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Abstract

We derive a characterization of equilibrium controls in continuous-time, time-inconsistent
control (TIC) problems using the Malliavin calculus. For this, the classical duality
analysis of adjoint BSDEs is replaced with the Malliavin integration by parts. This
results into a necessary and sufficient maximum principle which is applied to a linear-
quadratic TIC problem, recovering previous results obtained by duality analysis in the
mean-variance case, and extending them to the linear-quadratic setting. We also show
that our results apply beyond the linear-quadratic case by treating the generalized
Merton problem.
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1 Introduction

Time-Inconsistent Control (TIC) problems can be formulated using pre-committed controls,

in which case optimization is performed only at time 0, although the control attained in the

infimum might not be “optimal” in the future, see e.g. Zhou and Li (2000), Buckdahn et al.

(2011), Pham and Wei (2018).
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Stochastic maximum principles based on the characterizations of critical points of pre-

committed controls using Malliavin integration by parts in time-inconsistent settings have

been obtained in a number of recent works, starting in Meyer-Brandis et al. (2012). This

involves applying the Malliavin calculus to express the Gâteaux derivative of the cost func-

tional in terms of BSDE solutions and their Malliavin derivatives. Other related stochastic

maximum principles have been established for different control problems using the Malliavin

calculus in e.g. Øksendal and Sulem (2010), Øksendal and Sulem (2012), Wang et al. (2013),

and Agram and Øksendal (2018).

Time inconsistency in stochastic control problems has also been dealt with via a game-

theoretic approach via the construction of a time-consistent strategy. Such construction of

time-consistent equilibrium controls has recently been the object of increased attention, with

applications to the generalized Merton problem, economics problems with time-inconsistent

preferences, and mean-variance portfolio selection with state-dependent risk aversion. In the

case of deterministic TIC problems, Ekeland and Lazrak (2006) were the first to provide

a characterization of equilibrium controls. This approach has been extended in Björk and

Murgoci (2010) to a stochastic setting, via the derivation of an extended Hamilton-Jacobi-

Bellman (HJB) system for the characterization of equilibrium controls. In Hu et al. (2012;

2017), this characterization has been achieved using a stochastic maximum principle of Pon-

tryagin type in the linear quadratic case, see also Yong (2017) for the case of controlled

mean-field SDEs. This idea has been extended in Djehiche and Huang (2016) to more general

TIC problems with equilibrium controls.

In this paper, we replace the duality analysis of adjoint BSDEs used in the classical theory

with the Malliavin integration by parts for the derivation of a necessary and sufficient max-

imum principle with equilibrium controls. For this, in Theorem 2.3 we express the variation

of cost functions under spike perturbations using Malliavin integration by parts arguments.

As a consequence of Theorem 2.3, we derive a necessary and sufficient condition in Corol-

lary 2.4 by assuming that the feedback strategies are sufficiently regular. Our derivation

differs from the approach of Meyer-Brandis et al. (2012) because equilibrium controls are

defined by spike perturbations (see Definition 2.1) instead of the Gâteaux derivative, which

has no clear connection to equilibrium controls.

Spike perturbations of optimal controls have also been considered in the Malliavin calculus

2



in Agram and Øksendal (2018), however without involving equilibrium controls. In addition,

the proofs in Agram and Øksendal (2018) use the duality analysis of adjoint BSDEs, and

passing to the limit in the mean value theorem, which cannot be done without satisfying

precise regularity conditions on the integrands.

Our main results are first applied to linear-quadratic problems in Proposition 3.1 which

extends previous constructions of equilibrium controls obtained by duality analysis in the

mean-variance case with state-dependent risk aversion, see § 4.1 of Hu et al. (2012). More-

over, to demonstrate that our results apply beyond the linear-quadratic setting, in Proposi-

tion 3.3 we deal with the generalized Merton problem, see § 6.2 in Yong (2012). Although

our definition of equilibrium controls uses expectations instead of conditional means as in Hu

et al. (2012) and Yong (2012), the equilibrium controls that we obtain coincide with theirs,

see Remark 3.2 and Proposition 3.3.

Our optimality condition is more explicit than the one in Theorem 3.1 of Djehiche and

Huang (2016), while allowing us to recover the results of § 4.1 and § 4.2.1 therein as a special

case of Proposition 3.1, see Remark 3.2. Indeed, in duality analysis, the equilibrium control

is characterized by a pair (p, q) solution to a linear BSDE, where q does not have an explicit

representation, whereas in the Malliavin approach an expression q is explicitly provided, see

(2.15b), thus allowing us to derive the closed-form equilibrium control in a more explicit

manner.

This paper is organized as follows. In Section 2 we derive a maximum principle for the

characterization of equilibrium control. In Section 3 we apply the maximum principle to a

linear-quadratic problem and to the generalized Merton problem. Sections 4 and 5 contain

regularity and boundedness results on the coefficients b, σ, h, g and their adjoint processes

and Malliavin derivatives, for use in the proof of Theorem 2.3.

Malliavin integration by parts

We work on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) where (Ft)t∈[0,T ] is the filtration

generated by a standard Brownian motion (Wt)t∈[0,T ]. Next, we recall two basic properties

of the Malliavin derivative Dt which is defined on a dense domain D1,2 in L2(P), see e.g.

Üstünel (1995), Nualart (2006) and references therein.

Lemma 1.1 Let F1, . . . , Fn ∈ D1,2 and let ψ : Rn → R be a Lipschitz function of n variables.
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Then we have ψ(F1, . . . , Fn) ∈ D1,2, and

Dtψ(F1, . . . , Fn) =
n∑
i=1

∂ψ

∂xi
(F1, . . . , Fn)DtFi. (1.1)

In the next lemma, we let λ denote the Lebesgue measure on [0, T ].

Lemma 1.2 Let (vt)t∈[0,T ] ∈ L2(λ× P) be a square-integrable (Ft)t∈[0,T ]-adapted process, and

let F ∈ D1,2. Then we have

E
[
F

∫ T

0

vtdBt

]
= E

[∫ T

0

vtDtFdt

]
. (1.2)

2 Stochastic maximum principle

We consider the stochastic control problem with cost functional

J(t, x, ϕ) = E
[
g
(
Xx,ϕ
t,T ,E

[
Xx,ϕ
t,T

])
+

∫ T

t

h
(
s,Xx,ϕ

t,s ,E
[
Xx,ϕ
t,s

]
, ϕ(s,Xx,ϕ

t,s )
)
ds

]
,

where (t, x) ∈ [0, T ]× R, ϕ : [0, T ]× R→ U is a sufficiently regular deterministic function,

U ⊂ R is a control space, and (Xx,ϕ
t,s )s∈[t,T ] is solution of the stochastic differential equation

(SDE)dX
x,ϕ
t,s = b

(
s,Xx,ϕ

t,s , ϕ
(
s,Xx,ϕ

t,s

))
ds+ σ

(
s,Xx,ϕ

t,s , ϕ
(
s,Xx,ϕ

t,s

))
dWs, 0 ≤ t < s ≤ T,

Xx,ϕ
t,t = x.

(2.1)

At the expense of heavier notations, our results can be extended to the multidimensional

case without essential difficulty, however, we prefer not to pursue such generality as the

real-valued case is already notationally heavy. By abuse of notation, for u = (ut)t∈[0,T ] a

U -valued (Ft)t∈[0,T ]-adapted control process, we also let

J(t, x, u) = E
[
g
(
Xx,u
t,T ,E

[
Xx,u
t,T

])
+

∫ T

t

h
(
s,Xx,u

t,s ,E
[
Xx,u
t,s

]
, us
)
ds

]
, (2.2)

with the SDEdX
x,u
t,s = b

(
s,Xx,u

t,s , us
)
ds+ σ

(
s,Xx,u

t,s , us
)
dWs, 0 ≤ t < s ≤ T,

Xx,u
t,t = x.

(2.3)

Due to the presence of a mean-field term, problem (2.2)-(2.3) is time-inconsistent as the

optimal control û obtained at time t may not be optimal after time t. Following Ekeland

and Lazrak (2006), a time-consistent control û for this problem may be constructed by the

following steps:
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i) At current time t, assume that all the future-selves s with s > t use the control ûs.

ii) Knowing this, it is optimal for the current-self t to also use ût.

Given (ût)t∈[0,T ] a U -valued (Ft)t∈[0,T ]-adapted control process and (t, u) ∈ [0, T ] × U , the

“local” spike variation u⊗t,ε û of û is defined as

(u⊗t,ε û)s =

u, 0 ≤ t ≤ s < t+ ε,

ûs, 0 ≤ t+ ε ≤ s ≤ T,
(2.4)

and used for the next definition of equilibrium control, in which ∂x refers to differentiation

with respect to the state variable x. In the next definition we use the equilibrium controls

of Björk and Murgoci (2010), and impose sufficient regularity on the feedback functions ϕ̂

to ensure the existence of solutions of the SDE (2.1), see e.g. (H3) in Yong (2012).

Definition 2.1 A deterministic function ϕ̂ : [0, T ] × R → U is an equilibrium control for

the problem (2.2)-(2.3) if ϕ̂ is differentiable with bounded derivatives, and both ϕ̂, ∂xϕ̂ are

Lipschitz continuous in (t, x), and

lim
ε↓0

J
(
t, x, u⊗t,ε ût,x

)
− J

(
t, x, ût,x

)
ε

≥ 0, u ∈ U, x ∈ R, a.e. t ∈ [0, T ], (2.5)

where ût,xs := ϕ̂
(
s,Xx,ϕ̂

t,s

)
, 0 ≤ t ≤ s ≤ T .

We also make the following assumptions, in which ∂y refers to differentiating with respect

to mean field variable y.

Assumption 1 i) The functions g(x, y) and h(t, x, y, u) in (2.2) admit Lipschitz continuous

partial derivatives ∂xg, ∂yg, ∂xh, ∂yh, and continuous and bounded partial derivatives

∂ixg and ∂ix∂
j
uh with 0 ≤ i ≤ 3, 0 ≤ j ≤ 2, 2 ≤ i+ j ≤ 3.

ii) The functions b(t, x, u) and σ(t, x, u) in (2.3) are Lipschitz continuous, and admit con-

tinuous and bounded partial derivatives ∂ix∂
j
ub and ∂ix∂uσ with 0 ≤ i ≤ 3, 0 ≤ j ≤ 1,

1 ≤ i+ j ≤ 3.

From now on, we let ϕ̂ denote the candidate equilibrium control in Definition 2.1 and

let ût,x be the control process such that ût,xs = ϕ̂(s,Xx,ϕ̂
t,s ). For ψ ∈ {b, σ, h, g} and A ∈

{x, u, xx, xu, xxx, xxu, xuu} we set the notation

∂Aψ
x,ϕ̂
t,s = ∂Aψ

(
s,Xx,ϕ̂

t,s ,E
[
Xx,ϕ̂
t,s

]
, ϕ̂(s,Xx,ϕ̂

t,s )
)
,

∂yψ
x,ϕ̂
t,s = E

[
∂yψ

(
s,Xx,ϕ̂

t,s ,E
[
Xx,ϕ̂
t,s

]
, ϕ̂(s,Xx,ϕ̂

t,s )
)]
,

δψx,u,ϕ̂t,s = ψ
(
s,Xx,ϕ̂

t,s ,E
[
Xx,ϕ̂
t,s

]
, u
)
− ψ

(
s,Xx,ϕ̂

t,s ,E
[
Xx,ϕ̂
t,s

]
, ϕ̂(s,Xx,ϕ̂

t,s )
)
,

δ∂Aψ
x,u,ϕ̂
t,s = ∂Aψ

(
s,Xx,ϕ̂

t,s ,E
[
Xx,ϕ̂
t,s

]
, u
)
− ∂Aψ

(
s,Xx,ϕ̂

t,s ,E
[
Xx,ϕ̂
t,s

]
, ϕ̂(s,Xx,ϕ̂

t,s )
)
.
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Similarly, we let

∂xϕ̂
x,ϕ̂
t,s = ∂xϕ̂

(
s,Xx,ϕ̂

t,s

)
.

