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Abstract

We establish an integration by parts formula for the random functionals of
a continuous-time Markov chain, based on partial differentiation with respect
to jump times. In comparison with existing methods, our approach does not
rely on the Girsanov theorem and it imposes less restrictions on the choice of
directions of differentiation, while assuming additional continuity conditions on
the considered functionals. As an application we compute sensitivities (Greeks)
using stochastic weights in an asset price model with Markovian regime switch-
ing.
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1 Introduction

Integration by parts methods on the Wiener space have been successfully applied to
the sensitivity analysis of diffusion models in finance, cf. [10]. This framework has

also been implemented for jump processes, using the absolute continuity of jump sizes,



cf. [1], or the process jump times as in [13].

More generally, integration by parts formulas for discrete and jump processes can be
obtained using multiple stochastic integral expansions and finite difference operators,
or the absolute continuity of jump times. In the setting of continuous-time Markov
chains, integration by parts formulas have recently been proposed in [19] and [6], based
on finite difference and differential operators. The construction of [6] is based on the
Girsanov approach as in [3], and it uses time shifts instead of space shifts of the under-
lying process, while [19] uses the representation of Markov chains as semimartingales,
cf. Appendix B of [8]. For discrete-time Markov chains and point processes, multiple
stochastic integral expansions for random functionals have been built in e.g. [14], [2],

[18], [4], [7].

The result of [19] is stated for functions of the numbers of chain transitions, cf. The-
orem 4 therein, using the characterization of pure jump martingales under change of
measure. However, this characterization cannot be applied to a shift of a Markov
jump process (f;)icp,r as claimed in Lemma 2 therein, otherwise it would actually

entail the absolute continuity of the discrete random variable ;.

In this paper we derive an integration by parts formula similar to that of [6] for
continous-time Markov processes. Our approach uses time changes based on the in-
tensity of the point process as in [15], [16]. In comparison with the construction of
[6], we impose less constraints on directions of differentiation as we do not use the

Girsanov theorem and assume instead a smoothness condition on random variables.

Namely, we define the gradient DF' of a smooth functional F' of a continuous-time
Markov chain (f;).cr, with state space M in such a way that the integration by parts

formula . -
E [/ DfFutdt} —E {F/ u (AN] — a,dt) (1.1)
0 0

holds for (u:)icpo,r) a square-integrable adapted process, see Proposition 4.2, where



(Nf)te[O,T} is the birth process counting the transitions of (5;)ier,, and (oy)eam is
the set of parameters of the exponentially distributed interjump times of (3;)ser, . In
this way, a “partial” Malliavin calculus is established with respect to the absolutely
continuous transition times, while the spatial discrete jump component remains un-
changed. This approach has some similarities to the partial Malliavin calculus of [5],
in which only the Brownian component of a jump-diffusion proces is subjected to a

random perturbation.

In comparison with the construction of [6], which is also based on functionals of tran-
sition times, we do not constrain (u;).cps) to satisfy the a.s. vanishing condition
fOT uydt = 0. Instead, we assume a continuity condition on the random variables F’
in (1.1), see the condition (2.3) below, which nevertheless does not prevent us from

including Br in the domain of D, with the relation DSy = 0.

As an application, we consider the sensitivity analysis of option prices in a diffusion
model with regime-switching. Our method follows the Malliavin calculus approach
to the fast computation of Greeks for option hedging [10], and in addition we take
both sources of Markovian and Gaussian noises into account. In case the diffusion
component vanishes, our result still allows us to estimate sensitivities by using Marko-
vian noise, see Proposition 6.1. In addition, the absence of vanishing requirement on
fOT uydt makes it easier to satisfy necessary integrability requirements on the associ-
ated stochastic weights, cf. Proposition 5.1. Indeed, such conditions are more difficult

to satisfy in regime-switching models due to the changing signs of drifts, making it

easier for denominators to vanish in the estimation of weights.

In Section 2 we recall some background notation and results on integration by parts
and gradient operators defined by infinitesimal perturbation of jump times. Section 3
extends this construction to birth processes, using time changes based on the intensity
of the considered birth process. Section 4 treats the general case of finite continuous-
time Markov chains by partial differentiation. In Section 5 we apply the construction

to sensitivity analysis of option prices in a jump-diffusion model driven by a geometric



Brownian motion with regime switching. Section 6 deals with an extension to non-

smooth payoff functions.

2 Integration by parts for the Poisson process

In this section we start by reviewing integration by parts for a standard Poisson
process (N;)ier, with jump times (7},),>1, and whose interjump times (73)x>1 are

independent exponentially distributed random variables, cf. e.g. § 7.3 of [17].

Definition 2.1 Let Sy denote the space of Poisson functionals of the form

F = folgng—oy + > Yvpmiy fi(Ths - Th), (2.1)
k=1

where each function fi. is weakly differentiable on the simplex
She=A(t1,....tx) €10, T : 0<t; <+ <, < T},

and is such that || fr]|eo < A* and ||0;fellee < A%, 1 <1<k, k > 1, for some constant
A>0.

The next statement comes from Definition 7.3.2 in [17]. We let 0, f denote the partial

derivative of a function f with respect to its [-th variable.

