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Abstract

We derive moment identities for the stochastic integrals of multiparameter
processes in a random-connection model based on a point process admitting a
Papangelou intensity. Those identities are written using sums over partitions,
and they reduce to sums over non-flat partition diagrams in case the multipa-
rameter processes vanish on diagonals. As an application, we obtain general
identities for the moments of k-hop counts in the random-connection model,
which simplify the derivations available in the literature.
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1 Introduction

The random-connection model, see e.g. Chapter 6 of [12], is a classical model in
continuum percolation. It consists in a random graph built on the vertices of a
point process on R, by adding edges between two distinct vertices = and y with
probability H(|lz — y||). In the case of the Rayleigh fading Hg(||lz — y||) = e #le—vI’
with z,y € R?, the mean value of the number N7 of k-hop paths connecting = € R?

*nprivault@ntu.edu.sg



to y € R? has been computed in [9], together with the variance of 3-hop counts.
However, this argument does not extend to k& > 3 as the proof of the variance identity
for 3-hop counts in [9] relies on the known Poisson distribution of the 2-hop count.
As shown by [9], the knowledge of moments can provide accurate numerical estimates
of the probability P(N,*¥ > 0) of at least one k-hop path, by expressing it as a series
of factorial moments, and the need for a general theory of such moments has been

pointed out therein.

On the other hand, moment identities for Poisson stochastic integrals with random
integrands have been obtained in [18] based on moment identities for Skorohod’s
integral on the Poisson space, see [16, 17], and also [19] for a review. These moment
identities have been extended to point processes with Papangelou intensities by [5],
and to multiparameter processes by [2]. Factorial moments have also been computed

by [4] for point processes with Papangelou intensities.

In this paper we derive closed-form expressions for the moments of the number of k-
hop paths in the random-connection model. In Proposition 3.1 the moment of order
n of the k-hop count is given as a sum over non-flat partitions of {1,...,nk} in a
general random-connection model based on a point process admitting a Papangelou
intensity. Those results are then specialized to the case of Poisson point processes,
with an expression for the variance of the k-hop count given in Corollary 3.2 using a
sum over integer sequences. Finally, in the case of Rayleigh fadings we show that some
results of [9], such as the computation of variance for 3-hop counts, can be recovered

via a shorter argument, see Corollary 5.3.

We proceed as follows. After presenting some background notation on point processes
and Campbell measures, see [8], in Section 2 we review the derivation of moment
identities for stochastic integrals using sums over partitions. In the multiparameter
case we rewrite those identities for processes vanishing on diagonals, based on non-
flat partition diagrams. In Section 3 we apply those results to the computation of
the moments of k-hop counts in the random-connection model, and we specialize such

computations to the case of Poisson point processes in Section 4. Section 5 is devoted



to explicit computations in the case of Rayleigh fadings, which result into simpler
derivations in comparison with the current literature on moments in the random-

connection model.

Notation on point processes

Let X be a Polish space with Borel o-algebra B(X), equipped with a o-finite non-

atomic measure A(dx). We let
QY ={w={z;}ier CX : #(ANw) < oo for all compact A € B(X)}

denote the space of locally finite configurations on X, whose elements w € Q¥ are

identified with the Radon point measures w = Zex, where €, denotes the Dirac
TEW
measure at z € X. A point process is a probability measure P on Q¥ equipped with

the o-algebra F generated by the topology of vague convergence.

Point processes can be characterized by their Campbell measure C' defined on B(X)®
F by
C(Ax B):=E {/ Ig(w\ {z}) w(dm)} , AeB(X), BEeF,
A

which satisfies the Georgii-Nguyen-Zessin [14] identity

E| [ u(zwwds)| =E w(z;w U z)C(de, dw)| (1.1)
fooswtan] e[ [ [

for all measurable processes u : X x QX — R such that both sides of (1.1) make

sense.

In the sequel we deal with point processes whose Campbell measure C(dx,dw) is

absolutely continuous with respect to A ® P, i.e.
C(dx,dw) = c(z;w)A(dz)P(dw),

where the density ¢(x;w) is called the Papangelou density. We will also use the random

measure \"(dr,,) defined on X by

~

/\n(dxn) = é(?n? w))‘(dafl) T )‘(dxn)7
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where é(x,;w) is the compound Campbell density ¢ : QF x Q¥ — R, defined

inductively on the set QF of finite configurations in QX by

c{xr, .. on,y}w) = c(y;w)e({ iz, . b w U{y}), n >0, (1.2)

see Relation (1) in [5]. In particular, the Poisson point process with intensity A(dz)
is a point process with Campbell measure C' = A ® P and ¢(x;w) = 1, and in this
case the identity (1.1) becomes the Slivnyak-Mecke formula [20], [11]. Determinantal
point processes are examples of point processes with Papangelou intensities, see e.g.
Theorem 2.6 in [6], and they can be used for the modeling of wireless networks with

repulsion, see e.g. [7], [13], [10].