In addition, we set bϕ̂(t, x) = b(t, x, ϕ̂(t, x)) and σϕ̂(t, x) = σ(t, x, ϕ̂(t, x)), t ∈ [0, T ]. For

t ∈ [0, T ) we let ε > 0 be small enough such that t+ε < T , and let (yx,εt,s )s∈[t,T ] be the solution

of the SDE dyx,εt,s = ∂xb
x,ϕ̂
t,s y

x,ε
t,s ds+

(
yx,εt,s ∂xσ

x,ϕ̂
t,s + 1[t,t+ε](s)δσ

x,u,ϕ̂
t,s

)
dWs, 0 ≤ t < s ≤ T,

yx,εt,t = 0,
(2.7)

with

yx,εt,s = yx,εt,t+εG
t,x
t+ε,s, s ∈ [t+ ε, T ]. (2.8)

where

Gt,x
t+ε,s := exp

(∫ s

t+ε

(
∂xb

x,ϕ̂
t,u −

1

2
(∂xσ

x,ϕ̂
t,u )2

)
du+

∫ s

t+ε

∂xσ
x,ϕ̂
t,u dBu

)
, s ∈ [t+ ε, T ]. (2.9)

Let also (zx,εt,s )s∈[t,T ] be the solutions of the SDE



dzx,εt,s =

(
zx,εt,s ∂xb

x,ϕ̂
t,s + 1[t,t+ε](s)δb

x,u,ϕ̂
t,s +

1

2
(yx,εt,s )2∂xxb

x,ϕ̂
t,s

)
ds

+

(
zx,εt,s ∂xσ

x,ϕ̂
t,s + 1[t,t+ε](s)y

x,ε
t,s δ∂xσ

x,u,ϕ̂
t,s +

1

2
(yx,εt,s )2∂xxσ

x,ϕ̂
t,s

)
dWs,

zx,εt,t = 0,

(2.10)

t < s ≤ T , with

zx,εt,s = zx,εt,t+εG
t,x
t+ε,s +

1

2

∫ s

t+ε

(
yx,εt,r
)2
Gt,x
r,s∂xxσ

x,ϕ̂
t,r dWr (2.11)

+
1

2

∫ s

t+ε

((
yx,εt,r
)2
∂xxb

x,ϕ̂
t,r −

(
yx,εt,r
)2
∂xσ

x,ϕ̂
t,r ∂xxσ

x,ϕ̂
t,r

)
Gt,x
r,sdr, s ∈ [t+ ε, T ].

The characterization of equilibrium controls usually relies on an expansion of the form

J
(
t, x, u⊗t,ε ût,x

)
− J

(
t, x, ût,x

)
= E

[
yx,εt,T
(
∂xg

x,ϕ̂
t,T + ∂yg

x,ϕ̂
t,T

)
+

∫ T

t

yx,εt,s
(
∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s

)
ds

]
(2.12)

+ E
[
zx,εt,T
(
∂xg

x,ϕ̂
t,T + ∂yg

x,ϕ̂
t,T

)
+

∫ T

t

zx,εt,s
(
∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s

)
ds

]
(2.13)

+
1

2
E
[(
yx,εt,T
)2
∂xxg

x,ϕ̂
t,T +

∫ T

t

(
yx,εt,s
)2
∂xxh

x,ϕ̂
t,s ds

]
+ E

[∫ t+ε

t

δhx,u,ϕ̂t,s ds

]
+ o(ε), (2.14)

see Theorem 3.4.4 in Yong and Zhou (1999), where yx,εt,s is the first order approximation of

X
x,u⊗t,εût,x

t,s −Xx,ût,x

t,s while zx,εt,s is the second order approximation of X
x,u⊗t,εût,x

t,s −Xx,ût,x

t,s .
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Duality analysis

In the classical theory, after obtaining (2.12)-(2.14), Itô’s lemma is applied to (2.7)-(2.10) and

to their corresponding adjoint BSDEs in order to represent J
(
t, x, u⊗t,ε ût,x

)
− J

(
t, x, ût,x

)
using adjoint BSDE solutions. This step is known as the duality analysis, see Lemmas 4.5-4.6

in Chapter 3 of Yong and Zhou (1999).

Malliavin integration by parts

In Meyer-Brandis et al. (2012), the Malliavin calculus has been used in the framework of

pre-committed controls in order to provide more explicit expressions as the adjoint BSDEs

may not be completely solvable in closed form. In this paper, we apply this method in

the setting of equilibrium controls using the Malliavin integration by parts of Lemma 1.2.

In sequel, C > 0 denotes a constant depending on T, p, x, and on the bounding constants

in Assumption 1, that may vary line by line. The following result states a continuity

property of Malliavin derivatives, which will be used in the proofs of Theorem 2.3 and of

Propositions 3.1 and 3.3.

Lemma 2.2 Let Assumption 1 hold, and assume that ϕ̂ is differentiable with bounded deriva-

tives and both ϕ̂ and ∂xϕ̂ are Lipschitz continuous in (t, x). Define

px,ϕ̂t,s := Gt,x
s,T

(
∂xg

x,ϕ̂
t,T + ∂yg

x,ϕ̂
t,T

)
+

∫ T

s

Gt,x
s,u

(
∂xh

x,ϕ̂
t,u + ∂yh

x,ϕ̂
t,u

)
du, 0 ≤ t ≤ s ≤ T,

qx,ϕ̂t,s := Dsp
x,ϕ̂
t,s , 0 ≤ t < s ≤ T.

(2.15a)

(2.15b)

Then, s 7→ qx,ϕ̂t,s , s > t, is continuous in L2(P). Consequently, as s ↘ t,
(
qx,ϕ̂t,s
)
s>t

admits a

limit denoted by qx,ϕ̂t,t in L2(P).

Proof. This follows from the bound

E
[
|qx,ϕ̂t,s2 − q

x,ϕ̂
t,s1|

2
]

= E
[
|Ds2pt,s2 −Ds1pt,s1|2

]
≤ C|s2 − s1|, s1 ≥ s2 > t,

which is a consequence of (5.10)-(5.11) and the triangle inequality. �

The process
(
px,ϕ̂t,s )s∈[t,T ] in (2.15a) is linked to the solution (p̃t,s, q̃t,s)s∈[t,T ] of the linear BSDE

appearing in classical duality analysis, see e.g. (3.1) in Djehiche and Huang (2016), by the

relation p̃t,s = E
[
px,ϕ̂t,s

∣∣Fs]. In addition, we have

q̃t,s = Dsp̃t,s = E
[
Dsp

x,ϕ̂
t,s

∣∣Fs] = E
[
qx,ϕ̂t,s

∣∣Fs], a.e. s ∈ [t, T ],
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see e.g. Proposition 2.2 in Pardoux and Peng (1992). The following main result will be used

to characterize equilibrium controls using the Malliavin calculus.

Theorem 2.3 Let Assumption 1 hold, and assume that ϕ̂ is differentiable with bounded

derivatives and both ϕ̂ and ∂xϕ̂ are Lipschitz continuous in (t, x). Then we have

lim
ε↓0

J
(
t, x, u⊗t,ε ût,x

)
− J

(
t, x, ût,x

)
ε

= E
[
H(t, x, u)−H(t, x, ϕ̂(t, x)) +

1

2
P x,ϕ̂
t,t (δσx,u,ϕ̂t,t )2

]
,

u ∈ U , x ∈ R, a.e. t ∈ [0, T ], where

H(t, x, u) := h(t, x, x, u) + px,ϕ̂t,t b(t, x, u) + qx,ϕ̂t,t σ(t, x, u),

P x,ϕ̂
t,s := Γt,xs,T∂xxg

x,ϕ̂
t,T

+

∫ T

s

Γt,xs,u
(
∂xxh

x,ϕ̂
t,u + (∂xxb

x,ϕ̂
t,u − ∂xxσ

x,ϕ̂
t,u ∂xσ

x,ϕ̂
t,u )px,ϕ̂t,u + ∂xxσ

x,ϕ̂
t,u f

x,ϕ̂
t,u

)
du,

fx,ϕ̂t,s := Gt,x
s,TDs∂xg

x,ϕ̂
t,T +

∫ T

s

Gt,x
s,uDs∂xh

x,ϕ̂
t,u du,

Γt,xs,v := exp

(∫ v

s

(
2∂xb

x,ϕ̂
t,u +

(
∂xσ

x,ϕ̂
t,u

)2 − 2
(
∂xσ

x,ϕ̂
t,u

)2)
du+ 2

∫ v

s

∂xσ
x,ϕ̂
t,u dBu

)
,

(2.16a)

(2.16b)

(2.16c)

0 ≤ t ≤ s ≤ v ≤ T .

Proof. The proof consists in rewriting (2.12)-(2.14) using the Malliavin integration by parts,

see Lemma 1.2. Regarding (2.12), from (2.8) we have

E
[
yx,εt,T
(
∂xg

x,ϕ̂
t,T + ∂yg

x,ϕ̂
t,T

)
+

∫ T

t

yx,εt,s
(
∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s

)
ds

]
= E

[
yx,εt,t+ε

(
Gt,x
t+ε,T

(
∂xg

x,ϕ̂
t,T + ∂yg

x,ϕ̂
t,T

)
+

∫ T

t+ε

Gt,x
t+ε,s

(
∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s

)
ds

)
+

∫ t+ε

t

yx,εt,s
(
∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s

)
ds

]
= E

[
yx,εt,t+εp

x
t,t+ε +

∫ t+ε

t

yx,εt,s
(
∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s

)
ds

]
= E

[∫ t+ε

t

(
yx,εt,s p

x
t,t+ε∂xb

x,ϕ̂
t,s +

(
yx,εt,s ∂xσ

x,ϕ̂
t,s + δσx,u,ϕ̂t,s

)
Dsp

x
t,t+ε + yx,εt,s

(
∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s

))
ds

]
= E

[∫ t+ε

t

(
yx,εt,s

(
∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s + pxt,t+ε∂xb

x,ϕ̂
t,s +Dsp

x
t,t+ε∂xσ

x,ϕ̂
t,s

)
+ δσx,u,ϕ̂t,s Dsp

x
t,t+ε

)
ds

]
,

where the second equality is due to (2.15a) and the third equality follows from the SDE (2.7)

and the integration by part formula of Lemma 1.2. Regarding (2.13), letting Y x,ε
t,s :=