Definition 2.2 The gradient operator D is defined on F' € St of the form (2.1) by

DiF = Zl{NT k}ZMTl Joufe(Th, ..., T),  tE€R,. (2:2)

Let now S5 denote the subspace of S made of Poisson functionals of the form (2.1)

that satisfy the continuity condition
Selte, o te) = fora (b, ot tegr), 05t <o <t ST <1, keN. (2.3)
We note that given F' € S5 of the form (2.1) and such that

f'rz(tlv"’7tn>:fk(th“'atk)) Ogtlggtka k2n7



for some n > 1, the function g, defined by

n(tr1, ..oy ty) (2.4)
n—1

= folir<uy + Z o<ty <<ti<raty 3 et oo te) + Loct <<to<ry fu(trs o5 1)
k=1

is weakly differentiable on {0 < ¢; < --- <t,}. In addition, g, satisfies the relation
F=yg,(T,...,T,), (2.5)

and D can be written on F' € Sy of the form (2.5) as

DF = — Z 1[07Tk](t)8kgn<T17 . >Tn>7 te R+' (26)

k=1

We also define the space of simple processes

Z/[% = {ZG,hz : Gl,...,GnGS%, hh...,hnGC([O,T]), nZl},

where C([0,T]) denotes the space of continuous functions on [0, 7], and let the diver-
gence or Skorohod integral operator 6 be defined on Uf. by

5(Gh) = G / 1)(AN; — dt) — /OTh(t)DtGdt, 2.7)

G € Sr, h € C([0,T]). The duality relation (2.8) below between D and § relies on

standard integration by parts on [0,7]™ and on the expression

o0 T ty
E[F| = fy+e "y / / / Feltrs oo t)dt - dity
k=170 70

for F' € 8% of the form (2.1), cf. Proposition 7.3.3 of [17] and the appendix Section 7

for a proof.

Proposition 2.3 The operators D and § defined by (2.2) and (2.7) satisfy the duality
relation

T
0



As a consequence of the Proposition 2.3, the operators D and § are closable, and (2.8)
extends to their closed domains Domf.(D) and Dom?.(d) defined as the closure of S5

and UF. respectively.

Letting (Fi)ier, denote the filtration generated by (NVi)ier,, we note that for any

Fi-measurable random variable F' € L?(Q) we have
D,F =0,  se€lt 00),

and that 0 coincides with the stochastic integral with respect to the compensated

Poisson process, i.e.
T
0

for all Fi-adapted square-integrable process u € L*(Q x [0,T]), as in e.g. Proposi-
tion 7.2.9 of [17].

The condition F' € &% in the integration by parts (2.8) of Proposition 2.3 can be
relaxed to F' € Sy as in [6] under the additional condition fOT wdt = 0, a.s., cf. also

(7.3.6) in [17], on the space of simple processes
n T
Z/{T = ZGzhz . GYZ c ST, hz S C([O,T]), / hxt)dt == O, 1 S 1 S n ..
i=1 0

Proposition 2.4 The operators D and § defined by (2.2) and (2.7) satisfy the duality

relation

T
IE[/ UtDtht‘NT21:| ZIE[F(S(U)‘NTZH, FEST, UEZ/{T.
0

Proof. The same argument as in the proof of Proposition 2.3 in the appendix

Section 7 shows that
T T
E |:1{NT21}/ utDtht} = {/ utDtht} =E[Fi(u)], Fe€Sr, u€Ur,
0 0

and we note that §(u) = 0 on { Ny = 0} due to the condition fOT wdt = 0. O



From Proposition 2.4 the operators D and 0 can be extended to larger domains
Domy (D) and Domg(d), by completion of the spaces Sy and Ur. In this case,
Domy (D) contains non-smooth functionals such as Nr itself and we retain the equality
(2.9) between 0 and the (non compensated) Poisson stochastic integral over square-
integrable adapted processes, however this requires the additional (a.s.) vanishing

condition fOT wdt = 0.

3 Integration by parts for birth processes

In this section we consider a pure birth process (N{)icr, whose interjump times
(19 )ken are independent exponentially distributed random variables with respective

parameters (oy)gen satisfying the bound
0<ap<C, keN, (3.1)

for some C' > 0. In other words, the jump times of (N;*);cr, can be written as

T =78 + Jrfg“_l:E SR n>1, (3.2)
Qg Op—1
with the relation
Nf=min{n>0 : t<T2,}, teR;.

Defining

t
At) = /Ostads (3.3)
0
Ng

= anp(t=Tie) + > (T = T7)
k=1
N

= aNt(x(t—Tﬁ?)—i-ZTk,l
k=1
= OéNta(t—T](\);;x)‘l'TNta, te Ry,
it follows from (3.2)-(3.3) that (N{).cr, can be written as the time-changed Poisson

process

NtCY:NX(t)? t€R+7

7



with .
NI =Y o (Tf =T ) =T,  n>1
k=1

For all k£ > 1 we denote by C}(S%) the space of functions on R” which are continuously

differentiable (with bounded derivatives) on the simplex Sk.

Definition 3.1 Let 8¢ denote the class of functionals of the form

F = fg1ng=oy + Z Ling=iy i (11, - T}, (3.4)
k=1

where f¢ € R and f& € CL(SE), are such that ||f2]le < A* and ||0,f% ] < AF,
1<I<Ek, k>1, for some constant A > 0.

We also let S7:* denote the subspace of S¢ made of functionals of the form (3.4) that

satisfy the continuity condition
f;:(tl,...,tk)If]?+1(t1,...,tk,tk+1), 0§t1§~~§tk§T<tk+1, k € N. (35)

The next lemma will be used for Definition 3.3 and in the proof of Proposition 3.4
below.

Lemma 3.2 We have the inclusions 8§ C Scr and S3“ C Sérp.

Proof. We proceed in three steps.
(1) Given F' € 8% of the form (3.4), we let

%

1
o= b — t1), > 1, 3.6
; mgl am_l( m 1) P> (3.6)
and
k
felti, ) = Lpocwcociecras, O t0), k=1 (3.7)
=0

with fy := f§'. Since N¢ < Ner, for any k£ € N the condition
0<t; < <t <CT <ty

implies ¢, ; > T, hence we have

k-1

filte, o te) = Lozup<oocip<raeg, 1S (7, 80) + Z Lio<ip<<io<rag, 1 fi (0, 1)
=0



= Lo<ug<<io<ry fi (85 10) + Lozio<<ao <rarey foma (095 tie) + -+ Liraagy o'

under the condition 0 < t; < --- <t < CT < tp1. Hence by the continuity condition
(3.5), we find that fj is weakly differentiable on {0 <t; <.-- <t < CT < tyy,} for
every k > 1.

