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Abstract

We derive the chaotic expansion of the product of n-th and first order mul-
tiple stochastic integrals with respect to certain normal martingales. This is
done by application of the classical and quantum product formulas for multiple
stochastic integrals. Our approach extends existing results on chaotic calculus
for normal martingales and exhibits properties relative to multiple stochastic
integrals, polynomials and Wick products, that characterize the Wiener and
Poisson processes.
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1 Introduction

The Wiener-1to and Poisson-I1t6 chaotic decompositions give an isometric iso-
morphism between the Fock space T'(L?*(IRy)) and the space of square-integrable
functionals of the process. This somorphism is constructed by association of a sym-
metric function f, € L*(R;)°" to its multiple stochastic integral. The isometry
property comes from the fact that the angle brackets < B >; and < N >, of both
the Wiener and compensated Poisson processes (B;)icr, , (Nt)tepwr are equal to t.

Therefore such isometric isomorphisms may exist for more general processes, pro-

vided their angle bracket equals t.



A martingale is said to be normal (Dellacherie and Meyer, 1992) if its angle
bracket is equal to ¢t and if the range of the multiple stochastic integrals isometry
defined on I'(L?(Ry)) is equal to the space of square-integrable functionals of this
martingale. This last property is called the chaotic representation property, or CRP.

The quadratic variation ([A, M];);er, of a normal martingale (M;);cgr, in
L*(Q) with the CRP (or less restrictively, with the predictable representation pro-
perty) satisfies the equation

t
[M,M]t:tJr/ bsdM,, t € Ry, (1)
0

called a structure equation (Emery, 1990), where (¢;).cr, is a predictable process.
On the other hand, a martingale satisfying (1) has angle bracket equal to ¢, but does
not necessarily possess the chaotic representation property.

In this paper we work with solutions of such equations, which include the
Wiener process, ¢ = 0, the compensated Poisson processes, ¢ constant, nonzero, and
the Azéma martingales, ¢, = SM;, § € [-2,0[.

Note that in the probabilistic framework of the structure equation one has to
use a predictable version of ¢, i.e. ¢; = SM;- in the case of the Azéma martingale.
However, since we are working in L? with stochastic integrals with respect to a
normal martingale, it follows from a remark of Dellacherie and Meyer (1992, p. 199)
that we need not distinguish between the adapted and predictable versions of ¢.
Thus, in the sequel we will use ¢, = FM; in the case of the Azéma martingale.

In the stochastic analysis on both the Wiener and Poisson spaces, multiplica-
tion formulas for multiple stochastic integrals proved to be useful tools as they give
the chaotic expansion of the product of two multiple stochastic integrals. Recently
(Russo and Vallois, 1998), multiplication formulas have been proposed for multiple
stochastic integrals with respect to normal martingales. However, these formulas do
not give the explicit chaotic expansion of the considered products.

Our first goal in this paper is to relate the product formulas of Kabanov
(1975), Russo and Vallois (1998) and Surgailis (1984) to their counterparts in quan-
tum probability, cf. Section 3. With these tools we compute the chaotic expansion
of the product of a multiple stochastic integral with a single stochastic integral, and
refer to this formula as the chaotic Kabanov formula. This formula is proved for a

class of martingales that includes the Azéma martingales. We have not obtained a



general formula for the chaotic expansion of the product of two multiple stochastic
integrals of orders n and m. This seems to require complicated computations.

As an application of this Kabanov formula we show that a number of prop-
erties in stochastic analysis such as the possibility of expressing multiple stochastic
integrals with polynomials and some properties of the Wick product are specific to
the Wiener and Poisson cases, cf. Section 5. In the last section we consider formulas

giving the derivation of a product.

2 Notation and preliminaries

We denote by
D(L*(R4)) = P L (Ry)™

neN
the symmetric Fock space over L?(Ry), where L*(R;)°" is endowed with the norm
|- 1% ®yon =11 - ||L2 Ry)en: and (-, -) denotes the scalar product in L*(Ry).
In this paper we work with a normal martingale (M;);cr, , with My = 0, that
satisfies the structure equation (1).
The multiple stochastic integral of a symmetric function f, € L?(R;)°" with
respect to (AM)icr, is denoted by

oo tn ty
L(f.) :n!/ / / Fultrs. . t2)dM, - dM,, |
0 0 0

and as a convention we let

L(f2) = Li(fu) = Lifulti.. .. . t0)), (2)

if f, € L*(R,)®" is not symmetric, where fn denotes the symmetrization of f, in its
n variables.

We denote by F; the o-algebra generated by {M; : 0 <s <t}, t € Ry.

