Measure invariance on the Lie-Wiener path
space
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Abstract In this paper we extend some recent results on moment identities, Her-
mite polynomials, and measure invariance properties on the Wiener space, to the
setting of path spaces over Lie groups. In particular we prove the measure invari-
ance of transformations having a quasi-nilpotent covariant derivative via a Girsanov
identity and an explicit formula for the expectation of Hermite polynomials in the
Skorohod integral on path space.
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1 Introduction

The Wiener measure is known to be invariant under random isometries whose Malli-
avin gradient satisfies a quasi-nilpotence condition, cf. [12]. In particular, the Sko-
rohod integral 8 (Rh) is known to have a Gaussian law when 4 € H = L*(R,,R%)
and R is a random isometry of H such that DR#A is a.s. a quasi-nilpotent operator.
Such results can be proved using the Skorohod integral operator J and its adjoint
the Malliavin derivative D on the Wiener space, and have been recently recovered
under simple conditions and with short proofs in [5] using moment identities and in
[6] via an exact formula for the expectation of random Hermite polynomials. Indeed
it is well known that the Hermite polynomial defined by its generating function
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2,2
T2 = Z H (x, 1), x,t €R,

satisfies the identity
E[H,(X,0%)] =0, (1

when X ~ .4/(0, 0'2) is a centered Gaussian random variable with variance 62 > 0,
and that the generating function can be used to characterize the gaussianity of X.
In [6], conditions on the process (u;);cr . have been deduced for the expectation
E[H,(8(u),|u||*)], n > 1, to vanish. Such conditions cover the quasi-nilpotence
condition of [12] and include the adaptedness of (i );cr . » which recovers the above
invariance result using the characteristic function of 8 (u).

On the other hand, the Skorohod integral and Malliavin gradient can also be
defined on the path space over a Lie group, cf. [1], [3], [10]. In this paper we prove an
extension of (1) to the path space case, by computing in Theorem 1 the expectation

E[Hy(8(u), ul)],  n=>1,

of the random Hermite polynomial H, (& (u), ||u|*), where &(u) is the Skorohod in-
tegral of a possibly anticipating process (u;);cr , . This result also recovers the above
conditions for the invariance of the path space measure, and extends the results of
[6] and [5] to path spaces over Lie group.

In Corollaries 4 and 5 below we summarize our results in the derivation formula

2
;ZEFMW%%WZ} ME [200 2060 2 e (Vi) (1 —2Va) (Du)] @)
—AE[e“‘” Hua) 120 (] AVu)~ lu,Dlogdetz(I—),Vu»},

for A in a neighborhood of 0, in which D, V respectively denote the Malliavin gradi-
ent and covariant derivative on path space, and det, (I — A Vu) denotes the Carleman-
Fredholm determinant of I — A Vu. When Vu is quasi-nilpotent in the sense of (16)
below we have dety (I — A Vu) = 1, cf. Theorem 3.6.1 of [13], or [14], and the deriva-
tive (2) vanishes, which yields

£ [exa<u>€||u2] 1

for A in a neighborhood of 0, cf. Corollary 3. If in addition (u,u) is a.s. constant,
this implies

E[00] = B, per

showing that & (u) is centered Gaussian with variance ||u||?.
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This paper is organized as follows. In Section 2 we review some notation on
closable gradient and divergence operators, and associated commutation relations.
In Section 3 we derive moment identities for the Skorohod integral on path spaces.
In Section 4 we consider the expectation of Hermite polynomials, and in Section 5
we derive Girsanov identities on path space.

2 The Lie-Wiener path space

In this section we recall some notation on the Lie-Wiener path space, cf. [1], [3],
[10], [11], and we prove some auxiliary results. Let G denote either R? or a com-
pact connected d-dimensional Lie group with associated Lie algebra ¢ identified to
R? and equipped with an Ad -invariant scalar product on R? ~ ¢, also denoted by
(+,+). The commutator in ¢ is denoted by [-,-]. Let ad (u)v = [u,V], u,v € ¥, with
Adet =4 ye 9.

The Brownian motion (¥(f));cr, on G with paths in €y(R,¥) is constructed
from (B;);cr, via the Stratonovich differential equation

dy(r) = v(t) ©dB

¥(0) =e,

where e is the identity element in G. Let P(G) = €, (R ., %) denote the space of con-
tinuous G-valued paths starting at e, with the image measure of the Wiener measure
by I: (B)ier, — (Y(t)):er, - Here we take

S ={F=f(y@),....v@w)) : [feC (G},

and
n
U=YuF : FeYZ wecl’(R:9),i=1..nn>1;.
i=1

Next is the definition of the right derivative operator D.

