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Abstract

Given a divergence operator ¢ on a probability space such that the law of
d(h) is infinitely divisible with characteristic exponent

1 [ *
hes —2/ hZdt, or / (€™ —ih(t) —1)dt,  he L*(Ry), (0.1)
0 0

we derive a family of Laplace transform identities for the derivative OE[e*()] /O
when wu is a non-necessarily adapted process. These expressions are based on
intrinsic geometric tools such as the Carleman-Fredholm determinant of a co-
variant derivative operator and the characteristic exponent (0.1), in a general
framework that includes the Wiener space, the path space over a Lie group, and
the Poisson space. We use these expressions for measure characterization and
to prove the invariance of transformations having a quasi-nilpotent covariant
derivative, for Gaussian and other infinitely divisible distributions.
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1 Introduction

In this paper we work in the general framework of an arbitrary probability space
(2, F, ). We consider a linear space S dense in L*(2, F, 1), and a closable linear

operator
D:S+—— L*(Q; H),

with closed domain Dom(D) containing S, where H = L*(R,;R?) for some d > 1.

We assume that
(H1) there exists a closable divergence (or Skorohod integral) operator
§:S®H— L*(Q),
acting on stochastic processes, adjoint of D, with the duality relation
E[(DF,u)g| = E[Fo(u)], F € Dom(D), wu € Dom(9), (1.1)
where Dom(d) is the domain of the closure of ¢,
and we are interested in characterizing the distribution of §(u) under a given choice

of covariance derivative operator V associated to D and 9, cf. (1.4) below.

The canonical example for this setting is when (€2, ) is the d-dimensional Wiener
space with the Wiener measure p, which is known to be invariant under random
isometries whose Malliavin gradient D satisfies a quasi-nilpotence condition, cf. [19],
[20], and Corollary 3.4 and Relation (3.10) below. This property is an anticipating

extension of the classical invariance of Brownian motion under adapted isometries.

In addition to the Wiener space, the general framework of this paper covers both the
Lie-Wiener space, for which the operators D and 6 can be defined on the path space
over a Lie group, cf. [5], [6], [18], and the discrete probability space of the Poisson
process, cf. [2], [4], [7]. In those settings the distribution of §(h) is given by

E[e®™] = exp (/OOO ‘If(z'h(t))dt) : he H=L*Ry;RY),
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where the characteristic exponent W is W(2) = [|z||*/2 on the Lie-Wiener space, and
U(z) =¢*—2z—1, z€C, (1.2)

in the Poisson case with d = 1.

In order to state our main results we make the following additional assumptions.

(H2) The operator D satisfies the chain rule of derivation
D.g(F) = ¢'(F)D,F, teR,, g€Ci(R), F & Dom(D), (1.3)
where D,F' = (DF)(t), t € R,.
(H3) There exists a covariant derivative operator
V:L2(Q xRy RY) — L2(Q x R, RT @ RY)
with domain Dom(V) such that D, § and V satisfy the commutation relation
Dyo(u) = uy + 6(Viu), (1.4)

for v € Dom(V) such that Viu € Dom(d), t € Ry, where t denote matrix

transposition in R? @ RY.

In this general framework we prove in Proposition 2.1 below the Laplace transform

identity

%E[e)“s(“)] = ME[eMW (I — AVu) " u, u)] + AE [e’\‘s(u)<v*u, D((I — AVu)"u))],

for X\ in a neighborhood on 0, without any requirement on the probability measure pu.
As a consequence of Proposition 2.1, we derive in Propositions 3.3, 4.2 and 5.1 below

a family of Laplace transform identities of the form

SB[ = B [0 (), w)] + B {BM(“) <(I AV, D /Ooo \P(Mt)dtﬂ

FAE [MU (v, D((T — AVu) 'u))] , (1.5)



which hold on both the Lie-Wiener and Poisson spaces. These identities are ob-
tained inductively from the integration by parts (1.1), by removing all occurrences of
the stochastic integral operator ¢ in factor of the exponential ™. We will study

the relations between such identities and quasi-nilpotence and measure invariance in

Corollaries 3.4, 4.3 and 4.5.

On the Lie-Wiener path spaces as well as on the Poisson space, Relation (1.5) involves
a covariant derivative operator V, which appears in the commutation relation (1.4)

of Condition (H3) above between D and §, and the series

e}

(I —Vu)' = Z(Vu)”, HVUHB(R@ <1, (1.6)

n=0

cf. (1.20) below for the definition of the operator (Vu)™ on H. The proof of (1.5)

relies on the relation
(I = Vu) v,u) = (VU (u),v) + <(I - Vu)_lv,D/ooo \I!(ut)dt> : (1.7)

u € Dom(V), v € H, ¢f. Lemmas 3.7 and 4.6 below, which holds on both the path
space and the Poisson space, respectively for ¥(z) of the form W(z) = ||2]|?/2 or (1.2).

Under the condition

(V*u, D((Vu)"u)) = 0, neN, (1.8)
Relation (1.5) reads

9 plew) — B [0 (W (), )] + B [ew <<z 390D [ \11<Aut>dt>] ,

oA
(1.9)
for A in a neighborhood of zero. This is true in particular when (w;);er, is adapted
with respect to the filtration (F;);cr, generated by the underlying process, cf. Lem-
mas 3.5 and 4.4 below, in which case d(u) is known to coincide with the forward

Ito-Wiener, resp. It6-Poisson, stochastic integral of (u)icr, as recalled in Sections 3
and 4.



In Corollaries 3.4 and 4.5 we apply (1.9) to obtain sufficient conditions for the invari-

ance of Gaussian and infinitely divisible distributions on the Lie-Wiener path spaces
o

and on the Poisson space. In particular, whenever the exponent U (A\uy)dt is
0
deterministic, A € R, and Vu satisfies (1.8), Relation (1.9) shows that we have
a o0
_E[e)\é(u)] — E[e)\é(u)]/ <Ut,\1ﬂ<)\ut>>dt
o\ 0
8 oo
= E[eMW)] —/ U(Aug)dt,  NeR,
o Jo

which yields

Ele")] = exp ( /0 N \I/(ut)dt) , (1.10)

oo

i.e. 6(u)is infinitely divisible with Lévy exponent / W(uy)dt. Takingu € (5, LP(Ry)
o >
to be a deterministic function, this also shows that the duality relation (1.1) in Hy-

pothesis (H1) above and the definition of the gradient V characterize the infinitely
divisible law of d(u).