We let V™ : T'(L*(R,)) — I'(L3(R,)) @ L*(R,) and VT : T'(L*(R,)) ®
L*(Ry) — T(L*(Ry)) denote the annihilation and creation operators on I'(L*(RR.)),
defined as

() = nloa(fa( 1), € Ry, VH(Iu(far1) = Tnga (fata),



where f,11 is symmetric in its n first variables, n € IN.
Let A= {]a,b] : a,b € Ry, a <b}. For ]a,b],]c,d] € A we use the notation
la,b] <]e,d] if b < c. Let S, n € N, denote the vector space

S, = {Zaifn(lAio'--olAz) D ANAI=0, 1<k<l<n, A, .. A €A,
=1
o €R,i=1,... ,m, m>1},

and let S denote the vector space generated by U,cnS,, which is dense in L?(12).

Let V, denote the vector space

V., = {ZailAgIn(lAll'o"'01A"n) : AZOA;:(& 1<k<l<n,
=1
AgNA =0, 1<k<i<m, Aj,... ALeA a;€R, i=1,...,m, m>1}.

We denote by V the vector space generated by U,>qV,, which is dense in L?(d\) and
in L'(d\), where d\ = dt x dP.

Let U, denote the vector space
u, = {ZailAéIn(lAio-uolAz) : A};ﬁAf:@, 0<k<l<n,
i=1
AANA =0, 1<k<l<m, Aj,... ALeA a;€R, i=1,...,m, m>1}.

Note that U, is made of processes in V), that do not depend on the “present”.
We denote by U the vector space generated by U,>lf,. and by U the completion of
U in L2(d)). The space U is strictly smaller than L?(d)\) but it contains the adapted
square-integrable processes and the range of V7, since ' € § implies V™ F € U.
We will use the following lemma of Ma, Protter and San Martin (1998).

Lemma 1 Let I,,(f,),11(91) € S. We have

LG (1) = Topr(fa o 1) +1 /0 (1) (M, M],. (3)

As a consequence of this lemma, we have

I(1a,0--014,) = L(1a,) - 1i(14,)



whenever 4, NA; =0,1<i<j<n.

We assume that there exists a set P of functionals dense in L*(Q2) and included
both in L*°(Q2) and in Dom(V~), and such that P is stable by V;, t € Ry. This
assumption is satisfied in the cases of interest to us, that is in the Wiener and Poisson
cases, and also in the case of the Azéma martingales since the later is bounded (in
this case it suffices to take P = S).

We recall the following identity, satisfied in general on Fock space:

E[V*t(u)?] = u ||%2(Q)®L2(R+) +E {/0 /0 Vo u,V, ugdsdt| . (4)

Definition 1 Let Dom; o(V'1) denote the set of processes u € L*(d\) such that there
exists a sequence (up)nen C V converging in L*(dN\) to u and such that (V1 (u,))nen

converges in L' () to an element of L*(Q) denoted as V' (u).
Remark 1 The domain Dom, (V') is well-defined.

Proof. Assume that (u,),en C V converges in L'(d\) to 0 and that (V*(u,))nen
converges in L'(Q2) to G € L*(Q). From the duality relation

E[V*(u,)F] =E UOOO un(t)Vtht] , FeP,

we obtain E[GF]| =0, F € P, hence G = 0 since G € L*(Q). .
This also means that if « € Domy o(V™) and there exists a sequence (uy,)nen
converging in L'(Q) to u and such that (VT (u,))nen converges in L'(2) to G €
L*(Q), then G = V™ (u). Naturally, Dom;»(V™) contains the usual L? domain of
V™ which is denoted as Domy (V™).
Finally, let

771 = {Zle]a,,bl]In(lAﬁ O-'-OlA%) : [Ovbz]mA; :®7 ]: 17 )1,
i=1
ANA =0, 1<k<i<n A},... A €A Fel*F,),i=1....m, m>1},

and T the vector space generated by U, 7,.
The space TN L?(d)) is not dense in L?(d)), but it contains ¢/, and it is dense

in .

ot



Remark 2 Let u,v € U, where v is an adapted process. Then uv € T.

Proof. We write u = 141,(14, 0---014,) with Ay,... , A, < B and

V= 1]3]m(1,4n+1 O---OlAn+m)

with A,11,... , Apym < B since v is adapted. Then

uv = 1AﬂBIk+m(1A1 0---0 1Ak ° 1An+1 0:--0 1An+m>‘[n_k(1Ak+1 0---0 1An)7

hence uv € T.

Proposition 1 For u € T such that fooo u dM; € L*(Q), we have u € Dom; (V™)

and

V+(u) = /O°° uyd M. (5)

Proof. 'We start by choosing u of the form u = Fly,5/,(14, 0 --- 0 14,), with
F=1I,(1g0---0lp,), A;N[0,]=0,i=1,... ,n,and By,...,B,, C[0,a]. Then

from Lemma 1:

VHu) = ILiymii(lp o---0lp o Ljgg0---01ly,)
= ©Li(Ljap)Im(lp, 0 01p, ) Io(la, 02 014,)
= FII(]-]a,b])In(lAlO"'O]-An)-

Hence, by linearity, for any v € 7 and F € S,
V*(4) = FI(1py)Ta(lay 00 14,) = / urd M.
0

If u € T, then choosing a sequence (F,),ex C S that converges in L?(2) to
F, and letting u, = Fp105/n(14, 0+ 014,), we have the convergence of (tm,)men
in L(dX) to u and of (V¥ (u))men in LH(Q) to [ uydM; which belongs to L*(Q)

by hypothesis.
d



3 Classical and quantum product formulas

The aim of this section is to link two versions of the product formula for a multiple
stochastic integral and a single stochastic integral with respect to normal martingales.