(17) Next, by (3.4) and the relation N& < Nep we find

fo]‘{NCT:U} + Z 1{NCT:k}fk(T17 - 7Tk)
k=1

oo k
= Joliner=oy + Z Z LiNer=k) ﬂ{N%=i}fia(T1a> T

k=1 =0

ook
= Jol{ner=0y + fol{ner>0ynive=oy + Z Z Lner=kyniva=a fi (T, .. 1)

k=1 i=1
oo k
= fo].{N%:O} + Z Z 1{NCT:k}ﬂ{N%:i}fia(T1aa s 7Tia>
k=1 i=1
= fg].{N%:O} -+ Z Z ].{NCT:k}ﬂ{N%:i}fia(Tlaa s 77—;'&)
=1 k=i
= fo lno=oy + Z Lno—iy [ (1T, .. YY)

i=1

= F

)

hence (2.1) is satisfied and we conclude that F' € Scr.
(i77) Finally, taking F' € 83, it remains to check that (fi)ren satisfies the continuity
condition (2.3) on the domain [0,CT]. Forany k € Nand 0 <t; <--- <, <CT <

try1 we have £, > T, therefore,

k1
Jeri(t, - ten) = Z Lio<ug<<to<ras, 1 Ji (7,0 1)
=0
k
= Z Lio<eg<<io<raag, 1 Ji (67, 87) = fulta, oo te).

i=0

]
In the following definition, the gradient D“ of functionals of a point process is defined
by a time change based on the intensity (A(t))ier, of the point process (Nf)ier, , cf.
Definition 1 of [15] or Definition 2 of [16].



Definition 3.3 For F in the space 8% of functionals of the form (3.4) we define the

time-changed gradient Dy as

DYF = ayaDynF,  teR,, (3.8)
where D is applied to F' € Scr on the time interval [0, CT].
We note that

T A(T) cr
HDQF”%Q([O,T]) = /0 ’D)\(t)F‘ZOd?Vtadt = /0 ’DtF‘ZOéthdt S C/(; |DtF|2dt,
(3.9)
F € 82, hence the definition of D® extends in particular to all F' € Domg. (D).

Denoting by (F;*)cr., the filtration generated by (Nf).cr., , the process (Nf—A(t) )ier.,

is an F-martingale, and the stochastic integral

T
/ ut(dNta — OéNtadt)
0

is defined for square-integrable (F;*)c(o,r-adapted processes (uy)¢cjo,r) via the isometry

E [(/OT uy (AN — aNtadt)>2] =k UOT |ut|2aNtadt} :

Next, we show that under Definition 3.3, D® is dual to the stochastic integral with

formula

respect to <Nt°‘ — fot aNgds> , as a consequence of e.g. Proposition 6 of [16] or

te[0,7)
Proposition 1 of [15].

Proposition 3.4 Given F' € Dom7.(D®) and (u¢)icjo,1) @ square-integrable (F¢*)icpo11-

adapted process, we have the integration by parts formula

T T
E |:/ D?Futdt} =E |:F/ Ut(dNta — OéNtadt):| .
0 0

Proof. Let u be an (F}*):cjo,r1-adapted simple process in

Z/{;va = {ZEU,Z : ul,...,UHEC([O,T]), Fl,...,FnGS%, TLZ]_}
i=1

10



By Lemma 3.2 we have u € U&y, hence we can apply Proposition 2.3 on [0, CT] to
F e 8¢ since A(T') < CT. Hence by (3.3), (3.8), (3.1), we have

T 00
E |:/ DfFutdt} = IE / 1[0,T}(>\;1)DtFUAt1dt}
0 0

CcT
= IE/ 1[07)\(T)](t)DtFu>\t—1dt]
0

cT
_ EB|F / 1[07A(T)](t)ukf1(dNt—dt)}
0 /

= [E F/ 1[0,T](/\t_1)u)\;1(dNt —dt)]
0

T
= [E F/ Ut(dN)\(t)—OéNtadt):| .
0

We conclude by the denseness of U;® in the space of square-integrable (F{*)icio,1)-

adapted process. O

We denote by Dom{.(D*) the domain of D® obtained by completion of S in Dom¢..(D).
Definition 3.3 can be restated on S as in the next proposition whose proof is given

in the appendix Section 7.

Proposition 3.5 For any F' € 8¢ of the form (3.4) we have
DYF ==Y Lvp=iy Y ore| ()0, [A(TY, ..., T), tE€R,.
i=1 =1
Given n > 1 and F' € 8% a functional of the form (3.4) such that

ot tn) = [t ty),  0<t<---<t, k>n,

we note that similarly to (2.4), the function g¢ defined by

gty ... ty) (3.10)
n—1

= [ Ureny + ) Losn<o<tu<ran fi (- te) + Ljoct <<y f (b o),
k=1

is weakly differentiable on S7: = {0 <t; <.-- <t, < T}, and satisfies
F=go(Ty,...,TY). (3.11)

11



Consequently, similarly to (2.6), Proposition 3.5 admits the following corollary which
shows that the gradient operator D® coincides with that of [6], cf. Proposition 3.1

therein, under certain conditions.

Corollary 3.6 For F' € S3° of the form (3.11) we have

DOF = — Zl[OT”‘] 0o (Te, ..., T),  teR,. (3.12)
k=1

4 Integration by parts for Markov chains

Consider a (right-continuous) Markov chain (5 )cr, with state space M = {1,...,m}
and transition rate matrix Q = (¢;;)1<ij<m- Let T denote the n-th transition time

of (Bi)ier, with T) := 0, and let
Nf::min{nE]N : t<T+1}

denote the number of transitions of (5;);cr, up to time ¢ € Ry. The Markov chain

(Bt)ier, can be represented as

where (Z,,)nen defined by
L = /6T57 n e ]Na

denotes the embedded chain of (8;)ier,, with Zy := fy. It is known in addition
that, given (Z,)nen, the interjump times (Tf o1 — T7)sen form a sequence of indepen-
dent exponentially distributed random variables with respective parameters (az, )n>1,
where .
Q= qu,l = —Q ks k=1,...,m, (4.1)
[
cf. e.g. §4.2 and § 6.4 of [9] for related representations of (53;)er, . Continuous-time
Markov chains can also be represented using stochastic integrals with respect to a

Poisson random measure, cf. Chapter II of [20] or Section 3 of [11].

