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1 Introduction

Diffusion processes on manifolds and compact Lie groups have attracted significant

attention in finance as they exhibit nonlinear and boundedness properties that make

them suitable for the modeling of interest rates, cf. [3], [9]. For example, within the

framework of the Heath-Jarrow-Morton (HJM) interest rate model, it is shown (cf. [7])

that one can characterize finite-dimensional HJM models that admit arbitrary initial

yield curves as invariant manifolds of a separable Hilbert space.

Besides the HJM model, short-rate processes based on Brownian motion on Lie groups

have been constructed in [9], [13], [14]. Pricing in these models has so far relied on
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Monte Carlo numerical estimates, cf. [13] which deals with several classical matrix Lie

groups.

Closed-form computation of bond prices is however generally preferable to Monte Carlo

algorithms for calibration and sensitivity analysis purposes, and this is the challenge

addressed by this paper. Following [13], we will model the short rate process as

rt = r(gt), t ∈ R+,

where (gt)t∈R+ is Brownian motion on a compact matrix Lie group G, such as SO(n),

and r : G→ R is a smooth function on G. Specifically, we will focus on linear relations

of the form

rt = β + γ tr(gt), γ, β ∈ R,

as in [13]. In this way, the short-rate process is automatically bounded since G is com-

pact, and the parameters can be adjusted to make it positive. This desirable feature

is not satisfied by all standard short-term interest rate models available in the literature.

In Propositions 3.1 and 3.2 below, we give closed-form expressions for the zero-coupon

bond price

F (t, rt) = P (t, T ) = E
[
e−

∫ T
t rs ds

∣∣∣Ft] , t ∈ [0, T ], (1.1)

on the orthogonal groups SO(2) and SO(3). In section 3.3, we then utilize these

expressions to value bond options of the form

E
[
e−

∫ S
t rs ds ρ(P (S, T ))

∣∣∣Ft] ,
where the option is exercised at time S, with a continuous and piecewise-smooth payoff

function ρ on the bond price P (S, T ).

In the case of SO(3), we are able to reduce the dimensionality of the problem by showing

that with a suitable choice of coordinates, rt can be rewritten as rt = β+α cos(φt) where

(φt)t∈R+ is the one-dimensional diffusion process solution of

dφt =
1

2
cot

φt
2

dt+ dWt, t ∈ R+, (1.2)
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and (Wt)t∈R+ is a standard Brownian motion, cf. (2.6) below. We then proceed to show

that F (t, y) in (1.1) solves the Mathieu PDE
∂F

∂t
(t, y) +

h′(y)

h(y)

∂F

∂y
(t, y) + ω

∂2F

∂y2
(t, y) = (α cos(2y))F (t, y)

F (T, y) = 1,

(1.3)

which originally arises in physics; e.g. for the Schrödinger equation with time dependent

periodic potential, cf. [12], [18]. By extending techniques in [2] and using a particular

Doob-h transform we simplify the PDE by drift removal in Section 4, and then find an

analytical solution to (1.3).

Moreover, in Propositions 3.1 and 3.2 below, we derive closed-form series expressions

for the Laplace transforms

E
[
e−

∫ T
t cosWs ds

∣∣∣Ft] and E
[
e−

∫ T
t cosφs ds

∣∣∣Ft] ,
using the Mathieu sine and cosine functions sen and cen, where (φt)t∈R+ is the diffu-

sion process solution of (1.2) above. This complements the existing literature on the

Laplace transform of additive functionals of Brownian motion, cf. e.g. [19] and refer-

ences therein. In Proposition 3.5 we show that the above approximating series converge

quadratic exponentially fast.

The remaining of the paper is organized as follows. We begin in Section 2 with the mod-

eling of the short rate process as a function of Brownian motion on SO(2) and on SO(3).

In Section 3, we give explicit formulas for zero-coupon bond prices as well as for bond

options using the short rate processes constructed in Section 2. Section 3 closes with

numerical tests which confirm the efficiency of closed-form solutions when compared

with Monte Carlo simulations. In Section 4 we derive the probabilistic representation

needed for the solution of Mathieu PDEs. In particular we prove Proposition 4.1 on

the solution of the Mathieu PDE, and Proposition 4.3 which is a key step in simplifying

bond pricing PDEs by the removal of drift terms via a Doob-h transform argument.

Finally, in the Appendix we recall some basic facts on Brownian motion on manifolds

which are needed in this paper.
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2 Interest rate modeling on SO(n)

Following [13] we will model the short rate process as

rt = β + γ tr(gt),

where (gt)t∈R+ is Brownian motion on a Lie group.

Brownian motion on SO(2)

Brownian motion (gt)t∈R+ on the (commutative) group SO(2) is given by the matrix

stochastic differential equation

dgt = gt ◦ d

[
0 −Wt

Wt 0

]
, (2.1)

where (Wt)t∈R+ is a standard one-dimensional Brownian motion, whose solution is ob-

tained by direct exponentiation

gt = exp

([
0 −Wt

Wt 0

])
=

[
cosWt − sinWt

sinWt cosWt

]
, t ∈ R+. (2.2)

In this case the interest rate process is simply given by

rt = β + γ tr

([
cosWt − sinWt

sinWt cosWt

])
= β + 2γ cosWt, (2.3)

where the condition β ≥ 2|γ| ensures rt ≥ 0, t ∈ R+.