The first one is called the Kabanov formula in reference to Kabanov (1975),
which treated the Poisson case, i.e. ¢ = 1, and can be stated as follows. For
fn € L*(R;)°" and g € L?([0,T]), in particular g with compact support, Lemma 1
was extended by Ma, Protter and San Martin(1998) and Russo and Vallois (1998)

as

L(fu)11(9) = Luip1(fa 0 g) + 1 /Ooo Lo (fa 5 ))g()d[M, M];. (6)

The second term in this formula is an integration over a diagonal, due to the

It6 formula, and the notation “I;_{(f.(-,t))” will be made precise in Def. 2.

The second product formula uses only chaos expansions and Fock space, and
can be found in the work of quantum probabilists. It is often stated in the formalism

of quantum stochastic integrals:

/ gtdﬂ/ftz/ gtdaj'-l—/ gtdat_—l—/ orgeday, (7)
0 0 0 0

cf. (Parthasarathy, 1990) and (Biane, 1993, Proposition 18).

The definition of quantum stochastic integrals as operators poses several func-
tional analytic problems. See the paper of Attal and Lindsay (1997) for recent ex-
tensions of their definition. In general the above relation does not hold in L?*(€2) but
only in a weak sense (Biane, 1993), where this formula is proved for F' an exponential
vector, and for bounded predictable ¢ and ¢, with compact support.

Relation (7) can be reformulated formally using the operators V—, V* as

follows:

FV*(g) = V' (Feg) + / " (1), Fdt + V(9o F), )
0

cf. e.g. (Attal, 1997), (Biane, 1993), and the references therein, the only difference

between (7) and (8) being a change of notation.



In the Poisson case, this formula also appears in the papers of Nualart and
Vives (1990) and Dermoune, Krée and Wu (1988). It will play an important role in
the computation of the chaotic expansion of the Kabanov formula, since unlike (3)
and (6) it uniquely involves calculations on chaos.

The product formula (8) can be rewritten in the language of quantum stochas-

tic differentials as

/0 g(t)dM, = / o(s)dB, + / 6(s)g(s)da.
or
dM, = dB; + ¢(t)da’. (9)

In the Wiener interpretation of the Fock space, the operator differential dB;
identifies to the multiplication by the classical Brownian differential, and this formula
states that the operator differential dM; = dB; + ¢(t)da; is identified to the multi-
plication operator by the classical differential dM; when the Fock space is identified
to the L? space of (M;)icr,. However, the equation (9) has no classical interpre-
tation because the operator processes (B;);cr, and (ay)icr, can not be interpreted
simultaneously as multiplication operators in the same probabilistic interpretation
of the Fock space (the reason for this is that they do not commute). Consequently,
(9) does not have a classical meaning; it only defines an operator process on Fock
space.

If ¢(t) is a function of M, e.g. ¢(t) = f(A;), then (9) becomes a quantum

stochastic differential equation, in the space of operators on Fock space:
dA{f = dBt + f(Mt)d(l;), (10)

that does not have a classical interpretation, whatever the interpretation chosen for
the Fock space.

In order to find the multiplication formula for multiple stochastic integrals
with respect to (Af;)icr,, one has to compute in particular the chaos expansion
of M; multiplied by a multiple stochastic integral. This means that the explicit
expression of M; as an operator on Fock space has to be obtained. A way to obtain
this expression is to solve (10) in the space of operators on Fock space, that is to

determine the process of operators associated to (A;);cr,. The simplest case is the



linear case, i.e. f(x) = Bz, § € [-2,0[, and it corresponds to the family of Azéma

martingales. In this case, (10) reads
dﬂ_{t = dBt + /Bj\/ftda;), (11)

and it can be formally solved as a linear equation. It can be easily shown that its

t tn—1 ta
A-{t = Z /Bn / / .. / Btl da?z e da?n_17
n>0 0 JO 0
M=) ﬁ"/ / / dByydaS, - - - da..

n>0

solution is

or

This expression can now be rewritten explicitly in terms of operators on Fock space:

MF = ) p"vt ( (v* (---v+ (/0 V.dsV - VF)>>) (12)

n>0
+> 8"V (1pg (V- VH(VT (10V -V F))))) .
n>0
When F = I,(f,), this gives the explicit chaos expansion of M;I,,(f,).

The above calculation is formal and some further computations are required
in order to obtain the explicit chaos expansion of M;I,(f,). In this paper we justify
each of the above steps by explicit calculations and carry out the final computations
suggested in (12). The aim of this remark was to show that the quantum stochastic
point of view gives a different understanding of the problem and provides a quick
solution by reducing the problem to the determination of a quantum diffusion. We
stress that although the solution process has a classical version, the diffusion equation
(10) is meaningful only in the space of operators on Fock space. Also, those remarks
show that the reason why explicit calculation can be carried out is in fact that (11)
is a linear equation.