(
yx,εt,s
)2

and using (2.11), we have

E
[
zx,εt,T
(
∂xg

x,ϕ̂
t,T + ∂yg

x,ϕ̂
t,T

)
+

∫ T

t

zx,εt,s
(
∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s

)
ds

]
8



= E
[(
∂xg

x,ϕ̂
t,T + ∂yg

x,ϕ̂
t,T

)(
zx,εt,t+εG

t,x
t+ε,T +

1

2

∫ T

t+ε

(
Y x,ε
t,s ∂xxb

x,ϕ̂
t,s − Y

x,ε
t,s ∂xσ

x,ϕ̂
t,s ∂xxσ

x,ϕ̂
t,s

)
Gt,x
s,Tds

+
1

2

∫ T

t+ε

Y x,ε
t,s G

t,x
s,T∂xxσ

x,ϕ̂
t,s dWs

)
+

∫ t+ε

t

zx,εt,s
(
∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s

)
ds

+

∫ T

t+ε

(
∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s

)(
zx,εt,t+εG

t,x
t+ε,s +

1

2

∫ s

t+ε

Y x,ε
t,r G

t,x
r,s∂xxσ

x,ϕ̂
t,r dWr

+
1

2

∫ s

t+ε

(
Y x,ε
t,r ∂xxb

x,ϕ̂
t,r − Y

x,ε
t,r ∂xσ

x,ϕ̂
t,r ∂xxσ

x,ϕ̂
t,r

)
Gt,x
r,sdr

)
ds

]
= E

[
zx,εt,t+ε

(
Gt,x
t+ε,T

(
∂xg

x,ϕ̂
t,T + ∂yg

x,ϕ̂
t,T

)
+

∫ T

t+ε

Gt,x
t+ε,s

(
∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s

)
ds

)
+

∫ t+ε

t

zx,εt,s
(
∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s

)
ds

+
1

2

∫ T

t+ε

(
Y x,ε
t,s ∂xxb

x,ϕ̂
t,s − Y

x,ε
t,s ∂xσ

x,ϕ̂
t,s ∂xxσ

x,ϕ̂
t,s

)(
Gt,x
s,T

(
∂xg

x,ϕ̂
t,T + ∂yg

x,ϕ̂
t,T

)
+

∫ T

s

Gt,x
s,r

(
∂xh

x,ϕ̂
t,r + ∂yh

x,ϕ̂
t,r

)
dr

)
ds

+
1

2

∫ T

t+ε

Y x,ε
t,s ∂xxσ

x,ϕ̂
t,s

(
Gt,x
s,TDs∂xg

x,ϕ̂
t,T +

∫ T

s

Gt,x
s,rDs∂xh

x,ϕ̂
t,r dr

)
ds

]
= E

[
zx,εt,t+εp

x
t,t+ε +

∫ t+ε

t

zx,εt,s
(
∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s

)
ds

+
1

2

∫ T

t+ε

(
Y x,ε
t,s ∂xxb

x,ϕ̂
t,s − Y

x,ε
t,s ∂xσ

x,ϕ̂
t,s ∂xxσ

x,ϕ̂
t,s

)
px,ϕ̂t,s ds+

1

2

∫ T

t+ε

Y x,ε
t,s f

x,ϕ̂
t,s ∂xxσ

x,ϕ̂
t,s ds

]
= E

[∫ t+ε

t

zx,εt,s

((
∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s + pxt,t+ε∂xb

x,ϕ̂
t,s +Dsp

x
t,t+ε∂xσ

x,ϕ̂
t,s

)
+

1

2
Y x,ε
t,s

(
pxt,t+ε∂xxb

x,ϕ̂
t,s +Dsp

x
t,t+ε∂xxσ

x,ϕ̂
t,s

)
+ yx,εt,s δ∂xσ

x,u,ϕ̂
t,s Dsp

x
t,t+ε + δbx,u,ϕ̂t,s pxt,t+ε

)
ds

+
1

2

∫ T

t+ε

Y x,ε
t,s p

x,ϕ̂
t,s

(
∂xxb

x,ϕ̂
t,s − ∂xσ

x,ϕ̂
t,s ∂xxσ

x,ϕ̂
t,s

)
ds+

1

2

∫ T

t+ε

Y x,ε
t,s f

x,ϕ̂
t,s ∂xxσ

x,ϕ̂
t,s ds

]
,

where the first equality is due to the solution of linear SDE (2.10) and the second equality

is due to the integration by part formula of Lemma 1.2. The third equality is due to (2.15a)

and (2.16b), and the fourth equality follows from the SDE (2.10) and Lemma 1.2. Next, we

consider the solution of the linear SDE

dY x,ε
t,s =

(
2∂xb

x,ϕ̂
t,s Y

x,ε
t,s +

(
∂xσ

x,ϕ̂
t,s

)2
Y x,ε
t,s + 1[t,t+ε](s)

(
δσx,u,ϕ̂t,s

)2)
ds

+21[t,t+ε](s)y
x,ε
t,s ∂xσ

x,ϕ̂
t,s δσ

x,u,ϕ̂
t,s ds

+
(
2∂xσ

x,ϕ̂
t,s Y

x,ε
t,s + 1[t,t+ε](s)y

x,ε
t,s δσ

x,u,ϕ̂
t,s

)
dWs, t < s ≤ T,

Y x,ε
t,t = 0,

(2.17)

obtained from (2.7) by the application of Itô’s lemma to Y x,ε
t,s := (yx,εt,s )2, with

Y x,ε
t,s = Y x,ε

t,t+εΓ
t,x
t+ε,s, s ∈ [t+ ε, T ]. (2.18)
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Regarding the first term in (2.14), using (2.18) and (2.16a), we have

E
[
Y x,ε
t,T ∂xxg

x,ϕ̂
t,T +

∫ T

t

Y x,ε
t,s ∂xxh

x,ϕ̂
t,s ds

]
= E

[
Y x,ε
t,t+εΓ

t,x
t+ε,T∂xxg

x,ϕ̂
t,T +

∫ t+ε

t

Y x,ε
t,s ∂xxh

x,ϕ̂
t,s ds+ Y x,ε

t,t+ε

∫ T

t+ε

Γt,xt+ε,s∂xxh
x,ϕ̂
t,s ds

]
= E

[
Y x,ε
t,t+εP

x
t,t+ε +

∫ t+ε

t

Y x,ε
t,s ∂xxh

x,ϕ̂
t,s ds

]
− E

[∫ T

t+ε

Y x,ε
t,s

(
px,ϕ̂t,s

(
∂xxb

x,ϕ̂
t,s − ∂xσ

x,ϕ̂
t,s ∂xxσ

x,ϕ̂
t,s

)
+ fx,ϕ̂t,s ∂xxσ

x,ϕ̂
t,s

)
ds

]
= E

[∫ t+ε

t

(
Y x,ε
t,s

((
2∂xb

x,ϕ̂
t,s +

(
∂xσ

x,ϕ̂
t,s

)2
+ ∂xxh

x,ϕ̂
t,s

)
P x
t,t+ε + 2∂xσ

x,ϕ̂
t,s DsP

x
t,t+ε

)
+ yx,εt,s

(
2∂xσ

x,ϕ̂
t,s δσ

x,u,ϕ̂
t,s P x

t,t+ε + δσx,u,ϕ̂t,s DsP
x
t,t+ε

)
+
(
δσx,u,ϕ̂t,s

)2
P x
t,t+ε

)
ds

]
− E

[∫ T

t+ε

Y x,ε
t,s

(
px,ϕ̂t,s

(
∂xxb

x,ϕ̂
t,s − ∂xσ

x,ϕ̂
t,s ∂xxσ

x,ϕ̂
t,s

)
+ fx,ϕ̂t,s ∂xxσ

x,ϕ̂
t,s

)
ds

]
.

The third equality follows from the SDE (2.17) and Lemma 1.2. Putting the above equalities

together, we find

J
(
t, x, u⊗t,ε ût,x

)
− J

(
t, x, ût,x

)
= E

[∫ t+ε

t

(
δhx,u,ϕ̂t,s + δσx,u,ϕ̂t,s Dsp

x
t,t+ε + δbx,u,ϕ̂t,s pxt,t+ε + (δσx,u,ϕ̂t,s )2P x

t,t+ε

)
ds

]
+E

[∫ t+ε

t

(
yx,εt,s Λ1,ε

s + zx,εt,s Λ2,ε
s + Y x,ε

t,s Λ3,ε
s

)
ds

]
+ o(ε),

where we let

Λ1,ε
s = ∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s + ∂xb

x,ϕ̂
t,s p

x
t,t+ε + ∂xσ

x,ϕ̂
t,s Dsp

x
t,t+ε + δ∂xσ

x,u,ϕ̂
t,s Dsp

x
t,t+ε + ∂xσ

x,ϕ̂
t,s δσ

x,u,ϕ̂
t,s P x

t,t+ε

+
1

2
δσx,u,ϕ̂t,s DsP

x
t,t+ε,

Λ2,ε
s = ∂xh

x,ϕ̂
t,s + ∂yh

x,ϕ̂
t,s + ∂xb

x,ϕ̂
t,s p

x
t,t+ε + ∂xσ

x,ϕ̂
t,s Dsp

x
t,t+ε,

Λ3,ε
s =

1

2
∂xxb

x,ϕ̂
t,s p

x
t,t+ε +

1

2
∂xxσ

x,ϕ̂
t,s Dsp

x
t,t+ε +

1

2
∂xxh

x,ϕ̂
t,s +

(
∂xb

x,ϕ̂
t,s +

1

2

(
∂xσ

x,ϕ̂
t,s

)2)
P x
t,t+ε + ∂xσ

x,ϕ̂
t,s DsP

x
t,t+ε.
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Next, we prove the following convergence results:

lim
ε→0

1

ε
E
[∫ t+ε

t

δhx,u,ϕ̂t,s ds

]
= δhx,u,ϕ̂t,t

lim
ε→0

1

ε
E
[∫ t+ε

t

δσx,u,ϕ̂t,s Dsp
x
t,t+εds

]
= E

[
δσx,u,ϕ̂t,t qx,ϕ̂t,t

]
,

lim
ε→0

1

ε
E
[∫ t+ε

t

δbx,u,ϕ̂t,s pxt,t+εds

]
= E

[
δbx,u,ϕ̂t,t px,ϕ̂t,t

]
,

lim
ε→0

1

ε
E
[∫ t+ε

t

(
δσx,u,ϕ̂t,s

)2
P x
t,t+εds

]
=
(
δσx,u,ϕ̂t,t

)2
P x,ϕ̂
t,t ,

lim
ε→0

1

ε
E
[∫ t+ε

t

yx,εt,s Λ1,ε
s + zx,εt,s Λ2,ε

s + Y x,ε
t,s Λ3,ε

s ds

]
= 0.

(2.19a)

(2.19b)

(2.19c)

We will only show (2.19b) and

lim
ε→0

1

ε
E
[∫ t+ε

t

yx,εt,s ∂xσ
x,ϕ̂
t,s Dsp

x
t,t+εds

]
= 0, (2.20)

as the remaining estimates admit similar proofs. Note that (2.20) is a part of (2.19c).

Proof of (2.19b). Using the continuous version s 7→ qx,ϕ̂t,s we have, as ε tends to zero,

1

ε
E
[∫ t+ε

t

∣∣δσx,u,ϕ̂t,s Dsp
x
t,t+ε − δσ

x,u,ϕ̂
t,t qx,ϕ̂t,t

∣∣ds]
≤ 1

ε

∫ t+ε

t

((
E
[∣∣δσx,u,ϕ̂t,s

∣∣2]E[∣∣Dsp
x
t,t+ε −Dsp

x
t,s

∣∣2])1/2
+
(
E
[∣∣δσx,u,ϕ̂t,s

∣∣2]E[∣∣Dsp
x
t,s − q

x,ϕ̂
t,t

∣∣2])1/2 +
(
E
[∣∣qx,ϕ̂t,t ∣∣2]E[∣∣δσx,u,ϕ̂t,s − δσx,u,ϕ̂t,t

∣∣2])1/2)ds
≤ C

ε

∫ t+ε

t

(√
(1 + u2)|ε|2 +

√
(1 + u2)E

[∣∣Dspxt,s − q
x,ϕ̂
t,t

∣∣2]+
√
|s− t|2

)
ds

= o(1).

The first inequality is due to the triangle inequality and Hölder’s inequality. The second

inequality is due to Lemmas 4.2-4.3 and 5.3. The last equality is due to Lemma 2.2.

Proof of (2.20). We have

1

ε
E
[∫ t+ε

t

yx,εt,s ∂xσ
x,ϕ̂
t,s Dsp

x
t,t+εds

]
≤ C

ε

∫ t+ε

t

√
E
[∣∣yx,εt,s ∣∣2]E[∣∣Dspxt,t+ε

∣∣2]ds
≤ C√

ε

∫ t+ε

t

ds

= O(
√
ε).

