 A measure-preserving map T on a measure space (X,B, µ) is strongly mixing

if either of the two following equivalent conditions is satisfied:

(i) lim
n→∞

µ(A ∩ T−n(B)) = µ(A)µ(B), A,B ∈ B,

(ii) lim
n→∞

∫
X

f(z)g(T nz)µ(dz) =

∫
X

f(z)µ(dz)

∫
X

g(z)µ(dz), f, g ∈ L2(X,µ),

and weakly mixing with respect to µ if either of the two following equivalent conditions is

satisfied:

(i) lim
n→∞

1

n

n−1∑
k=0

|µ(A ∩ T−k(B))− µ(A)µ(B)| = 0, A,B ∈ B,

(ii) lim
n→∞

1

n

n−1∑
k=0

∣∣∣∣∫
X

f(z)g(T kz)µ(dz)−
∫
X

f(z)µ(dz)

∫
X

g(z)µ(dz)

∣∣∣∣ = 0, f, g ∈ L2(X,µ).

Given E a complex separable Banach space with continuous dual E∗ and dual product ⟨x, x∗⟩
on E × E∗, consider a Radon probability measure µ on E with characteristic functional

µ̂(x∗) :=

∫
E

eiRe⟨z,x∗⟩µ(dz), x∗ ∈ E∗.

The measure µ on E is said to be Gaussian if for any x∗ ∈ E∗ the random variable x 7→ ⟨x, x∗⟩
has a complex symmetric Gaussian distribution on E, i.e. either it is almost surely 0 or

x 7→ Re ⟨x, x∗⟩ and x 7→ Im ⟨x, x∗⟩ are independent and have centered Gaussian distributions

with the same variance, see [BM09, Definitions 5.6-5.7]. Moreover, by [BM09, Theorem 5.9],

for any Gaussian measure µ on E, the continuous conjugate-linear operator R : E∗ → E

defined as

⟨Rx∗, y∗⟩ =
∫
E

⟨z, x∗⟩⟨z, y∗⟩µ(dz), x∗, y∗ ∈ E∗,

satisfies

µ̂(x∗) = exp

(
−1

4
⟨Rx∗, x∗⟩

)
, x∗ ∈ E∗,

2



see also [Lin86, p. 61], and we have[
E[Re ⟨X, x∗⟩Re ⟨X, y∗⟩] E[Re ⟨X, x∗⟩ Im ⟨X, y∗⟩]
E[Im ⟨X, x∗⟩Re ⟨X, y∗⟩] E[Im ⟨X, x∗⟩ Im ⟨X, y∗⟩]

]
=

1

2

[
⟨Rx∗, y∗⟩ 0

0 ⟨Rx∗, y∗⟩

]
, (1.1)

x∗, y∗ ∈ E∗.

Mixing criteria have been stated in [BM09, Theorem 5.24] for a continuous linear operator

T : E → E invariant with respect to a Gaussian measure µ on E. Namely, a continuous

linear operator T invariant with respect to a Gaussian measure µ on a separable Banach

space E is strongly mixing (resp. weakly mixing) if and only if

lim
n→∞

⟨RT ∗nx∗, y∗⟩ = 0, x∗, y∗ ∈ E∗, resp. lim
n→∞

1

n

n−1∑
k=0

∣∣⟨RT ∗kx∗, y∗⟩
∣∣ = 0, x∗, y∗ ∈ E∗.

(1.2)

In addition, sufficient conditions have been given on the eigenvectors of T so that it admits

an invariant Gaussian measure with full support, see [Fly95] on Hilbert spaces, and [BM09,

Proposition 5.27] on Banach spaces.

In the framework of stationary infinitely divisible stochastic processes, mixing criteria

in a non-Gaussian setting have been obtained in [Mar70], [RZ96], [RZ97]. The ergodicity

and mixing properties of Poisson random measures have also been considered by several

authors, under deterministic transformations, see e.g. [Mar78], [Gra84], [Roy07], and [Pri16]

for random transformations.

In this paper, we extend the mixing criteria of [BM09, Theorem 5.24] from Gaussian

measures to the more general setting where µ is an infinitely divisible probability measure

on the Banach space E, i.e. µ is such that for every n ≥ 1 there exists another probability

measure µn on E such that

µ = µn ⋆ · · · ⋆ µn︸ ︷︷ ︸
n times

see e.g. § 5.1 of [Lin86]. Recall that by e.g. [Lin86, Proposition 5.2.2], Gaussian measures

are infinitely divisible.

Moreover, by e.g. [Ros87, § II.1], the characteristic functional of any infinitely divisible

probability measure µ on E can be written as∫
E

eiRe⟨z,x∗⟩µ(dz)

= exp

(
−1

4
⟨Rx∗, x∗⟩+

∫
E

(
eiRe⟨z,x∗⟩ − 1− ik(z) Re ⟨z, x∗⟩

)
λ(dz)

)
, x∗ ∈ E∗, (1.3)
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where

• R : E∗ → E is a symmetric and positive semidefinite covariance operator,

• k(z) is a bounded measurable function on E such that limz→0 k(z) = 1 and k(z) =

O(1/ ∥z∥) as ∥z∥ tends to infinity, called a truncation function, and

• λ is a Lévy measure, i.e. λ is a measure on E that satisfies λ({0}) = 0 and∫
E

min((Re ⟨z, x∗⟩)2 , 1)λ(dz) < ∞, x∗ ∈ E∗.

In addition, by [AR05, Theorem 4.1] specialized to the single time index t = 1, a random

variable X with distribution µ on E admits the Lévy-Itô decomposition X = Xg+Xp, where

Xg is an E-valued Gaussian random variable and Xp is a non-Gaussian infinitely divisible

component. In terms of measures we have µ = µg ∗ µp, where µg (resp. µp) denotes the

distribution of Xg (resp. Xp), see [Lin86, Theorem 5.7.3].

In Sections 4-6 we will focus on the case of Banach-valued stable random variables.

Recall, see [Woy19, p. 6], [LT91, p. 124] [ST94, § 1.1 and 2.6], that a random vector X

taking values in E is said to be α-stable, α ∈ (0, 2], if for any a, b > 0 there exists z ∈ E

such that

aX(1) + bX(2) = z + (aα + bα)1/αX,

where X(1), X(2) are independent copies of X. In the case X and −X have same distribution,

the random variableX is said to have a symmetric α-stable (SαS) distribution. When α = 2,

X has a Gaussian distribution.

In Proposition 2.2, we obtain necessary and sufficient conditions for the mixing of a linear

operator T on E invariant with respect to the infinitely divisible measure µ. For this, we

will extend the covariances appearing in (1.2) into the codifference functionals

C=
µ (x

∗, y∗) := logE
[
eiRe⟨X,x∗−y∗⟩]− logE

[
eiRe⟨X,x∗⟩]− logE

[
e−iRe⟨X,y∗⟩] , (1.4)

and

C ̸=
µ (x

∗, y∗) := logE
[
eiRe⟨X,x∗⟩−i Im⟨X,y∗⟩]− logE

[
eiRe⟨X,x∗⟩]− logE

[
e−i Im⟨X,y∗⟩] , (1.5)

x∗, y∗ ∈ E∗. The codifference is a measure of bivariate dependence which, unlike the covari-

ance, does not require the existence of a second moment which may not exist in general, as
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in the case of α-stable measures with parameter α ∈ (0, 2). The codifference of µ can be

rewritten from (1.3) as

C=
µ (x

∗, y∗) =
1

2
Re ⟨Rx∗, y∗⟩+

∫
E

(
eiRe⟨z,x∗⟩ − 1

)(
e−iRe⟨z,y∗⟩ − 1

)
λ(dz), (1.6)

and

C ̸=
µ (x

∗, y∗) =
1

2
Im ⟨Rx∗, y∗⟩+

∫
E

(
eiRe⟨z,x∗⟩ − 1

)(
e−i Im⟨z,y∗⟩ − 1

)
λ(dz), (1.7)

x∗, y∗ ∈ E∗, where X is an infinitely divisible random variable with distribution µ on E.