We also note that a slightly more general case can be considered, i.e. ¢(t) =

A + fo B¢(s)dM,, which is still linear. In this case the solution reads

tn—1
j\/It = / / /dtn n—1, / / dBtOdat dat

n>0

+Z/ / th n—1 / / ﬂm(tl))\hda?o”'da?n'
0 0

n>0

This situation is considered in our paper.



Our aim in this section is to prove (7) in L?(Q2) from (6). The proof of
Biane (1993), cf. also (Attal, 1997), relies on the construction of quantum stochastic
calculus, whereas our proof uses more classical probabilistic arguments. We also

prove that (8) holds in L? under assumptions that are satisfied in our setting.

Definition 2 Following Ma, Protter and San Martin (1998) and Russo and Vallois
(1998), let i denote the measure on Ry x 0 defined as p([0,t] x A) = E[14[M, M]],
AeF, teRy andletv = (A+p)/2. Foru €U we denote by u* the limit in L*(dv)

of any sequence (u,),en CU that converges in L*(d)\) to u.

Note that u = u* A-a.e., but not p-a.e., except in the Wiener case (¢ = 0),
and in general for u € Y. From Lemma 5.2. of Ma, Protter and San Martin (1998)

we have
|| U ”Lz(d)\):” u” ||L2(dp)7 U e [/_{

In what follows we fix T > 0. For u € U, fOT uyd[M, M]; is defined a.e. as an

integral with respect to an increasing process and it belongs to L!(€2), since

T
T Nl S P PORES sy Py P (13)
0

The following Lemma allows us to prove the quantum product formula (7)

from the probabilistic product formula (6).

Lemma 2 Let u € U and assume that 1 ¢ € L*(dN\) for some T € Ry. Then
Lo, rjue € Domy o(VT) if and only if

T
/ urd[M, M], € L*(2),
0

and in this case,

T T
/ wpdt + VT (1 que) = / uyd[M, M];. (14)
0 0

Proof. We start by assuming that v € U is of the form u = 2?:1 Filya, ;) where
b; < T. Since ¢ is adapted we can choose a sequence (v,),en C U of adapted
processes converging to ¢l 7y in L*(d)). Then, from Remark 2, uv, € 7 and from

Proposition 1,

10



VT (uvy))nen = w‘n,th )
(VT (uvn))nen (/0 uwv, (t) )neN

Hence (VT (uv,))nen converges in L(Q2) to

Z Fi/ OsdM, = / usdpd My € LQ(Q)7
i=1 a; 0

up € Domy 5(VT) and V*(ug) = fOT wpppd My, i.e.

T T
/ wdt + V' (ug) = / wd[M, M],.
0 0

If u € U we approximate it in L2(d)) by a sequence (i, )nen in U. Then, from
(13) we have that, (fo u, (t)dt + VT (u,0) > (fo u, (t)d[M, M), ) converges
EN
in L'(Q) to fOT u*d[M, M];.
O

We now prove the quantum product formula (7), under assumptions different

from that of Biane (1993).

Proposition 2 Let F be in a finite sum of chaos and let h € L*([0,T]) be bounded.
Then h¢oV~F € Domy »(V7™) if and only if I, (h)F € L*(Q) and in this case,

L(WF =VH(h@F)+ (h,V F)r2r,) + VY (h¢V F). (15)

Proof. We let F = I,(f,) € S, h € L*([0,T]), and apply (6) and the above lemma
to hV~IL,(f.) € U, since U contains the range of V. In the general case we choose
a sequence (F,),ex C S that converges to F in L*(Q). The right-hand side of
(15) converges to V¥ (h @ F) + fOT h,V;Fdt + VT (h¢V~F) = I,(h)F in L'(Q2) and
(h¢V~F,)nen converges to h¢oV—F in L'(Q) as n goes to infinity. Hence h¢V~F €

Domy »(V*) if and only if I; (h)F € L*(9).
O

The result extends to bounded simple adapted processes of the form h =
Glyy, 4,) for G, F; -measurable, since in this case VG = 0, s > 11, cf. Lemma 4.1. of
Ma, Protter and San Martin (1998), which means that V* (1, ,,(G) = GV T (1, 1)

We close this section with a remark on the link between independence of

stochastic integrals and their deterministic kernels. The above formula easily gives

11



information on the chaotic expansion of a product of stochastic integrals, for general

¢. If f,g € L*([0,T)) are such that fg¢ € Dom;2(V™T), then

L(f)(g9) = L(fog)+ (f.9) 2wy + VT (fg0). (16)

Letting 7" go to infinity, the formula holds for f,g € L?(RR, ), provided fg¢ €
Dom, 5(V*). From this formula it is clearly seen that the chaotic expansion of
I, (f)I1(g) may be an infinite sum of multiple stochastic integrals, depending on the
chaotic expansion of ¢. This formula can be applied in order to obtain a necessary
condition for the independence of stochastic integrals. The result of Urbanik (1967)
says that if a stochastic process (X;)icr, has stationary and independent increments
then independence of fooo f:dX; and fooo q:dX; implies fg = 0, except if X is Gaussian,
in which case the condition becomes (f,g);2,) = 0. In the Gaussian case this
property has been further extended to multiple stochastic integrals by Ustiinel and
Zakai (1990). See also Privault (1996) for the case of deterministic ¢. We can now

give an extension of this property to more general ¢.

