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Abstract

Using finite difference operators, we define a notion of boundary and surface measure
for configuration sets under Poisson measures. A Margulis-Russo type identity and
a co-area formula are stated with applications to bounds on the probabilities of
monotone sets of configurations and on related isoperimetric constants.

Key words: Configuration spaces, Poisson measures, surface measures, co-area
formulas, isoperimetry.

Mathematics Subject Classification: 60G57, 60HO7, 28A75, 60D05.

1 Introduction

In this note we consider some isoperimetric problems on the space of configurations
of a metric space X, equipped with a Poisson measure IT with finite intensity o(dz).

We introduce notions of inner and outer boundaries 9, A, Jout A, as well as sym-
metric boundary 0A, and surface measure II5(0A) valid for an arbitrary set A of
configurations.

We then prove a Margulis-Russo type identity from which we deduce bounds on the
probability ITy(A) for monotone configuration sets A under the Poisson measure ITy
of intensity Ao (dx), A > 0. Thresholding results are obtained as a consequence.

We also prove a co-area formula which allows us to study related isoperimetric
constants such as

I1,(9A)

inf @ ————— [1(04)
o<1i(A)<1 II(A)TI(A°)’

hy = inf o)
? 0<1i(4)<1 TI(A)TI(A°)

hoo =

The configuration space approach to Poisson measures allows one to consider func-
tions of finite dimensional Poisson random vectors as particular cases, and in this
situation our results recover and extend those obtained by Bobkov and Gotze (1999).

We proceed as follows. In Section 2 we recall the definition of the Poisson measure
and the properties of the finite differences gradient. We also extend the isoperimetric
result of Bobkov and Gétze (1999) to the setting of configuration spaces. In Section 3
we construct the inner and outer boundaries of subsets of configurations. The surface
measures of such boundary sets are then defined by averaging the norms of finite
difference gradients, and can be interpreted as the measures of inner and outer flows



through the boundary. We also prove a co-area formula and introduce the main
associated isoperimetric constants. In Section 4 we present a notion of monotone
set and state a Margulis-Russo type identity in the setting of configuration spaces.
In Section 5 we deduce bounds on the probabilities of monotone sets in terms of
the intensity parameter of the Poisson distribution and obtain a thresholding result
as a consequence. Finally in Section 6 we prove some bounds on the isoperimetric
constants using the co-area formula of Section 3.

2 Poisson measure and finite difference operators

Let X be a metric space with Borel o-algebra B(X) and let ¢ be a finite and diffuse
measure on X. Let ) denote the configuration space over X, i.e. the set of Radon
measures

i=N
Q:{W:Z‘Sxi : (xi)ﬁz{vCX, x; # x5, W;éj,NGNU{oo}},
=1

where §, denotes the Dirac measure at z € X. For convenience of notation, when w
contains n points, n > 1, we identify w = > ._| 5, with the set w = {z1,..., 25}
Let F denote the o-algebra generated by all mappings of the form w — w(B),
B € B(X), and let II denote the Poisson measure with intensity o on 2, defined via

i=n j=n k.
o(Aj)r
M({w e Q : w(d) = ki, ow(An) = kn}) = exp (— Zami)) 175
i=1 j=1
ki,...,ky, € N, on the o-algebra F generated by the sets of the form
{weQ : wlli) =Fki,...,w(4,) = kn},
for k1,...,k, € N, and disjoint A4, ..., A, € B(X).

Under II, the expectation of any integrable random variable of the form

F(w) = folgui=op + Y L{wl=n} o (@1, . Zn), (2.1)

n=1

where fop € R and f, is a symmetric measurable function on X™, n > 1, is given by

E[F]:e_”(X)fo—ke_”(X);;!/X---/an(xl,...,xn)a(dxl)---a(da:n). (2.2)

We will use the following finite difference operator.
Definition 2.1 For any F': Q — R, let
D, F(w) = (F(w+6z) — F(w))1{zewe)

forallw e Q and x € X.



Let Iy, A > 0, denote the Poisson measure of intensity Ao (dx) on €2, and let E)
denote the expectation with respect to II). The following variational formula is
obtained by differentiation with respect to the intensity parameter A of the Poisson
measure.

Proposition 2.2 Let 0 < a < b and F : Q — R be such that F € L'(Ily) and
DF € LY I\ ® o), for all X € (a,b). Then,
0

oy EAF] = E) [/X DmFo(dzv)] . A€ (aD).

