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Abstract

We study the absolute continuity of transformations defined
by anticipative flows on Poisson space, and show that the process
of densities associated to those transformations allows to solve
anticipative linear stochastic differential equations on the Poisson
space.
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1 Introduction

Linear Skorohod stochastic differential equations have been studied on
the Wiener space, cf. [3], using the anticipative stochastic calculus de-
veloped in [6]. It has been shown in particular that the solutions of such
equations are associated to the density induced by absolutely continu-
ous transformations defined by flows on the Wiener space. Such absolute
continuity results have been extended in [10]. Our goal here is to in-
vestigate the Poisson space case. The anticipative stochastic calculus on
Poisson space, cf. [5], [8], permits to introduce anticipative stochastic dif-
ferential equations by means of an extension of the compensated Poisson
stochastic integral, also called the Skorohod integral. We study the abso-
lute continuity of some anticipative flows on Poisson space and show that
their associated densities allow to solve Skorohod stochastic differential
equations. Let us describe the Poisson space interpretation that we are
working with, cf. [8]. Let B be a space of sequences with a probability
measure P such that the coordinate functionals

:B—R keN,



are independent identically distributed exponential random variables. The
space B is endowed with the norm || x ||p= sup,en | Z» | /(n + 1) such
that P is defined on the Borel g-algebra of B. Let T, = 2225—1 Ti,
k > 0, denote the k-th jump time of the Poisson process (N;) defined as
Ny =3 o0 limf(t), t € Ry. Denote by (ex)ren the canonical basis of
the space of square-summable sequences H = [?(N). We define an oper-
ator ¢ that turns any discrete time stochastic process u = (ug)ren into a
continuous time process i(u) by i;(u) = uy,_, or

Zt(u) = Zukl]Tk7Tk+1](t)v le ]R-‘r' (1>

k>0

The flow that we will consider is the family (7;):cjo,1) of transformations
7T, : B — B, defined by

7w —w+ ([ t e TNoT)s)

k>0

where o is a process satisfying some boundedness conditions. If the trans-
formation 7;, t € [0, 1], is absolutely continuous, then the process of densi-

-1
ties <d(7—td—P)*P> o] solves the anticipative stochastic differential equation
tefo,1

t
Xt == 1 +/ O_S(CU)XSCSNS,
0

where fg usdN, = 5(u1[0,t]) is the Skorohod integral of uljy, on the
Poisson space, as defined in [1], [5], [8]. This integral is an extension
to anticipative integrands of the stochastic integral with respect to the
compensated Poisson process. It is the adjoint of a derivation operator
defined by shifting the Poisson process jump times, and has in particular
the property of being an integral with zero expectation. As a consequence,
we will be able to solve the anticipative stochastic differential equation

t t
X, = Xo+ / 0, X 0N, + / b X.ds t€[0,1], (2)
0 0

where Xy and b are bounded random variables. In case the processes
b and o are predictable, the equation defining the inverse (A;)icp,1) of
(7¢)tejo,1) becomes

At =+ ( | t ¢s<ek>as<w>ds)k20 ,



and we retrieve a classical result, cf. for instance [2].

We proceed as follows. In Sect. 2 the definitions and main results
of the anticipative stochastic calculus on the Poisson space as introduced
in [5], [8] are recalled. Sect. 3 is devoted to the definition of the flow
(’E)te[o,l] of anticipative transformations of the Poisson process trajecto-
ries and to the study of its absolute continuity. Those results are applied
in Sect. 4, where the solution of the linear Skorohod stochastic differential
equation (2) is given.

2 Anticipative stochastic calculus on the
Poisson space

Let S denote the set of functionals of the form

F=f(10,...,Tn),

with n € N and f € C*(R}™). We define a gradient operator D :
L*(B) — L*(B) ® H by

DF = (ak’f(TOa s 7Tn))kEN7 Fes. (3)
We also define D : L?*(B) — L*(B) ® L*(R,) as
DF = —ioDF, FeS.