In the Lie-Wiener case we also find the commutation relation

(V*v,(I —Vv)'Du— D((I — Vv) 'u)) = (I — Vo) 'u, Dlogdety(I — Vv)),
(1.11)

cf. Lemma 3.6 below, where

deto(I — Vu) = exp (— i %traee(Vu)”) (1.12)

n=2

is the Carleman-Fredholm determinant of I — Vu, cf. e.g. Chapter 9 of [16].

In this case, Relations (1.11) and (1.12) allow us to rewrite (1.5) as

8 Ao(u)1 Ao (u 1 2 Ao (u —1
5E[e W] = \E e ( )(u,uﬂ + 5)\ E[e ( )<(I — AVu) " lu, D{u, u))] (1.13)

FAE [V u, (I — AVu) ' Du)] — AE [eM((I — AVu) " u, Dlog deta(I — AVu))]

cf. Proposition 3.3, which becomes

a Ao(u)1 Ao (u 1 2 Ao (u -1
5y Ele W] = \E [e <><u,u>]+§AE[e @ {(I — \Du)™"u, D{u,u))] (1.14)
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—E eW“)a% log deta(I — ADu)| — AE [e™{(I — ADu)u, Dlog deto(I — ADu))],

on the Wiener space, cf. Proposition 5.1, in which case we have V = D.

As was noted in [21] the Carleman-Fredholm dets(I — AVu) is equal to 1 when the

trace

trace (Vu)" = / o / <V1nut1, Vi U, Vi Uy ) ragradty - - - diy, (1.15)
0 0

vanishes for all n > 2, and Condition (1.8) can be replaced by assuming quasi-

nilpotence condition
trace (Vu)" = trace(Vu)" *Du = 0, n > 2, (1.16)

cf. Corollary 3.4.

In this way, and by a direct argument, (1.10) extends to the Lie-Wiener space the
sufficient conditions found in [19] for the Skorohod integral §(Rh) on the Wiener space
to have a Gaussian law when h € H = L?*(R,,R%) and R is a random isometry of
H with quasi-nilpotent gradient, cf. Theorem 2.1-b) of [19]. Such results hold in
particular when the process (u¢).cr, is adapted with respect to the filtration (F)icr,
by Lemmas 3.5 and 4.4, and we extend them to the Lie-Wiener space in Section 3.
An example of anticipating process u satisfying (1.16) is also provided in (3.12) below

on the Lie-Wiener space.

The results of this paper also admit various finite-dimensional interpretations. For
such an interpretation, let us restrict ourselves to the 1-dimensional Wiener space,

consider an orthonormal family e = (ey,...,e,) in H = L*(R;;R) and the sequence

Xk:/ ek(t)dt, kzl,...,n,
0

of independent standard Gaussian random variables. We define u to be the process

n

Ut:Z€k<t>fk<X17...,Xn), tER—F?
k=1



where f;, € C}(R"), k =1,...,n. In that case, from (3.2) below we have

n

Doy =Y ex(te(s)ofu( X1, ..., Xo) = (e(t), (Of el (8))pn, st €Ry,
=1

k=1
where

Of = (Oufk)ri=1,..n

denotes the usual matrix gradient of the column vector f = (fi,..., f,)7 on R*. We
assume in addition that 0;fy = 0, 1 < k <[ < n, i.e. df is strictly lower triangular
and thus nilpotent. The divergence operator § is then given by standard Gaussian

integration by parts on R" as

() = Xefe(Xu,- o, Xn) = D Ofu(Xa, o Xn) = Y Xiful(X1, o, Xo).
k=1 k=1 k=1

In that case, (1.8) and (1.16) are satisfied and (1.9) reads, letting z, = (z1,...,z,),

0 1, ) n )
B3\ - exp <—§(931 +o ) +)\;xkfk(xn)> dzy -+ dx,

k=1 k=1 p=0
1 n

X exp (—5(:5% o 2l) A Zmﬁ:(%)) dwy - - - dxy.
k=1

More complicated finite-dimensional identities can be obtained from (1.14) when O f
is not quasi-nilpotent. On the other hand, simplifying to the extreme, if n = 2 and

e.g. fi =0 and fo(z1,x2) = x1, we explicitly recover the calculus result

J 1 o 1
a /R2 exp (/\$1:L‘2 — 5(%% + ZE%)) dridzre = 271.5\/?)\2

1 2mA
= )\/R2 I% €xXp ()\ZL'1$2 — 5(1‘% + l‘g)) dIleL'Q = (1_—/\2)3/2, AE (—1, ]_),

see Section 5 for the case of general quadratic Gaussian functionals in infinite dimen-

sions.

The path space setting of Section 3 is less suitable for finite-dimensional examples as

the Lie-group valued Brownian motion is inherently infinite-dimensional with respect
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to the underlying R%valued Wiener process. To some extent, the same is true of

Poisson stochastic integrals, as they naturally depend on an infinity of jump times.

Indeed, this geometric framework also covers the Poisson distribution in Section 4
via the use of a covariant derivative operator on the Poisson space, showing that the
derivation property of the gradient operators is on the Lie-Wiener space is not char-
acteristic of the Gaussianity of the underlying distribution. The results of this paper
can also be applied to the computation of moments for the It6-Wiener and Poisson
stochastic integrals [14]. A different family of identities has been obtained for Hermite
polynomials and stochastic exponentials in d(u) in [13] on the Wiener space and in
[15] on the path space, see also [10] for the use of finite difference operators on the

Poisson space.

This paper is organized as follows. This section ends with a review of some nota-
tion on closable gradient and divergence operators and their associated commutation
relations. In Section 2 we derive a general moment identity of the type (1.5), and
in Section 3 we consider the setting of path spaces over Lie groups, which includes
the Wiener space as a special case. In Section 4 we show that the general results
of Section 2 also apply on the Poisson space. Finally in Section 5 we prove (1.14)
and recover some classical Laplace identities for second order Wiener functionals in

Proposition 5.2.

We close this introduction with some additional notation.