2 Moment identities

The moment of order n > 1 of a Poisson random variable Z, with parameter a > 0
is given by

E[Z"] = Xn:o/“S(n, k), mnéeN, (2.1)

where the Stirling number of the second kind S(n, k) is the number of ways to partition
a set of n objects into k non-empty subsets, see e.g. Proposition 3.1 of [3]. Regarding

Poisson stochastic integrals of deterministic integrands, in [1] the moment formula

]EK/Xf(x)w(dx)ﬂ:m 3 ﬁ(m (/Xf’f(x)x(dx))m) (2.2)

r1+2ro+-Anrp=n k=1
T1seens rn >0

has been proved for deterministic functions f € (5, LP(X, A).

The identity (2.2) has been rewritten in the language of sums over partitions, and
extended to Poisson stochastic integrals of random integrands in Proposition 3.1 of
[18], and further extended to point processes admitting a Panpangelou intensity in
Theorem 3.1 of [5], see also [4]. In the sequel, given 3, = (z1,...,2,) € X", we will

use the shorthand notation 53‘; for the operator

(5;F)(w):F(wu{zl,...,zn}), w €,



where F' is any random variable on QX. Given p = {py,...,p} € Il[n] a partition
of {1,...,n} of size |p| = k, we let |p;| denote the cardinality of each block p;,
i=1,... .k

Proposition 2.1 Let u: X x Q¥ — R be a (measurable) process. For alln > 1 we

have
n lol R
E [(/ u(a:;w)w(dm)) ] = Z E / €3+ Hu\pz\(zl)/\lpl(dalpl) 7
X xlol lpl -
p€ellln] =1
where the sum runs over all partitions p of {1,...,n} with cardinality |p|.

Proposition 2.1 has also been extended, together with joint moment identities, to
multiparameter processes (U, ..., )(z,...)exr, see Theorem 3.1 of [2]. For this, let

II[n x r] denote the set of all partitions of the set
AV :z{l,...,n}x{l,...,r}:{(k,l) ck=1,...,n, lzl,...,r},

identified to {1,...,nr}, and let © := (my,...,m,) € I[n x r] denote the partition
made of the n blocks m, := {(k,1),...,(k,7r)} of size r, for k = 1,...,n. Given
p = {p1,...,pm} a partition of A, we let (¥ : A,x, — {1,...,m} denote the
mapping defined as

¢?(k,l) = p if and only if (k,1) € p,, (2.3)

k=1,...,n,l=1,....,r, p=1,...,m. In other words, (*(k,l) denotes the index p
of the block p, C A, to which (k,[) belongs.

Next, we restate Theorem 3.1 of [2] by noting that, in the same way as in Propo-

sition 2.1, it extends to point processes admitting a Papangelou intensity using the

arguments of [5], [4]. When (u(z1, ..., zx;w))s . 2ex 1S @ multiparameter process, we
will write

e;u(zl,...,zk;w) = u(zl,...,zk;wu {zl,...,zk}), n=(21,...,2,) € X",
and in this case we may drop the variable w € Q¥ by writing 6; u(zy, ..., 2k w) instead
of €f u(z1,..., z;w).



Proposition 2.2 Let u: X" x QX — R be a (measurable) r-process. We have

E[(/ru(zl,...,zr;w)w(dzl)---w(dzr))n} = ) E

pell[nxr]

n

/XP 65‘:' H u(zﬁk)j“p‘(dﬁlpl)

k=1

(2.4)

with 28 = (Zeco(k,1), - - 2cokr)), K =1,...,m.

Proof.  The main change in the proof argument of [2] is to rewrite the proof of
Lemma 2.1 therein by applying (1.2) recursively as in the proof of Theorem 3.1 of [5],

while the main combinatorial argument remains identical. 0
When n = 1, Proposition 2.2 yields a multivariate version of the Georgii-Nguyen-
Zessin identity (1.1), i.e.

E {/ w(zy,y .oy 2z w)w(dzy) - w(dzr)} = Z E {/Xl ‘ ezl_p‘u(ch(Ll)’ e 200(1; W)S\M(dg‘p‘) ]
T P

peII[1xr]
Non-flat partitions

In the sequel we write v < ¢ when a partition v € II[n x r| is finer than another
partition o € II[n x r|, i.e. when every block of v is contained in a block of ¢, and
we let 0 := {{1,1},...,{n,7}} denote the partition of A,, made of singletons. We
write p A v = 0 when p = 0 is the only partition p € I[n x r] such that u < v and
w=poie lyenNpl <1, k=1,...,n, 1 =1,...,|p|. In this case we say that the
partition diagram I'(v, p) of v and p is non-flat, see Chapter 4 of [15].