Our proofs rely on the characterizations of strong and weak mixing properties of stationary

infinitely divisible processes established in [RZ96, RZ97, FS13, PV19]. In Proposition 2.6,

we obtain mixing criteria for linear operators on Hilbert spaces in terms of spectral measures

using Wiener’s theorem.

In Section 3 we consider the case where the characteristic function of the infinitely divis-

ible measure µ has the form∫
E

eiRe⟨z,x∗⟩µ(dz)

= exp

(
−1

4
⟨Rx∗, x∗⟩+

∫
E

∫ ∞

−∞

(
eiuRe⟨z,x∗⟩ − 1− iuk(u) Re⟨z, x∗⟩

)
ρ(z, du)ξ(dz)

)
, x∗ ∈ E∗,

where {ρ(s, ·)}s∈E is a family of Lévy measures on R, ξ is a σ-finite measure called a control

measure, and

k(u) = 1{|u|<1} +
1

|u|
1{|u|≥1}, u ∈ R.

In Theorem 3.2, we obtain necessary and sufficient conditions for the strong mixing of a

linear operator T : E → E that leaves µ invariant, extending [BM09, Theorem 5.24] from

the Gaussian to the infinitely divisible setting.

In Section 4, we specialize our results to the case where µ is an α-stable distribution

parametrized by an index α ∈ (0, 2), α ̸= 1, and a control measure ξ on the unit sphere SE

in E, see (4.1)-(4.2). In this stable setting, (1.6)-(1.7) become

C=
µ (x

∗, y∗) = −
∫
SE

(
|Re ⟨z, x∗ − y∗⟩|α − |Re ⟨z, x∗⟩|α − |Re ⟨z, y∗⟩|α

)
ξ(dz),

and

C ̸=
µ (x

∗, y∗) = −
∫
SE

(
|Re ⟨z, x∗⟩ − Im ⟨z, y∗⟩|α − |Re ⟨z, x∗⟩|α − |Im ⟨z, y∗⟩|α

)
ξ(dz),
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x∗, y∗ ∈ E∗. Note that although the Gaussian setting corresponds to α = 2, it may not be

recovered by letting α = 2 in the identities defining the α-stable distribution, e.g. in (4.1).

When µ is symmetric α-stable (SαS) and the Banach space E is of stable type α ∈ (0, 2),

see [Woy19, Definition 6.5.1], it follows from Corollary 4.1 that T is strongly mixing with

respect to µ if and only if

lim
n→∞

∫
E

|Re ⟨z, x∗⟩ |α/2|Re ⟨z, T ∗nx∗⟩ |α/2ξ(dz) = 0

and

lim
n→∞

∫
E

|Re ⟨z, x∗⟩ |α/2| Im ⟨z, T ∗nx∗⟩ |α/2ξ(dz) = 0, x∗ ∈ E∗,

with an example of operator T satisfying those conditions given in Proposition 4.2.

In Section 5 we construct a class of stable distributions on a Hilbert space H, and in

Proposition 5.5 we provide sufficient conditions for their invariance under bounded invertible

operators on H, with relevant examples, as required in Corollary 4.1. Finally, in Section 6

we consider the invariance of stable measures under σ-spanning operators. The role of the

σ-spanning property in connection to invariance and mixing has been previously discussed

in the Gaussian case in e.g. [BG06] in a Hilbert space setting, see also [BG07], and [BM16]

for Banach spaces of cotype 2.

We proceed as follows. In Sections 2 and 3 we provide sufficient conditions for mixing

in terms of codifference operators and control measures, respectively. The stable case is

treated in Section 4 with an example of application constructed in terms of weighted shifts.

Sufficient conditions for the existence of an invariant measure for T are given in the stable

case in Sections 5 and 6.

2 Mixing in terms of codifferences

In the sequel, we let X denote a random variable with distribution µ on E. Our character-

ization of mixing in Proposition 2.2 below relies on the following transfer result as in the

proof of [BM09, Theorem 5.24].

Lemma 2.1 A bounded linear operator T : E → E is strongly mixing (resp. weakly mixing)

with respect to µ if and only if the R2-valued process defined as

Xx∗

n :=
(
Re⟨X,T ∗nx∗⟩, Im⟨X,T ∗nx∗⟩

)
, n ≥ 0, (2.1)
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induced by X is strongly mixing (resp. weakly mixing) for every x∗ ∈ E∗.

Proof. ⇐) Let x∗ ∈ E∗, and given two integer sequences (n1, . . . , nk) and (m1, . . . ,ml) in

N, consider the continuous linear maps πx∗,1 : E → Ck and πx∗,2 : E → Cl defined by

πx∗,1(x) = (⟨x, T ∗n1x∗⟩ , . . . , ⟨x, T ∗nkx∗⟩) , πx∗,2(x) = (⟨x, T ∗m1x∗⟩ , . . . , ⟨x, T ∗mlx∗⟩) ,

x ∈ E, and the cylinder sets

A′
x∗ := (πx∗,1)

−1(Ãx∗), B′
x∗ := (πx∗,2)

−1(B̃x∗),

for Ãx∗ ⊂ Ck, B̃x∗ ⊂ Cl Borel sets viewed as subsets of R2×k and R2×l respectively. If

(Xx∗
n )n∈N is strongly mixing, we have

lim
n→∞

µ
(
A′

x∗ ∩ T−nB′
x∗

)
= lim

n→∞

∫
RN
1A′

x∗
(z)1B′

x∗
(T nz)µ(dz)

= lim
n→∞

∫
E

1Ãx∗×B̃x∗
(πx∗,1(z), πx∗,2(T

nz))µ(dz)

= lim
n→∞

E
[
1Ãx∗×B̃x∗

(πx∗,1(X), πx∗,2T
n(X))

]
= lim

n→∞
E
[
1Ãx∗

(πx∗,1(X))1B̃x∗
(πx∗,2(T

nX))
]

= lim
n→∞

E
[
1Ãx∗

(Xn1 , . . . , Xnk
)1B̃x∗

(Xm1+n, . . . , Xml+n)
]

= E
[
1Ãx∗

(Xn1 , . . . , Xnk
)
]
E
[
1B̃x∗

(Xm1 , . . . , Xml
)
]

= E
[
1Ãx∗

(πx∗,1(X))
]
E
[
1B̃x∗

(πx∗,2(X))
]

=

∫
E

1Ãx∗
(πx∗,1(z))µ(dz)

∫
E

1B̃x∗
(πx∗,2(z))µ(dz)

=

∫
E

1A′
x∗
(z)µ(dz)

∫
E

1B′
x∗
(z)µ(dz)

= µ
(
A′

x∗

)
µ
(
B′

x∗

)
,

and this relation extends to any Borel sets A′
x∗ , B′

x∗ by a monotone class argument. Next, if

(Xx∗
n )n∈N is weakly mixing for every x∗ ∈ E∗, then as above we have

lim
n→∞

1

n

n−1∑
k=0

∣∣∣E[1Ãx∗
(πx∗,1(X))1B̃x∗

(πx∗,2(T
kX))

]
− E

[
1Ãx∗

(πx∗,1(X))
]
E
[
1B̃x∗

(πx∗,2(X))
]∣∣∣ = 0,

and this relation also extends to Borel sets A′
x∗ , B′

x∗ by a monotone class argument, with

lim
n→∞

1

n

n−1∑
k=0

∣∣µ(A′
x∗ ∩ T−kB′

x∗)− µ(A′
x∗)µ(B′

x∗)
∣∣

= lim
n→∞

1

n

n−1∑
k=0

∣∣∣∣∫
E

1A′
x∗
(z)1B′

x∗
(T kz)µ(dz)−

∫
E

1A′
x∗
(z)µ(dz)

∫
E

1B′
x∗
(z)µ(dz)

∣∣∣∣
7



= 0.