Notation

Given X a real separable Hilbert space, the definition of D is naturally extended to

X-valued random variables by letting

DF =) x;® DF, (1.17)

k=1



for F € X ® S C L*(Q; X) of the form

F:ixﬂ}@ﬂ
k=1

T1,..., 0, € X, F,...,F, €S. When D maps § to § ® H, as on the Lie-Wiener
space, iterations of this definition starting with X = R, then X = H, and successively

replacing X with X ® H at each step, allow one to define
D": X ®8 — L*( XQH®™)

for all n > 1, where ® denotes the completed symmetric tensor product of Hilbert
spaces. In that case we let D, ;(X) denote the completion of the space X ® S of

X-valued random variables under the norm

k
lello, 0 = D IDull @ xemen, P21, (1.18)
1=0

with
Doo p(X) = [ Dpur(X),

k>1
and D, = D, 1(R), p € [1,00], k > 1. Note that for all p, ¢ > 1 such that p~'+¢~* =1
and k > 1, the gradient operator D is continuous from D, ;(X) into Dy ;1 (X®H)
and the Skorohod integral operator § adjoint of D is continuous from D, ;(H) into
Dy 1.
Given u € Dy (H) we also identify
Vu = ((s,t) — Viug)ster, € HQH

to the random operator

Vu: H— H

ur— (Vu)v = (Vu)vs)ser, ,
almost surely defined by

(Vu)vg == / (Viug)vedt, seR,, veH, (1.19)
0
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in which a ® b € X®H is identified to a linear operator from ¢ ® b : H — X via
(a®b)c=alb,c)y, a®be X®H, cé€H.
More generally, for u € Dy (H) and v € H we have
(Vu)kv, = /000 e /OOO(VtkuSVtk_lutk oo Vi gy oy, dity - - - dty,, seR,, (1.20)

1.e.

(Vu)k = ((8, t) — / s / (Vtkusvtk_lutk e VtUtQ)dtQ ce dtk,) S H®H,
0 0 s,teR,

k > 1. We also define
V*u :=((s,t) —> Vlut)S,tEM € HRH

where Viu, denotes the transpose matrix of V,u; in R? ® R, s, € R, and we

identify V*u to the adjoint of Vu on H which satisfies
(Vu)v, hyg = (v, (V*u)h) g, v,h € H,
and is given by
(Vu)v, = /M(Viut)vtdt, seRy, veLl*(W;H). (1.21)
0

Although D is originally defined for scalar random variables, its definition extends

pointwise to u € Dy 1 (H) by (1.17), i.e.

D(u) = ((s,t) = Dyus)sser, € HOH, (1.22)
and the operators Du and D*u are constructed in the same way as Vu and V*u in
(1.19) and (1.21).

The commutation relation (1.4) shows that the Skorohod [17] isometry
E6(u)’] = E[{u,u)y] + E [trace(Vu)?], uel, (1.23)

holds, with
trace(Vu)* = (V*u, (Vu)*1), k> 2.

10



As will be recalled in Sections 3 and 4, such operators D, V, § can be constructed in
at least three instances, i.e. on the Wiener space, on the path space over a Lie group,

and on the Poisson space for £ = 1. In the sequel, all scalar products will be simply
denoted by (-, ).

2 The general case

The results of this paper rely on the following general Laplace identity (2.1) for the
Skorohod integral operator 9, obtained in Proposition 2.1 using the adjoint gradient D
and the covariant derivative V under Conditions (H1), (H2) and (H3) above. Here
we do not specify any underlying probability measure on €2, so that the characteristic

exponent W(z) plays no role in this section.

Proposition 2.1 Let u € D (H) such that for some a > 0 we have E[e?¥®]] <
0o, and the power series (1.6) of (I — AVu) 'u converges in Do (H) for all X €
(—a/2,a/2). Then we have

QE[e’\‘s(”)] = AE[MM((I — AVu) u,u)] + AE [eX(V*u, D((I — AVu) 'u))]

O\
(2.1)
for all A € (—a/2,a/2).

In Sections 3 and 4 we will describe the applications of Proposition 2.1 successively
on the Lie-Wiener path space, on the Wiener space, and on the Poisson space. In
order to prove Proposition 2.1 we will need the moment identity proved in the next
Lemma 2.2.

Lemma 2.2 For anyn € N and F € Dy, u € D 12(H), v € Dyyq 1 (H), we have

- n!

E[F§(u)"s(v)] = il [Fo(u)™* ({(Vu)* o, u) + (V*u, D((Vu)* " 0)))]
+> (n%'k).E [0(w)"((Vu)*v, DF)]. (2.2)

Proof. We have (Vu)*~1v € Dins1)/k,1(H), 6(u) € D1y /(m—k+1),1, and by Lemma 2.3

below we get
E [F5(w){(Vu)'v, Dé(u))] — LE [F&(u) (V) v, Dé(u))]

11



= E[F§(uw){(Vuv,u)] + E [FS(uw)!{(Vu)'v,6(V*u))]
—IE [Fé(u)l_l((Vu)”lv,uﬂ —lE [F(S(u)l_1<(Vu)i+1v,5(V*u)>}
= E[Fé(uw){(Vu)v,u)] + E[F5(w)(V*u, D((Vu)'v))] + E[0(w)((Vu)*'v, DF)],

and applying this formula to | =n — k and : = k — 1 via a telescoping sum yields

E[FS(u)"6(v)] = E[F(v, Dé(u)")] + E[6(u)" (v, DF)]
= nE[F§(u)" v, D5(u))] + E[§(u)"(v, DF)]

n

= Z n T 3l (E [Fd(u)"’k«Vu)k’lv,Dé(u)ﬂ —(n—k)E [Fd(u)”’k’1<(Vu)kv,Dé(u)ﬂ)
+E[6(u)" (v, DF)]

3 o (B IFBG™ (T )] + B [F3()"™ (9w, D((T)* )]

k=1

Lemma 2.2 coincides with the Skorohod isometry (1.23) when n = 1.

Proof of Proposition 2.1. We start by showing that for any u,v € Dy 1(H) such that

the power series of (I — Vo) lu converges in Dy (H) and E[e??®)] < 0o, we have
E[6(u)e®™] = E[e®™((I — Vv) u,v)] + E [@(V*v, D((I — Vv) )] . (2.3)

Indeed, Lemma 2.2 shows that

- 22 ﬁE [3(0)" ™ (Vo) 0) + (V70 D((Vo)* ) )]

= Y E[Y (Vo) u,v) + (V'o, D(Vv)F )]
= B[ - Vo) lu,0)] + E [65(”)(V*U,D((I — Vo) )] .

Hence, applying (2.3) for u = v we get
9,

—SEM] = El5(u)e™ ) (2.4)

12



= AE[M((I — AVu) tu,u)] + B [V u, D((I — AVu) 'u))]

A€ (—a/2,a/2). O
Finally we prove the next Lemma 2.3 which has been used in the proof of Lemma 2.2

and extends Lemma 3.1 in [11] pages 120-121 to include a random variable F' € Dy ;.