In the sequel, a partition p € II[n x r] is said to be non-flat if the partition diagram
[(m, p) of p and the partition 7 is non-flat, where 7 := (my,...,m,) € I[n x r] with
= {(k,1),...,(k,r)}, k = 1,... ,n. The following figure shows an example of a

non-flat partition

Ts 2N ® g
T4  [9 x N ®
T3 ® 2N 0 e
Ty [\ ® » 0
™ @ [\ (o] 10;



with n =5, r =4, and

A =1{(1,2),(21),(22),03,3),(42)},
O={(1,1),(3,1),(4,4),(53)},
0= {(1,3),(2,4),(3,3), (4, 1), (5,4)},
o ={(1,4),(2,2)},

(2,3),(3,4)

me = {(k, 1), (k,2), (k,3), (k,4), (k,5)}, k=1,2,3,4,5.

Processes vanishing on diagonals

The next consequence of Proposition 2.2 shows that when wu(zy,...,2,;w) vanishes
on the diagonals in X", the moments of [,, u(z1,...,2z;w)w(dz)- - - w(dz,) reduce to

sums over non-flat partition diagrams.

Proposition 2.3 Assume that u(zy,...,2;w) = 0 whenever z; = z;, 1 <i#j <,
w € QX. Then we have

E[(/Tu(zl,...,zr;w)w(dzl)-««w(dzT))n]: SR

n

/XP e TTu(zt) A (dzi) | -

pell[nxr] k=1
p/\7r=f)
Proof. Assume that u(zi, ..., z.;w) vanishes on diagonals, and let p € II[n]. Then,
for any z1,...,2. € X we have
H u(zﬁk) = H u(z@(m), . ,ZCp(k’r)) =0
k=1 k=1

whenever p := (?(k,a) = (?(k,b) for some k € {1,...,n} and a # b € {1,...,7}.
According to (2.3) this implies (k,a) € p, and (k,b) € p,, therefore p is not a non-flat

partition, and it should be excluded from the sum over II[n]. U

When n = 1, the first moment in Proposition 2.3 yields the Georgii-Nguyen-Zessin

identity

B[ atermepetd) utaz)| = 3 B[ [ o u(e) i)
pEH[ler]
pAT=0



_E {/Te;u(zl, - ,zr;w)xr(d;,r)} (2.5)

see Lemma IV.1 in [9] and Lemma 2.1 in [2] for different versions based on the Poisson

point process. In the case of second moments, we find

(/Tu(zl,...,zr;w)w(dzl)...w(dzr)>2] = Z ]E {/Xpl %“(2%)“(2%)3”(dz|p|)] ,

pell[2xr
p/\7r:()

E

and since the non-flat partitions in IT[2 X r| are made of pairs and singletons, this
identity can be rewritten as the following consequence of Proposition 2.3, in which for

simplicity of notation we write my = {1,...,r} and my = {r+1,...,2r}.

Corollary 2.4 Assume that u(zi,...,2;w) = 0 whenever z; = z;, 1 < i # j <,

w € QX. Then the second moment of the integral of k-processes is given by

2
E </ w(z1,y .oy 2 w)w(dzy) - - -w(dzr)> ]
1 o
SOOI = EED DRI} S CN T CSIEN S
ACm T yime— AU{r+1,...,2r—| A|} XAl
where the above sum is over all bijections v :mg — AU{r+1,...,2r — |Al}.

Proof. ~ We express the partitions p € Il[n x r] with non-flat diagrams I'(m, p) in

Proposition 3.1 as the collections of pairs and singletons

p={i,7(1)} Yiea U {{i} iem.iga U {{i} Ficmigy(a),

for all subsets A C m = {1,...,7} and bijections v : mo — AU{r+1,...,2r — |Al}.
O

In the case of 2-processes, Corollary 2.4 shows that

2 n
E (/ u(zl,ZQ;w)w(dzl)w(dZQ)) ] = Z E / e;p‘ HU(ZCP(k»’l),ZCp(kyg))A'm(délp)]
Xz pellfnx2] Xlel
pAT=0
1 R4
= > WE [ /X o €1 (21, 22)u(2y(3), 25 ()X A'(d54—A|>}

ACm
~v:{3,4} = AU3,.... 4| A[}



= | [ sz

+E / 3e;;(u(zl,zg)u(zl,z3))5\3(d33) +E e (u(z2, 21)u Yu(zs, 21 )N (d3s3)
LJ X i

oo
+E /X 3e;;(u(zl,22)u(22,z3))x3(d33> +E /X u(22, 21)u (23,zz))ﬂs(d33):
oo

+E /X 2e;;(u(zl,ZQ)U(ZI,ZQ))P(d;,Q) +E

Zl,ZQ (22,21))5\2(d32) .