12



In the sequel we also assume that the sequence (ay)x>o satisfies the condition (3.1) for
some C' > 0. We will also make use of the following Definition 4.1 in order to extend

Definition 3.3 to the setting of Markov processes.

Definition 4.1 Let Sfﬁ denote the space of functionals of the form
F=foli o+ Yoo T T 2o, Z), (4.2)
k=1

where f§ € R and f(-,20,21,...,2) € CL(SE) are such that | f] ||l < A* and
H@lf,fﬂoo < AF for all zy,21,...,20. € M, 1 <1<k <n, for some A > 0.

We denote by
D’F:=D¢F, teR,,

the partial gradient D¢ applied to F' € Domy(D®). In other words, for F' € 8751 of the

form (4.2), as in Proposition 3.5 we have

e k
DIF == 1ney > 1[07Tlg](t)81f,f(Tf, TP Zey . Zy), teRy.  (4.3)
k=1 I=1
In addition, as in (3.9) we have
T A(T) or
IDPF 320, = / | D FIPa,dt = / |DoF[Pag,dt < C'/ |D,F[dt,
0 0 0
hence the definition of D? extends to all F' € Dom{&p (D), with the bound
cr
2 2
D Flfsny < OB [ IDpPa].

Given n > 1, let S3” denote the subspace of Sf made of functionals of the form (4.2)

that satisfy the continuity condition

fk,ﬁ(tl, . ,tk, 20y Ry - - ,Zk) = f,f+1<t1, Ce ,tk+1, 20y Ry -y Zk+1), (44)
0<t; < <ty §T<tk+1, /04 N | EM, k e N.
We will denote by Dom$(D?) the domain of D? obtained by completion of S;”B in
Dom¢. (D). From Proposition 3.4 we obtain the integration by parts formula of the

13



next Proposition 4.2, in which Domy(D?) and the filtration (F)ier . are defined
analogously to Domy(D®) and (F}*)er, - As in (2.9) above, the stochastic integral

T
/ u (AN] — ag,dt)
0

is defined for square-integrable (]—"tﬁ )iter, -adapted processes (u)ier, via the isometry

(/OT w(dNP — Oéﬂtdt))2] —E UOT |ut12aﬁtdt} .

Proposition 4.2 Given F € Dom{.(D”) and (u;)sepor) a square-integrable (F)ier, -

E

adapted process we have the integration by parts formula

T T
E [/ DfFutdtl —E {F/ u (AN? —agtdt)] . (4.5)
0 0
As in (3.10), the (random) function ¢° defined by

grg(tlw"atnaZO;---,Zn)

n—1

= foﬁl{T<t1} + Z 1{0§t1S"'Stk§T<tk+l}fl§(t17 sty Zoy o, Zy)
k=1

+1{0§t1§---§tn§T}f7€<t1a cee 7tn7 ZU7 ey Zn)
is a.s. weakly differentiable on ST = {0 <t; <...- <t, < T} and satisfies

F=g%TP ... . T% Z,.... 7). (4.6)

Hence Corollary 3.6 yields the following result, see also Proposition 3.1 of [6].

Proposition 4.3 For F € 83” of the form (4.6) for which there exists n > 1 such
that

fg(tla"'7tn720a217-"7zn) :f]f(tla"'7tk720721a"'7zk)7

0<ty < - <tg, 20,21,---,2 €M, k >n, we have

DEF == Z 1[07T£](t)8kg£(T167 s 7T7?7 ZO7 R Zn): te R-i—'
k=1

14



5 Sensitivity analysis in a regime switching model

In this section we apply the integration by parts formula (4.5) to the computation
of Greeks. Consider a geometric Brownian motion (Y})icpo,r) with regime switching,

given by

Y; = Yoexp (/ fe (S, Bs)ds +/ a(ﬁs)st> : t €10,7], (5.1)
0 0

where (By)ic[o,r) is a standard Brownian motion independent of the finite-state continuous-

time Markov chain (5;):cjo,r7, and p, o are deterministic functions on the state space

M= {1, 2, c. ,m} of (6t)t€[0,T]-

Consider the expected value function
V(y,z) =E[p(Yr) | Yo=y,00=2], y>0, z€M,

where » > 0 denotes the risk-free rate and ¢ is an integrable payoff function. In

Proposition 5.1 we compute the sensitivity
ov
A(y,Z) = a—y(y,Z), y>0, ZGM,

with respect to the initial price y when the payoff function ¢ € C}(R) has bounded
derivative (an extension to non-differentiable payoff functions is given in Section 6).

In the sequel we will rewrite (5.1) as Y7 = YpeX7 W7 where

T
WT = / U(ﬁs)stv
0

and
T T
Xr = / fe (s, Bs)ds, Y2 = / o?(Bs)ds (5.2)
0 0
belong to S5°. We also let

T
DPF = / wDPFds,  F € Domp(D?), we L*(Qx[0,T]).
0

In the next proposition, the absence of hypothesis on the vanishing of fOT ugdt allows
us to keep D, X strictly positive, therefore ensuring integrability of the weight 'z

together with a better stability of the associated numerical implementation.