Lemma 2.3 Let F' € Dy, u € Dypy12(H), and v € Dy yq1(H). For all i,1 € N we

have

E[F§(w){(Vu)'v,5(V*u))] — IE[FS§(u) ™ ((V*u) v, 6(VFu))]
= E[FS§(u) {((Vu) ™ v, u)] + E[5(u){((Vu) ™ v, DF)Y] + E[F§(u) (V*u, D((Vu)™))].

Proof.  Using the duality (1.1) between D and 9§, the chain rule of derivation (1.3)

and the commutation relation (1.4), we have

E[FS(uw){(Vu)'v,8(V*u))] — LE[FS(uw) " {(V*u) "o, 5(Vu))]

= E[(V*u, D(Fé(u) (Vu)'v))] — LE[Fo(u) " ((Vu)" o, 6(Vu))]

= IE[F&(u)~(V*u, (Vu)'v @ D6(w))] — LE[FS(u) = {(V*u) v, §(Vu))]
+E[6(uw) (V*u, D(F(Vu)'v))]

= IE[FS§(w)"" V" u, (Vu)'v @ u)] + IE[F5(u)(V*u, (Vu)v @ §(V*u))]
—IB[F5(u)' (V' u) " o, 8(Vu))] + Bl6(w) (V*u, D(F(Vu)'v))]

= 1B[F(u) ™ {(Vu) v, u)] + E[5(u)((V )”1'0 DF)]
+E[F§(u)(V*u, D((Vu)'v))].

O

In the following sections we will reconsider Proposition 2.1 and its consequences in

the Lie-Wiener and Poisson frameworks.

3 The path space case

Let G denote either R? or a compact connected d-dimensional Lie group with associ-
ated Lie algebra G identified to R? and equipped with an Ad-invariant scalar product
on RY ~ G, also denoted by (-,-), with H = L?(R,;G). The commutator in G is

13



denoted by [-,] and we let ad (u)v = [u,v], u,v € G, with Ade* = €%, u € G. Here,
U(z) = [lz]?/2.

The Brownian motion (y(t))¢cr, on G is constructed from a standard Brownian motion

(Bi)ier, via the Stratonovich differential equation
dy(t) = ~(t) © dB;

7(0) =e,

where e is the identity element in G. Let IP(G) denote the space of continuous G-valued
paths starting at e, endowed with the image of the Wiener measure by the mapping

I: (By)ier, — (7(t))ser, . Here we take

S={F=f(yt),....,v(ta)) : FfeCCGM},

and
Z/{:S®H:{ZU1E . FZ'ES, uleLz(R+,Q),z:1,,n,n21}
=1

Next is the definition of the right derivative operator D, which satisfies Condition (H2).
Definition 3.1 For F of the form
F=f(yt),....vt)) €S, feG(G"), (3.1)
we let DF' € L2 (2 x Ry;G) ~ L?(Q; H) be defined by
(DF) = F (A Bt () ) e P(RLLG)
Y dg Y Y |E:O Y )

For F of the form (3.1) we also have

DF =Y 0:if(y(t), - y(ta)Lpag(t), >0 (3.2)
i=1
The operator D is known to admit an adjoint ¢ that satisfies Condition (H1), i.e.
E[Fé(v)] = E[(DF,v)], Fe€S, veLl*Ry;G), (3.3)

14



cf. e.g. [5]. The operator D is linked to the Malliavin derivative D with respect to
the underlying linear Brownian motion (By)icr, , cf. (5.1) below, and to its adjoint 0,

via the relations

(h, DF) = (h, DF) + & ( / | ad(h(s))dsf).F) . hem, (3.4)

0

cf. e.g. Lemma 4.1 of [9], and

§(hF) =6(hF) =0 (/ ad(h(s))dsD_F) ., heH,

0
which follows from (3.4) by duality. When (u;)cr, is square-integrable and adapted
with respect to the Brownian filtration, §(u) coincides with the It integral of u €

L*(Q; H) with respect to the underlying Brownian motion (B)scr, , i.€.

(S(U) = / utdBt.
0
Definition 3.2 The operator V : Dy (H) — L*(Q; HQH) is defined as
Veuy = Dguy + 1 4(s)adu, € G ® G, s, t € Ry, (3.5)
u € ID)QJ(H).
In other words we have
(61 @ 5, T, (uF) (D)) = (e, e5){ess DF) + Lg.g(s)Fles, ad (es)u),

i,j=1,...,d, where (e;);=1.. 4 is an orthonormal basis of G and adu € GR G, u € G,

.....

is the matrix
({ej,ad (e;)u))1<ij<a = ({e5, i u]))1<ij<a-

The operator ad (u) is antisymmetric on G because (-,-) is Ad-invariant. By (3.5),
(Vujoi= [ (Vauds, ek,
0

is the covariant derivative of u € U in the direction v € L*(R;;G), with V,u €
L*(Ry;G), cf. [5]. Note that if u; is F;-measurable we have

Viuy = Dguy + 19 (s)aduy = Dyuy = 0, s> t. (3.6)
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It is known that D and V satisfy Condition (H3) and the commutation relation (1.4),
as well as the Skorohod isometry (1.23) as a consequence, cf. [5]. Proposition 3.3 below

is a corollary of Proposition 2.1 and it yields (1.13) on the Lie-Wiener path space.

Proposition 3.3 Let u € Dy o(H) such that E[e?®®™]] < oo for some a > 0. We

have

%E[e’\‘s(“)] = \E[(u, u)eM®] + %)\QE[GM(U)«[ — AVu) M, D(u, u))] (3.7)

FAE [0V u, (I — AVu) ' Du)] — AE [eM((I — AVu) ', Dlog deta(I — AVu))]

for X € (—a/2,a/2) such that |\| < HVuH]Ig;l(H).

Proof. Let u € Do (H) and v € Dy o(H) such that |[Vulp, ) < 1, and

E[e2PWI] < 0o. From Relation (2.3) above and Lemma 3.7 below we have

E[5(u)e®™] = E[e®™ (I — Vv)lu,v)] + E [65(”)<V*v, D((I = Vv) 'u))]
= E[(u,v)e®™] + %E[e‘s(”)«f — V) u, D(v,v))] + E [®(V* 0, D((I — Vv)'u))] .

As a consequence of Lemma 3.6 below, this yields

E[5(u)e®™W] = E[(u, v)e’™] + %E[e‘s(”)«I — Vo) tu, D(v,v))] (3.8)

+E [®(V*0, (I — Vo) ' Du)] — E [e®((I — Vv) ™ u, Dlog dety(I — Vv))] .