Brownian motion on SO(3)

The Lie algebra of SO(3) is non-commutative and generated by

ξ1 =

0 −1 0
1 0 0
0 0 0

, ξ2 =

 0 0 1
0 0 0
−1 0 0

, ξ3 =

0 0 0
0 0 −1
0 1 0

. (2.4)

In order to determine Brownian motion (gt)t∈R+ on SO(3), we note that by Rodrigues’

rotation formula, every g = ex ξ1+y ξ2+z ξ3 ∈ SO(3), x, y, z ∈ R, can be written as

g = I3 + sinφA(u1, u2, u3) + (1− cosφ)A(u1, u2, u3)
2 (2.5)

where

A(u1, u2, u3) =

 0 −u3 −u2
u3 0 −u1
u2 u1 0

,
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and φ =
√
x2 + y2 + z2 is the angle of rotation about the axis

(u1, u2, u3) :=
1√

x2 + y2 + z2
(z,−y, x) = (cosα, sinα cos θ, sinα sin θ) ∈ S2.

By (4.17) and Theorem 4.1 in Section 4.2, the Laplacian on SO(3) can be written in

spherical coordinates as

∆SO(3) = ∆2S3

=
∂2

∂φ2
+ cot

φ

2

∂

∂φ
+

1

4 sin2 φ
2

∆S2

=
∂2

∂φ2
+ cot

φ

2

∂

∂φ
+

1

4 sin2 φ
2

(
∂2

∂α2
+ cotα

∂

∂α
+

1

sin2 α

∂2

∂θ2

)
,

which in turn implies that Brownian motion gt on SO(3) is given in spherical coordinates

by

gt =
(
φt, ατ(t), θτ(t)

)
,

where τ(t) is the random time-change given by

τ(t) =

∫ t

0

1

4 sin2 φs
2

ds,

(φt, αt, θt) is driven by 

dφt =
1

2
cot

φt
2

dt+ dB
(1)
t ,

dαt =
1

2
cotαt dt+ dB

(2)
t ,

dθt =
1

sinαt
dB

(3)
t ,

(2.6)

and (αt, θt) represents standard Brownian motion on S2 in spherical coordinates. These

equations can also be obtained from the fact that S3 under quaternionic multiplication

is isomorphic, as a Lie group, to SO(3), see [17].

In this case the interest rate process is given by

rt = β + γ tr(gt) (2.7)

= β + γ tr

exp

 0 −xt yt
xt 0 −zt
−yt zt 0


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= β + γ tr

St exp

 0 −φt 0
φt 0 0
0 0 0

S−1t


= β + γ tr

St
cosφt − sinφt 0

sinφt cosφt 0
0 0 1

S−1t


= (β + γ) + 2γ cosφt,

where St is a change of basis matrix and β ≥ 2|γ| − γ ensures rt ≥ 0, t ∈ R+.

3 Bond pricing on SO(n)

In the sequel we will use the even (resp. odd) Mathieu cosine (resp. sine) functions

cen,q(y) = ce2m+p,q(y) =
∞∑
r=0

A
(2m+p)
2r+p (q) cos((2r + p) y), n ≥ 0, p = 0, 1,

and

sen,q(y) = se2m+p,q(y) =
∞∑
r=0

B
(2m+p)
2r+p (q) sin((2r + p) y), n ≥ 1, p = 0, 1,

which are the solutions of the eigenvalue problem

Lg(y) := g′′(y)− (2q cos(2y)) g(y) = λg (3.1)

on the interval [0, π], with boundary conditions g′(0) = g′(π) = 0, and eigenvalues

an,q (resp. g(0) = g(π) = 0 and bn,q). See Remark 4.2 in Section 4 for the recursive

definitions of the coefficients Anr (q) and Bn
r (q) and for further properties of the Mathieu

functions and of the coefficients an,q, bn,q.

3.1 Bond pricing on SO(2)

In the next Proposition 3.1 we compute the bond price

E
[
e−

∫ T
t rs ds

∣∣∣Ft] = e−β(T−t) E
[
e−2γ

∫ T
t cosWs ds

∣∣∣Ft]
driven by the short rate process rt = β + 2γ cosWt given in (2.3) with the help of

Proposition 4.1 in Section 4 which provides a closed-form expression for the Laplace

transform of
∫ T
t

cosWs ds, cf. also [14] for a different approach.
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Proposition 3.1. We have

E
[
e−2γ

∫ T
t cosWs ds

∣∣∣Ft] = 2
∞∑
m=0

A2m
0 (8γ) e

−a2m,8γ(T−t)/8 ce2m,8γ

(
Wt

2

)
, t ∈ [0, T ],

where a2m,q are the eigenvalues of (3.1) under Neumann conditions.

Proof. We note that by the Feynman-Kac formula, the function

u(t, x) := E
[
e−2γ

∫ T
t cosWs ds

∣∣∣Wt = x
]

solves the PDE 
∂u

∂t
(t, x) +

1

2

∂2u

∂x2
(t, x) = (2γ cosx)u(t, x)

u(T, x) = 1

(3.2)

on (t, x) ∈ [0, T ] × R. Since u(T, x) = 1 is an even function we need to solve (3.2)

with Neumann boundary conditions on [0, 2π], and to take the corresponding periodic

extension. Thus, Proposition 4.1 in Section 4 shows that

u(t, x) =
2

π

∞∑
n=0

〈1, cen,8γ(·)〉L2([0,π]) e
−an,8γ(T−t)/8 cen,8γ

(x
2

)
= 2

∞∑
m=0

A2m
0 (8γ) e

−a2m,8γ(T−t)/8 ce2m,8γ

(x
2

)
,

and gives us the representation of E
[
e−2γ

∫ T
t cosWs ds

∣∣∣Wt = x
]

for all x ∈ R. �

3.2 Bond pricing on SO(3)

In Proposition 3.2 below we compute the bond price

E
[
e−

∫ T
t rs ds

∣∣∣Ft] = e−(β+γ)(T−t)E
[
e−2γ

∫ T
t cosφs ds

∣∣∣Ft] ,
for the short rate process on SO(3) given by (2.7), where φt satisfies

dφt =
1

2
cot

φt
2

dt+ dWt. (3.3)
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Proposition 3.2. Let φ0 ∈ U = (0, 2π). We have