Similarly, in the case of 3-processes we find

(/XS u(z1, 2, 23;w)w(dzl)w(dzz)w(dz?)))j
: 7 mE st € ulz1, 22, 28)u (2, 246, 26)) A (d35)

Ac{1,2,3}
7:{4,5,6} = AU{4,....6-|A]}

=FE [/Xs efu(z, 2, 23)u(z4,z5,z6)5\6(d36)}

E

’y:{47576}%{275’6}

1 -

+ 5 Z E / e;;u(zl, 29, 23)u(27(4), Zy(5)5 2 6))/\ (d55)
{456} {156} /X°

1 r . -

+ 5 Z E /X5 E;EU(ZD 22, Zg)U(Z,y(gl), Z~(5)> 27(6))/\5(6135)
/,

1
+53 ). E
~:{4,5,6}—{3,5,6}

+ > E

7:{47576}_){17276}

+ > E

~v:{4,5,6}—{1,3,6}

+ ) E

7:{475?6}%{27376}

+ > E

’7:{475?6}4>{17273}

eula, 22, 28)u(2300), 2306 24(9) (d55)

(21, 22, 23)u(230), 2(5), 0(0)) A (da)
4
. E;U(zl, 22, Z3)u(z’y(4)a 27(5)7 Z’y(ﬁ))j\4(d34>

\ E;U(Zh 29, 23)U (27(4) 1 Zy(5)s 27(6)) 5\4(d214)

ez, 2, 28)u (20, 4(3), 7(6)) A (d33)



3 Random-connection model

Two point process vertices  # y are independently connected in the random-connection
graph with the probability H(z,y) given w € QX, where H : X x X — [0,1]. In
particular, the 1-hop count 1., is a Bernoulli random variable with parameter

H(z,y), and we have the relation

E 6;; H ]l{zi<—>zi+1}<w) ‘ CU] = H H(Zza Zz'—i—l)
1=0 i=0
for any subset {zo,..., 241} of distinct elements of X, where 3, = {z1,..., 2.} and

x <> y means that x € X is connected to y € X.

Given z,y € X, the number of (r + 1)-hop sequences zi, ..., z. € w of vertices con-

necting x to y in the random graph is given by the multiparameter stochastic integral

Nt = [ e sz - uldz)
of the {0, 1}-valued r-process
U(Zl, ] 27'; w) = ]l{zﬁézj, 1§i<j§7‘}]1{21,4..,zr€w} H ]l{zi<—>z7;+1}(w>7 217 A ZT‘ e X7
i=0
(3.1)

which vanishes on the diagonals in X", with zy := = and z,,; := y. In addition, for

any distinct z1,..., 2. € X and u(zy, ..., z;w) given by (3.1) we have

Ele u(z,...,2w) |w] =E

6;; H ]l{zl'HZi-H}(w) ‘ W] - H H<Zi, Zi+1), (32)
=0 i=0

therefore the first order moment of the (r 4 1)-hop count between z € X and y € X

is given as

/THH(Zi,ZiH)}\T(dZ,T)] . (3.3)

see also Theorem II.1 of [9], as a consequence of the Georgii-Nguyen-Zessin identity

(2.5).

E {/TW“ o mw)w(da) - -w(dzT)] _E

10



In the next proposition we compute the moments of all orders of r-hop counts as sums
over non-flat partition diagrams. The role of the powers 1/nf; in (3.4) is to ensure
that all powers of H(x,y) in (3.4) are equal to one, since all powers of 1..,., in (3.5)

below are equal to 1i..,.1.

Proposition 3.1 The moment of order n of the (r + 1)-hop count between z € X
and y € X 1is given by

E[(N4)"]= Y E
pEH[an]
pAT=0

/X HHH (2o, 2eaaen) A (da) | (3.4)

=1 =0
where zo = x, 2,41 =y, (P(,0) =0, C?(I,r+1)=r+1, and

nzz = #{(p,]) € {17 cee ,n}x{O, s 7T} : {Cp(l7i)>gp(lvi+1>} = {Cp(p,j),gp(p,j—i—l)}}?
1<i<n, 0<i<r.

Proof.  Since u(z1, ..., z;w) vanishes whenever z; = z; for some 1 < i < j <r, by

Proposition 2.3 we have

B Z K /XpHH]I{ZCP(“)HZCP(“H)}A(djm)] (3.5)

pEll[nxr] =1 i=0
p/\ﬂ':@
= Z E / HHH /m, i(2¢o (1,i) B¢ (li+1) ))\lm(d?)\ |)]
pell[nxr] XIel 21 =0
p/\7r:0
where we applied (3.2). O

As in Corollary 2.4 we have the following consequence of Proposition 3.1, which is
obtained by expressing the partitions p € Il[n x r] with non-flat diagrams I'(m, o) as

a collection of pairs and singletons.