Next, taking v = \u with |\| < ||VU||]5; Ly 10 (3.8), we get

%E[e’\(s(“)] = E[(S(u)e)‘5(“)]
1
= \E[(u,u)eM™] + §A2E[e)‘5(“)(([ — A\Vau) tu, D{u, u))]
+AE [e’\d(“)<v*u, (I — AVu)"'Du)]
—\E [e’\‘s(“)«f — AVu) " 'u, Dlog dets(I — AVu))]
which yields (3.7). O

When the operator Vu : H — H is quasi-nilpotent in the sense of (1.16), Proposi-
tion 3.3 shows that

a Ao(u)1 Ao (u 1 2 Ao (u -1
aE[e W] = XE[(u, u)e*®] + 5)\ E[eMW (I — \Vu)  u, D{u,u))], (3.9)
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which is (1.9) with ¥(z) = ||z||*/2.

In particular we have the following result, cf. Theorem 2.1-b) of [19] on the commu-

tative Wiener space.

Corollary 3.4 Letn > 1 and u € D, 41 2(H) such that (u,u) is deterministic and
trace (Vu)® = trace(Vu)*'(Du) =0, a.s., k>2. (3.10)

Then 6(u) has a centered Gaussian distribution with variance (u,u).

Proof. Proposition 3.3 and Relation (3.9) show that when (u, u) is deterministic and
u e ID)QJ(H),

%E[em(“)] = \Mu, u) E[eMW)], A eER,

under Condition (3.10), which implies
E[ez\é(u)] _ 6)\2(u,u>/2’ = ]R,

from which the conclusion follows. O

Condition (3.10) holds in particular when the process (u)«cr, is adapted, according

to the next Lemma 3.5 which follows from (3.6).

Lemma 3.5 Assume that the process w € Dy (H) is adapted with respect to the

Brownian filtration (F;)ier, . Then we have

trace(Vu)* = trace(Vu)*"'(Du) = 0, k> 2. (3.11)

Proof.  For almost all ¢y,...,tx 1 € Ry there exists ¢ € {1,...,k + 1} such that
ti > 111 mod k415 and (36) yields

vtiuti-H mod k41 th‘ Ut; 11 mod k+1 + 1[07ti+1 mod k+1] (tl)
= Dti uti+1 mod k+1
= 0,
SINCE Uy, ppr 15 Ftypimoq nia-Measurable because (uy)ier, is Fi-adapted, and this
implies (3.11) by (1.15). O
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Example

An anticipating example for Corollary 3.4 can be constructed by considering two
orthonormal sequences (eg)ren and (fx)ren that are also mutually orthogonal in H,
and such that the sequence (eg)rey C E is made of commuting elements in G, while

(ex)keny may not commute with (fx)ren. We let

u=>YApe, €Dy (H) (3.12)
k=0

where (Ay)ren is a sequence of o((f;) : k € N)-measurable scalar random variables,

satisfying

o0

Z|Ak|2 =1, a.s.

k=0

Then we have ||u|lg =1, a.s.,

Vt2ut3 = Z €k (tg) & thAk + 1[07t3](t2) Z Akad €k (tg)

k=0 k=0
= ) (DA, f)e(ts) ® filts) + Lpoa(t2) > Apader(ts), ot € Ry,
=0 k=0
and
Dy, = Y en(ta) @ Dy Ay = Y (DA, fler(tz) ® filt),  tita € Ry,
k=0 e l=0
hence

VutSthu = / Vt2ut3 Vt1Ut2dt2
0
= / (DtQut3 + L0,44] (tQ)adutg) (Dtlth + 1[o,t2](t1)adut2) dty
0

= / _Dt2 Uty Dtlth dtg
0

- Z (DA, i) (DA, fo)([q, ex)ep(ts) @ filt1)

P,q,k,1=0
= 0, t1,t3 € Ry,

18



since [ug,, ut,] = 0, to,t3 € Ry, Similarly we have Vuy, Dy u = 0, t1,t3 € R, and this
shows that (3.11) holds.

Next we state and prove Lemma 3.6 which has been used in the proof of Proposition 3.3

and corresponds to the commutation relation (1.11).

Lemma 3.6 Let u € Dy 1(H) and v € Do o(H) such that ||Vv|lp, ,z) < 1. Then

we have
(V*o,D((I — Vv)tu)) = (V*v,(I — Vo) ' Du) — ((I — Vv)'u, Dlogdety(I — Vv)).
(3.13)

Proof. By the commutation relation V D, = D,V s,t € Ry, forall 1 < k < n we

have

(T DT ) = [ [Tt Do (T Vit i
0
= / / vtkUtk_H, Vtk_lutk cee Vtoutl Dtk+1vt0>dt0 cee dtk+1

+/ T / <vtkutk+17 Dtk+1 (vtkflutk T Vtoutl)vto>dt0 o dbgg
0 0

= trace((Vu)*'Dv) + kz:i /0°° - /ooo

<Vzkut1€+17 vtk+1utk+2 ' vt (Vt Dtk+1ut )vtifluti T v1‘/0utlvlﬁo>dto o 'dtk+1

2+1 z+2

= trace((Vu)* ' Dv) + y —/ /

<Vt¢ <V:5rkutk+17 Vtk+1utk+2 Vi

k—1

1+1

i+1 z+2vtk+1utz+l>7 vti—luti e Vtoutlvt())dto o dtk+1

1
_ k+1 k+1—1
= trace((Vu)" " Dv) + ;m((VU) v, Dtrace (Vu) )
which shows that
B
(V*u, D((Vu)*v)) = trace ((Vu)* Dv) + Z ((Vu)*=%, Dtrace (Vu)?),
1=2
k € N. This yields
(V*o, D((I = Vv) 'u)) =Y (V*v, D(Vv)*u) (3.14)
k=0
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NE

trace ((Vo)*™ Du) + Z Z 1

oo k+1

((Vo)F+1="y, Dtrace (Vo)™)

k=0 k=0 n=2 n
_ %<(1 Vo), Do, v))

+(V*v, (I — Vv) ' Du) + i %((I — Vv)~tu, Dtrace (Vov)™)
= (V*v, (I —Vv) ' Du) — ((Ii— Vo)~ tu, Dlogdety (I — Vo)),

where we used the relation

Dlogdets(I — Vo)

that follows from (1.12).