15



Proposition 5.1 Assume that ux(-,1) € C'([0,T)]) satisfies
(T, 1) =0, k>0, [=1,...m,

and consider uw € C([0,T]) such that 1{N§21}/D5XT and 1
belong to L*(). Then we have

DDy Xr/DyXr

{NS>1}

1 Wr
A(ya Z) = E]E |:¢(YT) (1{N£>1}FT + 1{N£:O}m> Yo = 3/750 = Z:| Y= 0,
(5.3)
for all ¢ € CH(R), where the weight T'r is given by
1 T DEDEXy %2 — (Wr)?
[y = u (AN] — ag,dt) + =L 4 2T D522), 5.4
rim o ([ wlan? - o+ P SLGB pis)
and (oq)1=1...m is given in (4.1).
Proof. We write A(y, z) as A(y, z) = A1(y, z) + As(y, 2), where
0
Al(y: Z) = a_y 1) [¢(YT)1{Ng21} | Yo = y>ﬁ0 = Z] (55)
and
0
Boly,2) 1= 5 T (60 [ Yo =, o = 2] (5.6)
Taking Yy = y and By = 2z, we have
0
Aify ) = T (Lo 60) [ Yo =, fo = 2|
0
B[ 0™ ) 5.7
* 9
=k [1{1@21}/ a—y¢(y€$+XT)90($;ET)d$} : (5.8)

where Xr is defined in (5.2) and
1
o(z,Xr) = exp (—2%/(2%})), z€R,

V/2mY2,

is the probability density function of Wr given ¥24. We note that X7 can be written

as

NP

T TP AT
Xt = Z/ /'Li(87 Zi)dsu

B

16



where (Z,)nen is the discrete-time embedded chain of (f5;)cr,. Consequently, Xy is

an element of S5’ which is expressed in the form of (4.2) as

Xr = fi 1oy + 2 Loy 0T T 2o, 20,
k=1

where fJ = fOT to(s, Zy)ds and

k titi AT
f]f(tla'--vtk,ZOw-WZk) :Z/ ,U,Z‘(S,Zi)ds,
t;

i=0 Y tNT
k > 1, satisfy the continuity condition (4.4), and by (4.3) we have

5
NE-1

NY
DtﬁXT = Z 1[07Ti1]<t)ﬂi(Tiﬂ+1> Z;) + Z 1[07Tlﬁ]<t)ﬂi(ﬂﬁa Zi), teRy,
i=0 i=1

and Df Xr € Sr_cp’ﬁ . Similarly, find that the functional eX” belongs to S:Cp’ﬁ , with

DPeXT = X DB X,

(5.9)
Hence by (5.9), taking Yy = y and fy = z we have
E |1 yss1y0(2, ET)(%cb(yeXT”)} = |1y 0@ D)6 (ye ) |

B iE {1{%’321}‘?(%’ ET)GXTH%]

_ ina {1 {Ngzl}%xg’—)?pggb(ye%”)] . (5.10)
Now, for all € > 0 we have
E [1{1\,521}@;?%@(% ET)D%(QGXTH)]
| et X Dlolye )|

- o (Gt )| - st ()]

DXy

where the functional —————— Xr+2) (2. $7) belongs to S&° for all z € R.
(DIX,) 1 _olye T )p(w, Xr) g T

Hence, denoting by (F?)sepo,r] the filtration generated by (By)sejo,r], by Proposition 4.2
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we obtain

{D( DuXr ¢<yeXT”)so<x,ET>>]

(DiXr1)?
oo ) ]
L T
DSX T
—E|E {W¢(yeXT+I)SO(%ZT)/O‘ ut(de—aﬁtdt))f{?”
L u<\T
[ DBX N T
DBXT

=B 1{N§21} (DEXT) +e

T
0T ol Za) [ wan - agtdw] ,

since D? X7 = 0 on {N} = 0}. Next, we have

'L+1
D5XT = - Z/ utdt,uz z+17 _'_Z/ utdt/J%T Z)

= Z/ wdt ,uz (T, Z;) — i (T, Zs 1)) (5.11)

— BB 8
= gol{Ngzo}—l—Zl{Néa:k}gk(Tl,...,Tk,ZO,...,Zk),
k=1
where gJ = 0 and

k T
Ge(tr, . te, Zo,. . D) = Z/ wdt (pi(ti, Zi) — prie1(tis Zi-1)) s
— Jo

k > 1, satisfy the continuity condition (4.4), hence DP X, € S&° and by (4.3) we have

NP1 NP-1 T
DngXT = Z 1[07Tﬁr1](t>qu+1Mz(2+la Z) Z /0 Utdtl[o’Tﬁlﬁ )Mz(TE&—l? Z)
=0 =0

T TZB
- Z 1[O,Tf’] ()u TBUTB/”LZ (17, ;) Z Lo Tﬂ] / wdtpy(T7, Z3),
i=1

which yields

Nplor, Nelr, 7,
DngXT = Z / usdsuTﬁ /‘L’L(Y;-i‘l’Z) Z / utdt/ usdsuz<ﬂ€-172')
i=0 Y0 i=0 Y0 0

18



T8

i

NT P T’
usdsugp (T}, Z;) — Z/ usds/ wdtpl (TP, Z;).
' =170 0

Nj
S
i=1 0
Hence we see that

IE {eb(yeXT“’)Df (%w(x, ZT)):|

(DEX1)?+¢
X1+ DBX)2 —
= | S (i Dot B - D=t 2Dy )

X142z 2 9 D/BX ,
—E { <b/(6ye ) (:c —427’ o(x, L) DEY2 DX — (z#
(DuX71)?+¢ 2X7 DEXe) 12

gp(x,ET)DgDﬁXT)] :
(5.12)
Combining (5.5), (5.8) and (5.10)-(5.12) and letting € tend to zero we find, by domi-

nated convergence,

Ai(y, 2) (5.13)

_ /_ LoJ PP

Xr+z T DBDBX 22_ 2 d
NGB Y ) (/ w(dNf — ag,dt) + St 4 2T :EDSE%)} :
0

DX, DEX, 2534, y
1 o(Yr) /T 5 DEDBXp %2 — (Wr)?
=~E|1 RASEYS ANP — o dt u_u DA .
y |: {N£21} DgXT 0 Ut( t aﬁt ) =+ _DgXT + 22471_‘ u =T

