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1 Introduction

In this note we consider some isoperimetric problems on the space of configurations
of a metric space X, equipped with a Poisson measure Π with finite intensity σ(dx).

We introduce notions of inner and outer boundaries ∂inA, ∂outA, as well as sym-
metric boundary ∂A, and surface measure Πs(∂A) valid for an arbitrary set A of
configurations.

We then prove a Margulis-Russo type identity from which we deduce bounds on the
probability Πλ(A) for monotone configuration sets A under the Poisson measure Πλ

of intensity λσ(dx), λ > 0. Thresholding results are obtained as a consequence.

We also prove a co-area formula which allows us to study related isoperimetric
constants such as

h2 = inf
0<Π(A)<1

Πs(∂A)
Π(A)Π(Ac)

, h∞ = inf
0<Π(A)<1

Π(∂A)
Π(A)Π(Ac)

.

The configuration space approach to Poisson measures allows one to consider func-
tions of finite dimensional Poisson random vectors as particular cases, and in this
situation our results recover and extend those obtained by Bobkov and Götze (1999).

We proceed as follows. In Section 2 we recall the definition of the Poisson measure
and the properties of the finite differences gradient. We also extend the isoperimetric
result of Bobkov and Götze (1999) to the setting of configuration spaces. In Section 3
we construct the inner and outer boundaries of subsets of configurations. The surface
measures of such boundary sets are then defined by averaging the norms of finite
difference gradients, and can be interpreted as the measures of inner and outer flows



through the boundary. We also prove a co-area formula and introduce the main
associated isoperimetric constants. In Section 4 we present a notion of monotone
set and state a Margulis-Russo type identity in the setting of configuration spaces.
In Section 5 we deduce bounds on the probabilities of monotone sets in terms of
the intensity parameter of the Poisson distribution and obtain a thresholding result
as a consequence. Finally in Section 6 we prove some bounds on the isoperimetric
constants using the co-area formula of Section 3.

2 Poisson measure and finite difference operators

Let X be a metric space with Borel σ-algebra B(X) and let σ be a finite and diffuse
measure on X. Let Ω denote the configuration space over X, i.e. the set of Radon
measures

Ω =

{
ω =

i=N∑
i=1

δxi : (xi)i=Ni=1 ⊂ X, xi 6= xj , ∀i 6= j, N ∈ N ∪ {∞}

}
,

where δx denotes the Dirac measure at x ∈ X. For convenience of notation, when ω
contains n points, n ≥ 1, we identify ω =

∑i=n
i=1 δxi with the set ω = {x1, . . . , xn}.

Let F denote the σ-algebra generated by all mappings of the form ω 7→ ω(B),
B ∈ B(X), and let Π denote the Poisson measure with intensity σ on Ω, defined via

Π({ω ∈ Ω : ω(A1) = k1, . . . , ω(An) = kn}) = exp

(
−
i=n∑
i=1

σ(Ai)

)
j=n∏
j=1

σ(Aj)kj

kj !
,

k1, . . . , kn ∈ N, on the σ-algebra F generated by the sets of the form

{ω ∈ Ω : ω(A1) = k1, . . . , ω(An) = kn},

for k1, . . . , kn ∈ N, and disjoint A1, . . . , An ∈ B(X).

Under Π, the expectation of any integrable random variable of the form

F (ω) = f01{|ω|=0} +
∞∑
n=1

1{|ω|=n}fn(x1, . . . , xn), (2.1)

where f0 ∈ R and fn is a symmetric measurable function on Xn, n ≥ 1, is given by

E[F ] = e−σ(X)f0 + e−σ(X)
∞∑
n=1

1
n!

∫
X
· · ·
∫
X
fn(x1, . . . , xn)σ(dx1) · · ·σ(dxn). (2.2)

We will use the following finite difference operator.

Definition 2.1 For any F : Ω −→ R, let

DxF (ω) = (F (ω + δx)− F (ω))1{x∈ωc}

for all ω ∈ Ω and x ∈ X.
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Let Πλ, λ > 0, denote the Poisson measure of intensity λσ(dx) on Ω, and let Eλ
denote the expectation with respect to Πλ. The following variational formula is
obtained by differentiation with respect to the intensity parameter λ of the Poisson
measure.