The operators D and D are closable, cf. [8]. Denote by D; 5 the domain
of the closed extension of D. Let ¢ be the adjoint of D, which is also
closable and can be extended to a closed operator

0: LY(B x [0,1]) — LY(B),

of domain Dom(6). Let V denote the class of processes of the form

i=n
V= Z 1Aifi(7-07 Ce 7Tn)7
i=1

where f; € C°(R™), 1 <i <n, and Ay,...,A, C [0,1]. We have the
following formula, cf. [5], [8]:

o(v) = /Ooov(s)d(Ns —s8) — /000 Dyu(s)ds, veV. (4)

The interpretation of § as an extension of the stochastic integral with
respect to the compensated Poisson process comes from the following
proposition, cf. [5], [8].



Proposition 1 Let v € L*(B) ® L*(Ry) be predictable with respect to
the filtration generated by the Poisson process (Ny). We have

Denote by D, o the subset of D; 2, made of the random variables F' for
which
| F' Loy + Il DF [l o(5)

is bounded and let Ly o, = L*([0,1],D1,), L12 = L*([0,1], D12). If T :
B — B is a measurable mapping, we denote by 7, P the image measure
of P by 7, and say that 7 is absolutely continuous if 7, P is absolutely
continuous with respect to P. A flow (¢s;)o<s<t<1 of transformations
of B is said to be absolutely continuous if ¢, is absolutely continuous,
0 <s<t<1. We end this section with four propositions which will be
useful in the sequel. Their statements and proofs are adapted from [4].
Proofs are given in the appendix.

Proposition 2 Let ' € Dyy. For any € > 0, there is a sequence
(F)nen C S that converges to F' in Dy 5 and such that

1. essinf FF < F, <ess sup F, n € N.
2. [l DEy [ulloo<[/| DF |ulloc +¢ , n € N.

We obtain in the same way the following result.

Proposition 3 Let 0 € Ly o with o > —1 a.s. and fol | 55 1% dr <

co. For any e > 0, there is a sequence (6")pen C V that converges to o
in Ly and such that for n € N,

1. o™ > —1.

NS

. follo'g |go d8§f01|0'5 |go ds.
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D™ [ e Bxjoxx) < e+ || Do || e (Bx[0,1)xN) -

If o has continuous trajectories a.s., then (0f Jnen converges in L*(B) to
0Ty » k 2 1.



Proposition 4 Let T, T2 be two absolutely continuous transformations,
respectively defined by

) =w+ ([ 1 i(ex)ot s

and .
T (w) =w+ (/ is(ek)US(w)ds> :
0 keN
w € B, with o*,0* € L*(B x [0,1]). Let F € Dy .. We have
| FoT (w) = FoT(w) <[] DF |ullec| o' (w) = 0*(w) 12q0,1) -
If F €S8, then
| F(w) — F(w+h) |<||| DF |ullel| R |l h € H, we B.

Proposition 5 Let (7"),en be a sequence of absolutely continuous trans-
formations with

T'w=w+ (/ is(ek)a?(w)ds) ,
0 keN

defined by a sequence (0" )nen of processes that converges in L?*(B) ®
L?([0,1]) to a process o, such that the sequence of densities (L™),en =

dTP
dpP

then (F,, o T™)pen converges to F o T in probability, where T is defined

by
Tw=w+ (/OOO is(ek)as(w)ds) L

Moreover, T is absolutely continuous.

> is uniformly integrable. If (F},)nen converges to F in L*(B),
neN

3 Absolute continuity of anticipative flows

Proposition 6 Let 0 € V. The equation

Tw—w—( t e0)(T)o (T s b @

has a unique solution which is invertible. For s,t € [0,1], s < t, let

Ay =77 and ¢st = T30 Ay, s <t. Then ¢, satisfies to

Psiw =w + </t ir(ek)(w)ar(@,tw)dr) weB, 0<s<t<1 (6)
s keN



Let sy =T, 0 A, s <t. We have

Yspw = w — (/t z'r(ek)(ws,rw)ar(lbs,Tw)dr) weDB, 0<s<t<l1.

keN

Proof. The equations (5) and (6) can be solved as differential equations
in finite dimension since o, is Lipschitz, r € [0, 1], cf. Prop. 4. Denote by
A; and 7; the solutions of (5) and (6) for s = 0. It remains to show that
¢s10Ty = T,, s < t. Let us show that for r <, i,(ex)(Tw) = i, (ex) (Trw),
k € N. For s < t, we notice from (1) that T(7,w) < s = Tp(ZTw) =
Ty (Tiw), and Ti(7Z5) > s = Tp(7;) > s. Hence