E
[
e−2γ

∫ T
t cosφs ds

∣∣∣Ft] = 1[0,τU )
(t)

e
T−t
8

sin Wt

2

∞∑
m=0

B2m+1
1 (8γ) e

−b2m+1,8γ(T−t)/8 se2m+1,8γ

(
Wt

2

)
,

t ∈ [0, T ], where τU = inf{t > 0 : Wt /∈ (0, 2π)}.

Proof. Proposition 4.3 in Section 4 shows that

E
[
e−2γ

∫ T
t cosφs ds

∣∣∣Ft] = EQT
[
e−2γ

∫ T
t cos(Ws∧τ

U
) ds
∣∣∣Ft] = 1[0,τU )

(t) v(t,Wt), (3.4)

where the function v(t, x) solves the equation
∂v

∂t
(t, x) +

1

2
cot

x

2

∂v

∂x
(t, x) +

1

2

∂2v

∂x2
(t, x) = (2γ cosx) v(t, x)

v(T, x) = 1, (t, x) ∈ [0, T ]× (0, 2π),

and takes the form

v(t, x) =
u(t, x)

h(t, x)
=
e−t/8

sin x
2

u (t, x) ,

where h(t, x) = et/8 sin x
2

is the solution of

∂h

∂t
(t, x) +

1

2

∂2h

∂x2
(t, x) = 0

h(T, x) = eT/8 sin
x

2
, x ∈ (0, 2π),

h(t, 0) = h(t, 2π) = 0, t ∈ [0, T ],

(3.5)

and u(t, x) is the solution of the Mathieu PDE

∂u

∂t
(t, x) +

1

2

∂2u

∂x2
(t, x) = (2γ cosx)u(t, x)

u(T, x) = eT/8 sin x
2
, x ∈ (0, 2π),

u(t, 0) = u(t, 2π) = 0, t ∈ [0, T ].

We conclude again by solving the above Mathieu PDE from Proposition 4.1 as

u(t, x) =
2eT/8

π

∞∑
n=1

〈sin(·), sen,8γ(·)〉L2([0,π]) e
−bn,8γ(T−t)/8 sen,8γ

(x
2

)
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= eT/8
∞∑
m=0

B2m+1
1 (8γ) e

−b2m+1,8γ(T−t)/8 se2m+1,8γ

(x
2

)
.

�

Remark: The probability density of W x
t∧τ

(0,2π)
appearing in (3.4) has the form

∞∑
n=−∞

pt(x, y + 4nπ) dy,

where pt(x, y) = 1√
2πt

(
e

(x−y)2
2t − e

(x+y)2

2t

)
, cf. [10] and Proposition 4.5 below.

3.3 Valuing bond options

In this section we demonstrate how bond options can be explicitly valued using the

formulas in the previous sections. We let S denote the time at which the option is

exercised, with payoff of the form ρ(P (S, T )) with maturity T and S < T , where ρ is a

continuous and piecewise-smooth function of the bond price P (S, T ). For example we

have ρ(x) = (x−K)+ in the case of a European call option with strike price K.

To do so, we will compute the expectation

E
[
e−

∫ S
t rs ds ρ(P (S, T ))

∣∣∣Ft] = e−β(S−t) E
[
e−2γ

∫ S
t cosWs ds ρ(P (S, T ))

∣∣∣Ft]
for SO(2), and

E
[
e−

∫ S
t rs ds ρ(P (S, T ))

∣∣∣Ft] = e−(β+γ)(S−t)E
[
e−2γ

∫ S
t cosφs ds ρ(P (S, T ))

∣∣∣Ft]
in the case of SO(3).

Bond options on SO(2)

Proposition 3.3. We have

E
[
e−2γ

∫ S
t cosWs ds ρ(P (S, T ))

∣∣∣Ft] =
2

π

∞∑
n=0

〈ψ(2·), cen,8γ(·)〉L2([0,π]) e
−an,8γ(S−t)/8 cen,8γ

(
Wt

2

)
,

t ∈ [0, S], where

ψ(x) = ρ

(
2e−β(T−S)

∞∑
m=0

A2m
0 (8γ) e

−a2m,8γ(T−S)/8 ce2m,8γ

(x
2

))
. (3.6)
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Proof. By Proposition 3.1 we can write ρ(P (S, T )) as ρ(P (S, T )) = ψ(WS) where the

function ψ is given by (3.6). By the Feynman-Kac formula,

p(t, x) := E
[
e−2γ

∫ S
t cosWs ds ψ(WS)

∣∣∣Wt = x
]

solves the PDE 
∂p

∂t
(t, x) +

1

2

∂2p

∂x2
(t, x) = (2γ cosx) p(t, x)

p(S, x) = ψ(x), (t, x) ∈ [0, T ]× R.

(3.7)

We note that

ψ′(x)|x=0,2π = ρ′(u(S, x))
∂u

∂x
(S, x)|x=0,2π = 0, (3.8)

where

u(S, x) = 2
∞∑
m=0

A2m
0 (8γ) e

−a2m,8γ(T−S)/8 ce2m,8γ

(x
2

)
.