Regarding the computation of Asy(y, z), we note that by the classical Malliavin cal-
culus for Brownian motion, or by a standard integration by parts with respect to the

Gaussian density, we have

(5.14)

0 1 %
AZ(yaz) = a_yE [1{N§,:0}¢<YT):| = ;IE {1{N§,:0}¢<YT) z :| >

To?(z)
as in e.g. [10]. The proof is completed by (5.13)-(5.14). O

The integrability assumptions in Proposition 5.1 can be satisfied by choosing p(t,1)
so that DPXp in (5.11) remains strictly positive. However, positivity of D?X7 is
not necessary, as shown in the following numerical illustration in which we consider a

two-state Markov chain (f3;)ecr, with values in {1,2}, with
,uk(t, Z)L: (k?—i-l)(T—t)'ym, k Z O, = 1,2,
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and the parameters
y=1,T=1 Yy=1, ag =40, ap =20, ny =15, no =1, 07 =0.2, 05 =0.5.

Figure 1 shows the faster convergence of (5.3) for a digital option with payoff ¢(x) =
1k 00y (), strike K = 150, and w; := 1, t € [0,7], compared to a standard finite

difference scheme and to an application of the partial Wiener-Malliavin calculus as

8 1 WT
A(y,z):_E[¢(YT)|N£Z1,%:y,60:2{|:—]E ¢(YT)_2 %:y)ﬁozz ,
63/ y ZT
cf. e.g. [5].
0.31 ; : ; . : : : :
Markov-Malliavin
0.3 F Finite differences ='==:=
i Wiener-Malliavin oo
0.29 i
0.28 [} |
0.27 i
3 o0.26 F |
(] 1
0.25 —"i _
0.24 [, |
0.23 [t Mg S . T S
0.22 {&‘ ------------------------------- |
0.21 . s 1 1 1 1 1 i
o] 5 10 15 20 25 30 35 40 45 50

samples x 10°©

Figure 1: Monte Carlo convergence graph.

In case the diffusion term o vanishes, Proposition 6.1 still allows us to estimate the

conditional sensitivity given that Nﬁ >1, as

0

a_y]E[qb(YT)‘NﬁZla%:vaO:Z]
1 Lings1y < /T T DPDBX

=—E |[¢(V, . udN’B—/ upovg, dt + ——+—— ‘N’8>1,Y: Bo = 2| .
Y o(Yr) DgXT ; tLVy ; tQg DSXT T = 0=1,5

6 Extension to non-differentiable payoff functions

In this section, following the approach of in [12] we show that Proposition 5.1 can be

extended to non-differentiable payoff functions in the class

AR) := {f R—>R : f= ZfilAm fi € CL(R), A;intervals of R, n>1 3,
i=1

(6.1)
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where

CL(R):={feCMR) : |f(z)— f(y)| < klz —y| for some k > 0}. (6.2)

Proposition 6.1 Under the hypotheses of Proposition 5.1 we have

1 Wr
A<y7 Z) = ;]E |:¢(YT) (1{N§>1}FT + 1{N$=0}E_%> ‘ }/0 =Y, 60 = Z:| ) (63)
for all € A(R), where I'r is given in (5.4).

Proof.  Since ¢ € A(R), there exists N > 1 and a sequence (ky,...,ky) C ]Rf and a
family (Aq,..., Ax) of disjoint intervals such that

o(x) = Z fi(z)14,(2), z € R,

where f;(z) € CL(R) with

flx) = fW)| < kile —yl, axyed, i=1,...,N.
We denote A; = (a;_1,a;],i=1,..., N with aqp = —c0 and ay = co. Let
ve =Y Cy,  te07], ceR,

)
where (Y}):cjo,7] is defined in (5.1) with Yy =y > 0.
(i) Assuming that ¢ € A(R) N C*(R) we show that ¢(Y7) is integrable, with
[ 205 60 5(Y5) = 0(¥1)

£ £

K):y,ﬁo:z}:]E{hm YE]:y750:Z:|
e—0

(6.4)

Since ¢ is continuous, we see that

| o(Yr) — ¢(Yo) |

< . — . — Z N — bla.
< ey, W sl ek ey e+ $las) = $lag)

.....

< , . . — N — .
< max k(Y max )+ mex ks max ly—al Y0 [6(a:) = 6(aj)],

,,,,,
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which is integrable, hence the integrability of ¢(Y7) is proved. On the other hand,
i | 27) — ¢(Y7) ‘ < ( Yi— Yy ) 1

max k; | lim

= — max k;,
e—0 £ 1<i<N ) e=0 €

Y 1<i<N

which is uniformly bounded. Therefore, (6.4) follows by dominated convergence.

(ii) Next, we note that (6.3) holds for ¢ € A(R) N C*(R), as by (6.4) we have

ov YE) — o(Y;
o e

0 0
= b [sz@zua—yqﬁ(YT) |Yo=v. 0= z} +E [1{N;zo}a—y¢<YT> Yo =y, b= z} :

(6.5)

which shows that (6.3) holds for ¢ € A(R) N C*(R) by repeating the arguments from
(5.7) to the end of proof of Proposition 5.1.