Corollary 3.2 The second moment of the (r+1)-hop count between z € X andy € X

15 given by
E[(N7%)’]

11



e Hl/nlz i i H /7’L2] )\ *‘A| d .
Z (r— |A| [/er 4] H (2, 21 H (24()> Z2(+1) (d32r—1a)) | 5

ACm
vA{1,...,r}=AU{r+1,....2r—|A|}

where the above sum is over all bijections v : {1,...,r} - AU{r+1,...,2r —|A|}
with v(0) :== 0, y(r +1) =7+ 1, 20 =z, and 2,41 :=y, and

=#{7€{0,....r} - {i,i+ 1} ={1() (G + 1)}
= #{Z € {07 SR ,’I“} : (i’i + 1) = (7(])7’7(] + 1))}7
0<1<r.
Variance of 3-hop counts

When n = 2 and r = 2, Corollary 3.2 allows us to express the variance of the 3-hop

count between x € X and y € X as follows:

Var [N3"Y]
1 . .
= Z —(2 — |A|)‘E /X4 " HHI/ 1,4 Z Z’L-‘rl HH /ng 23 Z’Y(J) Z’y(]-i-l))A -4 |(d34—A)]
0#£AC{1,2} j=0

y:{1,2} 5 AU{3,4—|A|}

- ¥

~v:{1,2}—{1,4}

+ Z E /XSHH1/7Hz Zi ZH-l HH /"23 z'y(]) Z’Y(]-H ))\ (dzl7d22’dz4)]

~v:{1,2}—{2,4} 7=0

2

/ HHl/”“ (2, Zz+1)HH/ 2J(ZV(J)7Z’Y(J+1 2% (dzhdZ27dZ4)]

7=0

+ Z E /X HHl/nll Ziy Ri+1 HH /n2.7 z’y(]) Zy(j+1) ))\ (dzl,dZQ)] )

~v:{1,2}—{1,2} > i=0 j=0
Variance of 4-hop counts

When r = 3 and n = 2, Corollary 3.2 yields

Var [N5Y]
1 i )
= 2 (3— |A\)'|]E / HHU Li(zi, Zig HH 1" (257, Z2+0) A’ |A|(d56|A|)]
0£ACT: e 30

~v:{1,...,.3} > AU{4,....6—|A|}

12



1
S
~v:{1,...,3}—={1,5,6}
1
o2
v:A{1,...,3}—{2,5,6}
1
e
v:A{1,...,3}—{3,5,6}

+ ) E

~v:{1,...,3}—{1,2,6}

+ > E

7i{1,...,3}—>{1,3,6}

+ > E

7i{1,...,3}—>{2,3,6}

+ Z}E
: 3

E

E

% =0 =0

X550 j=0

3

Jj=0

3 3
/);4 H Hl/n’ly’i(zi, Zi+1) H Hl/ngvj (Z’y(j)a Zm/(j+1)>>\4(d21, dZQ, ng, dZG)
=0

J=0 J

3 3
/)‘(4 H Hl/nz’i (ZZ', Zi+1) H Hl/n;j (Z'y(j)a Z«,(j+1)>>\4(d21, dZQ, ng, dZG)
=0 =0

3 3
/ H Hl/nli (ZZ', Zi+1> H Hl/ngvj (ZW(j)7 Z’y(j+1)>>\4<dzlu dZQ, ng, dZ6)
=0

X430
3 3
¥ ¥ 2
/X3 H Hl/nl’i (Zz', Zl‘+1) H Hl/nZ*j (Zv(j)7 Z,y(j+1)))\3(d21, dZQ, ng)
1=0

J=0

4 Poisson case

In this section and the next one, we work in the Poisson random-connection model,

using a Poisson point process on X = R? with intensity A(dz) on R%. We let

n—1
H(")(xg,:cn) = /d . /d H H(zj,xip)AN(dxy) -+ - Mdxy—1), 0,2, € R, n>1.
R R =0

(4.1)

The 2-hop count between z € R and y € R? is given by the first order stochastic

integral

/ u(z;w)w(dz):/ ]l{mﬁzl}]l{zlﬁy}(w)w(dzl):/ Lo 1z opyw(da),
R4 R4 R4

and its moment of order n is

[y ——

lpl
- 2 /le L1 (H (@, 2) H(z,9)) NP Az, dzy)

pell[nx1]

13

3 3
E / H Hl/niyz (Zi, Zi-i-l) H Hl/ngd (Z'y(j)a Zv(j+1)))‘5(dzlv dZQ, ng, dZ5, dZG)

r 3
/X5 H HY/™ (2, Zix1) H HY™2, (24(j)5 zv(jﬂ)))\‘r’(dzl, dzy, dzs, dzs, dzg)
|/ X% 20