Proof. This result can be seen as an application of Remark 2.1 of Molchanov and
Zuyev (2000), but we provide here a proof for completeness. From (2.2), we have
for F' of the form (2.1):

;’AEA[F] ~(X)EA[F]

e}

o Ao(X nz:l A / / fo(x1, ... 2zn)o(dey) - - - o(day,)
=—0(X)E\[F] + E)\ [/X F(w+ 5x)o(dw)]
)|

=FE) {/X D, F(w)o(dx

0

We close this section with the following result which gives a version of isoperimetry
on Poisson space which is independent of dimension and is akin to the result of
Bobkov and Gotze, 1999, p. 263. Let ¢ denote the standard Gaussian density, and
let ® denote its distribution function. Let I(t) = o(®71(t)), 0 < ¢t < 1 denote the
Gaussian isoperimetric function, with the relations

IOI"t)=-1 and I'(t)=—-®7 (), te[0,1].

Proposition 2.3 For every integrable random variable F : Q — [0, 1] we have

N<E {\/1( 2+ 2|DF 2, J (2.3)

Proof. Let Ay,..., A, afamily of disjoint elements of B(X) and consider the vector
Xo(@) = @A), w(An),  weQ, (2.4)

of independent Poisson random variables with intensities o (A1), ...,0(4,). For any
cylindrical functional of the form F' = f o X,, we have

k=n
=3 14, (2)(f(Xn(w) + ex) — F(Xn(w))),
k=1



f:N" — R, where (e;)1<k<n denotes the canonical basis of R". For the cylindrical
functional F', (2.3) follows by applying of Relation (3.13) in Bobkov and Gétze
(1999) and tensorization. The extension to general random variables can be done
by martingale convergence, e.g. as in the proof of Theorem 3.4 of Wu (1998). O

In particular, (2.3) yields the inequality
1
V2

since I(14) = 0, IT-a.s.

I(II(A)) < E[|D1alr2(oy], AeF, (2.5)

3 Boundaries, surface measure and co-area formula

Let now
D} F(w) = max(0, D, F(w)) and D, F(w)= —min(0, D,F(w)), reX.

The next definition is, in fact, independent of p € [1, c0].

Definition 3.1 The inner and outer boundaries of any A C ) are defined as:
OnA={weA: |D_1A(w)|Lp(U) > 0},
and
OoutA = {w € A° : |D+1A(W)|Lp(o—) > 0}.
In other words, the inner boundary 0, A of A is made up of the w € A that have
“at least” a neighbor in A€, in the sense that
c{re X : w+dy, € A°}) >0,

and the outer boundary Oyt A of A is made up of the w € A® that have “at least”
a neighbor in A, in the sense that

c{reX : w+do, € A}) > 0.
The symmetric boundary of A is defined as:
0A = 0in AU Qo A.
In the cylindrical case where X,, :  — N" is defined by (2.4) we have the relation
X, € B} ={X,, € 9B}

where 0B is the boundary of B C N” defined in Bobkov and Gotze, 1999, p. 263.
For the set {w(B) > n} we have

Gout{w(B) =2 n} = {w(B) =n — 1},
and for the set {w(B) < n} we have
On{w(B) < n} ={w(B) =n}.

The surface measure of O A, resp. Jout A, is defined by averaging |D~14(w)| 2 (o)1
resp. |D¥14(w)|r2(s) with respect to the Poisson measure II(dw).



Definition 3.2 For any A € F, let
HS(ainA) = EHD_]‘A’L2(U)]7
and

I (OoutA) = E[]D*lA\Lg(U)].

The above quantities represent average numbers, with respect to the Poisson mea-
sure, of points in A, resp. A¢, which have a neighbor in A¢, resp. A. The surface
measure of JA is then defined as

I, (0A) = I14(0inA) + I (Oput A).

We now turn to the statement of a co-area formula on configuration space.

Lemma 3.3 For any sufficiently integrable F' : Q — R we have

+oo
BID Flusn) = [ 1O > th

— 0
and

“+oo
E[|DFF|p(p)] = / (e {F > t})dt.

—0o0

Proof. We follow the arguments used in Bobkov, Houdré and Tetali (2000) in the
case of graphs. We have

|D_F(w)|L°°(U) = €55 8UPg(dx) (F(w) - F(w + 5I))+ = F(w) — €8s info‘(da:) F(w + 613)’

hence

E[|D™ F| oo (s)] = E[F] — Elessinf,(4z) F(w + 6.)]

