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Logarithmic Sobolev inequalities are an essential tool in the study of interacting
particle systems, cf. e.g. 4, 5. In this note we show that the logarithmic Sobolev

. . . d .
inequality proved on the configuration space N2° under Poisson reference measures

in ! can be extended to geometric reference measures using the results of 2. As a

corollary we obtain a deviation estimate for an interacting particle system.

1. Logarithmic Sobolev inequality for the geometric
distribution

Consider the forward and backward gradient operators
d¥f(k) = f(k+1) = f(k),  d7f(k) =1p>n(f(k—1) = f(k), k€N,
and the Laplacian
1
L =—dt*dt =dt + ];df

which generates a Markov process on N whose invariant measure is the
geometric distribution 7 on N with parameter p € (0,1), i.e.

r({k}) =1 -pp", kel
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Denote by E, the expectation under m and by Ent, the entropy under ,
defined as

Entr[f] = Ez[flog f] — Ex[f]log E[f].

We recall the modified logarithmic Sobolev inequality proved in ? for the
geometric distribution 7.

Theorem 1.1. Let 0 < ¢ < —logp and let f : N — R such that |dT f] < c.
We have

C

Ent, [ef} < be

T (1=p)(A = Vpe)
In higher dimensions the multi-dimensional gradient is defined as
AFf(k) = fk+e) — f(k), i=1,...,n,

where f is a function on N", k = (ki,...,k,) € N (e1,...,e,) is the
canonical basis of R”, and the gradient norm is

E [|d* f[e]. (1.1)

n

At F(R)IP = Do 1dFF(R)P =D 1 f (k4 ei) — F(R)IP (1.2)
i=1

i=1
From the tensorization property of entropy, (1.1) still holds with respect to
7®" in any finite dimension n:

pe‘ 2 f
Ent,en [ef] < Eqen (AT f]%e/], (1.3)
] (1 =p)(1 = Vpe) | ]
provided |d;f| < ¢, i =1,...,n. As a consequence the following deviation

inequality for functions of several variables under 7®" has been proved in
2 using (1.1) and the Herbst method.

Corollary 1.2. Let 0 < ¢ < —logp and let f such that |df f| < B, i =
1,...,n, and ||dT f||> < a? for some o, 3 > 0. Then for all r > 0,

On(f —Eren[f] >7)<e — min i LA (1.4)
T men - =X 4041)7004262’ B e , '
where
ape = pe”
" (1= p)(1 = vpe)

denotes the logarithmic Sobolev constant in (1.1).

Our goal in the next section will be to extend these results to interacting
spin systems under a geometric reference measure.
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2. Logarithmic Sobolev inequality for an interacting spin
system

Given a bounded finite range interaction potential ® = {®r : R C Zd},

ie.

@] = sup > [Pl < 0,
k€L Rk

let the Hamiltonian Ha be defined as

Han) = Y ®rlng).

RO A#D

where ng denotes the restriction of 1 to N, R 7%, The Gibbs measure
mX on N* associated to a N-valued spin system on a finite lattice A C 72

d
with boundary condition w € NZA s defined by its density with respect
to mp = 7@ as:

dm¥ L meo) A
—a = — alg) e N,
. o) er o

where 7 is the geometric reference distribution on N, Z¥ is a normalization
factor, and

HR(n) = Ha(mawae), n €N,
where nawp is defined as
(nawp)k = mla(k) + wilp(k),  kezZ’,
whenever 7 € NA, w e NP and A,B c Z% are such that AN B = 0. Let
again

dff(n) = fn+ex)— f(n), and di f(n) =1, (f(n—ex) — f(0)),

n € NZd, k € Z%, for every function f : NZ¢ R, where (er)pcza, denotes
the canonical basis {ex = 1(x} : k € Zd}. Consider the Markov generator

RF(n) =D (X (hn, )AL F(0) + 5k, =)y F(0))
keA
where ¢4 (k,n, ) are rate functions such that #4 is self-adjoint in L?(7%),

ie.

Kk, H)m({n}) = Rk + en, )i ({n+ex}), ke A, neN,

CX(kﬂ?a —)WX({ﬁ}) = C‘X(k»ﬂ — €k, +)7T/“\)({77 - ek})7 ke A, ne NAu
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e > 0, cf. 1. We assume that there exists a constant C' > 0 depending on
@] only, with
1

G Sl +) <C neN* AcZ keA. (2.1)

For f: N2 R we let:
SCAEDY / R (ky o, +)e DAL f(o)|2dni (o),
jea JNE!
and
sate) = [ O} f0)Pdna(o).
jen N

Next we consider the family of rectangles of the form
R=R(k, Iy, ., 1a) = k+ ([1,4] x -+ x [L,14)) N 27,
where k € Z% and 14, ...,lq € N, with

size(R) = max lg.

yeeey

Let Z1, denote the set of rectangles such that
size(R) < L and size(R) <10 k_nllin dlk.