⇒) Assume that T is strongly mixing with respect to µ. Letting X := (Xx∗

l )l∈N, for any

x∗ ∈ E∗ and f, g ∈ L2((R2)N,m), where m is the pushforward of µ by

z 7→ (Re⟨z, T ∗lx∗⟩, Im⟨z, T ∗lx∗⟩)l∈N,

denoting by S the shift operator by one time step, we have

lim
n→∞

E [f(X )g(SnX )] = lim
n→∞

∫
E

f
(
(⟨z, T ∗lx∗⟩)l∈N

)
g
(
(⟨z, T ∗(n+l)x∗⟩)l∈N

)
µ(dz)

= lim
n→∞

∫
E

f
(
(⟨z, T ∗lx∗⟩)l∈N

)
g
(
(⟨T nz, T ∗lx∗⟩)l∈N

)
µ(dz)

=

∫
E

f
(
(⟨z, T ∗lx∗⟩)l∈N

)
µ(dz)

∫
E

g
(
(⟨z, T ∗lx∗⟩)l∈N

)
µ(dz)

= E[f(X )]E[g(X )].

Similarly, if T is weakly mixing with respect to µ, for any f, g ∈ L2((R2)N,m) and x∗ ∈ E∗

we have

lim
n→∞

1

n

n−1∑
k=0

∣∣E [f(X )g(SkX )
]
− E (f(X ))E (g(X ))

∣∣
= lim

n→∞

1

n

n−1∑
k=0

∣∣∣∣∫
E

f
(
(⟨z, T ∗lx∗⟩)l∈N

)
g
(
(⟨z, T ∗(k+l)x∗⟩)l∈N

)
µ(dz)

−
∫
E

f
(
(⟨z, T ∗lx∗⟩)l∈N

)
µ(dz)

∫
E

g
(
(⟨z, T ∗lx∗⟩)l∈N

)
µ(dz)

∣∣∣∣
= 0.

□

In Proposition 2.2 we characterize the mixing of a linear operator T on the complex sep-

arable Banach space E. The equality (2.2) below, see also (2.3), is a technical condition

originating in [Mar70] and used in the proof of Theorem 1 of [RZ96] in order to ensure the

characterization of mixing using codifferences. See [RZ96, page 282] for an example where

this condition is necessary.

Proposition 2.2 Let E be a complex Banach space, and assume that for every x∗ ∈ E∗,

the Lévy measure νx∗ of (Re ⟨X, x∗⟩ , Im ⟨X, x∗⟩) satisfies

νx∗(R× 2πZ) and νx∗(2πZ× R) = 0. (2.2)
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Then, a bounded linear operator T : E → E that leaves invariant the infinitely divisible

measure µ is strongly mixing, resp. weakly mixing, with respect to µ if and only if

lim
n→∞

C=
µ

(
x∗, T ∗nx∗) = 0 and lim

n→∞
C ̸=

µ

(
x∗, T ∗nx∗) = 0, x∗ ∈ E∗,

resp. for any x∗ ∈ E∗ there exists a density one subset Dx∗ of N such that

lim
n→∞
n∈Dx∗

1

n

n−1∑
k=0

∣∣C=
µ (x

∗, T ∗kx∗)
∣∣ = 0 and lim

n→∞
n∈Dx∗

1

n

n−1∑
k=0

∣∣C ̸=
µ (x

∗, T ∗kx∗)
∣∣ = 0.

Proof. Let x∗ ∈ E∗. Since T leaves µ invariant, by (2.1) and (1.4)–(1.5) we have

C=
µ (x

∗, T ∗nx∗) = logE
[
eiRe⟨X,x∗−T ∗nx∗⟩]− logE

[
eiRe⟨X,x∗⟩]− logE

[
e−iRe⟨X,T ∗nx∗⟩]

= log
(
E
[
eiRe⟨X,x∗−T ∗nx∗⟩] /(E [eiRe⟨X,x∗⟩]E [e−iRe⟨X,x∗⟩] ))

and

C ̸=
µ (x

∗, T ∗nx∗) = logE
[
eiRe⟨X,x∗⟩−i Im⟨X,T ∗nx∗⟩]− logE

[
eiRe⟨X,x∗⟩]− logE

[
e−i Im⟨X,T ∗nx∗⟩]

= log
(
E
[
eiRe⟨X,x∗⟩−i Im⟨X,T ∗nx∗⟩] /(E [eiRe⟨X,x∗⟩]E [e−i Im⟨X,x∗⟩] )),

n ∈ N. Next, by [FS13, Theorem 2.1] applied to the time index N as in [PV19], (Xx∗
n )n∈N is

strongly mixing if and only if

lim
n→∞

E
[
eiRe⟨X,T ∗nx∗⟩−iRe⟨X,x∗⟩] = E

[
eiRe⟨X,x∗⟩]E[e−iRe⟨X,x∗⟩]

and

lim
n→∞

E
[
eiRe⟨X,T ∗nx∗⟩−i Im⟨X,x∗⟩] = E

[
eiRe⟨X,x∗⟩]E[e−i Im⟨X,x∗⟩].

Similarly, by [PV19, Theorem 4.3], (Xx∗
n )n∈N is weakly mixing if and only if there exists a

density one subset Dx∗ of N such that

lim
n→∞
n∈Dx∗

E
[
eiRe⟨x,T ∗nx∗⟩−iRe⟨X,x∗⟩] = E

[
eiRe⟨X,x∗⟩]E[e−iRe⟨X,x∗⟩]

and

lim
n→∞
n∈Dx∗

E
[
eiRe⟨x,T ∗nx∗⟩−i Im⟨X,x∗⟩] = E

[
eiRe⟨X,x∗⟩]E[e−i Im⟨X,x∗⟩].

We conclude in both cases from Lemma 2.1. □

When the Banach space E is real we ignore the vanishing second component of the induced

process
(
Xx∗

n

)
n∈N, and this process becomes R-valued. In this case, following the same

argument as in the proof of Proposition 2.2 by replacing the use of [FS13, Theorem 2.1]

and [PV19, Theorem 4.3] with that of [RZ97, Proposition 4 and Theorem 2], we have the

following result.
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Proposition 2.3 Let E be a real Banach space, and assume that for every x∗ ∈ E∗, the

Lévy measure νx∗ of ⟨X, x∗⟩ satisfies

νx∗(2πZ) = 0. (2.3)

Then, a bounded linear operator T : E → E that leaves invariant the infinitely divisible

measure µ is strongly mixing, resp. weakly mixing, with respect to µ if and only if

lim
n→∞

C=
µ

(
x∗, T ∗nx∗) = 0, resp. lim

n→∞

1

n

n−1∑
k=0

∣∣C=
µ (x

∗, T ∗kx∗)
∣∣ = 0, x∗ ∈ E∗.

In the case where µ is Gaussian with covariance operator R, (1.6)-(1.7) become

C=
µ (x

∗, y∗) =
1

2
Re ⟨Rx∗, y∗⟩ = 1

2
Re ⟨Ry∗, x∗⟩

and

C ̸=
µ (x

∗, y∗) =
1

2
Im ⟨Rx∗, y∗⟩ = −1

2
Im ⟨Ry∗, x∗⟩ , x∗, y∗ ∈ E∗,

and Proposition 2.2 yields the following result, cf. [BM09, Theorem 5.24].

Corollary 2.4 Let µ be a Gaussian measure on a complex Banach space E. Then, a bounded

linear operator T : E → E is strongly mixing, resp. weakly mixing, with respect to µ if and

only if

lim
n→∞

⟨RT ∗nx∗, x∗⟩ = 0, x∗ ∈ E∗,

resp. for any x∗ ∈ E∗ there exists a density one subset Dx∗ of N such that

lim
n→∞
n∈Dx∗

1

n

n−1∑
k=0

∣∣〈RT ∗kx∗, x∗〉∣∣ = 0.

We close this section with remarks on the characterization of mixing in real Hilbert spaces

using spectral measures. The next proposition defines the spectral measure σx∗ of x∗ in H∗

for H a Hilbert space. In what follows, we denote by T the unit circle in C.

Proposition 2.5 Let H be a real Hilbert space, and consider a bounded bijective linear

operator T : H → H. For every x∗ ∈ H∗, x ̸= 0, there exists a probability measure σx∗ on T
whose Fourier coefficients are given by

σ̂x∗(k) = −
C=

µ (x
∗, T ∗kx∗)

log |E [eiX0 ]|2
, k ∈ Z. (2.4)

10



Proof. Following the steps of the proof of [RZ97, Proposition 2], we find that for any

pairwise distinct sequence (nj)1≤j≤N the matrix (C=
µ (T

∗njx∗, T ∗nkx∗))1≤j,k≤N is nonnegative

definite. Hence, the function σ̂x∗(k) is non-negative definite and the conclusion follows from

Bochner’s theorem, see e.g. [Rud91], since T is the Pontryagin dual of Z. □

Recall that a complex measure σ on T is

1. continuous if σ({λ}) = 0 for every λ ∈ T, and

2. Rajchman if σ̂(n) → 0 as |n| → ∞,

where σ̂(n) is the nth Fourier coefficient of σ.

