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Abstract

We present a Malliavin calculus approach to sensitivity analysis of European op-
tions in a jump-diffusion model. The lack of differentiability due to the presence of a
jump component is tackled using partial differentials with respect to the (absolutely
continuous) Gaussian part. The method appears to be particularly efficient to com-
pute sensitivities with respect to the volatility parameter of the jump component.
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1 Introduction

Consider an option whose value is defined as the average discounted gain on an underlying

asset Sξ
t depending on a parameter ξ:

Cξ = e−
R

T

0
r(t)dtE

[

f(Sξ
T )
]

.

where f is called the payoff function, e.g. f(x) = (x − K)+ for European options and

f = 1[K,+∞[ for a binary option. Let Delta, Vega, Gamma, Rho and Theta be the Greek

parameters measuring the sensitivity of option prices and defined by

Delta =
∂C

∂x
, Gamma =

∂2C

∂x2
, Rho =

∂C

∂r
, Vega =

∂C

∂σ
, Theta =

∂C

∂T
.

Fast Monte-Carlo methods for the numerical computation of sensitivities in continuous

markets have been developed in [6], [5], and also [2], using integration by parts formulas

1



on probability spaces and differential tools of the Malliavin calculus on the Wiener space.

In [7], a Malliavin type gradient operator has been used for Asian options in a market

with jumps driven by a standard Poisson process (Nt)t∈R+
. This gradient operator acts

on smooth functionals F = f(T1, . . . , Tn), of the Poisson process by differentiation with

respect to the jump times (Tk)k≥1 of the Poisson component (Nt)t∈R+
, as

DwF = −

k=n
∑

k=1

w(Tk)∂kf(T1, . . . , Tn),

where w is a functional parameter, cf. [9]. Functionals of the form
∫ T

0

F (t, Nt)dt (1.1)

do belong to the domain of Dw due to the smoothing effect of the integral. In particular

it turned out in [7] that Dw can be applied to differentiate the value of an Asian option.

However the L2 domain of Dw does not contain the value NT at time T of the Poisson

process, excluding in particular European claims of the form f(NT ) from this analysis.

Ssee [1] for a different way to compute Greeks in jump models.

In this paper we consider a jump diffusion model driven by the sum of a Brownian motion

and a jump process. Precisely, we consider an asset (St)t∈R+
whose dynamics under the

risk neutral probability are given by

dSt

St
= r(t)dt + σ1(t)dWt + σ2(t)dXt (1.2)

where (Wt)t∈R+
is a Brownian motion, (Xt)t∈R+

is a jump process, r(t) represents the

interest rate, and σ1(t), σ2(t) are volatility parameters.

In order to compute these sensitivities we will use the integration by parts formula of

Malliavin calculus, cf. Proposition 1 below. We will compute the Greeks corresponding to

the sensitivity of European option prices with respect to parameters such as spot price x,

interest rate r, or volatility σ. We use both the Malliavin calculus and finite differences,

and compare the results obtained by each method. The formulas obtained are similar to

the ones obtained for continuous markets, except in the case of derivation with respect to

the volatility parameter of the jump component.
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We proceed as follows. In Sections 2 and 3 we recall some basic notions of stochastic

calculus and Malliavin calculus. The simulation graphs obtained show that the Malliavin

method yields better numerical results in terms of accuracy and computation speed than

the finite difference method.

This paper is based on [4], see also [3] for another approach to the computation of Greeks

in jump models with respect to the Gaussian part of the process.

2 Stochastic calculus with jumps

In this section we recall some notions on stochastic calculus with respect to semimartingales

with jumps, according to [10]. Given a complete filtered probability space
(

Ω,F , (Ft)t∈R+
, P
)

,

recall that a mapping τ : Ω → R+ is a stopping time if {τ ≤ t} ∈ Ft, ∀t ∈ R+, and that

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft, t ∈ R+}. Given (Xt)t∈R+
a stochastic process, we

define the linear operator IX : S → L0 by

IX(H) = H0X0 +

n
∑

i=1

Hi

(

XTi+1
− XTi

)

,

for (Ht) ∈ S a simple predictable process, i.e.