Proposition 3 Assume that the chaotic expansion of ¢; does not contain terms
of order one. Then, independence of I,(f) and I,(g) implies (f.q)r2r,) = 0 and
ftgt = 0, E[¢?]dt-a€

Proof. We follow an argument of Ustiinel and Zakai (1990) that deals with the

Woiener case.

I fogliemye: = (e (9 9) 2wy = EML(f)?]ElL(9)%]
E[(L(f)1(9)°]
= || foglfmye +(f:9)7emy+ | VI(£990) 1720),

where we used the assumption on the chaotic expansion of ¢ which implies the orthog-
onality of V*(fg¢) and Iy(f o g) in (16). Hence (f,g)r2r,) = 0, and V*(fgg) =0

a.e. Hence fgo = 0, d\-a.e.
O

Note that the hypothesis of this proposition do not include the Azéma mar-

tingales.

12



4 Chaotic Kabanov formula

The purpose of this section is to obtain in Theorem 1 a chaotic formula for the
product I1(g)I,(f,) using Proposition 2 applied to F' = I,(f,). Under certain as-

sumptions on f,, and g, we have

L) = usr(F200) + naa (< Fulo ). 00) >) 4 n9* (00)60) L (. ),

(17)

If ¢ is deterministic, in particular in the Wiener and Poisson cases, this for-

mula easily yields the Kabanov formula (Privault, 1996). On the other hand, if ¢ is

random the chaos expansion of the term ¢.7,_1(f,(x,)) is unknown unless ¢, belongs

to the first chaos, i.e. ¢(t) = a(t) + [1(5:), t > 0, since in this case an induction

argument can be used in (17) to compute the term ¢.1,,_1(fn(t1, ... ,tn—1,-)) and to

determine the chaotic expansion of the product I1(3;)I,(f,). Thus in this case the

chaotic expansion of I1(g)I,(f,) can be obtained as a consequence of Proposition 2.

In this section, we assume that ¢ is of the form ¢(t) = a(t) + I1(5;), t > 0,

where « is a locally bounded function from R4 to R and 5(-) is a bounded function

from R, to R with support in [0,%], for any fixed t € R,. This situation is more

general than the situation of Russo and Vallois (1996, Section 4); moreover chaotic
expansions are completely determined here.

We have the following lemma:
Lemma 3 Let € R,. Let f, € L>(Ry)°? and
C(tl, . ,tk_l;tk) = ,Btz(t1> R ﬁtk(tk_li), tl, . ,tk - R.;., k’ > 1,

and ((t) =1, t € Ry, for k = 1. The chaos expansion of the product I (3y)I,(f,) is

given by
Li(Bo) Ip(fp) = Lpta (g1 (%:0)) + (g5 (%:0)) + L1 (g, 1 (%;0)),
where
p+1 !
g;+1(t17 ... 7tp+1; 9) = Z m((t]7 R 7tp+1; e)fp(t17 R 7t]'7 R 7tp+1)7
=1 '

where tAj means that t; is omitted in the arguments of f,,

13



7=1
and
p
_ p!
gpfl(th ... ,tp_1;6> = Z (] — 1)’C(tja s 7tp—1;9)<fp(t17 I -tp—la ')7/8t]'(')>7
Jj=1 ’
with t, = 6.

Proof. We will prove the lemma by induction on p. Observe that the kernels g™, ¢°

and ¢~ are not symmetric functions and that this result uses the convention (2).

1. For p = 1, using Proposition 2, we have

L(Bo)1(f) = D(Beof) + (e, f) + VT (Bsf)
= L(Byof) + (B, [) + Li(Bocrf) + La(Boq,) f(t1) 05y, (t2))
= L(Beof + Bofof) + Li(Becf) + (Bo, [),

and therefore, in particular, I1(5y)1,(f) is in the domain of V7.

2. For the general case, applying Proposition 2 and the fact that f,,; is symmetric,

we have

Il(ﬁ@»)fp-l—l(fp-&-l) = Ip+2<590fp+1) + (p+ 1>)Ip(<ﬁ9<'>v fp+1(*v )
+p+ DV (Bo()a() I (fre1(*,))
+(p + 1)V+(ﬁ0<')11(ﬁ-)jp(fp+1<*7 )))

Now, applying the induction hypothesis to I1(3;,,,)I,(fp+1(*.tp42)) into the

last term, we have,

14



L(Bo)lps1(for1) = Ipra(Be0fpi)
+(p 4 1)1, 2(Bo(t p+2)°77p+1(t1a o tpitpgo)

+1 (Baltpr)altprn) fprr(ti, - tpi1))

+1

(Bo(tpra)omp(te, ... tpitpya))

+p+1

+p+1

{Bo(-): Foa (%,-)))

)My

(p+ 1)1,

+p+ DI,
(p+ 1)1, (

( My (Bo(tpaa)om, 1(t, .. s tpoiityrs))

+p+1

where 7f, (%, 7). 75(%,r) and 7, | (*,7) are the functions defined in the lemma with
fp+1(x,7) and (3, respectively in place of f,(x) and fy.