Proposition 2.2 Let 0 < a < b and F : Ω → R be such that F ∈ L1(Πλ) and
DF ∈ L1(Πλ ⊗ σ), for all λ ∈ (a, b). Then,

∂

∂λ
Eλ[F ] = Eλ

[∫
X
DxFσ(dx)

]
, λ ∈ (a, b).

Proof. This result can be seen as an application of Remark 2.1 of Molchanov and
Zuyev (2000), but we provide here a proof for completeness. From (2.2), we have
for F of the form (2.1):

∂

∂λ
Eλ[F ] =−σ(X)Eλ[F ]

+e−λσ(X)
∞∑
n=1

λn−1

(n− 1)!

∫
X
· · ·
∫
X
fn(x1, . . . , xn)σ(dx1) · · ·σ(dxn)

=−σ(X)Eλ[F ] + Eλ

[∫
X
F (ω + δx)σ(dx)

]
=Eλ

[∫
X
DxF (ω)σ(dx)

]
.

�

We close this section with the following result which gives a version of isoperimetry
on Poisson space which is independent of dimension and is akin to the result of
Bobkov and Götze, 1999, p. 263. Let ϕ denote the standard Gaussian density, and
let Φ denote its distribution function. Let I(t) = ϕ(Φ−1(t)), 0 ≤ t ≤ 1 denote the
Gaussian isoperimetric function, with the relations

I(t)I ′′(t) = −1 and I ′(t) = −Φ−1(t), t ∈ [0, 1].

Proposition 2.3 For every integrable random variable F : Ω→ [0, 1] we have

I(E[F ]) ≤ E
[√

I(F )2 + 2|DF |2
L2(σ)

]
. (2.3)

Proof. Let A1, . . . , An a family of disjoint elements of B(X) and consider the vector

Xn(ω) = (ω(A1), . . . , ω(An)) , ω ∈ Ω, (2.4)

of independent Poisson random variables with intensities σ(A1), . . . , σ(An). For any
cylindrical functional of the form F = f ◦Xn we have

DxF (ω) =
k=n∑
k=1

1Ak(x)(f(Xn(ω) + ek)− f(Xn(ω))),
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f : Nn → R, where (ek)1≤k≤n denotes the canonical basis of Rn. For the cylindrical
functional F , (2.3) follows by applying of Relation (3.13) in Bobkov and Götze
(1999) and tensorization. The extension to general random variables can be done
by martingale convergence, e.g. as in the proof of Theorem 3.4 of Wu (1998). �

In particular, (2.3) yields the inequality

1√
2
I(Π(A)) ≤ E[|D1A|L2(σ)], A ∈ F , (2.5)

since I(1A) = 0, Π-a.s.

3 Boundaries, surface measure and co-area formula

Let now

D+
x F (ω) = max(0, DxF (ω)) and D−x F (ω) = −min(0, DxF (ω)), x ∈ X.

The next definition is, in fact, independent of p ∈ [1,∞].

Definition 3.1 The inner and outer boundaries of any A ⊂ Ω are defined as:

∂inA = {ω ∈ A : |D−1A(ω)|Lp(σ) > 0},

and
∂outA = {ω ∈ Ac : |D+1A(ω)|Lp(σ) > 0}.

In other words, the inner boundary ∂inA of A is made up of the ω ∈ A that have
“at least” a neighbor in Ac, in the sense that

σ({x ∈ X : ω + δx ∈ Ac}) > 0,

and the outer boundary ∂outA of A is made up of the ω ∈ Ac that have “at least”
a neighbor in A, in the sense that

σ({x ∈ X : ω + δx ∈ A}) > 0.

The symmetric boundary of A is defined as:

∂A = ∂inA ∪ ∂outA.

In the cylindrical case where Xn : Ω→ Nn is defined by (2.4) we have the relation

∂{Xn ∈ B} = {Xn ∈ ∂B}

where ∂B is the boundary of B ⊂ Nn defined in Bobkov and Götze, 1999, p. 263.
For the set {ω(B) ≥ n} we have

∂out{ω(B) ≥ n} = {ω(B) = n− 1},

and for the set {ω(B) ≤ n} we have

∂in{ω(B) ≤ n} = {ω(B) = n}.

The surface measure of ∂inA, resp. ∂outA, is defined by averaging |D−1A(ω)|L2(σ),
resp. |D+1A(ω)|L2(σ) with respect to the Poisson measure Π(dω).
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Definition 3.2 For any A ∈ F , let

Πs(∂inA) = E[|D−1A|L2(σ)],

and
Πs(∂outA) = E[|D+1A|L2(σ)].