The first inequality is due to Assumption 1 and Hölder’s inequality. The second inequality

is due to Lemmas 4.1 and 5.3. We conclude the proof by (2.19a)-(2.19c). �
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The following characterization of equilibrium controls is a consequence of Theorem 2.3.

Corollary 2.4 Let Assumption 1 hold, and assume that ϕ̂ is differentiable with bounded

derivatives and both ϕ̂ and ∂xϕ̂ are Lipschitz continuous in (t, x). Then ϕ̂ is an equilib-

rium control if and only if

E
[
H(t, x, u)−H(t, x, ϕ̂(t, x)) +

1

2
P x,ϕ̂
t,t (δσx,u,ϕ̂t,t )2

]
≥ 0, u ∈ U, x ∈ R, a.e. t ∈ [0, T ].

We note that, by applying the same arguments, Theorem 2.3 and Corollary 2.4 can be stated

for more general coefficients of the form h
(
t, s, x,Xx,ϕ

t,s ,E
[
Xx,ϕ
t,s

]
, us
)

and g
(
t, x,Xx,ϕ

t,T ,E
[
Xx,ϕ
t,T

])
in (2.2). This dependence on the initial time and state also makes the problem time-

inconsistent, see e.g. Björk and Murgoci (2010).

3 Some applications

3.1 Application to a Linear-Quadratic TIC problem

We show that Corollary 2.4 can be applied to obtain the closed form solution of a time-

inconsistent linear-quadratic problem which generalizes the usual mean-variance portfolio

minimization problem of the form γVar[ · ] − E[ · ]. For this, we consider the objective

function

J(t, x, u) =
G

2
E
[(
Xx,ϕ
t,T

)2]− h

2

(
E
[
Xx,ϕ
t,T

])2 − (µ1x+ µ2)E
[
Xx,ϕ
t,T

]
, (3.1)

where G ≥ 0, µ1, µ2, h ∈ R, and (Xx,ϕ
t,s )s∈[t,t] is the state process{

dXx,ϕ
t,s =

(
A(s)Xx,ϕ

t,s +B(s)ϕ(s,Xx,ϕ
t,s ) + b(s)

)
ds+ (C(s)ϕ(s,Xx,ϕ

t,s ) + σ(s))dWs,

Xx,ϕ
t,t = x,

(3.2)

started at x ∈ R at time t ∈ [0, T ], where A(·), B(·), C(·), b(·), σ(·) are differentiable

deterministic functions of time.

In the framework of pre-committed controls, the mean-variance case with constant risk

aversion {b(·) = σ(·) = µ1 = 0, G = h} was first solved in Zhou and Li (2000) by the

embedding technique. It was later revisited in Meyer-Brandis et al. (2012) using the Malliavin

calculus and in Pham and Wei (2018) using dynamic programming.

In the framework of equilibrium controls, this problem was first solved in Basak and

Chabakauri (2010), resp. Björk et al. (2014), for constant risk aversion with {b(·) = σ(·) =

12



µ1 = 0, G = h}, resp. state-dependent risk aversion with {b(·) = σ(·) = µ2 = 0, G = h}.
This framework has been later considered in Hu et al. (2012) and Djehiche and Huang (2016)

using duality analysis.

In the following proposition we treat the more general linear-quadratic case by providing

an explicit construction of equilibrium controls for (3.1)-(3.2) using the Malliavin calculus.

For this, we use the formula for q given in (2.15b) which is not available in duality analysis

where the equilibrium control is characterized by a pair (p, q) solution to a linear BSDE

without explicit representation for q.

Proposition 3.1 The equilibrium control ϕ̂ of (3.1) is given in linear feedback form as

ϕ̂(t, y) = α(t)y + β(t), (t, y) ∈ [0, T ]× R, (3.3)

where α(t) and β(t) are the deterministic functions given by

α(t) = −K3(t) +
e−

∫ T
t K2(u)K3(u)duK1(t)

1 +
∫ T
t
e−

∫ T
s K2(u)K3(u)duK1(s)K2(s)ds

, (3.4)

β(t) =

(
K4(T )

K6(T )
−
∫ T

t

K ′4(s)

K6(s)
e
∫ T
s

K5(u)−K′6(u)
K6(u)

du
ds

)
e
−

∫ T
t

K5(u)−K′6(u)
K6(u)

du
, t ∈ [0, T ],

(3.5)

where

K1(t) =
µ1B(t)

GC2(t)
exp

(
−
∫ T

t

A(s)ds

)
, K2(t) = B(t), K3(t) =

(G− h)B(t)

GC2(t)
,

K4(t) = µ2 −Gσ(t)
C(t)

B(t)
exp

(∫ T

t

(A(s) + α(s)B(s))ds

)
− (G− h)

∫ T

t

b(s) exp

(∫ T

s

(A(u) + α(u)B(u))du

)
ds,

K5(t) = (G− h)B(t) exp

(∫ T

t

(A(s) + α(s)B(s))ds

)
,

K6(t) = G
C2(t)

B(t)
exp

(∫ T

t

(A(s) + α(s)B(s))ds

)
.

Proof. By Corollary 2.4, ϕ̂ is an equilibrium control iff for u ∈ U , x ∈ R, a.e. t ∈ [0, T ] we

have

0 ≤ E
[(
px,ϕ̂t,t B(t) + qx,ϕ̂t,t C(t)

)
(u− ϕ̂(t, x)) +

1

2
P x,ϕ̂
t,t C

2(t)(u− ϕ̂(t, x))2
]
, (3.6)
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where for s ∈ [t, T ],

px,ϕ̂t,s = exp

(∫ T

s

A(u)du

)(
GXx,ϕ̂

t,T − (µ1x+ µ2)− hE
[
Xx,ϕ̂
t,T

])
, (3.7)

and

qx,ϕ̂t,s = G exp

(∫ T

s

A(u)du

)
DsX

x,ϕ̂
t,T , P x,ϕ̂

t,t = G exp

(∫ T

t

A(s)ds

)
, (3.8)

see Lemma 2.2, where DtX
x,ϕ̂
t,T is defined from qx,ϕ̂t,t . Since P x,ϕ̂

t,t C
2(t)(u− ϕ̂(t, x))2 is positive

and (u− ϕ̂(t, x)) is deterministic, E[px,ϕ̂t,t B(t)+qx,ϕ̂t,t C(t)] = 0 is a sufficient condition for (3.6)

to hold, and using (3.7)-(3.8) it rewrites as

(G− h)B(t)E
[
Xx,ϕ̂
t,T

]
−B(t)(µ1x+ µ2) +GC(t)E

[
DtX

x,ϕ̂
t,T

]
= 0. (3.9)

Assuming the linear feedback form (3.3) for the equilibrium control ϕ̂, (3.2) becomes a linear

SDE, and therefore we have

E
[
Xx,ϕ
t,T

]
= x exp

(∫ T

t

(A(u) + α(u)B(u))du

)
(3.10)

+

∫ T

t

exp

(∫ T

s

(A(u) + α(u)B(u))du

)
(b(s) + β(s)B(s))ds.

Similarly, from (3.2) and the feedback form (3.3) we have

DsX
x,ϕ̂
t,T =

(
C(s)

(
α(s)Xx,ϕ̂

t,s + β(s)
)

+ σ(s)
)

+

∫ T

s

(A(u) + α(u)B(u))DsX
x,ϕ̂
t,u du

+

∫ T

s

α(u)C(u)DsX
x,ϕ̂
t,u dWu, (t, s, x) ∈ [0, T ]× (t, T ]× R,

which can be solved as

DsX
x,ϕ̂
t,T =

(
C(s)

(
α(s)Xx,ϕ̂

t,s + β(s)
)

+ σ(s)
)

× exp

(∫ T

s

(A(u) + α(u)B(u))− 1

2
(α(u)C(u))2du+

∫ T

s

α(u)C(u)dWu

)
,

with

E
[
DsX

x,ϕ̂
t,T

]
=
(
C(s)(α(s)Xx,ϕ̂

t,s + β(s)) + σ(s)
)

exp

(∫ T

s

(A(u) + α(u)B(u))du

)
.

Due to the continuity in s > t of all terms appearing in DsX
x,ϕ̂
t,T , we have

E
[
DtX

x,ϕ̂
t,T

]
= (C(t)(α(t)x+ β(t)) + σ(t)) exp

(∫ T

t

(A(u) + α(u)B(u))du

)
, t ∈ [0, T ].

(3.11)
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Putting (3.10) and (3.11) into (3.9) and by identification of the coefficients of x and the

constant, we check that the functions α(t) and β(t) should solve the integral equations

K1(t) = exp

(∫ T

t

α(s)K2(s)ds

)
(α(t) +K3(t)), K4(t) =

∫ T

t

K5(s)β(s)ds+K6(t)β(t).

(3.12)

From the first equation in (3.12), we have

K ′1(t)

K1(t)
= −α(t)K2(t) +

α′(t) +K ′3(t)

α(t) +K3(t)
,

hence
K2(t)K3(t)−K ′1(t)/K1(t)

α(t) +K3(t)
= K2(t)−

α′(t) +K ′3(t)

(α(t) +K3(t))2
. (3.13)

Therefore, letting Γ(t) := 1/(α(t) +K3(t)) and

Θ(t) := exp

(∫ T

t

K2(s)K3(s)−
K ′1(s)

K1(s)
ds

)
=

K1(t)

K1(T )
exp

(∫ T

t

K2(s)K3(s)ds

)
,

(3.13) rewrites as

−Θ(t)K2(t) =
d

dt
(Θ(t)Γ(t)), hence −

∫ T

t

Θ(s)K2(s)ds = Γ(T )−Θ(t)Γ(t),

which yields

Γ(t) =
K1(T )

K1(t)
Γ(T ) exp

(
−
∫ T

t

K2(s)K3(s)ds

)
+

∫ T

t

K1(s)K2(s)

K1(t)
e
∫ s
t K2(u)K3(u)duds,

and (3.4) after noting that α(T ) = K1(T )−K3(T ) in (3.12). Finally, we rewrite the second

equation in (3.12) as
K ′4(t)

K6(t)
= −β(t)

K5(t)−K ′6(t)
K6(t)

+ β′(t),

i.e.

K ′4(t)

K6(t)
exp

(∫ T

t

K5(u)−K ′6(u)

K6(u)
du

)
=

d

dt

(
β(t) exp

(∫ T

t

K5(u)−K ′6(u)

K6(u)
du

))
,

or∫ T

t

K ′4(s)

K6(s)
exp

(∫ T

s

K5(u)−K ′6(u)

K6(u)
du

)
ds = β(T )− β(t) exp

(∫ T

t

K5(u)−K ′6(u)

K6(u)
du

)
,

which yields (3.5) by noting that β(T ) = K4(T )/K6(T ) in (3.12). �
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Remark 3.2 In case b(s) = σ(s) = 0, s ∈ [0, T ], and G = h = 1, (3.3) yields the equilibrium

control

ϕ̂(t, y) =
θ(t)

M(t)C(t)
(µ2 + µ1y) exp

(∫ T

t

A(s)ds

)
,

where

θ(t) :=
B(t)

C(t)
, M(t) := exp

(
2

∫ T

t

A(s)ds

)(
1 + µ1

∫ T

t

exp

(
−
∫ T

s

A(u)du

)
θ2(s)ds

)
,

which recovers the result of § 4.1 in Hu et al. (2012). Letting further µ1 = 0, resp. µ2 = 0,

also recovers the result in § 4.1, resp. § 4.2.1, of Djehiche and Huang (2016).