. From this, writing the kernels of orders p, p+1 and p+2, it may be concluded
that the multiple integral kernels have the desired form. Note also that we have

proved that I1(5g)p+1(fpt+1) is in the domain of V7.
O

Let ¥, denote the set of all permutations of {1,... . p}. In this corollary we
replace f, by the product hjo---oh, to give a partial symmetrization of the kernels

obtained in the above proposition.

Corollary 1 If f, = hio---oh, where h; € L*(Ry) for anyi=1,...,p we have the

follounng expression:

L(Bo)Ip(h1o - - ohy) = Ly (41 (+:0)) + L (g, (:6)) + Lp-1(g,_1 (+:0))

where the symmetrizations of 9;_+17 g, and g, , are given by

P
N 1 I
Gpri(tis sty 0 Z Zl_ e (te )Tz Py (BT Z3 ™ (B, Pty 2) (frg 1)
€, =0

with tp+2 = 6/.

f];(th . ,tp79)

(@ﬂn+2 o) ()T Py (8 TIPS ™ (B o)) (P o)
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with t,11 =0, and

Gyt tymrs0) = Y Z (Brrprs Pty My iy (8 TTZ5(Bary o)) (B 1)

06210'

with t, = 0.
We are now ready to state the chaotic Kabanov formula.

Theorem 1 Let g be a bounded function with compact support on Ry, and

’y(tlw' . 7tk) - /Gtg(tl) o 'ﬁtk<tk—1)g(tk)7 tla' .. 7tk S ]R'-I-a k > 17

and y(t) = g(t), t € Ry, for k =1. We have

L) L(fy) = p+1(9p+1> + 1 (gp) + I 1(gp 1)

where the kernels g;—+1; g, and g, | are

p+l

p! .
g]j—-i—l(th C 7tp+1) = Z mW(tp s 7tp+1)fp(t17 s 7tj7' .. 7tp+1)7
=1 T

where fj means that t; is omitted in the arguments of f,

M@

g;(tl,. ) fp tl,... 7tp>0(<t]>
j:1
and
p—1 P!
gp_—l(th R 7tp71> = Z (_] _1)’7(t]7 N 7tp71)<fp(t17 I tpfh >7ﬁt]()>
j=1 ‘

+p < fypltr, - tpo1s) () >

Proof. By Proposition 2, we have

Il(.q)jp<.fp) = Ip-l-l(g ® fp) +p[p—1(<fp(*v )vq()>)
+pV T (g()a() -1 (fo(x,)) + VT (g() T (B) L-1 (fp(x, ),

and applying Lemma 3 we obtain the decomposition (18).
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Proposition 4 Assume now that the underlying martingale is the standard Azéma

martingale, i.e. o =0 and By = =14, 0 € Ry. Then

. 1 7
W) (1) = S T (Lo ™) = Phoa(tp-y) = )15 (- 1)
with Loy = 0 and tp—y =t V---Vi, 1, p> 1.

Proof: We let f,(t1,....,t,) = i_ 1j0¢/(t;) and g = 1y . By Th. 1 we have

p+1

p! o i
g;—l—l (t17 s 7tp+1; 0) - Z (_] — 1)1 (_1>p ! 11{t7§“‘§tp+1Se}nglll[Oﬂ] (ti)ﬂ
i=1 )
golty, ... 1p:0) =0,
P
- . Pl o
Gpor(try . tymrs0) = (=1)7 JW%‘1{t]-s---Stp-1sa}H?:111[o,e] (t:),
=1 A

with t, = 6.
Symmetrizating and doing some straightforward computations we obtain the

desired result.
O

5 Consequences of the chaotic Kabanov formula

In this section we use the chaotic Kabanov formula to prove that the Wiener and
Poisson processes are the only normal martingales to possess certain properties re-

lative to polynomials and Wick product.

5.1 Existence of a family of orthogonal polynomials associ-
ated to the martingale

Let X be a normal martingale. Following Meyer (1976) we define by induction the

martingales

Pt(O) == ].7 Pt(l) - Xta e 7Pt(n) = / Ps(f_l) d"st te R-l-‘
[0,t]

17



Note that Pt(n) = #]n(l‘[’ont]) for all n. It is well known that in the Wiener case we

have the relation Pt(") = H,(X;,t), where H,(z,y) = y"/?h, (%)7 and h, is the
Hermite polynomial of degree n.