(i77) Finally, we extend the result from an increasing sequence (¢, )nen € A(R)NCH(R)
to its pointwise limit ¢ € A(R). By e.g. (3.6)-(3.7) in [12], it suffices to show that for

all compact subsets K C (0,00) we have

lim sup | E[¢,(Yr) | Yo =y, fo = 2] — E[¢(Yr) | Yo =y, b = 2]| = 0, (6.6)

n—oo yEK

and

im sup | 2 [0, (V7) | Yo = oo = 2] = Blo(Y) | Yo =y o =2l | =0. (67

n—00 yeK

where the weight J given by

J:=1 L dN? ' dt) +1 Br.
o {Ngzl}DEXT 0 He T 0 " - {quzo}f’(z)

is square-integrable under the condition IE [1{N5>1}]D5XT‘—2] < 0o. Since ¢ € A(R)
T
is continuous on every interval (a;_1,a;), i = 1,..., N, there exists a pointwise in-

creasing sequence (¢, )neny € A(R) N CY(R) such that
lim ¢, (z) = ¢(x), re R\ {ay,...,an-1}.
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The increasing sequence (f,,)nen of continuous functions defined by

fn(y) ::E[¢n(YT)‘%:y760:Z]7 RGN, yEKv

satisfies

lim fo(y) = E [6(Y7) | Yo =y, B0 = 2]

n— oo
uniformly in y € K by dominated convergence and Dini’s theorem, which proves (6.6).

Regarding (6.7), since (¢, )neny € A(R) N CY(R), by point (ii) above we have

| 55 Eln(¥e) | Yo =y, 60 = 2] ~ EI6(¥)J | Yo = v, fo = 4|

= I BL6,()T | Yo =, 60 = 2~ El6(r) | Yo =,y = 2]
E[(¢(Yr) = ¢u(Y7)|J] | Yo =y, o = 2]
VEIGV) ~ V)V 1Yo = 5.5 = AVETIP [ Yo = 3. 5y = 2.

IN

IN

Similarly to the above we conclude by noting that the sequence (g, )nen of continuous

functions defined by

gn(y) =E [(6(Y7) — 6 (Y7))* | Yo =y,00=2], n€EN, yeK,

is decreasing to 0 uniformly on K. U

7 Appendix

In this appendix we provide a proof of Proposition 2.3 that does not rely on the

symmetry condition on the functions fi(t1,...,tx) assumed in Proposition 7.3.3 of
[17].

Proof of Proposition 2.3. First, taking h € C([0,T]) we have
T T
E { / h(t)Ddet] - {1{NT>1} / h(t)Ddet} (7.1)
0 0
oo k T,
S ) [Z Ling=iy Y Ofe(Th, ... Th) / h(t)dt]
k=1 =1 0

T - Tk
=1

k T,
=1 0
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o~ k

TZZ// / Ofeltrs .t )/ Bt)dtdt, - dte.  (T2)

k=1 l=1

We start with the first term when [ = 1 and apply the chain rule of derivation in the

following integration by parts on [0, t5]:

T tr to t1
// / 81fk(t1,...,tk)/ h(t)dtdt, - - - dty
to
tdt fr(tq, ..., 1t dty---dt
// /8t1(/ (t)dt fi.(t1, akz)) 1 k
—// / h(t) fe(ts .. tn)dty - dt
// // t)dt fr(ta, ta, ts, ... ty)dly - - - dty,
—// / h(ty) fu(ty, ... tg)dty - - - dty. (7.3)
o Jo 0
Similarly we have, by integration by parts on [t;_1,t241], L € {2,...,k — 1},
// /&fktl,..., )/ h(t)dtdt, - - - dty
tz+1 .
// / // (O)dtfi(te, ..ty tipn tgr, o te)dty - - dty - - - dty
—/ / / h(t) fultes - te)dty - - diy,
// / // (O)dt fro(te, .-t b b, oo ty)dty - - - db_y -+ dty,

where fgl denotes the absence of f(fl, df; denotes the absence of dt;. Finally, by
integration by parts on [ty, T] we find

T pty to tk
/ / / akfk(tl,,,_,tk)/ h(t)dtdt, - - - dt,, (7.4)
0 Jo 0 0
T th—1 to T
/ / / fk(tl,...,tk_l,T)dt1~-~dtk_1/ h(t)dt
o Jo 0 0
T tr to
_/ / .../ h(tk)fk(t17--~7tk)dtl"'dtk
o Jo 0
T pth_1 to tk
_/ / / fk(tl,...,tkg,tk,tk)dt1~--dtkthk/ h(t)dt.
o Jo 0 0
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Plugging (7.3)-(7.4) into (7.1) yields

T
B
IE[ /O h(t)Dtht}
o0 T pty ty K
— T
= e ;(/0/0 /Olz:;h(tl)fl(tl,---,tk)dtl dty,
Tty ” T
—/0/0 /0 fk(tl,...,tk_l,T)dtln-dtk_l/O h(t)dt)

- i E [1npei1y foo1(Thy - oo Timr)] /OT h(t)dt + IE [F /OT h(t)dNt}

_ ]Ek{}i/oTh(t)(dNtdt)],

where we applied the continuity condition (2.3). Next, if u = Gh € U5, by (2.7) we

have

T r rpT
E[l{NT>1} / uthth] = E / uthth]
0 LSO

r T
= E|G / h(t)Ddet}
L 0

- E _/T h(t)D?(FG)dt — /OT h(t)Ddet]

- E FG/ t)(dN, — dt) — F/Th(t)Ddet]
= E[Fi(u 0

O

Proof of Proposition 3.5. By Definition 2.2, Lemma 3.2 and the relations N < Nep

and
k

Je(te, .o te) = Z Lio<ip<<io<r<ee, 3 fi (105 tF), k€N,
i=0
cf. (3.7), where t& is defined by (3.6), we have
o _ g
DiF = ang D5y F
= —anp Z LiNer=k} Z Lo (A@)Oufe(Th, .., Tk)
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00 k k
a « (% (6%
= —ang Z LiNor=k) Z Loz (t) Z Ling=iy g /i (T7,.... 1)

= —anp D) Liver= k}zl[om 1{N%=z}8t FIT. - TF)
=1 k=t =1

= —ane Z LNer>i) Z Lio7py () L ng=iy 5 ot fa(Tla’ o 17
= —ane Z 1ing=i} ; 1[O,Tﬁ](t)a_hfzq(Tfé» LT
= —ape i 1{ne=i} i Ljo,7e(t)
=1 =1
X (—alfa(Tf“,...,Tf)Jr (L — —) Z O f (1Y, - -, f‘))
ap— | j=l+1
C o f’: Lvgoi Z o) (0= 0L (TF . )
—mw}thLGE:Mmﬂ (&7-{>2;8f“ﬂﬁ”wT)
J