Ti(Tow) < s < Tp1(Tow) = Tp(Tw) < s < Tpy1(Tow)
<~ Tk(ﬂw) <s< Tk+1(7;w).
This gives
t
bus(To) = T + ( [ irtenTotr, m>dr> - Tw,
s keN

which implies (5). Finally, i,(ex)(¥s¢) = tr(ex)(¥s,), 0 < s <r <t <1,
and

w = ¢s,t o ws,tw = ws,tw + (/ ir(ek)(ws,tw)0r<¢r,t o ws,tw)dr>

keN

R ( / t z;<ek>ws,rw)ar(ws,rw)dr)

keN
€ O

Theorem 1 For o € Ly o, with o > —1 a.s., and fol | 5 Moo dr < o0,
Eq. (5) has a unique absolutely continuous solution which is invertible
and whose inverse flow {1s; : 0<s <t <1} satisfies to (6). Assume
that o has continuous trajectories, a.s. Then

d(¢s,t) P

Ls,t = T (7)
. (— [ Deontoir — [ ar<¢r,t>dr) TT (1 + on (én).
S s s<Tp<t
0<s<t<I.

Remark. D,o,(¢,,) is here interpreted as i,(Do,(¢rs)).
Proof. We start by assuming that 0 € V and depends only on 7, ..., 7,
for some n € N.



Lemma 1 Ifo €V, we have with ¢ given by Prop. 6:
t
det (D¢s 1) = exp (—/ Drar(cﬁr,t)dr) H (1407, (¢1.4)) 0<s<t<I1.
8 s<Tp<t

Proof. We have that ¢, (1) is differentiable since it is expressed with the
solution of a differential equation with C* coefficients, and

Dk¢s,t(l)

= 1{7€=l} + 0Ty 44 (¢ﬂ+1,t>1{k§l}1{s<Tl+1<t} - UTL(¢ﬂ,t)1{k<l}1{s<Tl<t}
t 1=n
T / S o (60) D)) Dioy (dr0)dr K, 1 € N,
S =0

Letting Us; = (Dgs+(1))o<ki<n, this gives the following differential equa-
tion in the space of (n + 1) x (n + 1) matrices:

t
Us,t - As,t + / Ur,tBr,tdra (8)
where

At (k1) = Ly + om0, (D1, ) Lin<iy Vo< <ty — 01 (010) Likay Lis<ri<t)

0<k,l<n,and B,y = (is(€)) Dros(Ds)) gep j<n- S0lving this differential
equation in s € [0,¢] for fixed w on the intervals |7}, T;41[N[0, ], k € N,
we get

(Dk¢8,t(l))0§k7l§n (9)
tANTNg4+1 tAT) 41
= exp (/ Bntdr) H (exp </ Bmdr) + C’l) ,
s s<T<t sNT

0 <s<t<1, where Cj, [ > 1, is a matrix such that Cy(,1) = o7,(¢1,+)
and Cy(i,j) = 0ifi # lor j > i. Since B,4(i,j) = 0ifr < T}, 5 =0,...,n,

we have

t/\Tl+1
det (exp ( / BT,tdr) + Cl)
sA\T)
tAT 1
= (14 on(6n.,) det (exp ( / Br,tdr)) | (10)
sATy
Hence

det(Uy1) = exp ( /sttmce(Bm)dr) [T (+on6n.).

s<Tp<t, k<n



Noticing that for k£ > n,

Dk¢s,t(l)
= L=y + 01, (011 ) L h<ty Lseti i<ty — 01 (D1.0) Ly Lis<mi<ty

and trace(B,;) = ’,zzg Dyo,(¢r)ir(er) = Drar(qzﬁm), we obtain

det (D) = exp <— / t[)rar((bm)dr) T (0 +on(én.).

s<Tp<t
O

Define for K € N 7, : B — H by m(w) = (L{x<n}T)ren. Let @, =
¢si—1p, 0 <s <t <1, and F}, = P, for £ > n. The mapping Ip — Fj},
is a diffeomorphism of BT = {w € B : w;, >0, k € N}, and we have for
f € C(B), from the finite dimensional Jacobi theorem:

E[f] E

i=k
fIg+F,) | det(Iy + DF) | exp (- Z Fk(¢)>

= E[f(Up+Fy) | A, k=>n,

with from (9):

ve=ep (= [ Do — [(wioar) [ (+on(on)

s<T;<t, i<k
Now,
= E[|logAyo(Ip+ F)™ "]

i=k
1
ZZ:; | o ||00|'U:Ti + || 1+o, ||OO|T:T~L

1 1 1
1
| o7 H?,odr+/ I Hiodr+/ Il Do |ull3 dr, k= mn.
/0 0 1+UT 0

1
< B 3/Mmeuw
0

IN

Hence by uniform integrability of (Ay),.y, We obtain
E[fl = E[f o ¢stLs]

for f € C(B). We now return to the case of a general o. From Prop. 3,
we can choose a sequence (0"),en C V that converges to o in L; 5, with



o, > —1,n € N. The sequence (¢"),en defines a sequence of transforma-
tions ( ;t)neN, ( Qt)neN and density functions (L7;)nen. The uniform
integrability of the sequence (LY ;)nen is shown as above:

E [Lg,t | log Lg,t |] =FE U log L?,t(wg,t) H

< B\ oW )|+ |
e Y
t
—l—/\DraZ} \d?"~|—/|0 \dr}
N e N e A
k>1

+/ | Do |d7} /HU”H2 dr

1
< o 12, dr+/ H 1% dr+/ Il Do, |ull% dr+c.
/ 0 1_'_0-/r 0

where ¢ does not depend on n. Let ¢, = ¢¢, — I, and let us show that
(7, )nen converges in L?(B) ® H. We have

E|l o7, -

< [/ 20 6) = o7 )
QE[/ lom dr—i—/ o™ (ér,) — o (M)\er}

2F [ |of — o |? L dr

IN

IN

# [ 1D Ll +1° [ 0b(6,) = o) P duar

< 28| [ o —or P | esp ([ Do lulle +170r)

n,m €N, 0 <s <t <1, bythe Gronwall lemma and Prop. 4. This con-
verges to 0 by uniform integrability. Denote by ¢, the limit of (¢7;)nen-
From Prop. 5, the sequence (07! (¢};))nen converges to o,(¢y,) in L*(B),
for r € [0,1], hence by boundedness of o the limit ¢, solves Eq. (5).
Moreover, ¢, is absolutely continuous from Prop. 5 and is the only
absolutely continuous solution from Prop. 4. We can now show that



<Da,"(<bft)> converges to D.o.(¢.,) in L*(B) ® L*([0,1]):

neN

£ [ 156 = Dotons) dr]
0
< oE [ [ 122610 Do) By + | D62 = Deo(0n) ) dr]

t t
< 2B [ [ 106z =0 By Lrdr+ [ Dovtor) — Dovon I dr]
0 0

which converges to 0 as n goes to infinity since | Do, (é,) |a<||| Do |#||co,
r € [0,1]. We also have that (o7, (¢7, ;))nex converges to or, (ér, ) in
L?*(B), k € N, from Prop. 3. Hence by unifom integrability and conver-
gence in probability of {L?, : n € N} to Ly, we have for f € C,(B):

E [f] = JL%OE [f( ?7t)L?,t] =k [f(¢s,t)[/s,t] .

Since 140 > 0 a.s., it is not difficult to see that ¢, is bijective and that
its inverse 1) satisfies (6). 0

Remark. The expression of the density can be written in a form which is
closer to its expression on Wiener space, cf. [4], [10], i.e.

d(¢s,t)*P

Ls,t =

dP
— oxp < / Dy (02 () ) — / DTO—T(¢T,tw>dr+5(1[0,t}a.(¢.¢)))
x H (1+JTk(¢Tk7t))eXp(_UTk(¢Tk7t))7

s<Tp<t

using (4). From [9] and (4), we obtain the following formal expression for
the Carleman-Fredholm determinant of D¢ :

t t
dets (D¢st) = exp </ DT(O'T(QZSﬁtu)))dT — / [)Tar(gzﬁrjtw)dr)
X H (1 +om, (¢Tk,t)) eXp(_UTk (¢Tk7t))
s<T<t
Lemma 2 If F' € § depends only on 19, ...,Tym and 0 € V, then
| D(F(A)) |
< 2(m+1) [ o [l Bxpo

1 1
< (1+/ Il Do |illo drrexp </ Il Do Jilloe d)) | DF |1,
0 0

t €0,1].