Definition 1. For F = f(y(t),...,Y(tx)) € .7, f € €°(G"), we let DF € L*(Q x
R4;%¥) be defined as

(DF,v) = digf (y(tl)effé‘ vds (e d) , vel*R.,9).

|e=0

For F € .7 of the form F = f(y(#1),...,¥(t,)) we also have

DiF =Y 0if(y(t1),- -, ¥(ta)) 0,1 (1), t>0.
i=1
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The operator D is known to be closable and to admit an adjoint § that satisfies
E[F6(v)]=E[(DF,v)], FeY, ve%, 3)

cf. e.g. [1]. Let D, x(X), k > 1, denote the completion of the space of smooth X-
valued random variables under the norm

k
!
H””Dp‘k(x) = Z D ”||LP(W,X®H®1)a pE[l,e],
' =0

where H = L>(R.,%), and X ® H denotes the completed symmetric tensor product
of X and H. We also let D, = D, x(R), p € [1,00], k > 1.

Next we turn to the definition of the covariant derivative on the path space P(G),
cf. [1].

Definition 2. Let the operator V be defined on u € ID, | (H) as
Vs = Dty + 1o (s)adu €9 @9, s,teRy. 4)
When h € H we have
Vshe = 1o (s)ad hy, s,t e Ry
andadve 9 ¥, v c ¥, is the matrix
({ej,ad (en)v))1<ij<a = (e [ei,v]))1<i j<a-

The operator ad (v) is antisymmetric on ¢ because (-, -) is Ad -invariant. In addition
ifu=hF,hc H,F €D, we have

Dguy = DyF Q h(t), adu, = Fadh(r), s,t €Ry,

and
(ei@e;,Vsuy) = (ej®@ej, Vs(hF)(t))
= (ei®ej,DsF @h(t)) + 1o, (s)F (e; @ ej,ad h(t))
= (h(t),e;)(ei, Dy F>+1[0t( s)F (ej,ad (ei)h(r))
= <h(t> ><el>D F>+1[0t (S)F<ej7[eiah(t>]>a
i,j=1,...,d. In the commutative case we have ad (v) =0, v € ¢, hence V = D.

By (4) we have

(Vo) (1) = (Vi)v, = /0 (Vou)vds,  teR,,
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is the covariant derivative of u € % in the direction v € L*>(R,;¥), with V,u €
L*(R.;9), cf. [1] and Lemma 3.4 in [4].

It is known that D and V satisfy the commutation relation
D6 (u) =u+8(V*u), ©)

for u € D, 1 (H) such that V*u € ID; 1 (H ® H), cf. e.g. [1]. On the other hand, the
commutation relation (5) shows that the Skorohod isometry [9]

E[0(u)6(v)] = E[(u,v)] + E [trace (Vu)(Vv)], u,ve D (H), (6)

holds as a consequence of (5), cf. [1] and Theorem 3.3 in [4], where
trace (Vu)(Vv) = (Vu,VV)ggn = / / <VSMI,V:-VS>]R41®Rdde[7
o Jo

and V;f vs denotes the transpose of the matrix V,vs, s, € R,.. Note also that we have
Vs, = Dyuy, s>1, (N

Note that for u € D, | (H) and v € H we have

(Vu)kv(r) :/Ow~--/:(V;kufvzk,luzk~--Vz1uz2)w1dt1~~~dtk, teR,,
and
trace (Vu)* = (Viu, (Vu)=1)
- /Om.../om<vfkutl,V,k71u,k~~~Vt1ut2>dt1 - -dty,
k>2.

In addition we have the following lemma, which will be used to apply our invari-
ance results to adapted processes.

Lemma 1. Assume that the process u € Dy 1 (H) is adapted with respect to the
Brownian filtration (% ),cr . Then we have

trace (Vu)* = trace (Vu)*~!(Du) = 0, k>2.

Proof. For almost all ¢1,... 41 € Ry there exists i € {1,...,k+ 1} such that#; >
ti+1 mod k+1- and (7) yields

Vit ) moarir = Dttty moarir +1[0-,l,-+1 modk+1](ti)
= Dt,'ut

i+1 mod k+1
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since (u;);er, is adapted.