Z —Dtrace(Vo)",

n= 2

O

Next we prove Lemma 3.7 which has been used in the proof of Proposition 3.3, and

corresponds to (1.7) on the path space with W(z) = ||z]|*/2.
Lemma 3.7 For any u € Do (H) with [|Vul[2@2) <1 a.s., we have
(I = Vu) v,u) = (u,v) + %((I — Vu) v, D(u,u)), veH.
Proof. We first show that
(Va)o, u) = %@, Du,u)),  weDyi(H), veH. (3.15)
Indeed we have
(Vu)u, = /00 Vo) ugds
= h (Dyus) Tugds + /OO 10,4 (t adus) usds
0 0
= h (Dyug) ugds — /OO 1j,4(t)ad (us)usds
= /OO Dyuy) fugds
= (;7 w)uy,
hence by the relation
Dy(u,u)y = /Oo Dy(ug, ug)pads
0
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we get

= 2/ (D} uy)u,ds
0
= 2(D"u)uy,

1
(V*u)ut = §Dt<u7 U>, te RJm

and by integration against

v(t)dt we find that

(Vu)v,u) = ((V*u)u,v) = ((D*u)u,v) = %@, D{(u,u)).

In addition, (3.15) easily extends to all powers of Vu as

((Vu)",

Hence for any u € Dy 1 (H)

(I — Vu) v, u)

u) = %((Vu)”lv,Dw,u)), N>l

such that ||Vu|p_ ) < 1 we have

= (u,v) + % Z((VU)"U, D(u,u))

= (u,v) + %((I — Vu) v, D(u,u)),

4 The Poisson case

v e H.

(3.16)

(3.17)

(3.18)

Conditions for the Skorohod integral on path space to have a Gaussian distribution

have been obtained from (2.2) in Section 3 and Corollary 3.4. In this section we show

that the general framework of Section 3 also includes other infinitely divisible distri-

butions as we apply it to the Poisson space on R, with U(z) = e* —x — 1.
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Let (N;)ier, be a standard Poisson process with jump times (7})i>1, and Ty = 0,
generating a filtration (F;);cr, on a probability space (€, F, P). The gradient D
defined as

. n o
DiF = =3 L) (Th,- . To), (4.1)
k=1
for
FeS={F=f(T,....,T,) : feC°R"},

has the derivation property and therefore satisfies Condition (H2). In addition, the
operator D has an adjoint ¢ that satisfies (1.1) and Condition (H1), cf. [2], [4], [7],
and § 7.2 of [12]. Moreover, § coincides with the compensated Poisson stochastic

integral on square-integrable adapted processes (u¢).cr, , i.e.

5(u) = /O " wd(N, — 1),

The next definition of the covariant derivative V in the jump case, cf. [8], is the

counterpart of Definition 3.2. Here we let

Z/{:{ZUZFZ« . FeS ueClRy),i=1,...,n, nzl}.
i=1

Definition 4.1 Let the operator V be defined as
Vg = Dguy — UL q(s), s, teR., uel, (4.2)
where 1y denotes the derivative of t — u; with respect to t.

In other words, given a vector field u € U of the form u = Z F;h; we have

=1
@sut = Z h’l(t)DsFl - Ehz(t)l[O,t}(S)a s, t € R-i—a
=1

and

(Vu)y, = / 05V suds, teR,,
0

is the covariant derivative of u € U in the direction v € L?(R,), cf. [8]. The operator
D defines the Sobolev spaces ]f))m and ]f))m(H ), p € [1, 00], respectively by the Sobolev
norms

1Fll5,, = 1Flleo@ + |1 DF o, F €S,
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and
1/p

00 p/2
(/ t|at|2dt) :
0

lullp, , iy = Nl e + 1Dull oo, nem + £

u € U, with
Dec,i(H) = [\ Dy (H).

p>1
In addition, the operators V, §and D satisfy the Skorohod isometry (1.23) under the

form

E[b(w)Y] = E[(u,u)y) + E { /0 h /0 b @Sut@tusdsdt} . ue Dy (H),

and the commutation relation

Dtd(’U/) = U + g(@tU), te R+,

which is the commutation relation (1.4) in Condition (H3), for u € Dy (H) such that
Vi € Dy (H), t € Ry, cf. Relation (3.6) and Proposition 3.3 in [8].

As a consequence of Proposition 2.1 we have the following result, which yields (1.5)

in the Poisson case with U(z) =e” —z — 1.

Proposition 4.2 Letu € }ﬁ)ooﬂl(H) such that the power series (I—AVu) ™ u converges
in Doy (H), and

o )\n 00 .
> W/ [ |y, dt < 00, A€ (—a/2,a/2),
n=2 *J0

and E[e?®™] < oo for some a > 0. Then we have

QE[GAS(U)] _ E[e)\é(u)<€)\u . 17 u>]

O\
+E {e)‘s(“) <(I — A\Vu) D/ (eMt — uy — 1)dt>}
0

+A\E [e’\g(“)<?*u,l~)((l_ - )\@U)flu»] :

for X € (—a/2,a/2) such that |\| < ||@u||;jo(Q HoH)

Proof. We apply Proposition 2.1 and Lemma 4.6 below. O
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As a consequence of Lemma 4.4 below, when (u;)cr, is adapted with respect to the

Poisson filtration (F;)cr, , we have
(V*u, D((I — A\Vu) ")) =0,

in which case Proposition 4.2 yields

QE[eWu)] = B[N 1, u)|+E [ewu) <(1 — AVu) ', D /0 (M — Auy — 1)dt>] :

(4.3)

which is (1.9) on the Poisson space.

The next consequence of Proposition 4.2 is the Poisson analog of Corollary 3.4. It

applies in particular to adapted process by Lemma 4.4 below.

Corollary 4.3 Let (u;)icr, be a process in Do 1 (H) that satisfies Condition (4.4),
i.e. (V*u, D((Vu)*u)) =0, k > 1, and assume that [, (u,)'dt is deterministic for all
7 > 1 and such that

(e 9] An o0
S 2 [ ot < o
2 n: Jo

A€ (—a/2,a/2), and E[e™®] < oo for some a > 0. Then 6(u) has an infinitely
divisible distribution with cumulants {0, [[°(u)'dt, i > 2}.

Proof. Proposition 4.2 and Relation (4.3) show that

d A6 (u) Au A0 (u)
il 1
)\E[e | = (e ,uyEle™™]

as n goes to infinity, which yields

E[eM®] = exp (/Ooo(emt — My — 1)dt> . A€ (—a/2,a/2),

from which the conclusion follows. O

The next lemma is the Poisson analog of Lemma 3.5 on the Lie-Wiener space.