Ht = H01{0}(t) +

n
∑

i=1

Hi1(Ti,Ti+1](t) (2.1)

where 0 = T1 ≤ · · · ≤ Tn+1 < ∞ is a sequence of stopping times and Hi ∈ L∞(Ω,FTi
),

0 ≤ i ≤ n. Note that this definition is independent of the choice of the representation

of the simple process H. The set S of simple predictable processes is endowed with the

topology of uniform convergence in (t, ω) denoted by Su. We denote by L0 the space of

random variables endowed with the topology of convergence in probability.

Definition 1 [10]

A process (Xt) is called a total semimartingale if (Xt) is càdlàg, adapted and if IX :

Su → L0 is continuous, in the sense that if a sequence (Hn)n∈N of simple predictable

processes converges uniformly to H then (IX(Hn))n∈N converges in probability to

IX(H).

A process (Xs)s∈R+
is called a semimartingale if, for all t ≥ 0, (Xs∧t)s∈R+

is a total

semimartingale.
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Next, we recall the construction of the stochastic exponential.

Theorem 1 [10] Let (Xt)t∈R+
denote a semimartingale starting from X0 = 0. Then there

exists a (unique) semimartingale (Zt)t∈R+
which satisfies the equation

Zt = 1 +

∫ t

0

Zs−dXs.

Moreover, (Zt)t∈R+
is given by

Zt = exp

(

Xt −
1

2
[X, X]t

)

∏

0≤s≤t

(1 + ∆Xs) exp

(

−∆Xs +
1

2
(∆Xs)

2

)

, t ∈ R+.

The next result (Girsanov theorem), often used to construct risk neutral probabilities, has

been used for the computation of option sensitivities with respect to the interest rate.

Theorem 2 [10] Let (Wt)t∈R+
be a Brownian motion under historical probability P , let

(Ft)t∈R+
be the filtration generated by (Wt)t∈R+

, let (θt)t∈R+
be an Ft-adapted process, and

let

W Q
t =

∫ t

0

θsds + Wt

and

M(t) = exp

(

−

∫ t

0

θsdWs −
1

2

∫ t

0

θ2
sds

)

, t ∈ R+,

and define the probability measure Q by

Q(F ) =

∫

F

M(T )dP, F ∈ F . (2.2)

Then the process W Q(t) is a Brownian motion under Q and more generally we have,

EQ[F (W Q)] = EP [F (W )], F ∈ L1(Ω, P ).

3 Malliavin calculus on the Wiener space

In this section we recall the basics of Malliavin calculus, cf. e.g. [8], [11], in view of

applications to sensitivity analysis. Let (Wt)t∈R+
denote a d-dimensional Brownian motion,

and let C denote the space of random variables F of the form

F = f

(
∫ ∞

0

h1(t)dWt, . . . ,

∫ ∞

0

hn(t)dWt

)

, f ∈ S(Rn),
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h1, . . . , hn ∈ L2(R+), where S(Rn) is the space of rapidly decreasing C∞ functions on R
n.

Given F ∈ C, the gradient of F is the process (DtF )t∈R+
in L2(Ω × R+) defined by

DtF =

n
∑

i=1

∂f

∂xi

(
∫ ∞

0

h1(t)dWt, . . . ,

∫ ∞

0

hn(t)dWt

)

hi(t), t ∈ R+, a.s.

We also define the norm

‖ F ‖1,2=
(

E[F 2]
)1/2

+

(

E

[
∫ ∞

0

|DtF |2dt

])1/2

, F ∈ C,

and denote by D1,2 the completion of C with respect to the norm ‖ · ‖1,2. The gradient

operator D is a closed linear mapping defined on D1,2 and taking its values in L2(Ω×R+).