+o0 +oo
:/ IH({F > t})dt — / H(ess inf,(gz) F(w + 0z) > t)dt

—0o0

- / U nE > )a - /_ :o T({ess inf, (g F(w + 6,) > ¢ and F(w) > t})dt
- /+°° M({F(w) >tand o({r € X : F(w+4,) <t})>0})dt

_ /+°° M{we® : o(feeX : Fw) >t and Fw+8,) < t}) > 0})dt
[T ollr € X Upping — Lrssg = 1) > 0
:/+°° M({weQ D Loy limo = 1))t

+oo
= [ EID Lol it

The corresponding result with D is proved similarly. O



As a consequence of the previous lemma and since D FD}F = 0 we have:

EHDiF‘L‘”(U)] +EHD+F|L°°(U)]

=/ E[|D1{F>t}|Loo(a)]dt+/ E[[D 1 psg|pooo)]dt
:/ E[ID™ 1gpsy|roo() + DT Lipaiy|poo(o)]dt
:/ B[|D1{psy |00 (0)]dt

:/OO I(O{F > t})dt. (3.1)

—0o0

4 Monotone sets

Given w € , let the set N, of neighbors of w be defined as
Ny ={w+ 0, :x€wl}.

Definition 4.1 A subset A of Q is called increasing if
weA = w+d, €A o(dr)—ae. (4.1)
It is called decreasing if

wt+deAdA = weA o(dz)—ae. (4.2)

For all B € B(X) the sets {w(B) > n}, resp. {w(B) < n}, are examples of increasing,
resp. decreasing, subsets of €). Another example of monotone set is given by

{wEQ:/fdw>K}, K eR,
X

which is increasing, resp. decreasing, if f > 0, resp. f <0.
Furthermore we have the following.

Proposition 4.2 A subset A of 2 is increasing if and only if one of the equivalent
conditions
D14 >0, DxlA:Dle, D, 14 =0,

holds, o(dx)-a.e.
Similarly, a subset A of ) is decreasing if and only of the conditions
D14 <0, Dy14=—-D, 1y, D;lA:O,
holds o(dx)-a.e. Note that if A C Q is increasing, resp. decreasing, then 9, A = (),
resp. Oout A = 0.

We now prove a Margulis-Russo type equality for monotone sets under Poisson
measures, cf. Margulis (1974), Russo (1982) on other discrete spaces.



Lemma 4.3 Let A € F be a monotone and measurable subset of 2.

a) If A is increasing then

0

S (A) = By [/X D;lea(dx)] ;A€ (ab).

b) If A is decreasing then

0
9 11,(4) = B, / Dolao(dn)|,  Ae(ab).
oA e
Proof. Combine Proposition 2.2 with Proposition 4.2. O

Definition 4.4 For any A € F, let

52 = 6;1321th |D+1A‘L1(o) and 5; = 5n£1 ‘D_1A|L1(a)'

in

Note that when A is increasing, resp. decreasing, then d,, resp. 5;{, coincides with
04 defined as
5A = 181’11}‘ ’D1A|L1(a)'

For example, for the increasing set {w(B) > n} we have

|D1B)>n}li(e) = 0(B)liw(B)=n-1} = 0(B) 1o, fw(B)>n}>

hence dy,(B)>n} = 0(B). For the decreasing set {w(B) < n} we have

|D1B)<n}lri(e) = 0(B)liw(B)=n} = 0(B)1a, {w(B)<n}s
hence 5{w(B)§n} = O'(B)

Lemma 4.5 Let A € F be a monotone subset of Q, let p € [1,00] and 1 = 1/p+1/q.
If A is increasing, then

0
o) = 8 B ([DLaln). A>0,

and if A is decreasing, then

)
Frih(4) < —5IE\|DLal o)), A >0

Proof. Since A is monotone we have

EXID1al ()] = EAL{|D14| oo () >0} DL Al Lr(0)]

< (IA({|D1alLoe() > 01)) VBN DLal], )7

o)



< [IA(OA) VB[ D14 1 0)]'7

1
< WE/\HDlA\LI(a)]-
A

Now in case A is increasing, from Proposition 4.3 we get

0 1
ora(4) = EAID" 14l 11(0)] = EA[ID1al 11 ()] = 65 " Ex[|D1a]1o(o)-
The argument is similar in case A is decreasing. U

Finally we introduce the main isoperimetric constants under the Poisson measure,
see Houdré and Tetali (2004) for the case of graphs and Markov chains.