Proposition 2.6 Let µ be an infinitely divisible measure on a real Hilbert space H, and

assume that for every x∗ ∈ H∗, the Lévy measure of Xx∗
0 = ⟨X, x∗⟩ has no atoms in 2πZ.

Then, a bounded bijective linear operator T : H → H that leaves invariant the infinitely

divisible measure µ is strongly mixing (resp. weakly mixing) with respect to µ if and only if

σx∗ is Rajchman for all x∗ ∈ H∗ (resp. σx∗ is continuous for all x∗ ∈ H∗).

Proof. a) If σx∗ is Rajchman for all x∗ ∈ H∗, then by (2.4) we have limn→∞ C=
µ (x

∗, T ∗nx∗) =

0, hence T is strongly mixing by Proposition 2.3. Conversely, if T is strongly mixing then

by (2.4) and Proposition 2.3 we have

lim
n→∞

σ̂x∗(n) = 0, x∗ ∈ H∗.

Since

C=
µ (x

∗, (T−1)∗nx∗) = C=
µ (T

∗nx∗, x∗) = C=
µ (x

∗, T ∗nx∗), n ∈ N,

hence

lim
|n|→∞

σ̂x∗(n) = 0, x∗ ∈ H∗,

and therefore σx∗ is Rajchman.

b) Suppose that σx∗ is continuous for all x∗ ∈ H∗. Then, by Proposition 2.5 and Wiener’s

theorem, see e.g. [BM09, Theorem 5.31], we have

lim
n→∞

1

n

n−1∑
k=0

C=
µ (x

∗, T ∗kx∗) = 0,

hence T is strongly mixing by Proposition 2.3. Conversely, if T is weakly mixing then by

Propositions 2.3 and 2.5, for every x∗ ∈ H∗ we have

lim
n→∞

1

n

n−1∑
k=0

|σ̂x∗(k)| = 0,

11



hence σx∗ is continuous by Wiener’s theorem. □

3 Mixing in terms of control measures

In this section, we let Λ denote an infinitely divisible random measure on a complex Banach

space E, defined by its characteristic function

E
[
eitΛ(A)

]
= exp

(
−t2

4

∫
A

σ2(z)ξ(dz) +

∫
A

∫ ∞

−∞

(
eiut − 1− ituk(u)

)
ρ(z, du)ξ(dz)

)
for any measurable A ⊂ E and t ∈ R, see § 3 of [RZ96], where

• σ2 : E → [0,∞) is a measurable function,

• {ρ(s, ·)}s∈E is a family of Lévy measures on R,

• ξ is a σ-finite measure called a control measure, and

• k is the truncation function

k(u) =


1, |u| < 1,

1

|u|
, else, u ∈ R.

In addition, we assume as above that the Gaussian component of Λ(A) either vanishes a.s.,

or has independent identically distributed Gaussian real and imaginary components. More

generally, for any f : E → E a sufficiently integrable measurable function, the stochastic

integral ∫
E

f(z)Λ(dz)

has the characteristic functional

E
[
eiRe⟨∫E f(z)Λ(dz),x∗⟩

]
= exp

(
−1

4
⟨Rfx

∗, x∗⟩+
∫
E

∫ ∞

−∞

(
eiuRe⟨f(z),x∗⟩ − 1− iuk(u) Re ⟨f(z), x∗⟩

)
ρ(z, du)ξ(dz)

)
,

x∗ ∈ E∗, where Rf : E∗ → E is the covariance operator

⟨Rfx
∗, y∗⟩ =

∫
E

⟨f(z), x∗⟩ ⟨f(z), y∗⟩σ2(z)ξ(dz), x∗, y∗ ∈ E.

In particular, taking f(z) = z, the random variable

X :=

∫
E

zΛ(dz),

12



has an infinitely divisible distribution with characteristic functional

E
[
eiRe⟨X,x∗⟩] = exp

(
−1

4
⟨Rx∗, x∗⟩+

∫
E

∫ ∞

−∞

(
eiuRe⟨z,x∗⟩ − 1− iuk(u) Re⟨z, x∗⟩

)
ρ(z, du)ξ(dz)

)
,

(3.1)

x∗ ∈ E∗, where R : E∗ → E is the covariance operator

⟨Rx∗, y∗⟩ =
∫
E

⟨z, x∗⟩ ⟨z, y∗⟩σ2(z)ξ(dz).

The following result is an extension of [RZ96, Theorem 4] to our setting. In what follows,

we let

V (r, z) :=

∫ ∞

−∞
min(|ru|, 1)ρ(z, du), r ∈ R, z ∈ E.

Lemma 3.1 Given r ≥ 1, consider a family (fn)n∈N of Rr-valued measurable functions on

E. Then, the stationary Rr-valued process (Yn)n∈N defined by

Yn =

∫
E

fn(z)Λ(dz), n ≥ 0,

is strongly mixing if and only if

lim
n→∞

∥∥∥∥∫
E

f0(z)fn(z)
⊤σ2(z)ξ(dz)

∥∥∥∥
Rr⊗Rr

= 0 (3.2)

and

lim
n→∞

∫
E

V
(
∥f0(z)∥Rr ∥fn(z)∥Rr , z

)
ξ(dz) = 0. (3.3)

Proof. We use the argument of [PV19, Lemma 3.5]. The covariance of the Gaussian compo-

nents of (Y0, Yn) is given by∫
E

f0(z)fn(z)
⊤σ2(z)ξ(dz), n ≥ 0,

and from [FS13, Theorem 3.2] specialized to the discrete-time setting, the Lévy measure of

the joint distribution of (Y0, Yn) is given by

ρ0n(B) =

∫
E

∫
R
1B (f0(z)u, fn(z)u) ρ(z, du)ξ(dz)

for all Borel sets B ⊂ R2r\{0}. Thus, we have∫
R2r

min(∥a∥∥b∥, 1)ρ0n(da, db) =
∫
E

∫
R
min(∥f0(z)u∥Rr ∥fn(z)u∥Rr , 1)ρ(z, du)ξ(dz)

13



=

∫
E

∫
R
min(u2 ∥f0(z)∥Rr ∥fn(z)∥Rr , 1)ρ(z, du)ξ(dz)

=

∫
R
V
(
∥f0(z)∥Rr ∥fn(z)∥Rr , z

)
ξ(dz).

Since (Yn) is stationary, [FS13, Corollary 2.5] (again specialized to the discrete-time case)

shows that (3.2)-(3.3) is equivalent to the strong mixing of (Yn)n∈N, as in the proof of [RZ96,

Theorem 4]. □

Theorem 3.2 extends [BM09, Theorem 5.24] from the Gaussian to the infinitely divisible

setting. When Λ is Gaussian, i.e. when ρ(z, du) = 0, we have V (r, z) = 0 and it recovers the

strong mixing criterion of Corollary 2.4 from the vanishing of (3.5) and (3.6).