The gradient D has the derivation property, i.e. if φ : R
n −→ R is continuously differ-

entiable with bounded partial derivatives, and F = (F1, . . . , Fn) a random vector whose

components belong to D1,2, then φ(F ) ∈ D1,2 and:

Dtφ(F ) =
n
∑

i=1

∂φ

∂xi
(F )DtFi, t ∈ R+, a.s.

Next we recall other properties of the gradient D, cf. [8], [6].

Property 1 Let (Xt)t∈R+
be the solution to the stochastic differential equation

dXt = b(Xt)dt + σ(Xt)dWt,

where b and σ are continuously differentiable functions. Let (Yt)t∈R+
denote the first vari-

ation process defined by the stochastic differential equation:

dYt = b′(Xt)Ytdt + σ′(Xt)YtdWt, Y0 = 1,

Then Xt ∈ D1,2, t ∈ R+, and its gradient is given by:

DsXt = YtY
−1
s σ(Xs)1{s≤t}, s ∈ R+, a.s.,

hence if f ∈ Cb
1(R

n) we have

Dsf(XT ) = ∇f(XT )YTY −1
s σ(Xs)1{s≤t}, s ∈ R+, a.s.

The gradient operator D admits an adjoint δ called divergence operator (or Skorohod

integral), which satisfies the following integration by parts formula.

5



Property 2 Let u ∈ L2(Ω × R+). Then u ∈ Dom (δ) if and only if for all F ∈ D1,2 we

have

E[〈DF, u〉H] = E

[
∫ ∞

0

DtFu(t)dt

]

≤ K(u) ‖ F ‖1,2,

where K(u) is constant independent of F ∈ D1,2. If u ∈ Dom (δ), δ(u) is defined by the

relation

E[Fδ(u)] = E[〈DF, u〉H], ∀F ∈ D1,2.

An important property of the divergence operator δ is that its domain Dom (δ) contains

the adapted processes in L2(Ω×R+). Moreover, for such processes the action of δ coincides

with that of Itô’s stochastic integral.

Property 3 For all adapted stochastic process u ∈ L2(Ω × R+) we have:

δ(u) =

∫ ∞

0

u(t)dWt.

We have the following property.

Property 4 Let F ∈ D1,2. For all u ∈ Dom (δ) such that Fδ(u)−
∫ T

0
DtFu(t)dt ∈ L2(Ω)

we have

δ(Fu) = Fδ(u) −

∫ T

0

DtFu(t)dt.

In the sequel we use the notation

DwF =

∫ ∞

0

DtFw(t)dt, F ∈ D1,2, w ∈ L2(Ω × R+).

The next proposition contains the main result used for the computation of sensitivities.

Proposition 1 Let (F ξ)ξ be a family of random variables, continuously differentiable in

Dom (D) with respect to ξ. Let (wt)t∈[0,T ] a process verifying DwF ξ 6= 0, a.s. on {∂ξF
ξ 6=

0}, ξ ∈ (a, b). We have

∂

∂ξ
E
[

f
(

F ξ
)]

= E

[

f
(

F ξ
)

δ

(

w
∂ξF

ξ

DwF ξ

)]

(3.1)

for all function f such that f
(

F ξ
)

∈ L2(Ω), ξ ∈ (a, b).

Proof. If f ∈ C∞
b (R), we have

∂

∂ξ
E
[

f(F ξ)
]

= E
[

f ′
(

F ξ
)

∂ξF
ξ
]

= E

[

Dwf(F ξ)

DwF ξ
∂ξF

ξ

]

= E

[

f
(

F ξ
)

δ

(

w
∂ξF

ξ

DwF ξ

)]

.