3 3
/ H Hl/n¥1 (ZZ‘, Zi+1) H Hl/ng’j (ny(j)a Z,y(j+1))/\5(d21, dzy, dzs, dzs, dZ@)
X




= stk ([ e o)

= > S, k) (HO ()",

k=1

therefore, from (2.1), the 2-hop count between 2 € R* and y € R is a Poisson random

variable with mean
HO(.y) = [ Hlw 2 Hzp)N2)
Rd
By (3.3), the first order moment of the r-hop count is given by
r—1
H(r)(x,y) = / HH(ZZ',Zi+1))\T_1(d21,...er_1>.
Xr—1 i—0

Corollary 4.1 The variance of the r-hop count between © € R¢ and y € R? is given

by

Var [NY]
r—1

S Y S [T TT H ) e Vi)
p=1 1<ki <-<kp<r cex[p] * X" 0<i<p 0<j<p

1<l < <lp<r lo(j+1)~lo () Hhjr1—k;>2
or {§,j+1}#{c(5),0(G+1)}

with kg =1y =0, kpy1 = lpp1 =1, 0(0) =0, and o(r) = r, where the above sum if

over all permutations o € X[p| of {1,...,p}.

Proof.  We rewrite the result of Corollary 3.2 by denoting the set A C 7 as A =
{ki, ... kp}, for1 < ky <--- <k, <r—1, and we identify v(A) C AU{r+1,...,2r—
|Al} to {ly,...,1,}, which requires a sum over the permutations of {1,...,p} since
1<l <---<l,<r—1,where 1 <p <r—1. In addition, the multiple integrals

over contiguous index sets in A are evaluated using (4.1). O

Variance of 3-hop counts

When n = 2 and r = 2 Corollary 4.1 allows us to compute the variance of the 3-hop

count between z € R? and y € R, as follows:
Var [N3"Y] (4.2)
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=2 H(I’, Zl)H(Q)(Zlay)H(2)(zlvy))\(dzl) +2 H(xvzl)H(Q)('IﬂZl)H(Q)(Zlay)H(Zlay)A(dzl)
R4 R4

+ H(x, 21 H (21, 20)H (22, y)H (2, 22)H (21, y) N2 (d21, dzy) + H® (x,y).

X2
By Corollary 4.1 the variance of 4-hop counts can be similarly computed explicitly as

a sum of 33 terms, as follows:
Var [NJ?] = | Hy(e,20)HS? (21,9 HS? (21,9)Md21) (43)
R
+ / Ha(w,2)H () B, 20) HY (21,4) Md)
R

+ [ Hy(e,2)HS (2,20 Hy (21,9) Ha(z1,9)A(d2)
R

+ 4 H[(32) ('Ia ZQ)HEQ)(Z% y)H,B({Ea ZQ)HEB)(Z% y))\(dZZ)
R

T H/(32) (z, Zz)Héz)(x, ZQ)Hg)(zg, y)H[(f)(zg, YIA(dzy)
R

o [ HP () HE () H (5, 22) Ha (22, 5) N (d22)
R

+ ) Hég) (x, zg)Hg(Zg, y)HB(x, Zg)H;(a?))(Z& yIAN(dz3)
R

+ ” Hég) (z, z3) Hp(23, y)Hg) (z, Z3)H22)(23, y)A(dz3)
+ | HP(w,23)Hp(2s, y) HY (2, 23) M dz3)
R B ) ~3 B\23,Y B8 ) ~3 3

+ [ Hs(w, 20)Hp(z1, 22) HS (22, y) HY (20, y) N (dz1, d2n)

X2

+ Hpg(x, z1)Hg(z1, Zz)Hg)(Zm y)Hs(z, ZQ)H,é’Q)(Zla )N (dzy, dz)
XQ

+ Hpg(w, 21)Hp(21, 22)H;(32)(Z2, ?/)Hg)(% z9) Hp (2, y))\Q(d»Zl, dzy)
X2

+ Hpg(x, 21)Hp(z1, ZQ)H/(32)(Z27 y)Hs(z, 22)H/(32)(227 z1)Hp(21, y))‘Q(th dzy)

X2

+ [ Hy(w,21)Ha(z1, 22)HSY (20, 9) HY (0, 20) Hp (22, y) N2 (dz1, d2zs)
X2

+ Hg(z,21)Hp(21, 22) Hp (21, y)Hg) (z, ZQ)HéQ)(ZQ, YN (dz1, dzy)
X2

+ Hﬁ('T? ZI)HEQ)(ZD ZS)H,B(Z37 y)Hﬁ(Zb Z3)H,é2) (237 y))\Z(d’Zh ng)
X2

15



+/X2 Hg(x,zl)HréZ)(zl,z;;)HéQ)(zl,23)H5(23,y))\2(d21,dz3)