Theorem 3.2 A bounded linear operator T : E → E that leaves invariant the infinitely

divisible measure µ is strongly mixing with respect to µ if and only if for every x∗ ∈ E∗ we

have

lim
n→∞

⟨RT ∗nx∗, x∗⟩ = 0, (3.4)

lim
n→∞

∫
E

V
(
|Re ⟨z, x∗⟩Re ⟨z, T ∗nx∗⟩ |, z

)
ξ(dz) = 0, (3.5)

and

lim
n→∞

∫
E

V
(
|Re ⟨z, x∗⟩ Im ⟨z, T ∗nx∗⟩ |, z

)
ξ(dz) = 0. (3.6)

Proof. By Lemma 3.1 applied to the R2-valued functions

fn(z) =
(
Re ⟨z, T ∗nx∗⟩ , Im ⟨z, T ∗nx∗⟩

)
, z ∈ E, n ∈ N,

the R2-valued process defined by

Xx∗

n :=

(∫
E

Re ⟨z, T ∗nx∗⟩Λ(dz),
∫
E

Im ⟨z, T ∗nx∗⟩Λ(dz)
)
, n ∈ N,

is strongly mixing if and only if for all x∗ ∈ E∗ we have

lim
n→∞

∫
E

[
Re ⟨z, x∗⟩Re ⟨z, T ∗nx∗⟩ Re ⟨z, x∗⟩ Im ⟨z, T ∗nx∗⟩
Im ⟨z, x∗⟩Re ⟨z, T ∗nx∗⟩ Im ⟨z, x∗⟩ Im ⟨z, T ∗nx∗⟩

]
σ2(z)ξ(dz) = 0, (3.7)

and

lim
n→∞

∫
E

V (| ⟨z, x∗⟩ ⟨z, T ∗nx∗⟩ |, z)ξ(dz) = 0. (3.8)

From Lemma 2.1, it suffices to show (3.7) is equivalent to (3.4) and that (3.8) is equivalent

to (3.5)-(3.6) in order to conclude the proof.
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a) Since by (1.1) the real and imaginary parts of the Gaussian component of Xx∗
n are inde-

pendent for every n ≥ 0, we have∫
E

[
Re ⟨z, x∗⟩Re ⟨z, T ∗nx∗⟩ Re ⟨z, x∗⟩ Im ⟨z, T ∗nx∗⟩
Im ⟨z, x∗⟩Re ⟨z, T ∗nx∗⟩ Im ⟨z, x∗⟩ Im ⟨z, T ∗nx∗⟩

]
σ2(z)ξ(dz) =

1

2

[
⟨RT ∗nx∗, x∗⟩ 0

0 ⟨RT ∗nx∗, x∗⟩

]
,

which shows that (3.7) is equivalent to (3.4).

b) Next, from the inequality

| ⟨z, x∗⟩ ⟨z, T ∗nx∗⟩ | ≥ |Re ⟨z, x∗⟩Re ⟨z, T ∗nx∗⟩| ,

we have

V (| ⟨z, x∗⟩ ⟨z, T ∗nx∗⟩ |, z) ≥ V
(
|Re ⟨z, x∗⟩Re ⟨z, T ∗nx∗⟩ |, z

)
,

z ∈ E, hence (3.8) implies (3.5) and (3.6) similarly. On the other hand, from the relation

Im ⟨z, x∗⟩ = Re ⟨z,−ix∗⟩, (3.5)-(3.6) imply

lim
n→∞

∫
E

V
(
| Im ⟨z, x∗⟩ Im ⟨z, T ∗nx∗⟩ |, z

)
ξ(dz) = 0

and

lim
n→∞

∫
E

V
(
| Im ⟨z, x∗⟩Re ⟨z, T ∗nx∗⟩ |, z

)
ξ(dz) = 0,

x∗ ∈ E∗, hence the inequalities

| ⟨z, x∗⟩ ⟨z, T ∗nx∗⟩ | ≤ |Re ⟨z, x∗⟩Re ⟨z, T ∗nx∗⟩|+ |Re ⟨z, x∗⟩ Im ⟨z, T ∗nx∗⟩|

+ |Im ⟨z, x∗⟩ Im ⟨z, T ∗nx∗⟩|+ |Im ⟨z, x∗⟩Re ⟨z, T ∗nx∗⟩| ,

and

min(1, a+ b) ≤ min(1, a) + min(1, b), a, b ≥ 0,

yield (3.8). □

4 Stable case

In this section, we apply the results of Sections 2-3 to the case where µ is an α-stable

distribution on E with parameter α ∈ (0, 2), α ̸= 1. The characteristic functional (3.1) of

an E-valued random variable X can be written by the Tortrat Theorem [Tor77] as

E
[
eiRe⟨X,x∗⟩] = ∫

E

eiRe⟨z,x∗⟩µ(dz) = exp

(
−
∫
SE

|Re ⟨z, x∗⟩|α ξ(dz)
)
, x∗ ∈ E∗, (4.1)
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where ξ is a finite measure concentrated on the unit sphere SE, see also [Woy19, p. 6] or

[LT91, Corollary 5.5], [Lin86, Theorem 6.4.4 and Corollary 7.5.2]. On the other hand, by

e.g. [Sat99, Lemma 14.11] or [PP16, Corollary 4.1], (4.1) can be rewritten when α ̸= 1 as

E
[
eiRe⟨X,x∗⟩] = exp

(
cα

∫
E

∫ ∞

−∞

(
eiuRe⟨z,x∗⟩ − 1− iuk(u) Re⟨z, x∗⟩

) du

|u|1+α
ξ(dz)

)
(4.2)

where k(u) is a truncation function and cα > 0. Hence, in the framework of Section 3, the

random variable X =

∫
E

zΛ(dz) has an α-stable distribution when σ2 ≡ 0 and ρ(z, du) takes

the form

ρ(z, du) = cα1{u>0}|u|−1−α + cα1{u<0}|u|−1−α, z ∈ E, (4.3)

see the discussion following [RZ96, Theorem 4].

In addition, if E is a Banach space of stable type α ∈ (0, 2), by [Woy19, Remark 6.10.2],

any α-stable random variable on E can be represented as the random integral
∫
SE

zΛ(dz),

with characteristic functional (3.1).

Corollary 4.1 Assume that the Banach space E is of stable type α ∈ (0, 2), α ̸= 1, and

let µ denote the α-stable distribution with characteristic functional (3.1), where ρ(s, du) is

given by (4.3). A bounded linear operator T : E → E that leaves µ invariant is strongly

mixing with respect to µ if and only if for every x∗ ∈ E∗ we have

lim
n→∞

∫
E

|Re ⟨z, x∗⟩ |α/2|Re ⟨z, T ∗nx∗⟩ |α/2ξ(dz) = 0

and

lim
n→∞

∫
E

|Re ⟨z, x∗⟩ |α/2| Im ⟨z, T ∗nx∗⟩ |α/2ξ(dz) = 0, x∗ ∈ E∗.

Proof. For all u ∈ R and z ∈ E, we have

V (u, z) =

∫ ∞

−∞
min(|uy|, 1)ρ(z, dy)

= 2cα

∫ ∞

0

min(|uy|, 1) dy

yα+1

= 2cα

(
1

2− α
+

1

α

)
|u|α,

and we conclude from Theorem 3.2. □
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Example

We construct an example of a strongly mixing operator T satisfying the conditions of Corol-

lary 4.1 using weighted shifts as in § 5.5.2 of [BM09]. Let p ≥ 1, and let E := ℓp(Z) be the

Banach space of complex sequences (zi)i∈Z such that

∥z∥p :=

(
∞∑

j=−∞

|zj|p
)1/p

< ∞,

with canonical basis (en)n∈Z. Given α ∈ (1, 2), consider a positive weight sequence (ωn)n∈Z

such that:

• there exist c1, c2 ∈ (0, 1) such that
ωi ≤ c1, i ≥ 1,

ωi = 1, i = −1, 0,

ωi ≥ 1/c2, i ≤ −2,

• (ω−i)i≥1 is strictly increasing,

• if p = α, then in addition there exists d ∈ (0, 1) such that ωi > d for all i > 0,

and let

kn =


∏

0≤i≤n

ωi, n ≥ 0,

∏
n<i≤0

1

ωi

, n ≤ −1,

with k−1 = k0 = ω0 = 1. Given (θ1,n)n∈Z and (θ2,n)n∈Z two sequences of independent

standard SαS random variables with characteristic function e−|t|α , let

X :=
∞∑

n=−∞

(θ1,n + iθ2,n)knen,

be represented in distribution as

X :=

∫
ℓp(Z)

zΛ(dz),

where Λ is the SαS random measure with control measure

ξ(dz) =
1

2

∞∑
n=−∞

kα
n

(
δen(dz) + δ−en(dz) + δien(dz) + δ−ien(dz)

)
.
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We observe that from Lemma 4.3 below, X is well-defined on ℓp(Z) since we have

kα
n ≤


cαn1 , n ≥ 0,

1, n = −1,

c
α(|n|−2)
2 , n ≤ −2,

hence (kα
n)n∈Z is bounded by geometric sequences, and

∞∑
n=−∞

∥knen∥αp =
∞∑

n=−∞

kα
n < ∞,

so that the sequence (knen)n∈Z can be used to define a measure. Moreover, we have

E
[
eiRe⟨∫E zΛ(dz),x∗⟩

]
= exp

(
−
∫
E

|Re ⟨z, x∗⟩|α ξ(dz)
)

= exp

(
−

∞∑
n=−∞

kα
n |Re ⟨en, x∗⟩|α +

∞∑
n=−∞

kα
n |Re ⟨ien, x∗⟩|α

)
,

hence the distribution µ of X is α-stable with control measure ξ(dz). As an application of

Corollary 4.1, we show that T is strongly mixing with respect to the SαS distribution µ of X

defined in (3.1) when α ∈ (1, 2), and with respect to the Gaussian measure with covariance

R given by Ren = k2
nen, n ∈ Z, when α = 2.