Definition 4.6 For p € [1,00] let

oy ElPlalwe] o BlDlee] o E[IDlale)
Pocit)<1 THA) (I —TI(A))” P oemtner THAN(L —TI(A))’ "7 oentaer TI(A)(1 —TI(A))’

A decreasing A increasing

where the suprema and infima are taken over measurable sets A € F.

We have

, II,(DA) ~ , I1,(DA) , I1,(DA)
= f _ = f [ A— = f I S
b= b mmeaey " T ML a2 T ol o Ay A

A decreasing A increasing

and

. I1(HA) _ . 1(HA) . I1(0A)
hE = o h = f o =i hee= nf ot
0 AOESI?AK; I(A)II(Ac)” A0§é?A><1 TI(A)II(Ac)’ 0<T1(4)<1 TI(A)II(A°)

ecreasing mcreasing

5 Bounds on monotone sets and thresholding

As a consequence of the Margulis-Russo identity Proposition 4.3 we obtain bounds
on ITy(A) when A is a monotone set. In Proposition 5.1 below, h;t and hy, denote the
infima of the corresponding isoperimetric constants over the values of A considered
in each bound. Note that from results shown in Section 6, h, and h;,t are lower
bounded independently of A > 0 for p = 1,2, while ho is of order A~' and A~1/2
under I as A goes to 0 and infinity respectively.

Proposition 5.1 Let A € F be a monotone subset of 2 and let p,q € [1,00] such
that 1/p+1/q = 1.

a) If A is increasing we have

Tp(A) > Ty (A)e@N-To(m 8" o )\ <9,



b) In case A is decreasing we have

Ty(A) < TIy(A)e @ NOA-TNADRES] g o\ <

Proof. In case A is increasing we have

0
STIA(A) > by 8 TIL(A) (1 = IL(A4) > by 0 (A1 - T(4),  0<A<6,

and in case A is decreasing we have

%He(A) < 65 Ty(A)(1-TIg(A)) < = 65/ TIy(A)(1-TTy(4)), 0< A <.

O
An application of Lemma 4.5 for p = 2 yields the following bounds.

Proposition 5.2 Let A € F be a monotone subset of ().

a) In case A is increasing we have

My(A) > & (qu(m(A)) +\/204(V0 — ﬁ)) . 0<A<é.

b) In case A is decreasing we have

My(4) < @ (071 (I(4)) - V2. (VE- VD)), 0<A<b.

Proof. Letting f(A) = II,(A) and applying Lemma 4.5 with p = 2 and Proposi-
tion 2.3 we get from (2.5) for A increasing:

04 —/04

PO = BAllDLals1 ) 2 VEABAIDLaliago] 2\ 511700 = s

2

Hence for A < 0,

6
OH(F(N) — 2N F(0) =T'(f(0) — I'(F(N)) 2/A I"(f(1) f (t)dt
/ @dt V25A(VA — V).

The argument is similar in case A is decreasing. O

In particular, for A increasing and IIy(A) = 1/2 we have
) (A) < ®(—/204(VO— VX)), 0<A<0,
whereas for II)(A) = 1/2 we have

My(A) > ®(\/204(VO - VX)),  0< <9,



and if A is decreasing and IT\(A) = 1/2,

[p(A) < ®(—/204(VO— VX)), 0<A<6.
whereas for IIp(A) = 1/2,

My (A) > &(\/204(VO - V), 0< A<

In Figure 1 below we compare the uppers bounds obtained in Propositions 5.1 and
5.2 for § = 18 and IIy(A) = 1/2.

0.2 /

(o] T . Prop. 5.2 e
'
16 18

lambda

Fig. 1. Comparison of the upper bounds of Propositions 5.1 and 5.2.

As a consequence of Proposition 5.2 we have the following thresholding result, which
can be seen as a Poisson space version of Russo’s approximate zero-one law Russo
(1982), Talagrand (1993), and extends Proposition 3.6 of Bobkov and Gotze (1999)
from finite dimensional Poisson vectors to the setting of configuration spaces.