Also in the Poisson case, we have P\ = C, (Xt,t), where {C,,(z,y)} are the
Charlier polynomials (Meyer, 1976), (Surgailis, 1984).

This situation motivates the following definition

Definition 3 We will say that a normal martingale X has an associated family of

polynomials {Q,(z,y)}, where Q,, is a polynomial of degree n in x if

Pt(n) = Q.(X:,t), for alln.

Now the natural problem is to characterize the normal martingales that have

an associated family, and the answer is the next Theorem.

Theorem 2 Let X be a normal martingale in L*(Q). Then X has an associated
family of polynomials if and only if ¢ is a deterministic constant process, i.e. X 18

a Poisson or a Wiener process.

Proof. The if part is straightforward. If ¢, = 0 we are in the Wiener case, and if
¢s = ¢ # 0, we are in the Poisson case with jumps of height c.
The proof of the only if part is a consequence of the Kabanov formula. Assume

that the chaotic decomposition of the process ¢ is

¢t = Z]n<fn<7t))7

and X has an associated family of polynomials. Then by the Kabanov formula

PUPY = X = () Li(1pg) = L(153,) +t + V(1ga(a)é()  (19)
= L(1jg,) +1+ Z Li(lpg(x) fia (7).
i=1
For each fixed #, X2 will be a linear combination of the three polynomials

Qo(X:. 1), Q1(Xy,t) and Q2(X;,t), which are respectively 1, I; (1) and %Ig(lf&t]).
So

18



X7 = ay(t) (155 ) + a1 (1) I (10,) + ao(t). (20)

Then the chaotic decomposition of X? has only terms until the second chaos,

and from (19) we get that f, = 0 for n > 2. Therefore

ot = fo(t) + Li(f1(,1)).
Identifying the kernels of (19) and (20), we have for all ¢

Lio,q(z) fo(z) = a1 (t)1p(),

for the first chaos,

1

lf’&ﬂ(u7 v) + 3 (l[oqt](u)fl('v, u) + lpog(v) fi(u, v)) = aQ(t:)lf(fﬂ(u, v), u,v € Ry,

for the second chaos. So fo(u) = cp, u € Ry, and fi(-,2) = e1ljpq(:)-
Then

o =co+cali(lpg), teR,. (21)

We apply now Proposition 2 (or the Kabanov formula) to the product Iy (1[07t])[2(1[002t])
with a ¢ given by (21), and we get

L) (15 = I3(15,) + 2t (1)
+2001'2(1f027t]) + V+(2011[0,t] (1) 11 (Lo, I (L10,0))-

Hence

L(lpg)h(1fy) = als(1i) +bL(1f,) (22)
t
+CIl (tl[ovt](ml) +/ cll[O,xl](u) dul[o,t](:vl)> s
0

where a,b,c € R.
As

Il(l[Oyt])I2(1F02,t]) = XtQQ(Xt7 t),

19



the product is a polynomial of degree 3 in X;, and can be expressed as a linear

combination of @y, @1, @2 and Q3. So

Li(1 ) I(15 ) = bs(t)Qs(Xe, ) + -+ + bo(1) (23)
= SbsI(158) + ibalt1B(1%0) + b1 (1)1 (10) + boft),

and as before identifying the kernels of (22) and (23), and focusing our attention to

the chaos of order 1, we have

t
ay(t)lpq(r) = ¢ <t1[07t] (1) + C1/ L0,2,7(u) dul[ovt](xl))
0
=c (tl[ﬂvt]@l) + Cll’ll[o,t](h)) ,

therefore ¢; has to be zero, and we get that the process ¢ is a constant.

O

Remark 3 Since for the standard Azéma martingale we have ¢, = —11(1j9), the
theorem implies that the Azéma martingale does not have an associated family of

polynomials.

Remark 4 In particular we have proved that any normal martingale in L* with an
associated family of polynomaials is a process with independent increments. In fact, a

normal martingale in L* has independent increments if and only if ¢ is deterministic

(Utzet, 1992), (Emery, 1990).

Remark 5 Yor (1992, chapter 15) introduces a family of polynomials related to the
Azéma martingales in a different context. These polynomials give the conditional
expectation of powers for Azéma martingales with respect to the o—algebras of the
strict past.

5.2 Projection property for the Wick product

Let X be a normal martingale in L*(2). The Wick product I1(f1) : I,(g.) of I1(f1)
and I,,(g,) is defined by

Il(fl) : In(gn) = n-l—l(fl Ogn)'

This motivates the following definition
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Definition 4 We say that X has the Wick projection property if the Wick product
Li(f1) : I.(gn) is the projection of the product I,(f1)I,(gn) over the chaos of order
n + 1. Here the product I1(f1)1,(g,) is assumed to belong to L*(Q) and the kernels

f1 and g, are bounded and with compact support.

Now the natural problem is to determine the martingales that have this pro-

perty.

Theorem 3 Assume that ¢ has a chaotic decomposition with no terms in chaos
greater than 1. Then X has the Wick projection property if and only if ¢ 1s deter-

ministic.