Lemma 4.4 Let u,v € DooJ(H) be two processes adapted with respect to the Poisson
filtration (F)ier, , such that (@u)”u €Dyi(H), n>1. Then we have

(V*u, D((Vu)*v)) = 0, k € N. (4.4)



Proof. 'The proof of this lemma differs from the argument of Lemma 3.6 in Section 3
due to the fact that here, Dyu, and Vu, defined by (4.1) and (4.2) no longer belong

to DQJ, and D does not commute with V. We have

Vsut = Dsut = 0, S Z t,

since (ut)ier, is Fi-adapted. Hence for all & > 1 we have, with the convention

f;f(s)ds =0 for a > b,

o0 tr 5 B th_1
+ / Vo Vi, U Dtk/ / Vtk GUgy | Vtouhdtodtl"'dtk
0o Jo

') to N
/ / (Dtkvto / / Vtk 1 Vtoutldtl dtkdt()
to
/ (% / / Vtk 1 Dtk / / Vtk T Vtoutldtl dtkdto
to
= / (N / / Vtk 1 Dtk / cee / @tk72utk71 s @toutldtl s dtkdto
0 to to to

since
tr to B B
/ .../ vtk—Qutk—l ”'Vt()utldtl ”'dtk;—l
to to
is Fi, -measurable, cf. e.g. Lemma 7.2.3 in [12]. O

Examples of processes satisfying the conditions of Corollary 4.3 can be constructed
by composition of a function of R, with an adapted process of measure-preserving

transformations, as in the next consequence of Corollary 4.3, cf. also (4.5) below.

Corollary 4.5 Let T > 0 and 7 : [0,T] — [0,T] be an adapted process of measure-

preserving transformations, such that 7, € HS)OOJ, t e R, with

00 A" T
Z —'/ ”TZLHLZ(Q)dt < 00,
o n: Jo

25



X € (—a/2,a/2), for some a > 0. Then for all f € C([0,T]), 6(f o 7) has same

distribution as the Poisson stochastic integral d(f).

Proof. We check that f o7 € Dy (H) by (1.3) and

S [t = XA [ I et
n=2 n=2
T B 0o )\n 1
e [ 1Dl e S A
0 n=2
< 00,

A € (—a/2,a/2), hence Corollary 4.3 can be applied as the condition E[e?®|] < oo
follows from |6(f o 7)| < || f|lee(T + Nr). O

As a consequence of Corollary 4.5 the mapping 7, — 7(7},) preserves the Poisson
measure, see e.g. Theorem 3.10.21 of [1] for the classical version of the Girsanov the-

orem for adapted transformations of jump processes.

As an example of a process to which Corollary 4.5 can be applied, we can take

T = tl[O,Tl](t) + (2t — T]_)]_(T17T1/2+T/2] (t)
—|—(2T + 17 — 2t)1(T1/2+T/2,T] (Zf) + t]-(T\/Tl,oo) (t), (45)

t € R, for some T" > 0.

The following Lemma 4.6 has been used in the proof of Proposition 4.2, is the analog
of Lemma 3.7 in the Lie-Wiener case and corresponds to the Poisson space version of

the general identity (1.7). We note that

(Vu)u, = / wsViusds
0

= / usﬁtusds—/ UglgdS
0

t
1, 1 %
= = = Dyud
2ut+2/0 (UL AS
1 1~

= éu?+§Dt<u7u>7
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for all u € Dy, (H), which corresponds to (3.16) on the Lie-Wiener space, and implies

1 1
§<U7u2>+§<va<u>u>>7 veEH,

provided v € L*(Ry) N L*(R,) a.s., cf. (3.15) on the Lie-Wiener space. In the next

((@u)v, u)y =

lemma we show that this relation can be extended to all powers of Vu as in (4.7)
below, although the extension is more complex to obtain than (3.18) in the path

Space case.

Lemma 4.6 Let u € Dy (H) such that

o 1 [e's)
S | s, <
n=2

and H@UHLOO(Q;H@)H) < 1. We have

(I = Vu) v, u) = (e* —1,v) + <(I — @u)lv,[?/ooo(e“f — U — 1)dt> . (4.6)
veH.

Proof.  We begin by showing that for all n € N and u € Dy, (H) such that u €
22 LF(Ry) a.s. we have

n+1

~ 1
(Vu)"v,u) = m/ uMv,ds + Z a < (V)" D/ > : veH.
(4.7)
For all n > 1 we have
(6*11,)”’&750 = / tee / utn@touh@tlutz tee @tn_lutndtl tet dtn, (48)
0 0

and we will show by induction on 1 < k < n + 1 that we have

( ) g, Zz'/ / Vtout1 Vi i lDtHHu;nM_idtl...dtn_i

/ / utnﬂ kvtoutl . thfkutnﬂikdtl cee dtn+1,k, (49)

which holds for k& = 1 by (4.8), and yields the desired identity for k = n + 1. Next,
assuming that the identity (4.9) holds for some k € {1,...,n}, and using the relation

vtnfkuthrlfk = Dtnfkuthrlfk - l[ovtn+1—k](tn*k>utn+17k7 bk lnt1-k € R+>
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we have

k
5 1 00 0o B '
n _ (2
u) uto — g ﬁ PN vtout1 e th i Wt 1o thnJrlfiuthrQ,idtl
; +JO 0
=2

1 oo oo B B
+E /O cee /0v Ufnﬂikvtoutl s thikutn+17kdt1 s dthrl,k

k 1 9] 0o B
_ A
= E 5 / cee / Vtoutl tee th iUty ZDtn+17iutn+27idt1 cee dthrQ,i
; *JO 0
=2

o dlygo—;

1 oo oo B B B
k
+E / cee utn+17kvt0ut1 s th—k—lutn—thn—kutn+1—kdt1 s dthrlfk
*JO 0

1 o o0 o
. k ad nd
—y/ / / Up, Uy VigUe - Vi, U, dby - dlp g
‘ 0 0 th—k

k 1 00 oo 5 '
= z : ﬁ / e / v1‘/‘O’ut1 e vtn i n+1 thn+17iu;n+2,idtl U dtn+272

+(k + 1 / / Vtoutl -V k71utn7th uf+1 dtl cee dtn+1,k

(k+1 / / Vit “tnk/t _k(“?+l>’dtdt1--~

n
k+1

= E :'l' / / Vtouh vtn zutn+1 thn+1 zutn+2 d 1 e dtn+2—i

k+1 O
utn_kvtoutl e vtn

utn_kdt1 ce dtn_k

—k—1

— l *, \n+1—1i / 1 =x \n—k, k+1
= le) D, ud8+(k+1)!(Vu) ubt,

=2
which shows by induction for £k = n that

n+1

n+1 * n+17,
+ZZ|V D/ u'ds, te Ry,

(V*u)"uy = T

and (4.7) follows by integration with respect to t € R.