= —OZNQZ]_{NQ Z}ZI[OTO‘] _alfa(Tla,7T )
(03 (e} [e] 1 ]_
—Qng Z 1ina=i} Z o; f(Ty, ... T Z 1[0,T;¥](t) E _ El
= j=2 =1

—_ —Och«Z]_{Nu_Z}Z]_[OTa] 8]”“(7?,...,7}&)

j—1
1
_CVN;IZ]-{N%:Z}ZGJJCZ (Tl gooee T ;mlojﬂa] t
=1 j=2 _

gﬂg

Lozp )(t)

+anp Z 1ine=i} Z (T .
=1 =2

- 1 [0 [0 [0
= —apnp Z 1{N%:i}1[o,m(t)a—081fi (17, ..., T%)

i=1
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oo i j
o (o o 1
—ape Z 1ina=i} E o; f(Iy, ... T E a_l[O,Tﬁ]@)
=1 j=2 — -1
oo i j
E o (o o 1
+apye Z ].{N%:i} 0, f; (17, ..., 1) E ml[OvTﬁﬂ(t)
i=1 j=2 —1 _

S 1 « [e7 (e}
= —awy Y Loy Loa) () O fH T )
=1

00 % J
o (o3 e} 1
—anNg Z Ling=i} Zajfi (T7,...,17) Z — ynp=io1y
i=1 =2

(67
=1 -1

= =) Lne—ploap (0T, .. T
=1

) i j
- Z I{N%:i} Z ajfia(Tlaa s 7Tia) Z l{Nta:l—l}
i=1 Jj=2 =1

= =) Le—glpze (DO f(TY, ... T7)

i=1

=2 Lovg=i D T T Lo (1)
i=1 j=2

= = La=iy Y Lpas (DO (T, .. TF), tEeR,.
i=1

j=1

Acknowledgement

This research was supported by the Singapore MOE Tier 2 Grant MOE2016-T2-1-036
and by the grant 71673117 from the Natural Science Foundation of China.

References

[1] V. Bally, M.-P. Bavouzet-Morel, and M. Messaoud. Integration by parts formula for locally
smooth laws and applications to sensitivity computations. Ann. Appl. Probab., 17(1):33-66,
2007.

[2] Ph. Biane. Chaotic representations for finite Markov chains. Stochastics and Stochastics Reports,
30:61-68, 1989.

[3] J.M. Bismut. Calcul des variations stochastique et processus de sauts. Zeitschrift fir
Wahrscheinlichkeitstheories Verw. Gebiete, 63:147-235, 1983.

27



[4]

[10]
[11]

[12]

S.N. Cohen. Chaos representations for marked point processes. Commun. Stoch. Anal., 6(2):263—
279, 2012.

M.H.A. Davis and M.P. Johansson. Malliavin Monte Carlo Greeks for jump diffusions. Stochastic
Processes and their Applications, 116(1):101-129, 2006.

L. Denis and T.M. Nguyen. Malliavin calculus for Markov chains using perturbations of time.
Stochastics, 88(6):813-840, 2016.

G. Di Nunno and S. Sjursen. On chaos representation and orthogonal polynomials for the doubly
stochastic Poisson process. In Seminar on Stochastic Analysis, Random Fields and Applications
VII, volume 67 of Progr. Probab., pages 23-54. Birkhauser /Springer, Basel, 2013.

R.J. Elliott, L. Aggoun, and J.B. Moore. Hidden Markov models, volume 29 of Applications of
Mathematics (New York). Springer-Verlag, New York, 1995.

S.N. Ethier and T.G. Kurtz. Markov processes, characterization and convergence. John Wiley
& Sons Inc., New York, 2005.

E. Fournié, J.M. Lasry, J. Lebuchoux, P.-L.. Lions, and N. Touzi. Applications of Malliavin
calculus to Monte Carlo methods in finance. Finance and Stochastics, 3(4):391-412, 1999.

M.K. Ghosh, A. Arapostathis, and S.I. Marcus. Ergodic control of switching diffusions. STAM
J. Control Optim., 35(6):1952-1988, 1997.

R. Kawai and A. Takeuchi. Greeks formulas for an asset price model with gamma processes.
Math. Finance, 21(4):723-742, 2011.

Y. El Khatib and N. Privault. Computations of Greeks in a market with jumps via the Malliavin
calculus. Finance and Stochastics, 4(2):161-179, 2004.

J.P. Kroeker. Wiener analysis of functionals of a Markov chain: Application to neural transfor-
mations of random signals. Biol. Cybernetics, 36:243-248, 1980.

N. Privault. Calcul des variations stochastique pour les martingales. C. R. Acad. Sci. Paris
Sér. I Math., 321:923-928, 1995.

N. Privault. Stochastic calculus of variations for martingales. In I. M. Davies, K. D. Elworthy,
and A. Truman, editors, Proceedings of the Fifth Gregynog Symposium, Gregynog, 1995, pages
385—400. World Scientific, 1995.

N. Privault. Stochastic analysis in discrete and continuous settings with normal martingales,
volume 1982 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2009.

N. Privault and W. Schoutens. Discrete chaotic calculus and covariance identities. Stochastics
and Stochastics Reports, 72:289-315, 2002. Eurandom Report 006, 2000.

T.K. Siu. Integration by parts and martingale representation for a Markov chain. Abstr. Appl.
Anal., page Art. ID 438258, 2014.

A.V. Skorokhod. Asymptotic methods in the theory of stochastic differential equations, volume 78
of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI,
19809.

28



	Introduction
	Integration by parts for the Poisson process
	Integration by parts for birth processes
	Integration by parts for Markov chains
	Sensitivity analysis in a regime switching model
	Extension to non-differentiable payoff functions
	Appendix