3.2 Application to the generalized Merton problem

In this section we show that Corollary 2.4 applies beyond the framework of linear-quadratic

problems by considering the nonlinear generalized Merton problem of minimizing the func-

tional

J(t, x, ϕ) = −E
[
ν(t, T )(Xx,ϕ

t,T )β +

∫ T

t

ν(t, s)
(
Xx,ϕ
t,s ϕc(s,X

x,ϕ
t,s )
)β
ds

]
, (3.14)

with the SDEdX
x,ϕ
t,s = Xx,ϕ

t,s

(
(r + (µ− r)ϕπ(s,Xx,ϕ

t,s )− ϕc(s,Xx,ϕ
t,s ))ds+ σϕπ(s,Xx,ϕ

t,s )dWs

)
,

Xx,ϕ
t,t = x > 0,

(3.15)

where β ∈ (0, 1), r is the risk-free rate, µ is the rate of return of the risky asset, σ > 0

is the volatility of the risky asset, ν(t, s) > 0 is a continuous discount function, ϕπ is the

proportion of portfolio invested in the risky asset, and ϕc > 0 is the proportion of portfolio

consumed at time s.

The classical Merton problem with ν(t, s) = e−δ(s−t) can be viewed as a time-consistent

problem by minimizing

Ĵ(t, x, ϕ) := ν(0, t)J(t, x, ϕ) = −E
[
e−δT

(
Xx,ϕ
t,T

)β
+

∫ T

t

e−δs
(
Xx,ϕ
t,s ϕc

(
s,Xx,ϕ

t,s

))β
ds

]
.

However, this approach fails in the general case where ν(t, s) = ν(t, r)ν(r, s) may not neces-

sarily be true for all 0 ≤ t ≤ r ≤ s ≤ T .

In the following proposition we apply Corollary 2.4 to recover the equilibrium controls

in Ekeland and Pirvu (2008) and Yong (2012), see (6.20)-(6.21) therein. As in Ekeland and

Pirvu (2008), the derivatives ∂xb, ∂xσ, ∂xxg, and ∂xxh in (3.14)-(3.15) are not uniformly

bounded.
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Proposition 3.3 The equilibrium controls of (3.14) are given by

ϕ̂π(t, y) = − µ− r
σ2(β − 1)

(3.16)

and ϕ̂c(t, y) = ĉ(t), (t, y) ∈ [0, T ]× (0,∞), where ĉ(t) is the solution of the integral equation

ν(t, t) (ĉ(t))β−1 (3.17)

= ν(t, T ) exp

(
λ(T − t)− β

∫ T

t

ĉ(u)du

)
+

∫ T

t

ν(t, s) exp

(
λ(s− t)− β

∫ s

t

ĉ(u)du

)
ds,

where λ := β (2rσ2(1− β) + (µ− r)2) / (2σ2(1− β)).

Proof. Assuming that the equilibrium controls have the time-dependent form ϕ̂c(t, y) = ĉ(t),

ϕ̂π(t, y) = π̂(t), the solution
(
Xx,ϕ
t,s

)
s≥t of (3.15) becomes a (positive) geometric Brownian

motion, so that

Xx,ϕ
t,s = xGt,x

t,s and DrX
x,ϕ
t,s = Xx,ϕ

t,r σπ̂(r)Gt,x
r,s = Xx,ϕ

t,s σπ̂(r), (3.18)

where

Gt,x
t,s := exp

(∫ s

t

(
r + (µ− r)π̂(u)− ĉ(u)− 1

2
(σπ̂(u))2

)
du+

∫ s

t

σπ̂(u)dWu

)
,

t < r ≤ s ≤ T . By Corollary 2.4, ϕ̂ is an equilibrium control iff for π ∈ R, c > 0, x > 0, and

a.e. t ∈ [0, T ] we have

0 ≤E
[
− ν(t, t)xβ

(
cβ − ĉβ(t)

)
+ xpx,ϕ̂t,t ((µ− r)(π − π̂(t))− (c− ĉ(t)))

+ xqx,ϕ̂t,t σ (π − π̂(t)) +
1

2
P x,ϕ̂
t,t (xσ)2 (π − π̂(t))2

]
, (3.19)

where, for t ≤ s ≤ T ,

px,ϕ̂t,s = −βGt,x
s,Tν(t, T )

(
Xx,ϕ̂
t,T

)β−1 − β ∫ T

s

Gt,x
s,uν(t, u)

(
Xx,ϕ̂
t,u

)β−1
du, (3.20)

and, for t < s ≤ T ,

qx,ϕ̂t,s = Dsp
x,ϕ̂
t,s = (β − 1)σπ̂(s)px,ϕ̂t,s , qx,ϕ̂t,t = lim

s→t
qx,ϕ̂t,s = (β − 1)σπ̂(t)px,ϕ̂t,t , (3.21)

P x,ϕ̂
t,t = −β(β − 1)(Gt,x

t,T )2ν(t, T )(Xx,ϕ̂
t,T )β−2 − β(β − 1)

∫ T

t

(Gt,x
t,s)

2ν(t, s)(Xx,ϕ̂
t,s )β−2ds,
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see Lemma 2.2. Next, we note that the conditions

E
[
px,ϕ̂t,t

]
(µ− r) + E

[
qx,ϕ̂t,t
]
σ = 0, −ν(t, t)xββĉβ−1(t)− E

[
px,ϕ̂t,t

]
x = 0, (3.22)

are sufficient for (3.19) to hold since P x,ϕ̂
t,t and −px,ϕ̂t,t are positive, (π − π̂(t)) and (c− ĉ(t))

are deterministic, and the function c 7→ −ν(t, t)xβcβ − E[px,ϕ̂t,t ]xc admits a unique minimizer

c∗ > 0. Comparing (3.21) and the first equality in (3.22) yields (3.16). Finally, from (3.16),

(3.18), and (3.20) we obtain

E
[
px,ϕ̂t,t

]
= E

[
−β
(
Gt,x
t,T

)β
ν(t, T )xβ−1 − β

∫ T

t

(
Gt,x
t,s

)β
ν(t, s)xβ−1ds

]
= −βxβ−1

(
exp

(
β

∫ T

t

(
r + (µ− r)π̂(u)− ĉ(u) + (β − 1)

1

2
(σπ̂(u))2

)
du

)
ν(t, T )

+

∫ T

t

exp

(
β

∫ s

t

(
r + (µ− r)π̂(u)− ĉ(u) + (β − 1)

1

2
(σπ̂(u))2

)
du

)
ν(t, s)

)
= −βxβ−1

(
exp

(
λ(T − t)− β

∫ T

t

ĉ(u)du

)
ν(t, T ) +

∫ T

t

exp

(
λ(s− t)− β

∫ s

t

ĉ(u)du

)
ν(t, s)ds

)
,

(3.23)

and we conclude to (3.17) by putting (3.23) into the second term in (3.22). �

4 Solution estimates

Recall that we have used the notation ût,xs = ϕ̂(s,Xx,ût,x

t,s ) and Xx,ût,x

t,s = Xx,ϕ̂
t,s , see (2.3) and

(2.1). The estimates presented in Lemmas 4.1-4.3 have been used in the proof of Theorem 2.3.

Lemma 4.1 Let Assumption 1 hold, and assume that ϕ̂ is differentiable with bounded deriva-

tives and both ϕ̂ and ∂xϕ̂ are Lipschitz continuous in (t, x). Then for any p ≥ 1, we have

sup
s∈[t,T ]

E
[∣∣Xx,u⊗t,εût,x

t,s −Xx,ût,x

t,s

∣∣2p] = O(εp)

sup
s∈[t,T ]

E
[∣∣yx,εt,s ∣∣2p] = O(εp)

sup
s∈[t,T ]

E
[∣∣zx,εt,s ∣∣2p] = O(ε2p)

sup
s∈[t,T ]

E
[∣∣Xx,u⊗t,εût,x

t,s −Xx,ût,x

t,s − yx,εt,s
∣∣2p] = O(ε2p)

sup
s∈[t,T ]

E
[∣∣Xx,u⊗t,εût,x

t,s −Xx,ût,x

t,s − yx,εt,s − z
x,ε
t,s

∣∣2p] = o(ε2p), (t, x) ∈ [0, T ]× R.

Proof. See Theorem 4.4 in Chapter 3 of Yong and Zhou (1999). �
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Lemma 4.2 Let Assumption 1 hold, and assume that ϕ̂ is differentiable with bounded deriva-

tives and both ϕ̂ and ∂xϕ̂ are Lipschitz continuous in (t, x) ∈ [0, T ]×R. Then the following

inequalities hold for any (t, x1, x2) ∈ [0, T ]× R× R, s1 ≥ s2 ≥ t, and p ≥ 1:

E
[

sup
t≤s≤T

∣∣Xx1,ϕ̂
t,s

∣∣p] ≤KT (1 + |x1|p), (4.1)

E
[∣∣Xx1,ϕ̂

t,s2 −X
x1,ϕ̂
t,s1

∣∣p] ≤KT (1 + |x1|p)|s2 − s1|p/2, (4.2)

E
[

sup
t≤s≤T

∣∣Xx2,ϕ̂
t,s −X

x1,ϕ̂
t,s

∣∣p] ≤KT |x2 − x1|p, (4.3)

where KT > 0 is a constant depending only on T .

Proof. Under Assumption 1 and using the fact that ϕ̂ is Lipschitz continuous in (t, x) ∈
[0, T ]× R, the functions bϕ̂(t, x) and σϕ̂(t, x) are Lipschitz continuous in (t, x). Then (4.1)-

(4.3) follow from Theorem 1.6.3 in Yong and Zhou (1999). �

Lemma 4.3 Let Assumption 1 hold, and assume that ϕ̂ is differentiable with bounded deriva-

tives and both ϕ̂ and ∂xϕ̂ are Lipschitz continuous in (t, x). Then for any (t, x, u) ∈
[0, T ]× R× U and s1 ≥ s2 ≥ t, we have the following estimates:

E
[

sup
t≤s≤T

∣∣∂xgx,ϕ̂t,T ∣∣p +
∣∣∂ygx,ϕ̂t,T ∣∣p +

∣∣∂xhx,ϕ̂t,s ∣∣p +
∣∣∂yhx,ϕ̂t,s ∣∣p] ≤C, (4.4)

E
[

sup
t≤s≤T

∣∣δbx,u,ϕ̂t,s

∣∣p] ≤C(1 + |u|p), (4.5)

E
[

sup
t≤s≤T

∣∣δσx,u,ϕ̂t,s

∣∣p] ≤C(1 + |u|p), (4.6)

E
[

sup
t≤s≤T

∣∣δhx,u,ϕ̂t,s

∣∣p] ≤C(1 + |u|p), (4.7)

E
[∣∣δbx,u,ϕ̂t,s1 − δb

x,u,ϕ̂
t,s2

]
≤C|s1 − s2|p/2, (4.8)

E
[∣∣δσx,u,ϕ̂t,s1 − δσ

x,u,ϕ̂
t,s2

]
≤C|s1 − s2|p/2, (4.9)

E
[∣∣δhx,u,ϕ̂t,s1 − δh

x,u,ϕ̂
t,s2

]
≤C|s1 − s2|p/2. (4.10)

Proof. Under Assumption 1 and using the fact that ϕ̂ is Lipschitz continuous in (t, x) ∈
[0, T ]× R, the functions bϕ̂(t, x) and σϕ̂(t, x) are Lipschitz continuous in (t, x). Then (4.1)-

(4.3) follow from Theorem 1.6.3 in Yong and Zhou (1999). Regarding (4.4), by (4.1), Jensen’s

inequality and Assumption 1, we have

E
[

sup
t≤s≤T

(∣∣∂xgx,ϕ̂t,T ∣∣p +
∣∣∂ygx,ϕ̂t,T ∣∣p +

∣∣∂xhx,ϕ̂t,s ∣∣p +
∣∣∂yhx,ϕ̂t,s ∣∣p)]
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≤ CT p + CE
[

sup
t≤s≤T

(∣∣Xx,ϕ̂
t,s

∣∣p + E
[∣∣Xx,ϕ̂

t,s

∣∣p)]]
≤ CT p + CE

[
sup
t≤s≤T

∣∣Xx,ϕ̂
t,s

∣∣p] ≤ C.