We close this section with three lemmas that will be used in the sequel.

Lemma 2. For any u € ID, | (H) we have
1
(Ve = L wDlww).  veH,

Proof. We have

oo

= (Viuy) usds
0

_/ (Dyus) usds—I—/ 10,] )(adus) ugds

:/ (Dyus) usds—/ 10?] t)ad (us)usds

=

(=)

(=}

= (Dyuy) usds
0

= (D w)uy.
Next, the relation D(u,u) = 2(D*u)u shows that
((Vu)v,u) = (V'u)u,v)
(D u)u,v)

1
= E(v,D(u,u)).

Lemma 3. For allu € ID>>(H) and v € D, 1 (H) we have
k+1
(V*u,D((Vu)*v)) = trace ((Vu)*'Dv) + Z ((Vu)**'=1y Dtrace (Vu)'),  keN.

Proof. Note that we have the commutation relation VD = DV, and as a consequence
forall 1 <k <n we have

<V*M7D((Vu)k\/)> = [) /0 <V;-kutk+l7Dtk+l(Vtk—lutk '"Vtoutlvto>>dt0'“dlk+l
= /0 /0 <Vj;c”fk+17Vlk71”tk"'Vtoulefk+1Vfo>dt0"'dtkﬂ
+/0 /0 <V2—kutk+1)le+1(Vlk,1utk '"Vloull)vl()>dt0”'dtk+1

k=1 oo oo
= trace ((Vu)**'Dv) + Z/ /
i=0 70 0

<Vtk Uty ka+1 Unp Vli+| Ui p (Vlink+1 Uiy )VIH U -~ Vlo Uy Vyy >dt0 edig
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k1
1 oo 00
= trace ((Vu)*t'Dv) + //
(V)™ Dv) l;)kﬂ—io 0

(Vi(V;

Vit Vi o Vi g ), Vi - Vgt vig )i -~ digy
k—1

= trace ((Vu)**'Dv) + Z

L)

\vJ D \vJ k+1—i
k+1—l<( u)'v, Dtrace (Vu) ).

Lemma 4. For all u € D2»(H) and v € D21 (H) such that ||Vul|p=(o.nem) < 1 we
have

(V*u, D((I—Vu)~'v)) = trace (Vu) (I — Vu) =1 (Dv) — (I —Vu)~'v,Dlogdets (I — Vu)).

Proof. By Lemma 3 we have

(V*u,D((I—Vu)~v)) = Z (V'u,D((Vu)"v)))

n=0
o n+1 1
= Z trace (Vu)""'Dv) + Y Y —((Vu)"*'~"v, Dtrace (Vu)')
n=0 n=0 i= 2[
o '
= trace (Vu)(I — Vu) ' (Dv) + Z - Z ((Vu)"v,Dtrace (Vu)")
i=2 b=

= trace (Vu)(I — Vu) ' (Dv) + Z ((I—Vu)~ v, Dtrace (Vu)')
= trace (Vu)(I — Vu) " (Dv) — (I — Vu) " 'u,Dlogdets (I — Vu)),

since dety (I — AVu) satisfies

i=2

= A.i .
dety(I — AVu) =exp ( Z — trace (Vu)’) , (8)
i
cf. [8] page 108, which shows that

Al
Dlogdety(I — AVu) = Z = Dtrace (Vu)'.

3 Moment identities on path space

The following moment identity extends Theorem 2.1 of [5] to the path space setting.
The Wiener case is obtained by taking V = D.

Proposition 1. For anyn > 1 and u € Dy 412(H), v € Dyy1,1(H) we have

E[6(u)"6(v)] =nE [5(u)”71<u,v>] )



8 Nicolas Privault

L e s ]
+) Mg 8(u)" | trace ((Vu)* "' Dv) + i l((Vu)k*"v,Dtrace (Va)') | |-
= (n—k)! i—2 !

For n = 1 the above identity (9) coincides with the Skorohod isometry (6).

When (u, u) is deterministic, u € D1 (H), and trace (Vu)* =0 a.s., k > 2, Propo-
sition 1 yields

E[8(u)" ] = n{u,u)E [6(1/{)"71] , n>1,
and by induction we have

(2m)!

2Mm!