The general case is obtained by approximation of f by functions in C∞
b (R). �
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4 Sensitivity analysis

4.1 Market model

We consider a jump diffusion model in which the dynamics of the underlying asset price

is given by
dSt

St

= r(t)dt + σ1(t)dWt + σ2(t)dXt, S0 = x, (4.1)

where r(t) denotes the interest rate, (Xt)t∈R+
is a jump semimartingale, (Wt)t∈R+

is an

independent Brownian motion, and σ1(t), σ2(t) are volatility parameters, respectively

relative to the continuous and jump components. The solution of (4.1) is given by:

St = x exp

(∫ t

0

r(s)ds +

∫ t

0

σ1(s)dWs +

∫ t

0

σ2(s)dXs −
1

2

∫ t

0

σ2
1(s)ds −

1

2

∫ t

0

σ2
2(s)d[X, X]s

)

×
t
∏

s=0

(

(1 + σ2(s)∆Xs) exp

(

−σ2(s)∆Xs +
1

2
(σ2(s)∆Xs)

2

))

with µ(t) = r(t) − σ2
1(t)/2. Note that if (Xt)t∈R+

is a.s. of finite variation, i.e.

∑

0≤s≤t

|∆Xs| < ∞, a.s.,

then

St = x exp

(

∫ t

0

σ2(s)dXs −
1

2

∫ t

0

σ2
1(s)ds −

∑

0≤s≤t

σ2(s)∆Xs

)

× exp

(
∫ t

0

r(s)ds +

∫ t

0

σ1(s)dWs

)

∏

0≤s≤t

(1 + σ2(s)∆Xs)

= exp

(
∫ t

0

σ2(s)dXc
s +

∫ t

0

r(s)ds +

∫ t

0

σ1(s)dWs −
1

2

∫ t

0

σ2
1(s)ds

)

∏

0≤s≤t

(1 + σ2(s)∆Xs) ,

where (Xc
s)s∈R+

denotes the continuous part of (Xs)s∈R+
.

4.2 Delta

Delta represents the variation of the option price with respect to the initial price x of the

underlying asset:

Delta = e−
R

T

0
r(t)dt ∂

∂x
E [f(Sx

T )] ,

where Sx
T = xS1

T = xST . From Proposition 1,

Delta = e−
R

T

0
r(t)dtE

[

f(Sx
T )δ

(

w
∂xS

x
T

DwSx
T

)]

,
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and from Property 1,

DwST =

∫ ∞

0

DsST w(s)ds

=

∫ ∞

0

ST σ1(s)1{s≤T}w(s)ds

= ST

∫ T

0

σ1(s)w(s)ds.

Hence

Delta = e−
R

T

0
r(t)dtE

[

f(ST )δ

(

w

x
∫ T

0
σ1(t)w(t)dt

)]

=
1

x

e−
R

T

0
r(t)dt

∫ T

0
σ1(t)w(t)dt

E

[

f(ST )

∫ T

0

w(t)dWt

]

. (4.2)

4.3 Vega

Vega measures the sensitivity of the option price with respect to the volatility parameter.

4.3.1 Vega1

In case of a derivation with respect to the volatility parameter σ1 we consider the perturbed

process (Sε
t )0≤t≤T given by:

dSε
t = r(t)Sε

t dt + (σ1(t) + εσ̃1(t))S
ε
t dWt + σ2(t)S

ε
t dXt, (4.3)

where ε > 0 and σ̃1 : [0, T ] → R is a bounded perturbation function. We have

∂εS
ε
T = Sε

T

(
∫ T

0

σ̃1(t)dWt −

∫ T

0

σ̃1(t)(σ1(t) + εσ̃1(t))dt

)

.

Letting Cε = E[f(Sε
T )], from Proposition 1 we have

Vega1 =
∂Cε

∂ε

∣

∣

ε=0

=
e−

R

T

0
r(t)dt

∫ T

0
σ1(t)w(t)dt

E

[

f(ST )δ

(

w(·)

(
∫ T

0

σ̃1(t)dWt −

∫ T

0

σ̃1σ1(t)dt

))]

.

As for the Delta, the obtained formula coincides with that of [6].
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4.3.2 Vega2

We choose here to differentiate with respect to the volatility σ2 related to the jump process,

in this case the formula we obtain is different from the one obtained for Vega1. Consider

the process (Sε
t )0≤t≤T defined by:

dSε
t = r(t)Sε

t dt + σ1(t)S
ε
t dWt + (σ2(t)S

ε
t + εσ̃2(t))dXt (4.4)

where ε is a small real parameter and σ̃2 : [0, T ] → R is a bounded perturbation function.