The above one-sided derivatives are well defined for the continuous and piecewise-

smooth payoff function ρ(x). Thus, we can apply Proposition 4.1 (under Neumann

conditions) again to obtain the statement of the Proposition. �

In the case of the European call payoff function ρ(x) = (x − K)+ the derivatives in

(3.8) will also be two-sided as long as u(S, 0), u(S, 2π) 6= K.

Bond options on SO(3)

In the next proposition we deal with the pricing of bond options on SO(3).

Proposition 3.4. We have

E
[
e−2γ

∫ S
t cosφs ds ρ(P (S, T ))

∣∣∣Ft]
= 1[0,τU )

(t)
2e

S−t
8

π sin Wt

2

∞∑
n=1

〈sin(·)ψ(2·), sen,8γ(·)〉L2([0,π]) e
−bn,8γ(S−t)/8 sen,8γ

(
Wt

2

)
,

t ∈ [0, S], where

ψ(x) = ρ

(
e−(β+γ)(T−S) 1(0,2π)(x)

e
T−S

8

sin x
2

∞∑
m=0

B2m+1
1 (8γ) e

−b2m+1,8γ(T−S)/8 se2m+1,8γ

(x
2

))
.
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Proof. From Proposition 3.2 we have P (S, T ) = e−(β+γ)(T−S) v(S,WS∧τU ), with

v(S, x) = 1(0,2π)(x)
e
T−S

8

sin x
2

∞∑
m=0

B2m+1
1 (8γ) e

−b2m+1,8γ(T−S)/8 se2m+1,8γ

(x
2

)
.

Hence, by Proposition 4.3,

E
[
e−2γ

∫ S
t cosφs ds ρ(P (S, T ))

∣∣∣Ft] = EQT
[
e−2γ

∫ S
t cos(Ws∧τ

U
) ds ψ(WS∧τU )

∣∣∣Ft]
= 1[0,τU )

(t) p(t,Wt),

where p(t, x) solves the equation
∂p

∂t
(t, x) +

1

2
cot

x

2

∂p

∂x
(t, x) +

1

2

∂2p

∂x2
(t, x) = (2γ cosx) p(t, x)

p(S, x) = ψ(x), (t, x) ∈ [0, T ]× (0, 2π),

and again takes the form

p(t, x) =
ũ(t, x)

h(t, x)
=
e−t/8

sin x
2

ũ (t, x) .

Here, h(t, x) solves (3.5) (with T replaced with S), and ũ(t, x) is the solution of the

Mathieu PDE 

∂ũ

∂t
(t, x) +

1

2

∂2ũ

∂x2
(t, x) = (2γ cosx) ũ(t, x)

ũ(S, x) = eS/8 sin x
2
ψ(x), x ∈ (0, 2π),

ũ(t, 0) = ũ(t, 2π) = 0, t ∈ [0, T ].

which can be obtained using Proposition 4.1 as

ũ(t, x) =
2eS/8

π

∞∑
n=1

〈sin(·)ψ(2·), sen,8γ(·)〉L2([0,π]) e
−bn,8γ(S−t)/8 sen,8γ

(x
2

)
.

�

Numerical tests

We close this section with numerical simulations for the SO(3) short-rate model. Fig-

ures 1 and 2 below present typical sample paths for the short-rate process

rt = β + γ tr(gt) = (β + γ) + 2γ cosφt.
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Setting β = γ, we get

rt = 2β (1 + cosφt) ,

where φt satisfies

dφt =
1

2
cot

φt
2

dt+ dWt.

Figure 1: Graph of rt with β = 2, φ0 = π.

Figure 2: Graph of rt with β = 1.5, φ0 = π/4.

Note that the short-rate process remains bounded in the interval [0, 4β]. Next, in Fig-

ure 3 we compare the evaluation of the bond price given by the explicit formula of

Proposition 3.2 with the numerical results obtained by using a Monte-Carlo approxi-

mation.
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Figure 3: Graph of bond price with β = γ = 0.015, and T = 10.

The solid line is given by the explicit formula

x 7−→ E
[
e−

∫ T
0 r(φs) ds

∣∣∣W0 = x
]

=
e−(β+γ)T

sin x
2

∞∑
m=0

B2m+1
1 (8γ) e

(1−b2m+1,8γ)T/8 se2m+1,8γ

(x
2

)
,

while the dotted and dashed lines are the Monte-Carlo estimate of the same quantity

with time step = T/100 = 0.1 in the discretization of the time integral (dashed: 2000

samples, dotted: 20000 samples).

Our numerical simulations show that typically only five or six terms of the above series

have to be computed for good convergence. More precisely, we have the following result:

Proposition 3.5. For all q, t > 0, x ∈ R and ψ ∈ L2([0, 2π]), the series

F (t, x) :=
∞∑
n=0

〈ψ(2·), sen+1,q(·)〉L2([0,π]) e
−tbn+1,q sen+1,q

(x
2

)
(3.9)

is absolutely and uniformly convergent, with the bound

sup
x∈R

∣∣∣∣∣F (t, x)−
N∑
n=0

〈ψ(2·), sen+1,q(·)〉L2([0,π]) e
−tbn+1,q sen+1,q

(x
2

)∣∣∣∣∣ ≤ Cq,ψ
e−tN

2

2tN
, (3.10)

where Cq,ψ is some constant depending only on q and the L2 norm of ψ.