We only show (4.5) and (4.8) because the arguments are similar for (4.6)-(4.7) and (4.9)-

(4.10). Regarding (4.5), we have

E
[

sup
t≤s≤T

∣∣δbx,u,ϕ̂t,s

∣∣p]
≤ CE

[
sup
t≤s≤T

∣∣bϕ̂(s,Xx,ϕ̂
t,s )− bϕ̂(s, 0)

∣∣p + |bϕ̂(s, 0)|p +
∣∣b(s,Xx,ϕ̂

t,s , u)− b(s, 0, u)
∣∣p + |b(s, 0, u)|p

]
≤ CE

[
sup
t≤s≤T

(
1 +

∣∣Xx,ϕ̂
t,s

∣∣p + |u|p
)]

≤ C(1 + |x|p + |u|p)

≤ C(1 + |u|p).

Regarding (4.8), we find

E
[∣∣δbx,u,ϕ̂t,s1 − δb

x,u,ϕ̂
t,s2

]
≤ C|s1 − s2|p + CE

[∣∣Xx,ϕ̂
t,s1 −X

x,ϕ̂
t,s2

∣∣p]
≤ C(1 + |x|p)|s1 − s2|p/2

≤ C|s1 − s2|p/2.

�

Lemma 4.4 Let Assumption 1 hold, and assume that ϕ̂ is differentiable with bounded deriva-

tives and both ϕ̂ and ∂xϕ̂ are Lipschitz continuous in (t, x). Then for any (t, x) ∈ [0, T ]×R,

s1 ≥ s2 ≥ t, s ≥ t1 ≥ t2 ≥ t, and p ≥ 1, we have the following estimates:

E
[

sup
t≤s≤T

∣∣px,ϕ̂t,s ∣∣p] <∞, (4.11)

E
[∣∣px,ϕ̂t,s1 − px,ϕ̂t,s2∣∣p] ≤ C|s1 − s2|p/2, (4.12)

Proof. Proof of (4.11).

E
[

sup
t≤s≤T

∣∣px,ϕ̂t,s ∣∣p]
= E

[
sup
t≤s≤T

∣∣∣∣Gt,x
s,T

(
∂xg

x,ϕ̂
t,T + ∂yg

x,ϕ̂
t,T

)
+

∫ T

s

Gt,x
s,r

(
∂xh

x,ϕ̂
t,r + ∂yh

x,ϕ̂
t,r

)
dr

∣∣∣∣p]
≤ C

(
E
[

sup
t≤s≤r≤T

∣∣Gt,x
s,r

∣∣2p]E [∣∣∂xgx,ϕ̂t,T ∣∣2p +
∣∣∂ygx,ϕ̂t,T ∣∣2p + sup

t≤s≤T

(∣∣∂xhx,ϕ̂t,s ∣∣2p +
∣∣∂yhx,ϕ̂t,s ∣∣2p)])1/2
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≤ C.

The first inequality is due to Hölder’s inequality. The second inequality is due to (4.4) and

Lemma 4.5 below.

Proof of (4.12).

E
[∣∣px,ϕ̂t,s1 − px,ϕ̂t,s1∣∣p] = E

[∣∣∣(Gt,x
s1,T
−Gt,x

s2,T
)(∂xg

x,ϕ̂
t,T + ∂yg

x,ϕ̂
t,T )

+

∫ T

s1

(Gt,x
s1,r
−Gt,x

s2,r
)(∂xh

x,ϕ̂
t,r + ∂yh

x,ϕ̂
t,r )dr +

∫ s1

s2

Gt,x
s2,r

(∂xh
x,ϕ̂
t,r + ∂yh

x,ϕ̂
t,r )dr

∣∣∣∣p]
≤ C

(
E
[∣∣(Gt,x

s1,T
−Gt,x

s2,T
)
∣∣2p]E[∣∣∂xgx,ϕ̂t,T + ∂yg

x,ϕ̂
t,T

∣∣2p])1/2
+ C

∫ T

s1

(
E
[∣∣(Gt,x

s1,r
−Gt,x

s2,r
)
∣∣2p]E[∣∣∂xhx,ϕ̂t,r + ∂yh

x,ϕ̂
t,r

∣∣2p])1/2dr
+ C|s1 − s2|p−1

∫ s1

s2

(
E
[∣∣Gt,x

s2,r

∣∣2p]E[∣∣∂xhx,ϕ̂t,r + ∂yh
x,ϕ̂
t,r

∣∣2p])1/2dr
≤ C|s1 − s2|p/2.

The first inequality is due to Hölder’s inequality, and the second inequality follows from

Lemma 4.5 below and (4.4). �

The next lemma deals with the boundedness and the continuity of (2.9) and (2.16c), which

have been used in the proof of Lemma 5.3.

Lemma 4.5 Let Assumption 1 hold. Then for any (t, x) ∈ [0, T ]×R, s1 ≥ s2 ≥ t, v1 ≥ v2 ≥ t,

and p ≥ 1, we have

E
[

sup
t≤s≤k≤T

∣∣Gt,x
s,v

∣∣p +
∣∣Γt,xs,v∣∣p] ≤ C

and

E
[∣∣Gt,x

s1,v1
−Gt,x

s1,v2

∣∣p +
∣∣Γt,xs1,v1 − Γt,xs1,v2

∣∣p] ≤ C
(
|s1 − s2|p/2 + |v1 − v2|p/2

)
.

Proof. We show only for the process G since the arguments for the process Γ are similar.

Fix (t, x) ∈ [0, T ]× R and p ≥ 1, and set ρs := Gt,x
t,s . Then, ρ satisfies the linear SDEdρs = ρs∂xb

x,ϕ̂
t,s ds+ ρs∂xσ

x,ϕ̂
t,s dWs, t ≤ s ≤ T,

ρt = 1,

and we have

E
[

sup
t≤r≤T

|ρr|p
]
≤ E

[
sup
t≤r≤T

∣∣∣∣1 +

∫ r

t

ρs∂xb
x,ϕ̂
t,s ds+

∫ r

t

ρs∂xσ
x,ϕ̂
t,s dWs

∣∣∣∣p]
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≤ C + CE
[∫ T

t

∣∣ρs∂xbx,ϕ̂t,s ∣∣pds]+ CE
[∫ T

t

∣∣ρs∂xσx,ϕ̂t,s ∣∣pds]
≤ C + C

∫ T

t

E
[

sup
t≤r≤s

|ρr|p
]
ds.

The second inequality is Hölder’s inequality, Theorem 1.7.2 in Mao (2007), and the third

inequality holds by Assumption 1. Hence, by Gronwall’s inequality, we have

E
[

sup
t≤r≤T

|ρr|p
]
≤ C.

Next, we show that ρ is continuous. Then for any r1 ≥ r2 we have

E[|ρr1 − ρr2|
p] = E

[∣∣∣∣∫ r1

r2

ρs∂xb
x,ϕ̂
t,s ds+

∫ r1

r2

ρs∂xσ
x,ϕ̂
t,s dWs

∣∣∣∣p]
≤ C|r1 − r2|p−1E

[∫ r1

r2

∣∣ρs∂xbx,ϕ̂t,s ∣∣pds]+ C|r1 − r2|p/2−1E
[∫ r1

r2

∣∣ρs∂xσx,ϕ̂t,s ∣∣pds]
≤ C|r1 − r2|p/2.

The first inequality is Hölder’s inequality and Theorem 1.7.1 in Mao (2007). The third

inequality is by Assumption 1 and the boundedness of ρ. Next, we denote γs = 1/ρs, where

γ satisfies the following linear SDE:dγs = γs
(
− ∂xbx,ϕ̂t,s (+∂xσ

x,ϕ̂
t,s )2

)
ds− γs∂xσx,ϕ̂t,s dWs, t ≤ s ≤ T,

γt = 1.

By a similar argument, we obtain

E
[

sup
t≤r≤T

|γr|p
]
≤ C and E[|γr1 − γr2|p] ≤ C|r1 − r2|p/2.

Noting Gt,x
s,v = γsρk and Gt,x

s1,v1
−Gt,x

s1,v2
= ρv1(γs1−γs2)+γs2(ρv1−ρv2), we complete the proof

by Hölder’s inequality. �

5 Malliavin estimates

The goal of this section is to prove Lemma 5.3 below on the regularity of (P x,ϕ̂
t,s )s∈[t,T ] and of

the Malliavin derivative of (px,ϕ̂t,s )s∈[t,T ], which have been used in the proof of Theorem 2.3.

Assume that ϕ̂ is differentiable with bounded derivatives and both ϕ̂ and ∂xϕ̂ are Lipschitz
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continuous in (t, x). Then by Theorem 2.2.1 and Exercise 2.2.1 in Nualart (2006), Xx,ϕ̂
t,s

belongs to D1,2 for all (t, r, x) ∈ [0, T ]2 × R, s ≥ t, and a version of DrX
x,ϕ̂
t,s is given by

DrX
x,ϕ̂
t,s = 1(t,s](r)σ

ϕ̂
(
r,Xx,ϕ̂

t,r

)
exp

(∫ s

r

σ̄udWu +

∫ s

r

(
b̄u −

σ̄2
u

2

)
du

)
,

which solves the linear SDE

DrX
x,ϕ̂
t,s = σϕ̂(r,Xx,ϕ̂

t,r ) +

∫ s

r

b̄uDrX
x,ϕ̂
t,u du+

∫ s

r

σ̄uDrX
x,ϕ̂
t,u dWu, 0 ≤ t < r ≤ s,

where b̄ and σ̄ are uniformly bounded and adapted processes, with the inequalities

sup
t≤r≤T

E
[

sup
r≤s≤T

∣∣DrX
x,ϕ̂
t,s

∣∣p] ≤ C, sup
t≤r1,r2≤T

E
[

sup
r1∧r2≤s≤T

∣∣Dr1Dr2X
x,ϕ̂
t,s

∣∣p] ≤ C, (5.1)

t ∈ [0, T ], p ≥ 1, see Lemma 2.2.2 and Theorem 2.2.2 in Nualart (2006). The next lemma

deals with the properties of the Malliavin derivatives of the forward SDE, which have been

used in the proof of Lemma 5.3.

Lemma 5.1 Let Assumption 1 hold, and assume that ϕ̂ is differentiable with bounded deriva-

tives and both ϕ̂ and ∂xϕ̂ are Lipschitz continuous in (t, x). Then for any s1 ≥ s2 ≥ r > t,

s ≥ r1 ≥ r2 > t, and p ≥ 1, the following inequalities hold:

E
[∣∣DrX

x,ϕ̂
t,s1 −DrX

x,ϕ̂
t,s2

∣∣p] ≤C|s1 − s2|p/2, (5.2)

E
[∣∣Dr1X

x,ϕ̂
t,s −Dr2X

x,ϕ̂
t,s

∣∣p] ≤C|r1 − r2|p/2. (5.3)

Proof. Proof of (5.2).

E
[∣∣DrX

x,ϕ̂
t,s1 −DrX

x,ϕ̂
t,s2

∣∣p] = E
[∣∣∣∣∫ s1

s2

b̄uDrX
x,ϕ̂
t,u du+

∫ s1

s2

σ̄uDrX
x,ϕ̂
t,u dWu

∣∣∣∣p]
≤ C|s1 − s2|p−1E

[∫ s1

s2

∣∣b̄uDrX
x,ϕ̂
t,u

∣∣pdu]+ C|s1 − s2|p/2−1E
[∫ s1

s2

∣∣σ̄uDrX
x,ϕ̂
t,u

∣∣pdu]
≤ C|s1 − s2|p + C|s1 − s2|p/2

≤ C|s1 − s2|p/2.