Proposition 4.2 Let α ∈ (1, 2]. The weighted forward shift operator T : ℓp(Z) → ℓp(Z)
defined as

Ten := ωn+1en+1, n ∈ Z,

leaves the SαS distribution µ invariant and is strongly mixing with respect to µ.

Proof. We first check that the SαS distribution µ of X is invariant with respect to T . Note

that

• knωn+1 = ωn+1

n∏
i=0

ωi =
n+1∏
i=0

ωi = kn+1, n ≥ 0,

• k−1ω0 = 1 = k0,

• knωn+1 =
0∏

i=n+1

ωn+1

ωi

=
0∏

i=n+2

1

ωi

= kn+1, n ≤ −2,

hence we have

TX =
∞∑

n=−∞

(θ1,n + iθ2,n)knTen =
∞∑

n=−∞

(θ1,n + iθ2,n)kn+1en+1
d
= X,
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so that µ is invariant under T . Next, for any x∗ ∈ ℓp(Z)∗ and n ≥ 1 we have∫
ℓp(Z)

|Re ⟨z, x∗⟩Re ⟨z, T ∗nx∗⟩|α/2 ξ(dz) =
∞∑

i=−∞

kα
i |Re ⟨ei, x∗⟩Re ⟨ei, T ∗nx∗⟩|α/2

=
∞∑

i=−∞

kα
i |Re ⟨ei, x∗⟩Re ⟨ei+n, x

∗⟩ωi+1 . . . ωi+n|α/2

≤ ∥x∗∥αp
∞∑

i=−∞

kα
i

i+n∏
j=i+1

ω
α/2
j ,

where the bound

kα
i

i+n∏
j=i+1

ω
α/2
j ≤



kα
i , i ≥ 0
0∏

j=i+1

1

ωα
j

i+n∏
j=i+1

ω
α/2
j ≤ kα

i , −n < i ≤ −1

0∏
j=i+1

1

ω
α/2
j

0∏
j=i+n+1

1

ω
α/2
j

≤ k
α/2
i , i ≤ min(−1,−n),

is uniform in n ≥ 1 and
∑

k
α/2
i < ∞. Therefore, we have

lim
n→∞

∞∑
i=−∞

kα
i

i+n∏
j=i+1

ω
α/2
j =

∞∑
i=−∞

lim
n→∞

kα
i

i+n∏
j=i+1

ω
α/2
j = 0,

which yields

lim
n→∞

∫
ℓp(Z)

|Re ⟨z, x∗⟩ |α/2|Re ⟨z, T ∗nx∗⟩ |α/2ξ(dz) = 0.

By a similar argument, we have

lim
n→∞

∫
ℓp(Z)

|Re ⟨z, x∗⟩ |α/2| Im ⟨z, T ∗nx∗⟩ |α/2ξ(dz) = 0,

and we conclude from Corollary 4.1. □

The next lemma has been used in the construction of the example of Proposition 4.2.

Lemma 4.3 For any α ∈ (1, 2] and p ≥ 1, the random variable X is almost surely ℓp(Z)-
valued.

Proof. Since
∑∞

n=−∞ kα
n < ∞, if α ̸= p we have

∑∞
n=−∞ |θ1,nkn|p < ∞ almost surely by in

[Proposition (XXVI,3;3) page XXVI.9][Sch70]. If α = p, (ωn)n∈Z is bounded from below by

some sufficiently small d ∈ (0, 1) such that

1 + |log kn| = 1 +

∣∣∣∣∣
n∑

j=0

logωj

∣∣∣∣∣ ≤ 1 + n| log d|, n ≥ 0,
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so that

∞∑
n=1

kα
n (1 + |log kn|) =

∞∑
n=1

(kα
n + nkα

n | log d|)

=
∞∑
n=1

kα
n + | log d|

∞∑
n=1

nkα
n

≤ (1 + | log d|)
∞∑
n=1

n(cα1 )
n

< ∞.

On the other hand, we have

1 + |log kn| = 1 +

∣∣∣∣∣ ∑
n<j≤0

logωj

∣∣∣∣∣ ≤ 1 + n logM, n ≤ −1,

where M > 1 is any upper bound of (ωn)n∈Z, so that

−1∑
n=−∞

kα
n (1 + |log kn|) =

−1∑
n=−∞

(kα
n + nkα

n logM) < ∞,

and we conclude again from [Sch70, Proposition (XXVI,3;3)] in the case α = p, and the

same argument holds also for
∑∞

n=−∞ |θ2,nkn|p. The almost sure convergence of X in ℓp(Z)
then follows from the bound

∞∑
n=−∞

|(θ1,n + iθ2,n)kn|p ≤ 2p−1

(
∞∑

n=−∞

|θ1,nkn|p +
∞∑

n=−∞

|θ2,nkn|p
)

< ∞.

□

5 Invariance of stable measures

In this section, we provide sufficient conditions for the invariance of a class of stable measures,

as required in Corollary 4.1. The following result extends Proposition 3.1 of [BG07] to the

stable setting.

Proposition 5.1 Let E be a complex separable Banach space. Let T : E → E be a bounded

linear operator such that the eigenvectors of T associated to unimodular eigenvalues span a

dense subspace of E. Then for any 1 < α < 2, T admits a non-degenerate invariant SαS

measure.

20



Proof. Let α ∈ (1, 2), q := α/(α − 1) > 1, and let (xn)n≥0 be a (linearly independent)

sequence of T-eigenvectors with eigenvalues (λn), such that ∥xn∥ = 1/n and |λn| = 1, n ≥ 0,

and span{xn : n ≥ 0} = E. Define the mapping J : ℓα(N) → E by J(en) = xn, n ≥ 0, where

(en) is the canonical basis of ℓ
α(N), and let D denote the diagonal operator on ℓα(N) defined

by D(en) = λnen, n ≥ 0. We note that J has dense range, and it is bounded on ℓα(N)
because for any a = (an)n≥0 ∈ ℓα(N), we have, by Hölder’s inequality,

∥Ja∥ =

∥∥∥∥∥J
∞∑
n=0

anen

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
n=0

anxn

∥∥∥∥∥ ≤
∞∑
n=0

|an| ∥xn∥

≤

(
∞∑
n=0

|an|α
)1/α( ∞∑

n=0

∥xn∥q
)1/q

= ∥a∥ℓα(N)

(
∞∑
n=0

n−q

)1/q

.