Proof. From the inequalities∣∣∣〈ψ(2·), sen+1,q(·)〉L2([0,π])

∣∣∣ ≤ π

2
||ψ||L2([0,2π]),
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and bn+1,q > an,q ≥ an,0 = n2, cf. [4], and the fact that the Mathieu functions are

uniformly bounded (cf. [11] Theorem 2.1), we have∣∣∣∣∣
∞∑

n=N+1

〈ψ(2·), sen+1,q(·)〉L2([0,π]) e
−tbn+1,q sen+1,q

(x
2

)∣∣∣∣∣ ≤ Cq,ψ

∞∑
n=N+1

e−tn
2

≤ Cq,ψ

∫ ∞
N

e−tx
2

dx ≤ Cq,ψ

∫ ∞
N

x

N
e−tx

2

dx = Cq,ψ
e−tN

2

2tN
.

�

In addition to the advantage of faster computation, the explicit formulation also gives

a more precise evaluation of the bond price when the short rate process starts near 0

and 2π, whereas the Monte-Carlo approach encounters difficulties due to the removable

singularities at the boundary points, cf. Figure 3. The calibration of our bond pricing

model can be done by minimizing the least squares distance

n∑
i=1

|P (ti, T )−M(ti, T )|2

for a sequence of bond market prices (M(ti, T ))i=1,...,n. We refer to [13] for a calibration

example of the spot rates on SO(3).

4 Proofs

In this section, we prove the results needed in Section 3.

4.1 Mathieu PDEs

Proposition 4.1. Given f ∈ C([0, b]) and piecewise-smooth on [0, b], consider the

Mathieu PDE 
∂u

∂t
(t, x) + ω

∂2u

∂x2
(t, x) =

(
α cos

2πx

b

)
u(t, x)

u(T, x) = f(x).

(4.1)

on [0, T ]× [0, b], and let q = b2α
2π2ω

. Then,
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(i) Under Dirichlet boundary conditions u(t, 0) = u(t, b) = 0, t ∈ [0, T ], the solution

to (4.1) is given by

u(t, x) =
2

π

∞∑
n=1

〈
f

(
b

π
·
)
, sen,q(·)

〉
L2([0,π])

(
e−π

2ωbn,q(T−t)/b2
)
sen,q

(πx
b

)
.

(ii) Under Neumann boundary conditions ∂u
∂x

(t, 0) = ∂u
∂x

(t, b) = 0, t ∈ [0, T ], the

solution to (4.1) is given by

u(t, x) =
2

π

∞∑
n=0

〈
f

(
b

π
·
)
, cen,q(·)

〉
L2([0,π])

(
e−π

2ωan,q(T−t)/b2
)
cen,q

(πx
b

)
.

In both cases, u(t, x) ∈ C1,2([0, T )× (0, b)) ∩ C([0, T ]× [0, b]).

Proof. By separation of variables, we write

u(t, x) =
∑
n

〈f, gn〉L2([0,b])

〈gn, gn〉L2([0,b])

e−λn(T−t) gn (x) , (4.2)

where {λn, gn} satisfy the equation

g′′n(x)− α

ω
cos

(
2πx

b

)
gn(x) =

λn
ω
gn(x), x ∈ [0, b]. (4.3)

Using a change of variable y = πx/b, Relation (4.3) can be written in canonical form

as

g′′(y)− (2q cos(2y)) g(y) = λ g(y), y ∈ [0, π]. (4.4)

The operator Lg(y) := g′′(y)− (2q cos(2y)) g(y) is known as the Mathieu Hamiltonian.

In addition, when either of the boundary conditions

g′(0) = g′(π) = 0, [Neumann]

or

g(0) = g(π) = 0, [Dirichlet]

are satisfied, we know from Sturm-Louville theory that L is self-adjoint with respect

to the inner product 〈·, ·〉L2([0,π]), which implies the existence of a countably infinite

number of eigenvalues (with corresponding eigenfunctions) to (4.4) which accumulate
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only at infinity, cf. [5]. In the Neumann case, we denote the eigenvalues by an,q, n ≥ 0,

and the corresponding eigenfunctions are given by the even Mathieu cosine functions

ce2m+p,q(y) =
∞∑
r=0

A
(2m+p)
2r+p (q) cos((2r + p) y), p = 0, 1, (4.5)

of period π (when p = 0) or 2π (when p = 1), cf. [1], [8]. Similarly, in the Dirichlet

case, we denote the eigenvalues by bn,q, n ≥ 1, and the corresponding eigenfunctions

are given by the odd Mathieu sine functions

se2m+p,q(y) =
∞∑
r=0

B
(2m+p)
2r+p (q) sin((2r + p) y), p = 0, 1, (4.6)

of period π (when p = 0) or 2π (when p = 1), cf. [1], [8].

These C∞ eigenfunctions are maximal, uniformly bounded (cf. [11]) and mutually

orthogonal with respect to the inner product

〈cen,q, cen,q〉L2([0,π]) = 〈sen,q, sen,q〉L2([0,π]) = π/2,

cf. [1] and Chapter 6.9 of [8]. Hence, substituting them back into (4.2), we get the

statement of the proposition once we verify the regularity of u. For t < T , it is simple

to check that term-by-term differentiation of (4.2) (with respect to x or t) gives an

absolutely convergent series and thus u(t, x) ∈ C1,2([0, T )× (0, b))∩C([0, T )× [0, b]). At

t = T , we have

f(x) =
∑
n

〈f, gn〉L2([0,b])

〈gn, gn〉L2([0,b])

gn (x) ,

where the series converges uniformly to f since it is continuous and piecewise-smooth

on [0, b]. �

Remark 4.2. The coefficients in (4.5) and (4.6) depend continuously on q and obey

the recursion relations

a2mA
(2m)
0 − q A(2m)