Given the option price

Cε = e−
R

T

0
r(t)E [f(Sε

T )] , Sε
0 = x,

we need to compute
∂Cε

∂ε

∣

∣

ε=0
. By Proposition 1 we have

∂Cε

∂ε
= e−

R

T

0
r(t)E

[

f(Sε
T )δ

(

w
∂εS

ε
T

DwSε
T

)]

,

with

Sε
t = At exp

(
∫ t

0

(σ2(s) + εσ̃2(s)) dXc
s

)

∏

0≤s≤t

(1 + (σ2(s) + εσ̃2(s)) ∆Xs)

and

At = x exp

(
∫ t

0

µ(s)ds +

∫ t

0

σ1(s)dWs

)

.

Hence

∂εS
ε
T = Sε

T







∑

∆Xs 6=0

0≤s≤T

σ̃2(s)∆Xs

1 + (σ2(s) + εσ̃2(s))∆Xs
+

∫ t

0

σ̃2(s)dXc
s






.

We then obtain

Vega2 =
e−

R

T

0
r(t)

∫ T

0
σ1(t)w(t)dt

E






f(ST )

∫ T

0

w(t)dWt







∑

∆Xs 6=0

0≤s≤T

σ̃2(s)∆Xs

1 + σ2(s)∆Xs
+

∫ t

0

σ̃2(s)dXc
s












.

4.4 Gamma

Delta is more sensitive to variations when the exercise price of an option is close to the spot

price x. Gamma is used to evaluate the sensitivity of Delta with respect to the variations

of x. We have

Gamma = e−
R

T

0
r(t)dt ∂2

∂x2
E [f(ST )]
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= e−
R

T

0
r(t)dt ∂

∂x
E

[

f(ST )δ

(

w

x
∫ T

0
σ1(t)w(t)dt

)]

= e−
R

T

0
r(t)dt ∂

∂x
E

[

f(ST )
δ(w)

x
∫ T

0
σ1(t)w(t)dt

]

=
e−

R

T

0
r(t)dt

x
∫ T

0
σ1(t)w(t)dt

E

[

f(ST )δ

(

w
∂xST

DwST
δ(w)

)]

−
1

x2

e−
R

T

0
r(t)dt

∫ T

0
σ1(t)w(t)dt

E [f(ST )δ(w)] ,

with

δ

(

w
∂xST

DwST

δ(w)

x
∫ T

0
σ1(t)w(t)dt

)

= δ







wδ(w)
(

x
∫ T

0
σ1(t)w(t)dt

)2







=
δ(w)δ(w) −

∫ T

0
Dtδ(w)w(t)dt

(

x
∫ T

0
σ1(t)w(t)dt

)2

=
(δ(w))2 − 1

(

x
∫ T

0
σ1(t)w(t)dt

)2 .

From this we deduce

Gamma = e−
R

T

0
r(t)dt ∂2

∂x2
E [f(ST )] = (4.5)

e−
R

T

0
r(t)dt

x2
E






f(ST )







(

∫ T

0
w(t)dWt

∫ T

0
σ1(t)w(t)dt

)2

−

∫ T

0
w(t)dWt

(

∫ T

0
σ1(t)w(t)dt

)2 −

∫ T

0
w(t)dWt

∫ T

0
σ1(t)w(t)dt












.