The first inequality is by Hölder’s inequality and Theorem 1.7.1 in Mao (2007). The second

inequality follows from the boundedness of b̄ and σ̄ and (5.1).

Proof of (5.3). We have

E
[∣∣Dr1X

x,ϕ̂
t,s −Dr2X

x,ϕ̂
t,s

∣∣p]
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= E
[∣∣∣∣σϕ̂(r,Xx,ϕ̂

t,r1

)
− σϕ̂(r,Xx,ϕ̂

t,r2

)
+

∫ r1

r2

b̄uDr2X
x,ϕ̂
t,u du+

∫ r1

r2

σ̄uDr2X
x,ϕ̂
t,u dWu

+

∫ s

r1

b̄u
(
Dr1X

x,ϕ̂
t,u −Dr2X

x,ϕ̂
t,u

)
du+

∫ s

r1

σ̄u
(
Dr1X

x,ϕ̂
t,u −Dr2X

x,ϕ̂
t,u

)
dWu

∣∣∣∣p]
≤ C(1 + |x|p)|r1 − r2|p/2 + CE

[∫ s

r1

∣∣Dr1X
x,ϕ̂
t,u −Dr2X

x,ϕ̂
t,u

∣∣pdu]
≤ C|r1 − r2|p/2 + C

∫ s

r1

E
[∣∣Dr1X

x,ϕ̂
t,u −Dr2X

x,ϕ̂
t,u

∣∣p]du.
The first inequality is by (4.2), Hölder’s inequality, Theorem 1.7.1 in Mao (2007) and a

similar argument as in the proof of (5.2). We conclude the proof of (5.3) by Gronwall’s

inequality. �

The next lemma focuses on the properties of the Malliavin derivatives of (2.9) and (2.16c).

Lemma 5.2 Let Assumption 1 hold, and assume that ϕ̂ is differentiable with bounded deriva-

tives and both ϕ̂ and ∂xϕ̂ are Lipschitz continuous in (t, x). Then for any (t, x) ∈ [0, T ]×R,

v ≥ s ≥ r ≥ t, we have

DrG
t,x
s,v = Gt,x

s,v

(∫ v

s

AuDrX
x,ϕ̂
t,u du+

∫ v

s

BuDrX
x,ϕ̂
t,u dWu

)
, (5.4)

DrΓ
t,x
s,v = Γt,xs,v

(
2

∫ v

s

AuDrX
x,ϕ̂
t,u du+ 2

∫ v

s

BuDrX
x,ϕ̂
t,u dWu

)
, (5.5)

where A,B are the uniformly bounded processes

Au := ∂xxb
x,ϕ̂
t,u + ∂xub

x,ϕ̂
t,u ∂xϕ̂

x,ϕ̂
t,u − ∂xσ

x,ϕ̂
t,u ∂xxσ

x,ϕ̂
t,u − ∂xσ

x,ϕ̂
t,u ∂xuσ

x,ϕ̂
t,u ∂xϕ̂

x,ϕ̂
t,u ,

Bu := ∂xxσ
x,ϕ̂
t,u + ∂xuσ

x,ϕ̂
t,u ∂xϕ̂

x,ϕ̂
t,u .

In addition, for any v ≥ s1 ≥ s2 ≥ r > t, v ≥ s ≥ r1 ≥ r2 > t, and p ≥ 1, the following

inequalities holds:

sup
t≤r≤T

E
[

sup
r≤s≤k≤T

∣∣DrG
t,x
s,v

∣∣p +
∣∣DrΓ

t,x
s,v

∣∣p] ≤ C, (5.6)

E
[∣∣DrG

t,x
s1,v
−DrG

t,x
s2,v

∣∣p +
∣∣DrΓ

t,x
s1,v
−DrΓ

t,x
s2,v

∣∣p] ≤ C|s1 − s2|p/2, (5.7)

E
[∣∣Dr1G

t,x
s,v −Dr2G

t,x
s,v

∣∣p +
∣∣Dr1Γ

t,x
s,v −Dr2Γ

t,x
s,v

∣∣p] ≤ C|r1 − r2|p/2. (5.8)

Proof. The proofs of (5.4) and (5.5) follow from Lemmas 1.1. Regarding (5.6)-(5.8), we

consider only the process G since the arguments for Γ are similar.

Proof of (5.6).

sup
t≤r≤T

E
[

sup
r≤s≤k≤T

∣∣DrG
t,x
s,v

∣∣p]
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≤ sup
t≤r≤T

E
[

sup
r≤s≤k≤T

(∣∣Gt,x
s,v

∣∣p ∣∣∣∣∫ v

s

AuDrX
x,ϕ̂
t,u du+

∫ v

s

BuDrX
x,ϕ̂
t,u dWu

∣∣∣∣p)]
≤ C

(
E
[

sup
t≤s≤k≤T

∣∣Gt,x
s,v

∣∣2p] sup
t≤r≤T

E
[∫ T

t

(∣∣AuDrX
x,ϕ̂
t,u

∣∣2p +
∣∣BuDrX

x,ϕ̂
t,u

∣∣2p)du])1/2

.

The first inequality is due to (5.4). The second inequality is due to Hölder’s inequality and

Theorem 1.7.2 in Mao (2007). Since A and B are uniformly bounded, we conclude by (5.1)

and Lemma 4.5.

Proof of (5.7).

E
[∣∣DrG

t,x
s1,v
−DrG

t,x
s2,v

∣∣p]
≤
(
E
[∣∣Gt,x

s1,v

∣∣2p]E [∣∣∣∣∫ v

s1

AuDrX
x,ϕ̂
t,u du−

∫ v

s2

AuDrX
x,ϕ̂
t,u du

+

∫ v

s1

BuDrX
x,ϕ̂
t,u dWu −

∫ v

s2

BuDrX
x,ϕ̂
t,u dWu

∣∣∣∣2p
])1/2

+

E
[∣∣Gt,x

s1,v
−Gt,x

s2,v

∣∣2p]E[∣∣∣∣∫ v

s2

AuDrX
x,ϕ̂
t,u du+

∫ v

s2

BuDrX
x,ϕ̂
t,u dWu

∣∣∣∣2p
)1/2

≤ C

(
|s1 − s2|2p−1E

[∫ s1

s2

∣∣AuDrX
x,ϕ̂
t,u

∣∣2pdu]+ |s1 − s2|p−1E
[∫ s1

s2

∣∣BuDrX
x,ϕ̂
t,u

∣∣2pdu])1/2

+ C

(
|s1 − s2|p

(
E
[∫ v

s2

∣∣AuDrX
x,ϕ̂
t,u

∣∣2pdu]+ E
[∫ v

s2

∣∣BuDrX
x,ϕ̂
t,u

∣∣2pdu]))1/2

≤ C|s1 − s2|p + C|s1 − s2|p/2

≤ C|s1 − s2|p/2.

The first inequality is due to (5.4), the triangle inequality, and Hölder’s inequality. The

second inequality is due to Lemma 4.5, Hölder’s inequality, and Theorem 1.7.1 in Mao

(2007). The third inequality follows from the boundedness of A and B and (5.1).

Proof of (5.8).

E
[∣∣Dr1G

t,x
s,v −Dr2G

t,x
s,v

∣∣p]
≤
(
E
[∣∣Gt,x

s,v

∣∣2p]E [∣∣∣∣∫ v

s

Au
(
Dr1X

x,ϕ̂
t,u −Dr2X

x,ϕ̂
t,u

)
du +

∫ v

s

Bu

(
Dr1X

x,ϕ̂
t,u −Dr2X

x,ϕ̂
t,u

)
dWu

∣∣∣∣2p
])1/2

≤ C

(∫ v

s

E
[∣∣Dr1X

x,ϕ̂
t,u −Dr2X

x,ϕ̂
t,u

∣∣2p]du)1/2

≤ C|r1 − r2|p/2.
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The first inequality is due to (5.4), the triangle inequality and Hölder’s inequality. The

second inequality is due to the boundedness of A and B, Lemma 4.5, Hölder’s inequality,

and Theorem 1.7.1 in Mao (2007). The third inequality is due to (5.2). �

The next lemma focuses on the bounds and the continuity of (px,ϕ̂t,s )s∈[t,T ], (P x,ϕ̂
t,s )s∈[t,T ], and

their Malliavin derivatives, which have been used in the proof of Theorem 2.3.

Lemma 5.3 Let Assumption 1 hold, and assume that ϕ̂ is differentiable with bounded deriva-

tives and both ϕ̂ and ∂xϕ̂ are Lipschitz continuous in (t, x). Then for any (t, x) ∈ [0, T ]×R,

s1 ≥ s2 ≥ r > t, s ≥ t1 ≥ t2 > t, and p ≥ 1, we have the following estimates:

sup
t≤r≤T

E
[

sup
r≤s≤T

∣∣Drp
x,ϕ̂
t,s

∣∣p] <∞, (5.9)

E
[∣∣Drp

x,ϕ̂
t,s1 −Drp

x,ϕ̂
t,s2

∣∣p] ≤ C|s1 − s2|p/2, (5.10)

E
[∣∣Dt1p

x,ϕ̂
t,s −Dt2p

x,ϕ̂
t,s

∣∣p] ≤ C|t1 − t2|p/2, (5.11)

sup
t≤s≤T

E
[∣∣fx,ϕ̂t,s

∣∣p]+ sup
t≤r≤T

sup
r≤s≤T

E
[∣∣Drf

x,ϕ̂
t,s

∣∣p] <∞, (5.12)

E
[∣∣P x,ϕ̂

t,s1 − P
x,ϕ̂
t,s2

∣∣p] ≤ C|s1 − s2|p/2, (5.13)

sup
t≤s≤T

E
[∣∣P x,ϕ̂

t,s

∣∣p]+ sup
t≤r≤T

sup
r≤s≤T

E
[∣∣DrP

x,ϕ̂
t,s

∣∣p] <∞. (5.14)

Proof. Proof of (5.9). By Lemma 1.1, we have

Drp
x,ϕ̂
t,s =

(
∂xg

x,ϕ̂
t,T + ∂yg

x,ϕ̂
t,T

)
DrG

t,x
s,T +Gt,x

s,TDrX
x,ϕ̂
t,T ∂xxg

x,ϕ̂
t,T

+

∫ T

s

(
DrG

t,x
s,u

(
∂xh

x,ϕ̂
t,u + ∂yh

x,ϕ̂
t,u

)
+Gt,x

s,uDrX
x,ϕ̂
t,u

(
∂xxh

x,ϕ̂
t,u + ∂xuh

x,ϕ̂
t,u ∂xϕ̂

x,ϕ̂
t,u

))
du.

By Hölder’s inequality, Assumption 1, and the boundedness of ∂xϕ̂ we have

sup
t≤r≤T

E
[

sup
r≤s≤T

∣∣Drp
x,ϕ̂
t,s

∣∣p] ≤ C

(
E
[∣∣∂xgx,ϕ̂t,T ∣∣2p +

∣∣∂ygx,ϕ̂t,T ∣∣2p] sup
t≤r≤T

E
[

sup
r≤s≤T

∣∣DrG
t,x
s,T

∣∣2p])1/2

+C

(
E
[

sup
t≤s≤T

∣∣Gt,x
s,T

∣∣2p] sup
t≤r≤T

E
[

sup
r≤s≤T

∣∣DrX
x,ϕ̂
t,T

∣∣2p])1/2

+C

∫ T

t

((
E
[∣∣∂xhx,ϕ̂t,u ∣∣2p +

∣∣∂yhx,ϕ̂t,u ∣∣2p] sup
t≤r≤u

E
[

sup
r≤s≤u

∣∣DrG
t,x
s,u

∣∣p])1/2

+

(
E
[

sup
t≤s≤u

∣∣Gt,x
s,u

∣∣2p] sup
t≤r≤u

E
[

sup
r≤s≤u

∣∣DrX
x,ϕ̂
t,u

∣∣2p])1/2
)
du.