+/X2 Hg(x,zl)Hé2)(21,Zg)ng(Zg,y)Hg(.]?,Zg)HB(Zg,Zl)Héz)(Zl,y))\Q(dzl,dZ;g)
+ /X Hp(ar,20)HYY (21, 23) Hy 2, y) Ha(, 20) HY (2, 2) Hy (1, ) N (A2, dz)
+/X2 Hg(:v,zl)Hg)(zl,23)Hé2)(x,zl)H5(zl,23)H5(23,y))\2(dz1,d23)

+ [ Hal ) s HalGa, ) HE o200 H a2 Hion, )X 01, )
+ /X H (0, 20) Hy (2, 20) Ha2a, y) Hy (2, 22) HE (23, 9) N (dzn, d2s)

+ Héz)(x,zg)Hg(zg,zg)Hg(a:,zg)Hg)(zQ,zg)Hg(zg,y)AQ(dzg,dzg)

X2

+ | HP (. 2)Hy(zn, 23) Hy (2, y) Hp(w, 2) H (22, y) N2 (A2, dzs)

X2

+ Hg)(:p, 29)Hp(22, 23) Hp (23, y)Ha(z, 23)H[(32)(23, 20)Hp (29, y)A\* (dzo, d23)
X2

+ | HP (x,20)Hy(z2, 20) Hy(z, y) Hy (2, 22)N (2, dz)

X2

+ | HP (@, 20) Hy (22, 25) Hp (25, y) HY (w0, 25) Hy (20, y) \*(d2a, d25)
X2

+ Hé4)(95,?/) + / , Hpy(w, 21)Hp(21, 20) Hp( 22, 23) Hp (23, y) Hp (21, 23)Hﬁ(22,y))\3(d21, dzg, dz3)
X
—1—/3Hg(x,zl)Hg(Zl,zg)Hg(zg,zg)Hg(zg,,y)Hg(a:,zg)Hg(zl,zg)AB(dzl,dzg,dzg)
be
+ Hg(z, 21)Hp(21, 20) Hg(22, 23) Hp (23, y) Ha(, 20) Hg(23, 21) Hg (21, y)N* (dz1, 2, dz3)

X3

+ Hy(x,21)Hp(21, 22) Hp(22, 23) Hg (23, y) Hg(x, 23) Hp( 23, 21) Hg (22, y))\3(dzl, dzo, dz3)
X3

+ Hp(x, 20)Hg(21, 20) Hp (20, 23) Hg (23, y) Hp(x, 23) Ha (21, y)N* (dz1, d 2o, d23).
X3

5 Rayleigh fading

In this section we consider a Poisson point process on X = R? with flat intensity

Adz) = Mz on RY, A > 0, and a Rayleigh fading function of the form
Hy(z,y) =ePl=v 2y eR? B>0.
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Lemmas 5.1 and 5.2 can be used to evaluate the integrals appearing in Corollary 4.1

and in the variance (4.2) of 3-hop counts.

Lemma 5.1 Foralln>1, yi,...,y, € R and B4, ..., s > 0 we have

n d/2n1
™ Buys + -+ + By,
H,:E, ldl’: - . 5 Hz 1 i i+15 :
/Rdg ﬁz( y) (51+"'+5n) llj[ Bit1(Brt+8i) (?JH Bit -+ b )

B1++Biy1

Proof. We start by showing that for all n > 1 we have
11 Hs.(x. ) (5.1)
i=1

= Hspos, (:c, By /Bnyn) HHBZ+1(B1+ o (yz+1, biya Biy ) .

Br+ -+ By Bt Bt Br+--+ B

Clearly, this relation holds for n = 1. In addition, at the rank n = 2 we have

112

Hﬁl(xvyl)Hﬁz(xyzh) = e—ﬂ1||y1—xH2e—/32H:c—y2

— o BullvalP=Ballyal*+2(Bryr+B2y2,2) - (Br+52) |l=l|®
— o BullvlP=Bally2l?=(Bi+82) |lz—(Bry1+B2y2) / (Br1+B2) |2+ Bryr +B2y2 1/ (Br+82)

— o (Br+B2)llz—(Bryr+Bay2)/ (Br+B2) |12 —B1B2llyr —y2 |1/ (Br+52)

H <x By + Bz%)
B1+52 ’ 61 +62

Next, assuming that (5.1) holds at the rank n > 1, we have

H _B1B2 (yb y2)7

B1+B82

n+1
61?/1 + - 6nyn
H Hgi(x,yi) = Hﬁn+1 (xvyn+l)Hﬁ1+--'+5n (l’, Bi+--+p8

n—1
Bun -+ B
X HHB¢+1(ﬁ1+~~+Bi) (yiJrla L Y

i1 Br++Big1 /81 + e _'_ 6@
Biyr + -+ ﬁn+1yn+1) ( Biyr + - - + 51‘3/@')
= Hg. x, Hg, i1, :
B1+-+Bnt1 ( 51 4t ﬁn H B glliﬁliﬁzilﬁ D) | Yi+1 61 T F ﬁz