The above quantities represent average numbers, with respect to the Poisson mea-
sure, of points in A, resp. Ac, which have a neighbor in Ac, resp. A. The surface
measure of ∂A is then defined as

Πs(∂A) = Πs(∂inA) + Πs(∂outA).

We now turn to the statement of a co-area formula on configuration space.

Lemma 3.3 For any sufficiently integrable F : Ω→ R we have

E[|D−F |L∞(σ)] =
∫ +∞

−∞
Π(∂in{F > t})dt

and

E[|D+F |L∞(σ)] =
∫ +∞

−∞
Π(∂out{F > t})dt.

Proof. We follow the arguments used in Bobkov, Houdré and Tetali (2000) in the
case of graphs. We have

|D−F (ω)|L∞(σ) = ess supσ(dx)(F (ω)− F (ω + δx))+ = F (ω)− ess infσ(dx) F (ω + δx),

hence

E[|D−F |L∞(σ)] = E[F ]− E[ess infσ(dx) F (ω + δx)]

=
∫ +∞

−∞
Π({F > t})dt−

∫ +∞

−∞
Π(ess infσ(dx) F (ω + δx) > t)dt

=
∫ +∞

−∞
Π({F > t})dt−

∫ +∞

−∞
Π({ess infσ(dx) F (ω + δx) > t and F (ω) > t})dt

=
∫ +∞

−∞
Π({F (ω) > t and σ({x ∈ X : F (ω + δx) ≤ t}) > 0})dt

=
∫ +∞

−∞
Π({ω ∈ Ω : σ({x ∈ X : F (ω) > t and F (ω + δx) ≤ t}) > 0})dt

=
∫ +∞

−∞
Π({ω ∈ Ω : σ({x ∈ X : 1{F (ω)>t} − 1{F (ω+δx)>t} = 1}) > 0})dt

=
∫ +∞

−∞
Π({ω ∈ Ω : |D−1{F>t}|L∞(σ) = 1})dt

=
∫ +∞

−∞
E[|D−1{F>t}|L∞(σ)]dt.

The corresponding result with D+ is proved similarly. �
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As a consequence of the previous lemma and since D−x FD
+
x F = 0 we have:

E[|D−F |L∞(σ)] + E[|D+F |L∞(σ)]

=
∫ ∞
−∞

E[|D−1{F>t}|L∞(σ)]dt+
∫ ∞
−∞

E[|D+1{F>t}|L∞(σ)]dt

=
∫ ∞
−∞

E[|D−1{F>t}|L∞(σ) + |D+1{F>t}|L∞(σ)]dt

=
∫ ∞
−∞

E[|D1{F>t}|L∞(σ)]dt

=
∫ ∞
−∞

Π(∂{F > t})dt. (3.1)

4 Monotone sets

Given ω ∈ Ω, let the set Nω of neighbors of ω be defined as

Nω = {ω + δx : x ∈ ωc}.

Definition 4.1 A subset A of Ω is called increasing if

ω ∈ A =⇒ ω + δx ∈ A, σ(dx)− a.e. (4.1)

It is called decreasing if

ω + δx ∈ A =⇒ ω ∈ A, σ(dx)− a.e. (4.2)

For all B ∈ B(X) the sets {ω(B) ≥ n}, resp. {ω(B) ≤ n}, are examples of increasing,
resp. decreasing, subsets of Ω. Another example of monotone set is given by{

ω ∈ Ω :
∫
X
fdω > K

}
, K ∈ R,

which is increasing, resp. decreasing, if f ≥ 0, resp. f ≤ 0.

Furthermore we have the following.

Proposition 4.2 A subset A of Ω is increasing if and only if one of the equivalent
conditions

Dx1A ≥ 0, Dx1A = D+
x 1A, D−x 1A = 0,

holds, σ(dx)-a.e.

Similarly, a subset A of Ω is decreasing if and only of the conditions

Dx1A ≤ 0, Dx1A = −D−x 1A, D+
x 1A = 0,

holds σ(dx)-a.e. Note that if A ⊂ Ω is increasing, resp. decreasing, then ∂inA = ∅,
resp. ∂outA = ∅.