2 = 0,

(a2m+1 − 1− q)A(2m+1)
1 − q A(2m+1)

3 = 0,
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(a2m − 4)A
(2m)
2 − q

(
2A

(2m)
0 + A

(2m)
4

)
= 0,(

a2m − 4r2
)
A

(2m)
2r − q

(
A

(2m)
2r−2 + A

(2m)
2r+2

)
= 0, r ≥ 2,(

a2m+1 − (2m+ 1)2
)
A

(2m+1)
2r+1 − q

(
A

(2m+1)
2r−1 + A

(2m+1)
2r+3

)
= 0, r ≥ 1,

for the even Mathieu cosine functions, and

(b2m+1 − 1 + q)B
(2m+1)
1 − q B(2m+1)

3 = 0,

(b2m+2 − 4)B
(2m+2)
2 − q B(2m+2)

4 = 0,(
b2m+1 − (2m+ 1)2

)
B

(2m+1)
2r+1 − q

(
B

(2m+1)
2r−1 +B

(2m+1)
2r+3

)
= 0, r ≥ 1,(

b2m+2 − 4m2
)
B

(2m+2)
2r − q

(
B

(2m+2)
2r+2 −B(2m+2)

2r−2

)
= 0, r ≥ 2,

for the odd Mathieu sine functions, cf. Chapter 20, page 723 of [1].

4.2 Drift removal via the Doob h-transform

In this section we derive a Feynman-Kac formula for a class of PDEs with a particular

drift term. Let U be a connected open subset of Rn with smooth boundary, and let Xt

be a diffusion process satisfying

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x ∈ U,

with transition function given by pt(x, dy) and generator

L =
n∑
i=1

bi(x)
∂

∂xi
+

1

2

∑
i,j

aij(x)
∂2

∂xi∂xj
,

where a = σσT , on a probability space (Ω,F ,P) with an augmented (therefore right-

continuous) Brownian filtration Ft ⊂ F , t ∈ R+. In the sequel we denote by h(t, x)

and u(t, x) the respective solutions in C1,2([0, T )× U) ∩ C([0, T ]× U) to the equations

∂h

∂t
(t, x) + Lh(t, x) = 0, (t, x) ∈ [0, T ]× U,

h(T, x) ≥ 0 on U,

h(t, x) = 0 on (t, x) ∈ ∂U × [0, T ],

(4.7)
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and 

∂u

∂t
(t, x) + Lu(t, x) = r(x)u(t, x), (t, x) ∈ [0, T ]× U,

u(T, x) = h(T, x)g(x),

u(t, x) = 0 on (t, x) ∈ ∂U × [0, T ].

(4.8)

The following result consequence of Proposition 4.4 below will enable us to simplify the

computation of the bond price by removing the drift term of these PDEs with domains

which have a boundary, while paying close attention to the behaviour of Xt when it

reaches a boundary, cf. Propositions 3.2 and 3.4 above.

Proposition 4.3. Let Dt := h (t,Xt)/h(0, x), t ∈ [0, T ], x ∈ U , and define the proba-

bility measure QT by
dQT

dP
= DT .

(i) The function

v(t, x) :=
u(t, x)

h(t, x)

belongs to C1,2([0, T )× U) and solves
∂v

∂t
+

〈
a(x)

∇h(t, x)

h(t, x)
, ∇v

〉
+ Lv = r(x) v,

v(T, x) = g(x).

(4.9)

(ii) If in addition,

sup
t, x∈U
|u(t, x)| <∞, (4.10)

then we have

EQT
[
e−

∫ T
t r(Xs∧τ

U
) dsg

(
XT∧τU

) ∣∣∣Ft] =
u(t,Xt)

h(t,Xt)
1[0,τU )

(t), QT − a.s. (4.11)

Proof. (i) Equation (4.9) is readily verified by differentiating v(t, x).

(ii) Next, we note that by the strong maximum principle, unless h(t, x) is constant,

h(t, x) > 0 on U × [0, T ). Recall that Xt is the solution to

dXt = b(Xt) dt+ σ(Xt) dWt,

18



and let τU denote the hitting time

τU = inf{t > 0 : Xt ∈ U c}.

Thus, Xt∧τU gives the value of Xt killed at the boundary of U . We note that h(t,Xt∧τU )

is a martingale, as given Un, a sequence of bounded, open subsets of U , such that

lim
n→∞

Un = U , and letting τUn = inf{t > 0 : Xt ∈ U c
n}, we have

h(t ∧ τUn , Xt∧τUn
) = h(0, X0) +

∫ t∧τUn

0

〈∇h(s,Xs), σ(Xs) dWs〉

+

∫ t∧τUn

0

∂h

∂s
(s,Xs) ds+

∫ t∧τUn

0

Lh(s,Xs) ds

= h(0, x) +

∫ t∧τUn

0

〈∇h(s,Xs), σ(Xs) dWs〉 ,

and since E
[
1A h

(
t ∧ τUn , Xt∧τUn

)]
→ E

[
1A h

(
t ∧ τU , Xt∧τU

)]
as n tends to +∞ by

the monotone convergence theorem for all t ∈ [0, T ] and A ∈ Fs, we get

E
[
h(t,Xt∧τU )

∣∣Fs] = h(s,Xs∧τU ).

Applying the Doob transform Proposition 4.4 below, under QT , the process Xt killed

at the boundary ∂U solves (4.14), i.e.

dXt = a(Xt)
∇h(t,Xt)

h(t,Xt)
dt+ b(Xt)dt+ σ(Xt) dBt, X0 = x.