E[8(u)*") = (u, )™, 0<2m<n+l,

and E[8(u)*" 1] = 0,0 < 2m < n, while E[§(u)] =0 for all u € D> 1 (H), hence the
following corollary of Proposition 1.

Corollary 1. Let u € D2 (H) such that (u,u) is deterministic and
trace (Vu)k = trace (Vu)* '(Du) =0, as., k>2. (10)

Then &(u) has a centered Gaussian distribution with variance {u,u).

In particular, under the conditions of Corollary 1, 6 (Rh) has a centered Gaussian dis-
tribution with variance (h,h) when u = Rh, h € H, and R is a random mapping with
values in the isometries of H, such that Rh € N,~1ID,2(H) and trace (DRh)* = 0,
k > 2. In the Wiener case this recovers Theorem 2.1-b) of [12], cf. also Corollary 2.2
of [5].

In addition, Lemma 1 shows that Condition (10) holds when the process u is
adapted with respect to the Brownian filtration.

Next we prove Proposition 1 based on Lemmas 2, 3 and Lemma 5 below.

Proof of Proposition 1. Let n > 1 and u € D41 2(H). We show that for any n > 1
and u € Dy12(H), v € Dyy1,1(H), we have

o(u)"d(v)] = ! S(u)" * (V) v, u) + (Viu, D((Vu) 1y .
E8("30)] = Y. 1 (80 (Va0 v+ (V' DV 1) |

(11
We have (Vu)*~v € D1y k1 (H), 8(u) € D41y /(n—k+1),1> and by Lemma 5 be-
low applied to F = 1 we get

E [5(u)l<(vu)fv,05(u)>} —IE [5(@14<(vu)f+'v,05(u>>}
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—E [5(u)1<(vu)iv,u>} +E [5(u)’<(vu)iv, 6(v*u)>}
_IE [5(u)1*1<(vu)i+1v, u)} _IE [5@)“<(vu)f+1v75(v*u)>}
= E[8(u) (Vu)v,u)| + E[8 () (V"0 D((Vu)'v)),

and applying this formulato/ =n—kand i =k — 1 yields

E[8(u)"8(v)] = E[(v, DS (u)")] = nE[8 ()" (v.DS (u))]
Yo f!k)' (E [8)" “((Va)* 'v.D8(w))| = (1= K)E [8(u)" 1 ((Vuy'v, DS (w) )
k=1 :
4 n! e 3 ok o -
¥ o (B[00 ] - [50047u p( )] ).

We conclude by applying Lemmas 2 and 3. The next lemma extends the argument
of Lemma 3.1 in [5] pages 120-121 to the path space case, including an additional
random variable F € ID; ;.

Lemmas. Let F € Dy, u € Dy12(H), and v € Dy 11 (H). For all k,i > 0 we
have

E[FS8(u)*(Vu)'v,8(V*u))] — kE[F&§(u)* 1 ((V*u)™ v, 8(V*u))]
= KE[F8(u)* " (Vi)™ v,u)] + E[8 (u)*((Vu) v, DF )] + E[F 8 ()" (V*u,D((Vu)'v))].

Proof. We have

E[FS(u)k<(Vu)iv,6(V*u)>]‘— iE[FS(u)k_l((V*u)i+1v,.5(v*u)>}

= E[(V*u, D(F8(u)*(Vu)'v))] — kE[F & (u)* 1 ((V*u) v, 8(V*u)))

— KE[F8()~ (V*u, (Vi)'y & D8 ()] — KE[F 8 )~ (V") v, 8(V"u)]
+E[8(u)*(V*u, D(F(Vu)'v))]

= kE[F&(u)* " (V*u,(Vu)'v@u)] + kE[F 8 (u)* " (V*u,(Vu)'v® 8(Viu))]
—kE[F8(u)* " (VFu) ', 8(V*u))] + E[8 ()" (V¥u, D(F (Vu)'v))]

= kE[F&(u)* " (Vu) " v,u)] + E[8 (u)*((Vu)*'v, DF)]
FE[FS () (v i, D((Va)v))),

where we used the commutation relation (5).

The case of the left derivative D* defined as

d " ds ny ds
(DHF) = S f (0o n), ey ,)) L ve L2(R,.9),
de |le=0
for F = f(y(t1),...,Y(tn)) € 7, f € €;°(G"), can be dealt with by application of
the existing results on the flat Wiener space, using the expression of its adjoint the
left divergence 8 which can be written as
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8L (u) = 6(Adyu)

using the Skorohod integral operator 5 on the flat space R, cf. [3], [10], and § 13.1
of [11].