In addition to boundedness and injectivity, by [Rud91, Theorem 2.11] we have J(ℓp(N)) = E

since J has dense range, hence J is a continuous linear bijection. Next, for x ∈ ℓα(N) of the
form x :=

∑
j≥0 cjej, we have

TJx = T

(∑
j≥0

cjxj

)
=
∑
j≥0

λjcjxj

and

JDx = T

(∑
j≥0

λjej

)
=
∑
j≥0

λjcjxj,

hence TJ = JD. Let (vj)j≥0 denote an i.i.d. sequence of complex isotropic non-degenerate

SαS random variables written as vj = v
(1)
j + iv

(2)
j where v

(1)
j , v

(2)
j are SαS, according to

[ST94, Theorem 2.1.2 and Definition 2.6.1], and written as

v
(1)
j = sθ1, v

(2)
j = sθ2,

for a same constant s, where θ1, θ2 are standard SαS random variables. Since α ∈ (1, 2), we

have

∞∑
n=1

n−α (1 + lnn) < ∞,

hence by [Sch70, Proposition XXVI, 3;3] we have
∑∞

j=1 |vj|α∥xj∥ < ∞ almost surely, hence

X :=
∞∑
j=1

∥xj∥vjej
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belongs almost surely to ℓα(N). We have X ∼ SαS in E and DX
d
= X, therefore, the

distribution m of X is (SαS) non-degenerate and invariant under D. Next, since T−1 =

JD−1J−1, letting µ = J(m) denote the push-forward measure of m by J , defined as µ(B) =

m(J−1(B)) for Borel sets B ⊂ E, we have

µ(T−1(B)) = µ(JD−1J−1(B))

= m(J−1JD−1J−1(B))

= m(D−1J−1(B))

= m(J−1(B))

= µ(B),

which proves the T -invariance of µ. Symmetry of µ holds because

µ(−B) = m(J−1(−B)) = m(−J−1(B)) = m(J−1(B)) = µ(B).

Finally, by definition of symmetric α-stability, for two independent copies X1, X2 of X and

any a, b > 0 we have aX1 + bX2
d
= (aα + bα)1/αX. From this, by linearity we have

aJ(X1) + bJ(X2) = J(aX1 + bX2)
d
= J((aα + bα)1/αX) = (aα + bα)1/αJ(X),

that is, J(X) is again an α-stable random vector and we conclude that µ is a non-degenerate

invariant SαS measure for T . □

In the remainder of this section, we consider the following class of α-stable distributions.

Definition 5.2 Given H a Hilbert space and α ∈ (0, 2], let µS,ξ denote the α-stable distri-

bution on H having a finite control measure

mS,ξ(dz) := |⟨Sz, z⟩|α/2 ξ(dz),

on the unit sphere SH in H, where

• ξ is a positive measure on SH , and

• S : H → H is a non-negative definite bounded operator.

We note that by [Lin86, Corollary 7.5.2], every finite Radon measure on the unit sphere

SE of a Banach space E of stable type α ∈ (0, 2) is the control measure of an α-stable

distribution on E, and since H is a separable Hilbert space, by [Woy19, Corollary 6.5.1-(ii)
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and Proposition 7.1.1] it has stable type α for all α ∈ (0, 2]. Hence in the framework of (4.1),

we have∫
E

eiRe⟨z,x∗⟩µS,ξ(dz) = exp

(
−
∫
SE

|Re ⟨z, x∗⟩|α |⟨Sz, z⟩|α/2 ξ(dz)
)
, x∗ ∈ E∗.

We also note that if ξ(dz) is symmetric then the measure mS,ξ(dz) = |⟨Sz, z⟩|α/2 ξ(dz) is

also symmetric, hence µS,ξ is SαS, see for instance [Lin86, Theorem 6.4.4]. The following

proposition provides sufficient conditions for the invariance of µS,ξ under a linear operator

T on H, as an extension of [BG06, Proposition 3.15] which deals with the Gaussian case.

Proposition 5.3 Let T be a bounded invertible operator on H, and assume that

a) T ∗Tx = ∥Tx∥2x, ξ(dx)-a.e.,

b) ξ is invariant by x 7→ Tx/∥Tx∥ on H, and

c) TST ∗ = S.

Then, T admits µS,ξ as invariant α-stable measure.

Proof. Since T is invertible, we have that Tx = ∥Tx∥2T−1∗x for all x ∈ H, and S =

T−1ST−1∗. Hence, for any y ∈ H we have∫
SH

|Re ⟨z, T ∗y⟩|α |⟨Sz, z⟩|α/2 ξ(dz) =
∫
SH

|Re ⟨Tz, y⟩|α
∣∣〈ST−1∗z, T−1∗z

〉∣∣α/2 ξ(dz)
=

∫
SH

∣∣∣∣Re〈 Tz

∥Tz∥
, y

〉∣∣∣∣α ∣∣〈S∥Tz∥T−1∗z, ∥Tz∥T−1∗z
〉∣∣α/2 ξ(dz)

=

∫
SH

∣∣∣∣Re〈 Tz

∥Tz∥
, y

〉∣∣∣∣α ∣∣∣∣〈S Tz

∥Tz∥
,

T z

∥Tz∥

〉∣∣∣∣α/2 ξ(dz)
=

∫
SH

|Re ⟨z, y⟩|α |⟨Sz, z⟩|α/2 ξ(dz).

Hence, we have

µ̂(T ∗y) =

∫
E

eiRe⟨z,T ∗y⟩µ(dz)

= exp

(
−
∫
SH

|Re ⟨z, T ∗y⟩|α |⟨Sz, z⟩|α/2 ξ(dz)
)

= exp

(
−
∫
SH

|Re ⟨z, y⟩|α |⟨Sz, z⟩|α/2 ξ(dz)
)

=

∫
E

eiRe⟨z,y⟩µ(dz), y ∈ H∗,

so µ is invariant by T . □
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As a consequence of Proposition 5.3, we have the following corollary.

Corollary 5.4 Let T be a bounded invertible unitary operator on H, and assume that

a) ξ is invariant by T , and

b) TST ∗ = S.

Then, T admits µS,ξ as invariant α-stable measure.

We also have the next non-degeneracy result.

Proposition 5.5 Let T be a bounded invertible operator on H. In addition to the assump-

tions of Proposition 5.3, suppose that

d) ξ is symmetric, and

e) H = span supp(m), where m(dx) = |⟨Sx, x⟩|α/2 ξ(dx).

Then, T admits µS,ξ as a non-degenerate invariant symmetric α-stable measure.

Proof. If ξ is symmetric, then the measure |⟨Sx, x⟩|α/2 ξ(dx) is also symmetric, hence µ

is SαS, see for instance [Lin86, Theorem 6.4.4]. To show non-degeneracy we note that the

support of µ is the closed linear span W := span supp(m) of the support of m. Indeed, for

all y ∈ H we have∫
H

eiRe⟨z,y⟩µ(dz) = exp

(
−
∫
W∩SH

|Re ⟨z, y⟩|αm(dz)−
∫
W c∩SH

|Re ⟨z, y⟩|α m(dz)

)
= exp

(
−
∫
W∩SH

|Re ⟨z, y⟩|αm(dz)

)
= exp

(
−
∫
SW

|Re ⟨z, y⟩|αm(dz)

)
=

∫
W

eiRe⟨z,y⟩µ0(dz),

where the last step follows since W is a Banach space so the symmetric control measure m

defines an α-stable probability measure µ0 on W . By uniqueness of the symmetric control

measure, it follows that µ and µ0 must coincide on W . That is, µ(W ) = 1, so µ(W c) = 0,

so that indeed supp(µ) = span supp(m). □

Next, we present an example of operator T satisfying the conditions of Propositions 5.3 and

5.5.
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Example 5.6 Let α ∈ (1, 2), and consider a sequence (ωn)n∈Z of positive weights satisfying

∞∑
i=1

ωα
0 · · ·ωα

i−1 < ∞ and
−1∑

i=−∞

ω−α
i · · ·ω−α

−1 < ∞. (5.1)

Then, the forward shift operator T on ℓ2(Z) defined by T (en) = ωnen+1, n ∈ Z, admits the

non-degenerate invariant SαS measure µ with control measure |⟨Sz, z⟩|α/2 ξ(dz), where

ξ(dz) :=
c

2

∞∑
n=−∞

(δen(dz) + δ−en(dz) + δien(dz) + δ−ien(dz)),

for some nonzero constant c, and S is the diagonal operator on ℓ2(Z) with diagonal (ann)n∈Z

given by

ann =


a00

n−1∏
j=0

ω2
j , n > 0,

a00
−1∏
j=n

ω−2
j , n < 0,

for some a00 > 0.

Proof. First, we note that (ann)n∈Z ∈ ℓα/2(Z) from (5.1), hence S is bounded and positive.