We can then conclude by Lemma 4.5, (4.4), (5.1), and (5.6).
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Proof of (5.10). We have

E
[∣∣Drp

x,ϕ̂
t,s1 −Drp

x,ϕ̂
t,s1

∣∣p] ≤ C
((

E
[∣∣DrG

t,x
s1,T
−DrG

t,x
s2,T

∣∣2p]E[∣∣∂xgx,ϕ̂t,T ∣∣2p +
∣∣∂ygx,ϕ̂t,T ∣∣2p])1/2

+
(
E
[∣∣Gt,x

s1,T
−Gt,x

s2,T

∣∣2p]E[∣∣DrX
x,ϕ̂
t,T

∣∣2p])1/2
+

∫ T

s1

((
E
[∣∣DrG

t,x
s1,u
−DrG

t,x
s2,u

∣∣2p]E[∣∣∂xhx,ϕ̂t,u ∣∣2p +
∣∣∂yhx,ϕ̂t,u ∣∣2p])1/2

+
(
E
[∣∣Gt,x

s1,u
−Gt,x

s2,u

∣∣2p]E[∣∣DrX
x,ϕ̂
t,u

∣∣2p])1/2)du
+|s1 − s2|p−1

∫ s1

s2

((
E
[∣∣DrG

t,x
s2,u

∣∣2p]E[∣∣∂xhx,ϕ̂t,u ∣∣2p +
∣∣∂yhx,ϕ̂t,u ∣∣2p])1/2

+
(
E
[∣∣Gt,x

s2,u

∣∣2p]E[∣∣DrX
x,ϕ̂
t,u

∣∣2p])1/2)du)
≤ C|s1 − s2|p/2.

The first inequality is due to Assumption 1, and the boundedness of ∂xϕ̂, the triangle in-

equality, and Hölder’s inequality. The second inequality is due to Lemma 4.5, (4.4), (5.7),

(5.1), and (5.6).

Proof of (5.11).

E
[∣∣Dt1p

x,ϕ̂
t,s −Dt2p

x,ϕ̂
t,s

∣∣p] ≤ C
(
E
[∣∣Dt1G

t,x
s,T −Dt2G

t,x
s,T

∣∣2p]E[(∣∣∂xgx,ϕ̂t,T ∣∣2p +
∣∣∂ygx,ϕ̂t,T ∣∣2p)])1/2

+ C
(
E
[∣∣Gt,x

s,T

∣∣2pE[∣∣Dt1X
x,ϕ̂
t,T −Dt2X

x,ϕ̂
t,T

∣∣2p]])1/2
+ C

∫ T

s

((
E
[∣∣Dt1G

t,x
s,u −Dt2G

t,x
s,u

∣∣2p]E[(∣∣∂xhx,ϕ̂t,u ∣∣2p +
∣∣∂yhx,ϕ̂t,u ∣∣2p)])1/2

+
(
E
[∣∣Gt,x

s,u

∣∣2p]E[∣∣Dt1X
x,ϕ̂
t,u −Dt2X

x,ϕ̂
t,u

∣∣2p])1/2)du
≤ C|t1 − t2|p/2.

The first inequality is due to the boundedness of C,D,E and F , the triangle inequality, and

Hölder’s inequality. The second inequality is due to Lemma 4.5, (4.4), (5.8), (5.2).

Proof of (5.12). By Hölder’s inequality and Assumption 1, we have

sup
t≤s≤T

E
[∣∣fx,ϕ̂t,s

∣∣p] ≤ C sup
t≤s≤T

(
E
[∣∣Gt,x

s,T

∣∣2p]E[∣∣DsX
x,ϕ̂
t,T

∣∣2p])1/2
+ C

∫ T

t

sup
t≤s≤u

(
E
[∣∣Gt,x

s,u

∣∣2p]E[∣∣DsX
x,ϕ̂
t,u

∣∣2p])1/2du.
We conclude the first term in (5.12) by Lemma 4.5 and (5.1). Next, by Lemma 1.1 we have

Drf
x,ϕ̂
t,s = GTDrG

t,x
s,TDsX

x,ϕ̂
t,T +HTG

t,x
s,TDsX

x,ϕ̂
t,T DrX

x,ϕ̂
t,T +GTG

t,x
s,TDrDsX

x,ϕ̂
t,T
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+

∫ T

s

(
IuDrG

t,x
s,uDsX

x,ϕ̂
t,u + JuG

t,x
s,uDsX

x,ϕ̂
t,u DrX

x,ϕ̂
t,u + IuG

t,x
s,uDrDsX

x,ϕ̂
t,u

)
du,

where G,H, I, and J are the uniformly bounded processes

GT := ∂xxg
x,ϕ̂
t,T ,

HT := ∂xxxg
x,ϕ̂
t,T ,

Iu := ∂xxh
x,ϕ̂
t,u + ∂xuh

x,ϕ̂
t,u ∂xϕ̂

x,ϕ̂
t,u ,

Ju := ∂xxxh
x,ϕ̂
t,u + ∂xxuh

x,ϕ̂
t,u ∂xϕ̂

x,ϕ̂
t,u + ∂xuxh

x,ϕ̂
t,u ∂xϕ̂(u) + ∂xuuh

x,ϕ̂
t,u (∂xϕ̂

x,ϕ̂
t,u )2 + ∂xuh

x,ϕ̂
t,u ϕ̄u,

where ϕ̄ is a uniformly bounded process depending on ϕ̂. By Hölder’s inequality and the

boundedness of G,H, I and J we have

sup
t≤r≤T

sup
r≤s≤T

E
[∣∣Drf

x,ϕ̂
t,s

∣∣p] ≤ C sup
t≤r≤T

sup
r≤s≤T

(
E
[∣∣DrG

t,x
s,T

∣∣2p]E[∣∣DsX
x,ϕ̂
t,T

∣∣2p])1/2
+C sup

t≤r≤T
sup
r≤s≤T

(
E
[∣∣Gt,x

s,T

∣∣3p]E[∣∣DsX
x,ϕ̂
t,T

∣∣3p]E[∣∣DrX
x,ϕ̂
t,T

∣∣3p])1/3
+C sup

t≤r≤T
sup
r≤s≤T

(
E
[∣∣Gt,x

s,T

∣∣2p]E[∣∣DrDsX
x,ϕ̂
t,T

∣∣2p])1/2
+C

∫ T

t

(
sup
t≤r≤u

sup
r≤s≤u

(
E
[∣∣DrG

t,x
s,u

∣∣2p]E[∣∣DsX
x,ϕ̂
t,u

∣∣2p])1/2
+C sup

t≤r≤u
sup
r≤s≤u

(
E
[∣∣Gt,x

s,u

∣∣3p]E[∣∣DsX
x,ϕ̂
t,u

∣∣3p]E[∣∣DrX
x,ϕ̂
t,u

∣∣3p])1/3
+C sup

t≤r≤u
sup
r≤s≤u

(
E
[∣∣Gt,x

s,u

∣∣2p]E[∣∣DrDsX
x,ϕ̂
t,u

∣∣2p])1/2)du.
We conclude the second term in (5.12) by Lemma 4.5, (5.1), and (5.6).

Proof of (5.13). By Hölder’s inequality and Assumption 1, we have

E
[∣∣P x,ϕ̂

t,s1 − P
x,ϕ̂
t,s1

∣∣p] ≤ C

(
E
[∣∣Γt,xs1,T − Γt,xs2,T

∣∣p]
+

∫ T

s1

(
E
[∣∣Γt,xs1,u − Γt,xs2,u

∣∣2p](1 + E
[∣∣px,ϕ̂t,u ∣∣2p]+ E

[∣∣fx,ϕ̂t,u

∣∣2p]))1/2du
+ |s1 − s2|p−1

∫ s1

s2

(
E
[∣∣Γt,xs2,u∣∣2p](1 + E

[∣∣px,ϕ̂t,u ∣∣2p]+ E
[∣∣fx,ϕ̂t,u

∣∣2p]))1/2du),
and we conclude by Lemma 4.5, (5.9) and (5.12).

Proof of (5.14). By Hölder’s inequality and Assumption 1 we have

sup
t≤s≤T

E
[∣∣P x,ϕ̂

t,s

∣∣p] ≤ C sup
t≤s≤T

E
[∣∣Γt,xs,T ∣∣p]+ C

∫ T

t

sup
t≤s≤T

E
[∣∣Γt,xs,u∣∣2p](1 + E

[∣∣px,ϕ̂t,u ∣∣2p]+ E
[∣∣fx,ϕ̂t,u

∣∣2p])1/2du,
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and we apply Lemma 4.5, (5.9) and (5.12). Next, by Lemma 1.1 we have

DrP
x,ϕ̂
t,s = DrΓ

t,x
s,T∂xxg

x,ϕ̂
t,T + Γt,xs,TDrX
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t,T

+

∫ T

s

(
DrΓ

t,x
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(
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x,ϕ̂
t,u ∂xσ

x,ϕ̂
t,u )px,ϕ̂t,u + fx,ϕ̂t,u ∂xxσ

x,ϕ̂
t,u

)
+ Γt,xs,u

(
∂xxxh

x,ϕ̂
t,u + (∂xxxb

x,ϕ̂
t,u − ∂xxxσ

x,ϕ̂
t,u ∂xσ

x,ϕ̂
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x,ϕ̂
t,u

)
DrX

x,ϕ̂
t,u

+ Γt,xs,u
(
∂xxuh

x,ϕ̂
t,u + (∂xxub

x,ϕ̂
t,u − ∂xxuσ

x,ϕ̂
t,u ∂xσ

x,ϕ̂
t,u − ∂xxσ

x,ϕ̂
t,u ∂xuσ

x,ϕ̂
t,u )px,ϕ̂t,u + fx,ϕ̂t,u ∂xxuσ

x,ϕ̂
t,u

)
DrX

x,ϕ̂
t,u ∂xϕ̂

x,ϕ̂
t,u

+ Γt,xs,u
(
(∂xxb

x,ϕ̂
t,u − ∂xxσ

x,ϕ̂
t,u ∂xσ

x,ϕ̂
t,u )Drp

x,ϕ̂
t,u +Drf

x,ϕ̂
t,u ∂xxσ

x,ϕ̂
t,u

))
du.

By Hölder’s inequality and Assumption 1, we have
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t≤r≤T

sup
r≤s≤T

E
[∣∣DrP

x,ϕ̂
t,s

∣∣p]
≤ C sup

t≤r≤T
sup
r≤s≤T

E
[∣∣DrΓ

t,x
s,T

∣∣p]+ C sup
t≤r≤T

sup
r≤s≤T

(
E
[∣∣Γt,xs,T ∣∣2p]E[∣∣DrX
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t,T
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+ C
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t

(
sup
t≤r≤u

sup
r≤s≤u

(
E
[∣∣DrΓ

t,x
s,u

∣∣2p](1 + E
[∣∣px,ϕ̂t,u ∣∣2p + E

[∣∣fx,ϕ̂t,u w
∣∣∣∣2p]))1/2

+ sup
t≤r≤u

sup
r≤s≤u

(
E
[∣∣Γt,xs,u∣∣3p]E[∣∣DrX
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t,u
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[∣∣px,ϕ̂t,u ∣∣3p]+ E

[∣∣fx,ϕ̂t,u

∣∣3p]))1/3
+ sup

t≤r≤u
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r≤s≤u

E
([∣∣Γt,xs,u∣∣2p](E[∣∣Drp

x,ϕ̂
t,u

∣∣2p]+ E
[∣∣Drf

x,ϕ̂
t,u

∣∣2p]))1/2) du.
We conclude by Lemma 4.5 and Relations (5.9), (5.12), (5.1), (5.6). �
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