As a consequence, we find

n—1
Biyi + -+ + Biyi
/ HHBZ x )y Yi dm—HHM (y“rl’ 1gll+...+5iy

B+ +Bip1
Biyr + -+ + Bl
/H,BIJF +ﬁn(’ /81+---+5 dl’

17



n—1
- <;>d/z H Hpipyo14-+80) (y- 1 Pun oo ﬁlyl)
ﬁl + -+ Bn 12_11+"1'+/3i+11 T ﬁl + -+ Bz

i=1

O
In particular, applying Lemma 5.1 for n = 2 yields
. /2
/Rd Hg (v, x)Hp, (z,y2)dx = <51 +52> H%(yl,yg) (5.2)
_ T v —B1B2lly1—y2|1?/ (B1+B2) d
= <51+52> e ;Y1 y2 € RY,

and the 2-hop count between z € R? and y € R? is a Poisson random variable with

mean
By = A [ Hae ()
R

N
= )\(%) H,B/Q(:U7y)

o\ 2
— o —|lz—y||2/2
A(25) ¢ |

By an induction argument similar to that of Lemma 5.1, we obtain the following

lemma.

Lemma 5.2 Foralln>1, xg,...,z, € R? and B4, ..., B8, > 0 we have

/Rd'"/RdHHﬂi(xi—hxi)dIl"'dl‘n—l

7Tn71 d/2
g ) H B1-Bn x syYn)-
(Zil Br--BicaBiv1 - 'ﬁn) ST i Bi1 Fir1 B (%0, yn)
Proof. Clearly, the relation holds at the rank n = 1. Assuming that it holds at the

rank n > 1 and using (5.2), we have

n+1

Hg (x;_1,x;)dxy---d
/Rd /Rd E ﬁz(xl 1;1‘1) I Ty
— /Rd Hﬁn+1($n7xn+1)/Rd.../RdHHgi(xi_l,xi)dxl..,dxn

18



7].n—l /
H 818 o, Tn)Hp, (Tn, Tpyr)de
(Z?:l ﬁl . 6@'7151‘4»1 ) R ST 1191 1n51+1 B ( ) n) B +1( ny fn+ ) n

,n_n—l d/2 d/2
H B1--B (.CL' xr )
n 1 Pnt1 05 “n+1
<Z,-:1 Bie Bic1Biy1 - S 151 e 151+1 .+ Bn S BB 1841 Pt
U

In particular, the first order moment of the r-hop count between z, € R and z, € R?

is given by
r—1
Hér)(xo,xT) = / / HHﬂ(ﬂfi,ﬂiiH))\(dm)‘--)\(divrq)
RY R0
. ,n_rfl d/2
. 1<r6r_1) Hypo (2, )
7Tr—l

— 1 i Bllz—yli?/ d
= N\ ( 3 1) e PIemvin/T z,y € R (5.3)
rprT

Variance of 3-hop counts

Corollary 4.1 and Lemma 5.2 allow us to recover Theorem I1.3 of [9], for the variance

of 3-hop counts by a shorter argument, while extending it from the plane X = R? to
X =R~

Corollary 5.3 The variance of the 3-hop count between x € R? and y € R? is given
by

a3\ 42 2\ d/2
Var [N3V] = 2\ (853) e Bllz=yll?/2 | \2 <3B2> e Bllz=yl*/3

s{ PN aseyin 2 (N7 ey
+2)\ Tﬁ?’ [ Y +>\ 8_52 (& Y .

Proof. By (5.3) and Lemma 5.2 we have

/2
Hg(]?,Zl)Hg)(Zl,y)Hém(Zl, ))\(dzl)*)\ (452) / Hﬂx 21>H5/2(21, )/\(le)

Rd

d/2 3\ 42
() [ etz =0 () e

Hy(w, 20 HY (a0, 20) HEY (21,9) Ha(21,y) M)
R
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7T3

, 2 d/2 3 d/2
= A <4—52) /Rd Hspp2(21,y) Happa(w, 21)A(d21) = A (Tﬁg) Hagya(w,y),

Hg(w, 21)Hg (21, 22) Ho (20, y) Hp(w, 20) Hy (21, y)N*(dz1, dz)
X2

o\ /2
- (@) Hp(x,y) /Rd Hagys(22, (@ +y)/2) Hag (22, (z + ) [2)M(d2s)

, 2 d/2
= A (8_62> Hg(z,y),

and we conclude by (4.2). O
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