4 Random Hermite polynomials on path space

In this section we extend the results of [6] on the expectation of Hermite polynomi-
als to the path space framework. This also allows us to recover the invariance results
of Section 3 in Corollary 2 and to derive a Girsanov identity in Corollary 3 as a
consequence of the derivation formula stated in Proposition 2.

It is well known that the Gaussianity of X is not required for E[H,(X,0?)] to
vanish when o2 is allowed to be random. Indeed, such an identity also holds in the
random adapted case under the form

E [H,, (/:u,dBt, /: ut|2dt)} —0, (12)

where (u;);er, is a square-integrable process adapted to the filtration generated by
(Bt)icr, » since Hy, ([o" urdBy, [ |us|*dt) is the n-th order iterated multiple stochas-
tic integral of uy, - - - u;, with respect to (B;)cr, , cf. [7] and page 319 of [2].

In Theorem 1 below we extend Relations (1) and (12) by computing the expec-
tation of the random Hermite polynomial H, (8 (u), ||u||?) in the Skorohod integral
S (u), n > 1. This also extends Theorem 3.1 of [6] to the setting of path spaces over
Lie groups.

Theorem 1. For any n > 0 and u € D, 2(H) we have

e I (=) [Jue])* o, n—2k—I—1
E[Hu1(8(u), [[ul*)] =Y, wE Sw' Y Tk (V*u,D((Vu) u))
=0 ¢ 0<2k<n—1—1 %

Clearly, it follows from Theorem 1 that if u € ID, »(H) and
(V*u,D((Vu)u)) =0, 0<k<n-2, (13)

then we have
E[H,(8(u),[lu|?)] =0,  n>1, (14)

which extends Relation (12) to the anticipating case. In addition, from Theorem 1
and Lemma 2 we have

E[Hyi1(8(u), [lul*))
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(=D Mzk trace ((Vu)"~%*~!(Du))

— n!
o (15)
Z I 0<2k<n g k2K
1 k1 2k n—2k—1
T PV L - s P
+l§(’)ﬁE 6<u)0<2k<n—1—l k2% ,; ?<(V ) 'u, Dtrace (Vu)')

As a consequence, Lemma 1 leads to the following corollary of Theorem 1, which
extends Corollary 3.3 of [6] to the path space setting.

Corollary 2. Let u € D, »(H) such that Vu: H — H is a.s. quasi-nilpotent in the
sense that
trace (Vu)* = trace (Vu)* ! (Du) = 0, k>2, (16)

or more generally that (13) holds. Then for any n > 1 we have
E[H,(8(u), |lu]®)] = 0.

As above, Lemma 1 shows that Corollary 2 holds when the process (u;);cr, is
adapted with respect to the Brownian filtration, and this shows that (12) holds for
the stochastic integral 8(u) on path space when the process (u;),cr, is adapted.

We now turn to the proof of Theorem 1, which follows the same steps as the
proof of Theorem 3.1 in [6], the main change being in the different roles played
here by V and D.

Proof of Theorem 1. Step 1. We show that for any n > 1 and u € ID,.41 2(H) we have

(~1)%n!

ElF1 (80, )= T e BI85
<2k<n—1"" ’
+ Y ME[s(u)”*% D{u,u)*)]. (17)
1<<n k12 (n — 2k)! ’ ’
For F € ID; 1 and k,I > 1 we have
EF()'* = T2 e r s - DL EFS (0]
= P L btrs () - L Bl (o) F)
= D2 st - D sy o ps ()] - L B0 . F)
= P2 sy - " B s )
1(141) B . 1+1
D s 0 (9] - L8 . DF)),

i.e.