10



Proof. We have from (8) and the Gronwall lemma, since Ag;(k,l) = 0 if
k>

| D(F(AL)) |a

t
< (/ ||| Do, |H||oo| DAOJ |Rm+1®Rm+1 dr
0

¢
X exp </ Il Do, |1l dr) + | DAp: |Rm+l®Rm+1) | DF |y
0

< 2(m+1) || o ||z Bx[0.1)

1 1
< (1 + [ 11 Do il dr ey (/ Il Do e d)) | DF |,
0 0

d

4 Solution of a linear Skorohod equation

We need the following lemma.

Lemma 3 Let F € S and let (T;)ico,1) be the flow defined by o € Ly,
o> —1 a.s. We have

d ~
—F o T, = 0,(Ty) (DtF> T (11)
If moreover o € V, then
d 3
EFOAt = _UtDt<FOAt).
Proof. Eq. (11) comes from (3) and (5). We also have if ¢ € V
0 = iFoA oT—i(FoA)oT—Q—iFoA o7y |
- dt t t — dt t t dS t s |s=t
d .
= 4 (FoAy)oT;+ o(T,)Di(F o Ay) o7,

O
Theorem 2 Let 0 € Ly with continuous trajectories a.s., such that

o> —1and [, || 75 llw< 00, b € L([0,1], L%(B)) and n € L¥(B).
The anticipative stochastic differential equation

t t
Xt:n+/ arXréNrJr/ bsXods t € 0,1] (12)
0 0

11



has for solution

X0 = g e (= [ Daoneorts — [ ao.ods+ [ biouis)
H (14 o, (¢r.1)), te]0,1].

0<T, <t

If moreover || b ||pexp1), || 0 llze@xpa, || Do |lLeBxoixn) are
finite, then X is the unique solution of (12) in L*(B x [0,1]).

Proof. The proof is close to [3], [7]. We have X € L'(B x [0,1]) by
integrability of the density L. Let G € S.

t
E [ / USXSDSGds}
0

- [ o (Tesp ([ nimiar) Dz

—F /0 exp ( /O s br<7;>dr) %G(ﬂ)dé’]

= E :eXp (/Ot bs(Ts)dS) G(T)n —nG

= [azyes ([ nimir) Gz

= F |:77(At) exp (/0 bs(¢s,t)d$) Lo:G —nG

_ /0 tr;(As)bs exp ( /0 br(¢T7S)d5> LO’SGdS}
= FE KXt -n— /OtbsXsd5> G} ’

and X; — 7 — [o byX,ds € L'(B). Hence 0 X1y € Dom(3), t € [0,1],
and (X¢)se(0,1) is solution to Eq. (12). We now show the uniqueness of the
solution in L'(B x [0,1]). Let (¢")nen be a sequence given by Prop. 3,
and let (Y;)icp,1) be the difference of two solutions, which satisfies

t t
Yt_/ bsster/ o.Y.ON,.
0 0
Let F€S8.

Bhiranl - £|[ 0D, (A s+ [ YA

0

12



— B[ [, (Fean - [ oD ria) ) as
+ o (pean - [ o) ar) ]
We have for v € V

t t t r
E{ / o.Y.D, / u,,drds] = E[ / / asYS[DSurdsdr}
0 s 0 0
t r _
= F {/ / asstNsqurl .

This relation can be extended by density to the process u = 0" D(F(A™))
since [! oD, (F(A"))dr = F(A?) — F(A?) € Dy and gives

{ / .Y, D, / drds]

_ B //asYcSNa”D( (AM)d }

_ E/(Y /bYds) Do(F(A™)d }
= F /YU”D (AY)) dT—/bY/ d?“ds].

Hence
B = 8 [ [0, - b + [ v

From Lemma 2, | D(F(A?)) |g is uniformy bounded in n and w, hence
letting n go to infinity we get

Bl - £ [ t bV (A)s]

Then
pnyre) - 5| [ comvimre,
0
with £ = (Lo s(7;))"!, which is satisfied by density for
F = sign(L,Yy(7y)).

Eunus/OEnm]ds

and Y = 0 by the Gronwall lemma. Consequently the solution is unique.

This gives

13



O

Remark. If moreover the processes o and b are (F;)-adapted and n = 1,
then the solution coincides with the usual result, i.e.

t t
X, = exp (/ bsds—/ Usds) H (14o0p) 0<t<1,
0 0

0<T), <t

since ¢s1(k) = 7 if Tpi1 < s and oy, bs depend on 74, only if Ty < s,
s €10,1].