Next, by (4.7), for all w € Dy 1 (H), v € H and n € N, by (4.10) we have

o0

(I = Vu)  v,u) = Z((@u)”v,u)

n=0
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00 oo n+1
= ”+1vsd8 + ZZ i < )y D/ >
0

n:O n=0 =2

= (e"—1,v) + Z l' <(I — @u)_lv,[)/ uﬁdt>
il 0

= (" —1,0) + <(1 —Vu)"'v,D /Ooo(ew oy — 1)dt> ,

which shows (4.6). O

We also have the following moment identity, which is the Poisson analog of Propo-
sition 1 in [15], cf. also Lemma 1 of [10] for another version using finite difference

operators.

Corollary 4.7 For anyn > 1, u,v € ]]~)n+172(H) and F € IB)QJ we have

+§; e T D g%E {Fg(u)”_k <(W)’Hv, D /0 T ds>]

Proof.  This result is a consequence of Lemma 2.2 associated to Relation (4.10).

O

5 The Wiener case

In this section we consider the case where G = R? and (v(t))ier, = (Bi)ier, IS a
standard R%valued Brownian motion on the Wiener space W = Cy(R, R?), in which

case V is equal to the Malliavin derivative D defined by

DtF = Z 1[0,%‘] (t>azf<Bt17 BRI Btn)7 le RJr? (51)

i=1
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for I’ of the form

F = f(By,...,By,), (5.2)
feCPR, X), ty,...,t, € Ry, n>1. Let & denote the Skorohod integral operator
adjoint of 15, which coincides with the Ito integral of u € L*(W; H) with respect to
Brownian motion, i.e. .

o(u) = / wd By,

when u is square-integrable and adapted \gfith respect to the Brownian filtration. As
a consequence of Proposition 3.3 we obtain the following derivation formula, which

yields (1.14).

Proposition 5.1 Let u € Dy o(H) such that E[e?®®™]] < oo for some a > 0. We
have

. . 1 - R .
%E[e’\‘s(“)] = A\E[(u,u)eM™W] + §A2E[e)‘5(“)((l — ADu) " u, D{(u, u))]

—\E [e)“g(“)% log deto (1 — Aﬁu)]

\E [6*5@((1 “ADuw)u, Dlogdets(I — ADu))|,  (5.3)

for u € Do o(H) such that E[e™!] < oo for some a > 0 and X\ € (—a/2,a/2) such
that |\ < |]Du||H;;71(H),

Proof. We apply Proposition 3.3 with V = D, and use the equality

d a = n—1 N, \ 1
5logdet2(1—)\Du) = —Z)\ trace (Du) (5.4)

n=2
= =) _ANDu, (Du)"™)
n=2
= —\ND*u, (I — ADu) ' Du), A € (—a,a),
that follows from (1.12), O

Next we show how (5.3) can be used to recover some known results on the Laplace

transform of second order Wiener functionals of the form

A~ ~

0(¥) +6(3(9))

where ¢y € L*(R;) and ¢ € L*(R%), cf. e.g. [3].
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Proposition 5.2 Lett € L*(Ry) and ¢ € L*(R?Y) such that ||| 2@z ) < 1. We have
Blfo+seen - L dwu-ete) (5.5)
detg(I - qb)
Proof. We let uy = %3(¢(-,t)), t € R, and we start by showing that
5w !
E[d®)] = . (5.6)
\/detg(l — 2Du)

Since Du = ¢/2 is deterministic, by Proposition 3.3, Relation (5.3) we have

A

E[6(u)eX™] = AB[(u, u)e®)] + %QE[MM(J — ADu) " u, D{u, u))]
FAE[MW](D*u, (I — A\Du) ™" Du)
= AE[{(I = ADu) (I = ADu)u, u)eM¥™] + N2E[M™ (I — ADu) " u, (Du)u)]
+)\E[ M (D*u, (I — ADu) ™" Du)
E[((I = ADw) ™", w)e* ™) + AE[e®)(D*u, (I — X\Du)™ Du)
= AE[((I = A\Du)™*Du, §(u))eM®] + 2AE[eM®]((I — A\Du) ™ Du, Du),  (5.7)

~ A

Uglly = 5(Dus)<§(f)ut) = 5(Dus<§(Dut)) + (ﬁus, ﬁut> = ﬁusg(ut) + (ﬁus, ﬁut)

Hence by repeated application of (5.7) we get

9 Ao(u) ¢ Ab(u)
S B = Elb(uw)e™)]

= 2\E[M®)] i(f)*u, ((I = ADu)*Du)"((I — ADu)"*Du))

= 2E[M™)(D*u, (I — 2ADu) "' Du)

10 .
- -9 I —2\D
5B og deta( ADu),

and (5.6) holds. Next, since Du € L*(R2) is deterministic and u = §(Du), from
(3.14) we have, for ¢ € L*(R,),

E[3()e 0] = B[ + u, )X
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+%E[6A5(1/))+5(U)<(1 — Du)™Yy, f)<w + u, N+ u))]
= M) B0 4 El(u, )W) 4 MBI (1 — Du) ™, D(th, )]
% E[eMWH (1 — D)=, D{u, u))]

= AW, ) B[N0 4 (1 - Du)*lw (Du)u) B[N+

+B[{u, )X 0] 4 BN (1 — Du)~typ, (Du)u)]

= N, (I — ﬁu)—le[e S(¥)+6(u )] + E[ S(¥)+6(u )<<] _ Du)_l%uﬂ

= My, (I = Du) ') E[eNWH0)] 4 B (1 — Du)™, 5(Du))).
hence by induction on n > 1,

0 Y i A . .

Sy Bl = AB ; ,(I = Du)™"((I = Du)™" Du)")

= Ao, (I —2Du) ') B[MW)+00)],

which yields (5.5). O

Finally we remark that the formulas of Section 4 can be applied to the Skorohod
integral 5 on the Wiener space when it is used to represent the Poisson stochastic

integral 6(u) of a deterministic function by Proposition 6 of [7].
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