12 Nicolas Privault

(n—2k)(n—2k+l)E

E[F5(u)n_2k+1}+ o

[F 8 (u)" 2 (u,u))

=2 telrsu 2 - P20 D g 5
—n_§z+1E[5(u)"_2k<u,DF>}.
Hence, taking F = (u, u)k, we get
E[8(u)""'] = E[(u,D5(u)")]
= nE[5(u)”71 (u, DS (u))]
— R ()™ ()] + nE(S()" (u, 5("u)]
— nE[5(u)"™ ! (u,6(V"u)]
(_l)kn! n—
L T Ty (T
(n —2k +2;€)(I’l — 2k)E[5(u)n72k71 <Lt, u>k+l]>
— nE[S ()" (1, 8(V"u))]
(—1)kn! n+1 .
_19;’“1 (k—1)!2k1(n+1—2k)!( 2 EI800)" wu)
=200 2D gy ) 0,59 0)
R B D)
—D¥(n+1)! _
= TP
+ (_l)kn! E[(S( n72k71< >k< Py v* )]
oerz,  KI2E(n—2k—1)! ) )" {u, 6(V7u))
D S b LI TRV TR )
|, k12K (n = 2K)! PN

which yields (17) after using the identity (19).
Step 2. For F € ID 1 and k,i > 0, by Lemma 5 we have

E[F8(u)*(Vu)'u,8(V*u))] — kE[F S (1) (V*u)*u,8(V*u))]
= kE[FS§ () (Vi) u,u)] + E[8 (u)* (Vi) ™ u, DF)] + E[F 8 (u)*(V*u,D((Vu)'ur))].

Hence, replacing k above with [ — i, we get

E[FS(u)! (u,8(V*u))] = NE[F((Vu)'u,8(V*u))]
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=1

9 My  (EIF8(0)!~(Va)u, 5V )] = (1= DEIF S ()~ {(Vu) 1, 8(V"u))

-1
= NE[F((Va)'u,5(V*u))] +;0(l—l”—1)'
-1 l' . ) I—1 '
—E[8(u)"(Vu)'u,DF)] + ) ——
! = (i)

E[F§(u)™ (V)™ u,u)]

E[F8(u) ™ (Vu)™u,u))

E[F5(u)lf"(V*u,D((Vu)’ﬁ))]

ST
= ME[(V) DR+ ¥y

E[F8(u) =/ (V*u,D((Vu)'u))]

-

Y - giEl80) (v D+

T
— NE[(Vu)* u, DF)] +;Om

o i Lo
+,§1 mE[é(u) ((Vu)'u, DF)] +;0 T

% (1—10)!

E[F&(u) (Vi) u,u))

E[F8§(u)'~(V*u,D((Vu)'u))],
thus, letting F = (u,u)* and [ = n— 2k — 1 above, and using (17) in Step 1, we get

(*1)k”! n—2k—1 k *
E[H41(8(u),||u]*)] = Z E[6(u) ()" (u, 6(V¥u))]

(—1 )kn!

+1§§§ mE [8 ()" (u, D{u, u)*)]
=1§’ (-1) k'zkE[((Vu)"fzku,D@t,u>k>]
—; (_l)kn72k72 n! EK >k5( )n72(k+1)7i<(v )i+] >]
0<2£n_2 k!2k 1:20 (nf2(k+1)—i)! u,u u u u,u
by CUT sy (Vuyu Dl
<o K28 & (n—2k—0)! ! N U
n—2k—1 !l e i
+0S2kz<n T) ;0 mE[<u,u>k5(u) HHV U, D((Vu) u))]

12k
( ) 5un72ku uuk
PV iy 180 D)

o ; (_l)kk’:z'k [{(Va)" 2 u, D(u,u)")]
: . (—1)k+1 n—2k—2 n! E[S(u)"™ 2(k+1)—i ((V ) D( >k+1>]
ogzkzg:n—zm lg(’) (n—2(k+1)—i)t AL
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by DTS s v, Dl )
|<2ken—1 k12K = (n—2k—i)! ’ ’

+ Z (_1)"'1—%—1—”! E[{u u>k5(u)”72k7i71<V*u D((Vu)’u)>]
0<2hen—1 k12K = (n— 2k—1— i)! ’ ’

- _ Z (71)k+1 n2-2 n! E[8(u)n—2(k+1)—i<(vu)iu D<I/l u>k+1>]

0<2k<n—2 (k-+1)12k+1 i=0 (n=2(k+1)—1i)! ’ ’

+ Y (_1)k")fk MBSy (V)i D, u))]
(L KE a2k i) N

+ ¥ (_—l)kHZH (w8 (u)* (Vu, D((Va) )]
0<2ken—1 k12K = (n—2k—1—i)! ’ ’

(_l)kn—Zkfl nl

U0 YRt VA ey E[{uu)" 8 ()" 71V, D((Var) w))],

where we applied Lemma 2 with v = (Vu)'u, which shows that

(o, u) (Vi) e, u) = %(u,u>k<(Vu)iu»D<u»u>> = (Vi) 0, D)),

20k+1)

5 Girsanov identities on path space

In the sequel we let Dws(H) = (7] Dn2(H). The next result follows from Theo-
n>1
rem 1 and extends Corollary 4.1 of [6] with the same proof, which is omitted here.