Next, we show that the measure

m(dz) : = |⟨Sz, z⟩|α/2 ξ(dz)

=
c

2

∞∑
n=−∞

|⟨Sen, en⟩|α/2 (δen(dz) + δ−en(dz) + δien(dz) + δ−ien(dz))

=
c

2

∞∑
n=−∞

a
α/2
ii (δen(dz) + δ−en(dz) + δien(dz) + δ−ien(dz)).

is the control measure of an α-stable distribution. For this we note that, letting (θ1,n)n∈Z and

(θ2,n)n∈Z denote two sequences of independent real-valued standard SαS random variables,

the random series

c1/α
∞∑

n=−∞

θ1,n
√
annen

is almost surely ℓ2(Z)-valued since by [Sch70, Proposition XXVI, 3;3] we have

∞∑
n=−∞

θ21,n|ann| < ∞

almost surely as (
√
ann)n∈Z ∈ ℓα(Z). Likewise,

c1/α
∞∑

n=−∞

iθ2,n
√
annen
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is almost surely ℓ2(Z)-valued, thus the random variable

X := c1/α
∞∑

n=−∞

(θ1,n + iθ2,n)
√
annen

is almost surely ℓ2(Z)-valued in the same way as Lemma 4.3. Furthermore, X is a SαS

random variable, and by [LT91, Page 131] its control measure is m. Finally, we check that

the conditions of Propositions 5.3 and 5.5 are satisfied.

a) For all n ∈ Z we have T (±en)/∥T (±en)∥ = ±en+1, hence ξ({±en}) = ξ({T̃−1(±en)}) = c,

n ∈ Z, where T̃ denotes the mapping x 7→ Tx/∥Tx∥. A similar argument holds for ±ien.

Furthermore, if x ̸= ±en or ±ien for any n ∈ Z then T (x)/∥T (x)∥ ≠ ±en or ±ien for any

n ∈ Z, hence ξ is invariant by x 7→ T (x)/∥T (x)∥ on H.

b) We have Ten = ωnen+1 so that ∥Ten∥2en = ω2
nen, n ≥ 0. On the other hand, we have

T ∗T = Diag(. . . , ω2
1, ω

2
2, . . . ), so that T ∗Ten = ω2

nen. Similar arguments hold for −en and

±ien, n ≥ 0.

c) We note that (aij)i,j∈Z satisfies aij = ωi−1ωj−1ai−1,j−1, i, j ∈ Z, which reads

. . .
...

...
... . .

.

. . . ω2
0a00 ω0ω1a01 ω0ω2a02 . . .

. . . ω1ω0a10 ω2
1a11 ω1ω2a12 . . .

. . . ω2ω0a20 ω2ω1a21 ω2
2a22 . . .

. .
. ...

...
...

. . .

 =



. . .
...

...
... . .

.

. . . a11 a12 a13 . . .

. . . a21 a22 a23 . . .

. . . a31 a32 a33 . . .

. .
. ...

... . . .
. . .

 ,

and shows that TST ∗ = S.

The remaining points (d) and (e) hold by construction of ξ and m. □

6 Invariance under σ-spanning operators

In this section, we provide sufficient conditions for invariance of stable measures in terms of

eigenvalues and eigenvectors, in the framework of σ-spanning operators.

Definition 6.1 Let σ be a probability measure on T. A bounded linear operator T : H → H

has a σ-spanning set of eigenvectors associated to unimodular eigenvalues if for every Borel

subset A ⊂ T with σ(A) = 1, the eigenspaces ker(T − λI), λ ∈ A, span a dense subspace of

H. If such a σ exists for T , we say T is σ-spanning.
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If T is injective, from [BG06, Propositions 3.15, 3.18] there exists a bounded self-adjoint

positive operator S of trace class such that TST ∗ = S. The next lemma provides sufficient

conditions for (a)-(b) to be satisfied in Proposition 5.3. In the sequel, we write T̃ to denote

the mapping x 7→ Tx/∥Tx∥.

Lemma 6.2 Suppose that kerT = {0}, and let (λi)i denote the singular values of T . Then,

a) there exists a T ∗T -eigenbasis {yk}k of span
⋃

k ker(T
∗T − λkI) such that

T ∗Tyk = ∥Tyk∥2yk, k ≥ 1.

b) If in addition T̃ ({yk}k) = {yk}k, then any constant measure ξ concentrated on {−yk, yk}k
is invariant by x 7→ Tx/∥Tx∥.

Proof. a) Since kerT = {0}, T ∗T is positive definite. Let {xk}k be an eigenbasis of

span
⋃
k

ker(T ∗T − λkI). For every k there exists ik such that T ∗Txk = λikxk, and for any

ck ∈ C such that |ck|2 = λik/∥Txk∥2. Letting yk := ckxk, we have

T ∗Tyk = T ∗T (ckxk) = ck∥T (ckxk)∥2xk = ∥Tyk∥2yk, ∀k.

b) Observe that T̃|{yk}k is surjective by assumption, therefore it suffices to show that it is in-

jective. If this was not the case we would have ∥Tyj∥Tyi = ∥Tyi∥Tyj for some yi, yj ∈ {yk}k,
i ̸= j, which would imply yi = ∥Tyi∥yj/∥Tyj∥ since kerT = {0}, therefore contradicting the

linear independence of {yk}k. The conclusion follows by repeating the above argument for

−yk, ∀k. □

We also note that Condition (b) in Proposition 5.3 is satisfied by σ-spanning operators. As

a consequence of Propositions 5.3, 5.5 and Lemma 6.2, we obtain the following corollary.

Corollary 6.3 Let T be a σ-spanning bounded invertible operator on H, and let (λi)i denote

the singular values of T . Suppose that

a) H = span
⋃
k

ker(T ∗T − λkI),

b) H admits a T ∗T -eigenbasis {yk}k, such that

c) T ∗Tyk = ∥Tyk∥2yk, ∀k, and T̃ ({yk}k) = {yk}k.

Then, T admits µS,ξ as symmetric invariant non-degenerate α-stable measure, where ξ is the

constant measure concentrated on {−yk, yk}k.
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Finally, we present an example of operator T satisfying the conditions of Corollary 6.3, as a

specialization of Example 5.6.

Example 6.4 In the framework of Example 5.6, take ω0 = 1 and

ωn =
1

2
, ω−n = 2, n ≥ 1.

For any θ ∈ [0, 2π), the ℓ2(Z)-vector

vθ :=

(
. . . ,

1

22
e−3iθ,

1

2
e−2iθ, e−iθ, 1,

1

2
eiθ,

1

22
e2iθ, . . .

)
is a T -eigenvector with eigenvalue eiθ. Let A ⊂ T be a Borel set such that σ(A) = 1, where

σ is the uniform probability measure on T. For any vector z = (zn)n∈Z in ℓ2(Z) such that

⟨vθ, z⟩ = 0, i.e.

f(θ) := z0 +
∞∑
n=1

1

2n
einθzn +

−1∑
n=−∞

1

2−n+1
einθzn = 0, eiθ ∈ A,

by Parseval’s identity we have

|z0|2 +
∞∑
n=1

1

22n
|zn|2 +

−1∑
n=−∞

1

2−2n+2
|zn|2 =

∫ 2π

0

|f(θ)|2dθ = 0,

hence z = 0. This shows that span{vθ : eiθ ∈ A} is dense in ℓ2(Z), since its orthogonal

complement is {0}, and therefore T is σ-spanning. Next, since T ∗T is diagonal on {en}n∈Z
with eigenvalue equations

T ∗Ten =


en/4, n ≥ 1

e0, n = 0,

4en, n ≤ −1

 = ∥Ten∥2en, n ∈ Z,

we have the singular values λj of T take only the values 1
4
, 1, 4, so that

ℓ2(Z) = span

(
ker

(
T ∗T − 1

4
I

)
∪ ker(T ∗T − I) ∪ ker(T ∗T − 4I)

)
= span

⋃
j∈Z

ker(T ∗T − λjI),

and also T̃ en = en+1, n ∈ Z, which yields T̃ ({en}n∈Z) = {en}n∈Z.
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[Sat99] K. Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

[Sch70] L. Schwartz. Les applications O-radonifiantes dans les espaces de suites. Séminaire d’Analyse
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