Now, from Itô’s formula we have

e−
∫ t∧τUn
0 r(Xs̃) ds̃ u(t ∧ τUn , Xt∧τUn

) = u(0, x) +

∫ t∧τUn

0

e−
∫ s
t r(Xs̃) ds̃ 〈∇u(s,Xs), σ(Xs) dWs〉

+

∫ t∧τUn

0

e−
∫ s
t r(Xs̃) ds̃

(
∂u

∂s
(s,Xs)− r (Xs) + Lu(s,Xs)

)
ds

= u(0, x) +

∫ t∧τUn

0

e−
∫ s
t r(Xs̃) ds̃ 〈∇u(s,Xs), σ(Xs) dWs〉 ,

and we get

EP
[
e−

∫ T∧τU
t∧τU

r(Xs) ds u
(
T ∧ τU , XT∧τU

) ∣∣∣∣Ft∧τU] = EP
[
1[0,τU )

(T ) e−
∫ T
t r(Xs) ds u (T,XT )

∣∣∣Ft∧τU]
= u

(
t ∧ τU , Xt∧τU

)
(4.12)
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from (4.10) and the bounded convergence theorem. From Lemma 4.6, we have QT (t < τU) =

1, and thus,

EQT
[
e−

∫ T
t r(Xs∧τ

U
) ds g(XT∧τU )

∣∣∣Ft] = EQT
[
1[0,τU )

(t) e−
∫ T
t r(Xs∧τ

U
) ds v(T,XT∧τU )

∣∣∣Ft∧τU]
= EP

[
1[0,τU )

(t) e−
∫ T
t r(Xs∧τ

U
) ds DT

Dt

v(T,XT∧τU )

∣∣∣∣Ft∧τU]
=

1[0,τU )
(t)

h(t,Xt∧τU )
EP
[
1[0,τU )

(T ) e−
∫ T
t r(Xs) ds h(T,XT ) v(T,XT )

∣∣∣Ft∧τU] ,
where the last line follows from the fact that h

(
T,XτU

)
= 0. Upon applying (4.12), we

get the statement of (4.11). �

We have the following classical proposition (see § 2.VI.13 of [6], 2.IV-39 of [17], [2], [16],

and Theorem 3.2 of [15] in the case of jump processes), whose proof is given here for

completeness.

Proposition 4.4. (Doob transform) The process (Xt) has transition function

p̃s,t(x, dy) =
h(t, y)

h(s, x)
pt−s(x, dy), s ∈ [0, t], (4.13)

under QT , and can be represented as a weak solution of

dXt = b(Xt)dt+ a(Xt)
∇h(t,Xt)

h(t,Xt)
dt+ σ(Xt) dBt, X0 = x, (4.14)

where (Bt) is a standard Brownian motion under QT .

Proof. Recall that h(t, x) ∈ C1,2([0, T )×U) such that h(t,Xt) is a positive martingale.

Note that Dt is also a positive martingale with E[Dt] = 1, t > 0, which ensures that

the measures defined by dQt = Dt dP form a consistent family of probability measures.

Relation (4.13) can be proved by noting that for all Borel sets B ∈ Rn, we have

EQT [1B(Xt) | Xs = x] = EP
[
1B(Xt)

Dt

Ds

∣∣∣ Xs = x

]
=

∫
B

h(t, y)

h(s, x)
pt−s(x, dy),

by Bayes’ rule, cf. e.g. § IV.39 of [17]. Now for φ ∈ C2(U), let Mφ
t denote the

P-martingale

φ (Xt)− φ(x)−
∫ t

0

Lφ(Xs) ds =

∫ t

0

〈∇φ(Xs), σ(Xs) dWs〉 .
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Then by the Girsanov theorem,

Mφ
t −

∫ t

0

1

Ds

d
〈
Mφ, D

〉
s

= Mφ
t −

∫ t

0

〈
a(X̃s)

∇h(s, X̃s)

h(s, X̃s)
, ∇φ(X̃s)

〉
ds

= φ(X̃t)− φ(x)−
∫ t

0

Lφ(X̃s)−
〈
a(X̃s) g(s, X̃s), ∇φ(X̃s)

〉
ds

becomes a local martingale under QT , thus giving us a weak solution to (4.14). �

Example. Proposition 4.4 can be illustrated with the classical example of the repre-

sentation of 3D Bessel processes by Brownian motion killed at the origin.

Proposition 4.5. The probability density of BES3 is given by

y

x
pt(x, y), x, y > 0,

where

pt(x, y) =
1√
2πt

(
e

(x−y)2
2t − e

(x+y)2

2t

)
. (4.15)

Proof. Here we take U = (0,∞), L = 1
2
∂2

∂x2
, and h(t, x) = x, and let Xt = W x

t∧τU
be

Brownian motion killed at 0 with transition sub-probability density (4.15) under P. We

can verify that

t 7−→ Dt :=
h (t,Xt)

h(t, x)
=
W x
t∧τU
x

is a positive martingale with unit expectation under P. Thus, under the probability

dQT =
W x
T∧τU
x

dP,

the process Xt = W x
t∧τU

is a weak solution to the BES3 equation

dXt =
1

Xt

dt+ dBt, X0 = x.