4.5 Rho

Rho represents the sensitivity, i.e. the first derivative, of the option price with respect to

the interest rate parameter. Consider the process (Sε
t )0≤t≤T defined by:

dSε
t = (r(t) + εr̃(t))Sε

t dt + σ1(t)S
ε
t dWt + σ2(t)S

ε
t dXt (4.6)

where ε > 0 is small and r̃ is a bounded perturbation function from [0, T ] to R. Given the

option price

Cε = e−
R

T

0
(r(t)+εr̃(t))dtE [f(Sε

T )] ,

let

Z̃ε
T = exp

(

−ε

∫ T

0

r̃(t)σ−1
1 (t)dW ε

t +
ε2

2

∫ T

0

|r̃(t)σ−1
1 (t)|2dt

)

,
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and define the probability measure Qε, equivalent to P , by dQε = Z̃ε
T dP . Then (4.6) reads

dSε
t = r(t)Sε

t dt + σ1(t)S
ε
t dW ε

t + σ2(t)S
ε
t dXt, (4.7)

with dW ε
t = dWt + εr̃(t)σ−1

1 (t)dt. From Theorem 2 (Girsanov Theorem), the process

(W ε
t )0≤t≤T is a standard Brownian motion under the probability Qε. Hence (W ε)0≤t≤T

has same law as W , and (Sε)0≤t≤T has same law as (St)0≤t≤T , and we have

Cε = e−
R

T

0
r(t)+εr̃(t)dtEP [f(Sε

T )]

= e−
R

T

0
r(t)+εr̃(t)dtEQε

[

1

Z̃ε
T

f(Sε
T )

]

= e−
R

T

0
r(t)+εr̃(t)dtEP

[

1

Zε
T

f(ST )

]

, (4.8)

with Zε
T = exp

(

−ε
∫ T

0
r̃(t)σ−1

1 (t)dWt + ε2

2

∫ T

0
|r̃(t)σ−1

1 (t)|2dt
)

. By differentiation of (4.8)

with respect to ε we get, after evaluation in ε = 0:

Rho = e−
R

T

0
r(t)dtE

[

f(ST )

∫ T

0

r̃(t)

σ1(t)
dWt

]

− e−
R

T

0
r(t)dt

∫ T

0

r̃(t)dtE [f(ST )] . (4.9)

5 Numerical simulations

In this section we present numerical simulations for the Greek parameters Delta, Vega,

Gamma and Rho, for a European binary option with exercise price K. Expectations are

computed numerically via the Monte Carlo method, i.e. using the approximation

E[X] '
1

N

N
∑

i=1

X(i)

due to the law of large numbers, given a large number N of independent samples (X(i))i=1,...,N .

We consider a simplified model where the parameters σ1, σ2, r are independent of time and

where the jump process is taken to be a compensated Poisson process with intensity λ.

Under these conditions the price of the underlying asset is given by:

St = x(1 + σ2)
Nt exp

((

α −
σ2

1

2

)

t + σ1Wt

)

,

with α = r − σ2λ, t ∈ [0, T ], and the value of the binary option is:

Xξ = e−rTE
[

1[K,∞[(S
ξ
T )
]

, ξ = x, r, σ1, σ2.
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For the Malliavin calculus approach we choose wt to be the constant function w(t) = 1/T ,

0 ≤ t ≤ T , which yields

DwST = ST

∫ T

0

σ1w(s)ds = σ1ST .

The intensity of the Poisson component is fixed equal to λ = 1/10. The following graphs

allow to compare the efficiency of both methods.

5.1 Simulation of Delta

From (4.2), Delta is given by

Delta =
e−rT

xσ1T
E [f(ST )WT ] .

To approximate Delta by finite differences we use

Delta =
Cx(1+ε) − Cx(1−ε)

2xε
.
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Figure 1: Delta with N = 2 × 108, x = 100, r = 0.2, σ1 = 0.1, σ2 = 0.1, T = 1, K = 120
and e = 0.01.
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Figure 2: Delta as a function of K with r = 0.05, σ1 = 0.15, σ2 = 0.01.
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Figure 3: Delta as a function of T with r = 0.05, σ1 = 0.15, σ2 = 0.01.
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5.2 Simulations of Vega

5.2.1 Vega1

Vega1 is defined by
∂Cσ1

∂σ1

= e−rTE

[

f(ST )δ

(

w
∂σ1

ST

DwST

)]

We have

∂σ1
ST = ST (−σ1T + WT )

and

δ

(

w
∂σ1

ST

DwST

)

= δ

(

w

σ1
(−σ1T + WT )

)

=

(

−T +
WT

σ1

)

WT

T
−

1

σ1
,

hence

Vega1 = e−rTE

[

f(ST )

(

W 2
T

Tσ1

− WT −
1

σ1

)]

.