Corollary 3. Let u € D.. 2 (H) with E[e'é(“)HH“HZ/Z] < oo, and such that Vu: H — H
is a.s. quasi-nilpotent in the sense of (16) or more generally that (13) holds. Then

we have
E {exp <5(u);u||2>} =1. (18)

Again, Relation (18) shows in particular that if u € D2 (H) is such that |ju]| is
deterministic and (16) or more generally (13) holds, then we have

E {esm} 1
i.e. 8(u) has a centered Gaussian distribution with variance |ul|?.

As a consequence of Theorem 1 we also have the following derivation formula.

Proposition 2. Let u € D..»(H) such that E [e““s(“)‘”z"“”z] < oo for some a > 0.
Then we have
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)

2
ﬁE |:615(u)—l2u||2:| AE |: A8 (u)—A <“’”>/2<V*u,D((l—)LVu)_lu)) 7

Jorall A € (—a/2,a/2) such that |1| < ”VMHI;‘]'(.Q;H®H)‘
Proof. From the identity

y n!(—p/2)"

Hy(x, p) = T xuER, (19)
0§2ksﬂk!(n—Zk)!
we get the bound
(—1)k n! 2k 2\k 2
|Hy(x,0%)| < i AT (=07) = Hu(lx], —07),
OSZZkSn k12 (n—2k)!
hence
A s =M sl
E |}~ Hul (), ) Z 1 Hue1 (18 ()], —lull")
n=0 ""° n=0
2M
= B [(13() |+ AlJu )22
—E [62\15(u)\+4l2||u\\2}
< oo,

hence by the Fubini theorem we can exchange the infinite sum and the expectation
to obtain

FpE P | - ﬁ)ﬁE[Hn+l<6<u>,||u||2>]
o AT S n! R TIATRS
27‘27 o<2k<zn' ! ,(k!) ”27” (Vu, D((Vu)" = 1))

— AE [eW")— <”’">/2<V*u,D((1—/'LVu)_lu»} .

In addition, Relation (15) yields the following result, in which det, (I — AVu) de-
notes the Carleman-Fredholm determinant of / — A Vu.

Corollary 4. Let u € Do, »(H) such that E[e“lé(“)‘”z““”z] < oo for some a > 0. Then
we have
2
%E [ewwzuuﬂ = A [0 R0 2 e (Vi) (1~ AVit)~ (Du)|
_AE [e“<">*”<u’">/2<(1— AVu)~'u, Dlogdets (I — Wu»} ,

Jorall A € (—a/2,a/2) such that |A| < ||VM||Z°1(Q;H®H)‘
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Proof. From Lemma 4 we have

A(V*u,D((I — AVu)~1v))
= Atrace (Vu)(I — AVu) " (Du) — A (I — AVu)~'u,Dlogdety (I — AVu)).

When (16) or more generally (13) holds, Proposition 2 and Corollary 4 show that

9 [ asw-2 ]| _
ﬁE |:€ 2 —0,

for A in a neighborhood of 0, which recovers the result of Corollary 3.

On the Wiener space we have V = D and we obtain the following corollary.

Corollary 5. Let u € ID..»(H) such that E[e""s(“)‘”z”“”z] < oo for some a > 0. Then
we have

9 | asw-2u?] _ A8(u)~A2(uu) /2 9
alE[e p =—E|e 37 logdety (I — ADu)
“AE [e“<“>—12<w’>/2<(1— ADu)"'u, Dlogdets (I — wu)ﬁ ,

forall A € (—a/2,a/2) such that |A| < ||Du||_°3(_Q;H®H>.

Proof. We note that (8) shows that

3 — n— n
57 logdety (I — ADu) = — Z A" trace (Du)

n=2
— — Y A"(D*u, (Du)"™+)
n=0

= —A(D*u, (I — ADu)"" Du)
= —Atrace (Du)(I — ADu) ™ (Du),

and apply Corollary 4.
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