�

Alternatively, one can directly recover (4.15) above by noting that

EQT [f(Xs+t) | Xs = |a|] = EQT [f(|Bs+t|) | Bs = a]
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=
1

(2πt)3/2

∫
R3

e−
|a−y|2

2t f(|y|) dy

=
2π

(2πt)3/2

∫ ∞
0

f(r)

∫ π

0

r2 e−
|a|2+r2

2t
+
r|a|
t

cosφ sinφ dφ dr

=
2√
2πt

∫ ∞
0

e−
|a|2+r2

2t

(
r

|a|

)
sinh

(
r|a|
t

)
f(r) dr

=
1√
2πt

∫ ∞
0

r

|a|

(
e

(|a|−r)2
2t −

(|a|+r)2
2t

)
f(r) dr,

cf. e.g. [16]. The next lemma has been used in the proof of Proposition 4.3.

Lemma 4.6. We have QT (τU ≤ t) = 0 for all t > 0.

Proof. We have {τU ≤ t} ∈ Ft∧τU = Ft ∩ FτU , and thus

QT (τU ≤ t) = EP [Dt∧τU 1[τU ,∞)(t)
]

= EP [DτU
1[τU ,∞)(t)

]
=

∫
{τU≤t}

h
(
τU , XτU

)
h(0, x)

dP = 0.

�

Appendix - Brownian motion on manifolds and Lie

groups

In this appendix, we recall some basic facts on Brownian motion on a Riemannian man-

ifold M of dimension n equipped with its Levi-Civita connection ∇, with application

given to SO(3) at the end of the section.

Brownian motion Wt on M is defined to be the Markov process generated by one-half

the Laplace-Beltrami operator ∆M on M , i.e.

M f (Wt) = f(Wt)− f(W0)−
∫ t

0

1

2
∆Mf(Ws) ds (4.16)

is a local martingale for all f ∈ C∞(M). Given an orthonormal frame {Ei}i=1,...,n, since

E2
i f = ∇Ei〈∇f, Ei〉
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= 〈∇Ei∇f, Ei〉+ 〈∇f,∇EiEi〉

= ∇2f(Ei, Ei) +∇EiEi f,

the Laplace-Beltrami operator on M is given by

∆Mf =
n∑
i=1

∇2f(Ei, Ei)

=
n∑
i=1

E2
i f −∇EiEif,

while in local coordinates we have

∆Mf =
∑
i,j

1√
det G̃

∂

∂xi

(√
det G̃ gij

∂f

∂xj

)
, (4.17)

where {G̃}ij =
〈
∂
∂xi
, ∂
∂xj

〉
.

In the case of a Lie group G with identity element e, Brownian motion gt on G is also

defined to be the solution to the following equation

dgt = gt ◦ dWt, (4.18)

where gt ◦ dWt is a shorthand for the Stratonovich differential

n∑
i=1

(Lgt)∗Ei|e ◦ dW
(i)
t =

n∑
i=1

Ei|gt ◦ dW
(i)
t .

If G is compact, there exists a bi-invariant metric for the elements of its Lie algebra G
and we have ∇XY = 1

2
[X, Y ] whenever X, Y are left-invariant vector fields on G. We

denote by {Ei} a left-invariant frame on G, orthonormal with respect to this metric.

Now let f : G→ R be a smooth function. We note that

f(gt) = f(g0) +
n∑
i=1

∫ t

0

Eif(gs) ◦ dW (i)
s

= f(g0) +
n∑
i=1

∫ t

0

Eif(gs) dW (i)
s +

1

2

n∑
i=1

∫ t

0

E2
i f(gs) ds

= f(g0) +
n∑
i=1

∫ t

0

Eif(gs) dW (i)
s +

1

2

∫ t

0

∆Gf(gs) ds,

since

∇EiEi =
1

2
[Ei, Ei] = 0, i = 1, . . . , n.

Thus, for a compact Lie group, (4.18) is equivalent (4.16).
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SO(3) and 2S3

For A,B ∈ SO(3), let 〈A,B〉 denote the bi-invariant metric

〈A, B〉 =
1

2
tr
(
ABT

)
. (4.19)

We have the following:

Theorem 4.1. SO(3) with the metric (4.19) is isometric to 2S3.

Proof. Here, 2S3 denotes the sphere in R4 with radius 2. Using Rodrigues’ rotation

formula (2.5), one can compute ∂
∂ν

∣∣∣
I3

= g−1
(
∂g
∂ν

)
, for ν = φ, α, or θ, to obtain

∂

∂φ
= (cosα) ξ1 + (sinα cos θ) ξ2 + (sinα sin θ) ξ3,

∂

∂α
= (sinφ sinα) ξ1 + (sinφ cosα cos θ + (cosφ− 1) sin θ) ξ2

+ ((cosφ− 1) cos θ)− sinφ cosα sin θ) ξ3,

∂

∂θ
=

(
2 sin2 φ

2
sin2 α

)
ξ1 + sinα((cosφ− 1) cosα cos θ − sinφ sin θ) ξ2

+ sinα(cos θ sinφ+ (cosφ− 1) cosα sin θ) ξ3,

where {ξi} are the orthonormal basis elements of the Lie algebra of SO(3) given in (2.4).

One can then check that ∂
∂φ

, ∂
∂α

and ∂
∂θ

are mutually orthogonal, and that〈
∂

∂φ
,
∂

∂φ

〉
= 1,

〈
∂

∂α
,
∂

∂α

〉
= 4 sin2 φ

2
,

〈
∂

∂θ
,
∂

∂θ

〉
= 4 sin2 φ

2
sin2 α.

Now we note that in the neighbourhood of every point on SO(3), the map

Φ : SO(3) −→ 2S3

(φ, α, θ) 7−→ 2

(
cos

φ

2
, sin

φ

2
cosα, sin

φ

2
sinα cos θ, sin

φ

2
sinα sin θ

)
0 < φ < 2π, 0 < α < π, 0 < θ < 2π, gives the required local isometry. �
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