By the finite difference method, Vega1 is given by

Vega1 =
Cσ1(1+ε) − Cσ1(1−ε)

2σ1ε

 1.255

 1.26

 1.265

 1.27

 1.275

5e+08 1e+09 1.5e+08 2e+09

V
eg

a 
1

Numbers of samples 

Malliavin formula
Finite differences

Figure 4: Vega1 with x = 100, r = 0.05, σ1 = 0.15, σ2 = 0.01, T = 1, K = 120 and e = 0.01.
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Figure 5: Vega1 as a function of K (r = 0.05, σ1 = 0.15, σ2 = 0.01).
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Figure 6: Vega1 as a function of T (r = 0.05, σ1 = 0.15, σ2 = 0.01).
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5.2.2 Vega2

Vega2 is defined by
∂Cσ2

∂σ2
= e−rTE

[

f(ST )δ

(

w
∂σ2

ST

DwST

)]

We have

∂σ2
ST = ST

(

NT

1 + σ2

− λT

)

and

δ

(

w
∂σ2

ST

DwST

)

= δ

(

w

σ1

(

NT

1 + σ2
− λT

))

=
WT

σ1T

(

NT

1 + σ2
− λT

)

,

hence

Vega2 = e−rTE

[

f(ST )
WT

σ1T

(

NT

1 + σ2
− λT

)]

.

By the finite difference method, Vega2 is given by

Vega2 =
Cσ2(1+ε) − Cσ2(1−ε)

2σ2ε

Note that for the numerical computation of Vega1, the finite difference method performs

similarly to the Malliavin method.
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Figure 7: Vega2 with x = 100, r = 0.1, σ1 = 0.2, σ2 = 0.1, T = 1, K = 120 and e = 0.01.
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Figure 8: Vega2 as a function of K with r = 0.05, σ1 = 0.15, σ2 = 0.01.
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Figure 9: Vega2 as a function of T with r = 0.05, σ1 = 0.15, σ2 = 0.01, x = 100.
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Figure 10: Vega2 as a function of K and T : x = 100, r = 0.05, σ1 = 0.15, σ2 = 0.01, and
e = 0.01 (Malliavin method, 10000 samples).
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Figure 11: Vega2 as a function of K and T : x = 100, r = 0.05, σ1 = 0.15, σ2 = 0.01, and
e = 0.01 (finite differences, 10000 samples).
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5.3 Simulations of Gamma

From (4.5) we have

Gamma = e−rTE

[

f(ST )
1

x2σ1T

(

W 2
T

σ1T
−

1

σ1T
− WT

)]

By the finite difference method, Gamma is given by

Gamma =
Cx(1+ε) − Cx + Cx(1−ε)

x2ε2
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Figure 12: Gamma with x = 100, r = 0.1, σ1 = 0.2, σ2 = 0.1, T = 1, K = 120 and e = 0.01.

5.4 Simulations of Rho

From the equation (4.9) and assuming that the perturbation function r̃ is constant and

equal to 1 we have

Rho =
e−rT

σ1

E

[

f(ST )

∫ T

0

dWt

]

− Te−rTE [f(ST )]

= e−rTE

[

f(ST )

(

WT

σ1
− T

)]

By the finite difference method, Rho is given by

Rho =
Cr(1+ε) − Cr(1−ε)

2εr
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Figure 13: Rho as a function of K with r = 0.05, σ1 = 0.15, σ2 = 0.01.
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Figure 14: Rho as a function of T with r = 0.05, σ1 = 0.15, σ2 = 0.01.
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