Corollary 5.3 Let e > 0 and let A be a monotone subset of Q such that
0<€:H)\(A) <H9(A): 1—¢,

then

1 _
og@—ﬁgmcp Y1 —e).

The above result can be interpreted by saying that the function r +— II,2(A) can go
from ¢ to 1 — ¢ on an interval of length at most (204)~1/2®~1(1 — ¢). This type of
result has been first obtained in the framework of Bernoulli measures with parameter
p € (0,1) on {0,1}", cf. Margulis (1974), Russo (1982), Talagrand (1993).

6 Bounds on isoperimetric constants

In this section we establish some bounds on the isoperimetric constants used in
Proposition 5.1 of Section 5.

10



First, note that for all p € [1, 00| we have the bounds h, < h; = h, and

hp hy
oo R Ege o)

hoo >
since E[\D1A|LP(U)] < (O'(X))l/pE[|D1A|Loo(o-)], AecF.
Let now the Poincaré constant \p, p € [1, 00|, be defined as
2
N )
P Frtc Var(F)
where C' denotes any constant function. Clearly, for all p € [1, oo], we have
hpa > Xp (6.2)
since

MI(A) (1 —TI(A)) = A Var (L) < E[[D1a ) = E[DLal o). A€ F.

Lemma 6.1 We have A2 =1 and Ao = 1/0(X).

Proof. The fact that A2 = 1 is well-known, cf. e.g. Houdré and Privault (2003) for
details, and it implies that

Var F < E[|DF|72(,)] < 0(X)E[|DF|7 o)),
and so Ao > 1/0(X). Letting F(w) = w(X), we have D, F = 1, o(dx)-a.e., and so
Var (F) = 0(X) = E[|DF |75 (,)] = 0(X)E[|DF[fc )],

which shows that Ao < 1/0(X). O
Proposition 6.2 We have hy > 1//7.

Proof. From (2.5) we get

0

The relation (6.3), below, improves on the lower bound ho, > 1/4/70(X), see (3.15)
of Bobkov and Gotze (1999) in the finite dimensional Poisson case.

Proposition 6.3 We have

11



Proof. First, note that (6.1) and Proposition 6.2 show that

heo > ha/\/o(X) > 1/y/mo(X).
On the other hand, from (6.2) and Lemma 6.1 we have hoo > Ao = 1/0(X).

We will conclude the proof of (6.3) by showing that

1 (V14 hoo/2 — 1)
Aso = () > 1 . (6.4)

In case F' has a vanishing median m(F') = 0, from the co-area formula of Lemma 3.3
we have:

+o0o
EIDFlie) [ 1O(F > th)ds

— 00

+oo
> %‘0 /_Oo min(TI{F > ¢}), TI{F < t}))dt

=~ ElF].

Applying the above inequality to (F*)? we have

" B[P+ < 25D Pl o)
< 2E[ess supy gz |FH(w) = FHw+ 6)|(F (w) + F (w + 6,))]
< 2E[ess sup,(gy) IFT(w) = Ff(w+6)|(Ff(w+6:) — FH(w))

+2|Ft (w) — FH(w + 6,) | F T (w)]
< 2Fess SUD g (da) (FY(w) — FT (w4 62))%
+4F]ess SUDg (dz) |FH(w) — F(w+ 6,)|FH(w)]
< 2E[ess Sup, (g (F(w) — F(w + 6,))%)
AB[osS 5D, ag) [P (w) — F(e + 6,)| F* (@)

Similarly we have
%E[(F*)z] < 2FE]ess supa(dx)(F(w) — F(w+6,))?]
+4E[ess sup gy |[F (W) — F(w + 02)[F~ (w)].

Hence

h

?”E[Fﬂ <h h

%’E[(F*)Q} + = El(F)7]
AB[|DF [} (5] + 4E[|DF| oo )| F]

12



SAE[|DF |} ()] + 4B[|DF [} ()| 2 E[F?]V/?,

which implies
V1+ hoo/2 = 1)? V1t hoo/2 —1)?
WA 22 D gy i« W22 A i) < pipi )
In the general case (m(F) # 0), use the fact that Var F < E[(F — m(F))?]. O

Proposition 6.4 We have

1 <h; <8+8y/o(X). (6.5)
Proof. From (6.2) and Lemma 6.1 we have h; > X2 = 1, and we conclude using
(6.3) and (6.1) for p = 1. O
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