Definition 2.1. We say that 7} satisfies the mixing condition if there
exists constants C7 and Cy, depending on d and ||®|| only, such that:

sup WK({T] : w’r]A = C’A})W‘/‘x}({ﬁ - B = GB}) 1< Cvle*C'zd(A,B)7 (22)
oW m({n : nauB = cauB})
forall L>1, A € Z; and A, B C A such that A, B € #; with ANB = 0.

We refer to ! and * for conditions on ® under which (2.2) holds under a
geometric reference measure.

Our goal is to prove the following logarithmic Sobolev inequality under the
Gibbs measure 7.

Theorem 2.2. Assume that the mizing condition (2.2) holds, and let 0 <
¢ < —logp. Then there exists a constant . > 0, independent of A and w,
such that

Ent 7« [ef] < 7e6%(e), (2.3)

for every f : NZ* & R such that [d* flliea) < ¢, Ta-a.e.



September 26, 2007 17:57 Proceedings Trim Size: 9in x 6in joulin'privault

In particular we have

Enth [ef] S Ve

DRk DI FOP

keA

x Eny [¢'],

L= (mp)

which implies, as in Corollary 1.2, a deviation inequality under Gibbs mea-
sures.

Corollary 2.3. Assume that the mizing condition (2.2) holds, and let 0 <
c < —logp. Let f be such that ||dT fl|;c(a) < 8 and

ST DI fM)P < a?, maldn) — ace., (2.4)
keA

for some a, 3 > 0. Then for all r > 0,

2.2
T (f —Eag[f] > 7) <exp (— min (4;(;62,7; - a2%>) . (2.5)

Due to Hypothesis (2.1), condition (2.4) can be replaced by
[d* flifeay < C1a?, ma(dn) — ae.

Denoting by II denote the infinite volume Gibbs measure associated to 7%,
for some rg > 0 we get the Ruelle type bound:

T({n € N*" : [na] > r[Al}) < exp (—(cr — Cyo)[A| + Eallnall), 7> ro,

for all finite subset A of Z?, under the mixing condition (2.2). Indeed, it
suffices to apply the uniform bound (2.5) with f(n) = |nal, a® = C|A],
B =1, and the compatibility condition

E) = [ E)

to E={ne N2 Ina| > r|Al}, with
Ep = {neN":nwpe € E} = {n e N* : na| > r|A]}.

This shows in particular that IT satisfies the (RPB)! condition in 3.

3. Proof of Theorem 2.2

Recall that for 0 < ¢ < —logp, by tensorization, Theorem 1.1 yields as in
(1.3) the logarithmic Sobolev inequality

Ent,, [e/] < 5.8 (), (3.1)
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for all f : NZ° s R such that [[dF fllzee(a) < ¢, ma-ace., with an optimal
constant s, < a, . which is independent of A C Z%. Let now s, . denote
the optimal constant in the inequality

Entrele’] < spw,o8%(ef), 1A fllieea) < e

Lemma 3.1. For every A C Z<, there exists a constant A := Ce* M2l > ¢
d
depending only on |A|, ¢ and independent of w € NZ \A, such that

% < SA,w,c < Asc-
Proof. We follow the proof of Proposition 3.1 in !. From (2.1) we obtain:
C— e 210020 Enlef) < &%) < Ce2lMel INCY (3.2)

From the relation
Ent,[f] = rtI;iglE#[flogf — flogt— f+1]

and the bound

w
c-2llel < 9T 2ol
<ohs

we have

2RI, [of] < Bty [f] < 191 Enty, [ef] |
from which the conclusion follows using (3.1) and (3.2). O
Let for L > 1:

Speci= sup SUp Spwe < CseetMI®l « 00,
REZ L, weNZd\A

which is finite by Lemma 3.1.

Proposition 3.2. Assume the mizing condition (2.2) is satisfied. Then
there exists a constant k depending on ||®||, such that

-1
K
Sar,e < (1 - ﬁ) Sp.c (3.3)
for L large enough.

Proof. The proof of this proposition is identical to that of Proposition 4.1,

pp. 1970-1972 and Proposition 5.1, p. 1975 in !, replacing the Dirichlet
form used in ! with &%. O

Finally, Theorem 2.2 is proved by taking 7. = supy, Sr,., which is finite
from Proposition 3.2.
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