Proof. Proposition 2 says that

Il(fl)jn(gn) — In—l—l(fl 0 gn) + nIn—l </(;OO fl(S)gn('v S) dS)
+VT(fi(w)o(u)nLui(ga (-, u))),

and it is straightforward to see that the last addend has null projection over the

chaos of order greater than n for all f; and ¢, if and only if ¢ is deterministic.
O

Remark 6 If in the definition of the Wick projection property we impose I,(f1) :
I,,(gn) to be the projection of the product I1(f1)I,(gn) over the sum of chaos of order
strictly greater than n, instead of over the class of order n, then the above result can

be extended to normal martingales X with ¢, = Z Li(fi(-,t)) for which Proposition 2

15 valid.

6 Derivation rule of products

It is well-known that on the Wiener space, i.e. for ¢ = 0, V™ is identified to a
derivation operator. As noticed by Ma, Protter and San Martin (1998), V™~ can not
act in the same way as a Sobolev derivative, i.e. V7 f(M;) = 1y qf' (M), unless
¢ = 0. In this section we study the product rule for V™ and in particular we further
show that V= can be a derivation operator only for ¢ = 0.

For deterministic ¢ it was noticed by Privault (1996) that the product formula

becomes
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V(FG)=FV,G+GV,F+¢;V,FV_ G, seR,;.

This rule does not extend to random ¢, but (8) gives by duality the following

information.
Proposition 5 For F,G € S,
EV(FG)| Fs] = E[FV,;G+ GV F + ¢;V_FV_G| Fs], ds—a.e.

Proof. We write (8) for u € U adapted, and apply the duality between V™ and V*:

El(u, V7 (FG))]

— E[V*(u)FG]
f E[G(V+(UF) + ('U,V_F)L2(R+) +V+(U¢V_F)]
= E[(U,FviG)LQ(R_'_) + (u, GV7F>L2(R‘+) + ('U,@ViFviG)LZ(R_}_)]. O

i From the above it follows that if V™ is a derivation then E[¢,V; FV G| =0,
se Ry, F,G €S, hence ¢ = 0.

As a consequence of Proposition 5, we have

V,(FG)=FV,G+GV_F+ ¢,V FV_G,+A(F,G), se€Ry,

where A(F,G) is a process with zero adapted projection.

Our aim in the sequel is to gain more information on this process in the case

of the Azéma martingales. We use the notation A (F,t) = A(F,I,(3)). t € Ry.

Proposition 6 Assume that ¢ is given as ¢, = o + Ii(3;), t € Ry, where « is
locally bounded and [3; is bounded, t € Ry. Then

Vo(L(B)F) = FV L(B) + L(B)VIF + o, VIL(B) VG + A(Fit), s € Ry,

where E[A(F,t) | Fs] =0, s € Ry, and A,(F,t) is given by the relation

As(F,t) = VT(B()B(s)VIF + ¢ (-) B.(s) VIVIF + fLA(VIF, ). (24)
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Proof. We use the relation V; V7T (u) = VH(VIu) + uy:

Vs_ (Il(ﬁt)F)
= V. (VY(BF) + (5. V F)r2ry) + VT (BioVF))
= VT (BVF)+ B(s)F + (6, V V. F)12ry) + VT (5aV~ V] F)
+0i(s)as VI F + VT (B()VI(L(B)VIF)) + Bi(s) 11 (B) VI F
= VY (BV.F)+ (5. VV,F)2r,) + VT (5,aVV_F)
+FEV 1 (5:) + Bi(s)as VS F + B(s) [, (Bs) VS F
+VF(Bi() (B(8)VIF + L(B)VIVIF + ¢,V L(B)VIVIF + A(VTF, "))
= VYBVF)+ (6. V V. F)xryy + VB0V~ V] F)
+FVIL(B3) 4 Bi(s)a.VIF + Bi(s)1,(5,) VI F
+VT(B()B.(s)VIF + Bi()os Vs L (B)V; VI F + Bi(-) A (VT F, )
= L(B)VIF+ FVL(B) + oV L(5) VI F
+VT(B()B.()VIF + Bi(-)ps B.(s)VI VL F + B,(-)A(VTF, ")),

and we obtain (24). 0

As a consequence of this proposition, for F' = I,,(f°") the remaining process

A(F,t) can be explicitly determined by induction from

As(Ln(F7),1)
= nL((B:()8.()F) 0 FU7Y)  m(n = 1) £V (6:8:()B.(5) fLno( £ 7))
+nVH(f8 () As(Lama (F071)), ).
Note that F + A(F, ) is linear and that the chaotic expansion of ¢, I, _o(f°"~2))
can be explicitly computed from the Kabanov formula. As an application we compute
A(L,(f°™),t) for n = 0,1,2. We have A (1,t) =0, A (L (f°Y),t) = L(B:(-)3.(s) ),

and

AdL(f%),t) = L(Bi()B.(s)f 0 f) + 2V ((as + L1(5:)) Be () B(5) f)
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