Appendix.

Let F,, denote the g-algebra generated by 7g,...,7,, n € N.

Proof of Prop. 2. Let F, = (1-2)E[F | F,),n € N. We have ess inf F <
F, <ess sup F,n € N. If (Gg)ren C S converges to F'in D, then

=n 1/2
[ E[DG. | Fol lulloe < | Z(DiE[leﬂ]f) [
i=0

1/2
< | Z(E[Din!fn]f) oo

=0

o 1/2
<l ZE[(Din)Q\fn]> loo <[l DG [l -

i=0
This gives ||| DF, |ul|lo<||| DF |i|lw- We also have the convergence of
(F))ken to Fin Dy 5. Hence it suffices to prove the result for F' € Dy 5 of
the form F' = f(79,...,7,). Assume first that f has a compact support in
R Let ¥ € C*(RT) with [pne W(z)dz =1, ¥ > 0, and let fi,(y) =
+

et Jpoes Uk2) f(y + w)dz, k> 0,y € RE With Fy = fi(ro,..., ),
we still have ess inf F < Fy, < ess sup F', k € N, and

Il DFy |ullo<|| DF [1lloo -
If f does not have a compact support, let & € C>°(R") such that &(x) =1
for |z |<1land 0 < ® <1on R" Let F, = E[F | F.]®(10/k, ..., Tm/k).
Then (Fy)gen converges to F'in Dy 5 and

1
N DF [ulloo = Il L ELF [ o] D® + ¢EIDE [ Fu] [ lloo

1
< I @IDF Jalloo + I F lloolll D2 [rrlloo

1
< ||| DF |H||oo +E H F Hoo SUPZ(aiCI))2
=0
< [[| DF |ulleo +e

14



for k great enough.
Proof of Prop. 3. For m = {Ay,...,A,} a partition of [0, 1], let

o" _Z1A/ ondr/ | Ay .

Let (7, )nen be a sequence of partitions of [0, 1], mutually increasing with
maxj<;<, | A | converging to 0 as n goes to infinity. We have that
(0™ )nen converges to o in L o with

1 1
/nﬂw&ws/n%&@,
0 0
1 1
1 1
/H &ms/| 2 ds,
g l+4+om™ o l+4og

1 1
/mmﬁm&ws/nw%m&w
0 0

We can apply Prop. 2 to ﬁ fAi osds, 1 <i<n.
Proof of Prop. 4. Assume F = f(10,...,7,).

and

| FoT (w) — FoT?*w) |

T Th+t1
= |f(/0 ai(w)ds,..., )
Ty Th+t1
—f (/0 ag(w)ds,..., |

)
S!wwmm(f(éw %_AM >yp

=0
< || DF |ulloo| 0*(w) = 0*(w) [22(01) w € B.

The same argument holds for the second part. If F' € D; , then there
is a sequence (F},),en C S that converges to F' in D 5 and

Il DF [alloo<[l| DF |allo +e-

Since 7' and 772 are absolutely continuous, P(] F,, 0o 7' — FoT"' |> §)
goes to 0 as n goes to oo, for any § > 0. The same is true for 72. This
gives

| P’O’]V2 — P’O']ﬂ2 |§ (||| DF |H||oo —|—€) | O'1 —O'2 |L2([0,1])7

where € is arbitrary.
15



Proof of Prop. 5. For any € > 0, there is M. > 0 such that

SU_pE [Lnl{Ln>Me}} S 6/2
neN

For any 6 > 0, there is ng € N such that for n > ny,

P(|F(T") = F(T") [>0) = E[lyr-p,=sL"]
E 12y L") + M.P(| F — F, |>6)

<
< ¢/2+ M.P(|F—F,|>6)<e.

Let (G"),ex C S be a sequence that converges to F in L*(B). The
density L of 7 is the weak limit of (L™),en. For any €, > 0, there is
ko € N such that

P(|FoT"—G*oT"|>0)+P(| FoT —G*oT |>9)
< e42M,. < 2e

for any n € N. We also have

P(] GFoT —GhooTm |>9)
1
< < DG* |y|lo| 0 = 0" [r2op< €

for n great enough, from Prop. 4. Hence there is ny € IN such that for
n 2 Ny,
P(|FoT —FoT"|32>0) < 3. O
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