We now prove a Margulis-Russo type equality for monotone sets under Poisson
measures, cf. Margulis (1974), Russo (1982) on other discrete spaces.
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Lemma 4.3 Let A ∈ F be a monotone and measurable subset of Ω.

a) If A is increasing then

∂

∂λ
Πλ(A) = Eλ

[∫
X
D+
x 1Aσ(dx)

]
, λ ∈ (a, b).

b) If A is decreasing then

∂

∂λ
Πλ(A) = −Eλ

[∫
X
D−x 1Aσ(dx)

]
, λ ∈ (a, b).

Proof. Combine Proposition 2.2 with Proposition 4.2. �

Definition 4.4 For any A ∈ F , let

δ−A = inf
∂outA

|D+1A|L1(σ) and δ+
A = inf

∂inA
|D−1A|L1(σ).

Note that when A is increasing, resp. decreasing, then δ−A , resp. δ+
A , coincides with

δA defined as
δA = inf

∂A
|D1A|L1(σ).

For example, for the increasing set {ω(B) ≥ n} we have

|D1{ω(B)≥n}|L1(σ) = σ(B)1{ω(B)=n−1} = σ(B)1∂out{ω(B)≥n},

hence δ{ω(B)≥n} = σ(B). For the decreasing set {ω(B) ≤ n} we have

|D1{ω(B)≤n}|L1(σ) = σ(B)1{ω(B)=n} = σ(B)1∂in{ω(B)≤n},

hence δ{ω(B)≤n} = σ(B).

Lemma 4.5 Let A ∈ F be a monotone subset of Ω, let p ∈ [1,∞] and 1 = 1/p+1/q.
If A is increasing, then

∂

∂λ
Πλ(A) ≥ δ1/q

A Eλ[|D1A|Lp(σ)], λ > 0,

and if A is decreasing, then

∂

∂λ
Πλ(A) ≤ −δ1/q

A Eλ[|D1A|Lp(σ)], λ > 0.

Proof. Since A is monotone we have

Eλ[|D1A|Lp(σ)] =Eλ[1{|D1A|L∞(σ)>0}|D1A|Lp(σ)]

≤ (Πλ({|D1A|L∞(σ) > 0}))1/qEλ[|D1A|pLp(σ)]
1/p
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≤ |Πλ(∂A)|1/qEλ[|D1A|L1(σ)]
1/p

≤ 1

δ
1/q
A

Eλ[|D1A|L1(σ)].

Now in case A is increasing, from Proposition 4.3 we get

∂

∂λ
Πλ(A) = Eλ[|D+1A|L1(σ)] = Eλ[|D1A|L1(σ)] ≥ δ

1/q
A Eλ[|D1A|Lp(σ)].

The argument is similar in case A is decreasing. �

Finally we introduce the main isoperimetric constants under the Poisson measure,
see Houdré and Tetali (2004) for the case of graphs and Markov chains.

Definition 4.6 For p ∈ [1,∞] let

hp =inf
0<Π(A)<1

E
[
|D1A|Lp(σ)

]
Π(A)(1−Π(A))

, h+
p = inf

0<Π(A)<1

A decreasing

E
[
|D1A|Lp(σ)

]
Π(A)(1−Π(A))

, h−p = inf
0<Π(A)<1

A increasing

E
[
|D1A|Lp(σ)

]
Π(A)(1−Π(A))

,

where the suprema and infima are taken over measurable sets A ∈ F .

We have

h+
2 = inf

0<Π(A)<1

A decreasing

Πs(∂A)
Π(A)Π(Ac)

, h−2 = inf
0<Π(A)<1

A increasing

Πs(∂A)
Π(A)Π(Ac)

, h2 = inf
0<Π(A)<1

Πs(∂A)
Π(A)Π(Ac)

and

h+
∞ = inf

0<Π(A)<1

A decreasing

Π(∂A)
Π(A)Π(Ac)

, h−∞ = inf
0<Π(A)<1

A increasing

Π(∂A)
Π(A)Π(Ac)

, h∞ = inf
0<Π(A)<1

Π(∂A)
Π(A)Π(Ac)

.

5 Bounds on monotone sets and thresholding

As a consequence of the Margulis-Russo identity Proposition 4.3 we obtain bounds
on Πλ(A) when A is a monotone set. In Proposition 5.1 below, h±p and hp denote the
infima of the corresponding isoperimetric constants over the values of λ considered
in each bound. Note that from results shown in Section 6, hp and h±p are lower
bounded independently of λ > 0 for p = 1, 2, while h∞ is of order λ−1 and λ−1/2

under Πλ as λ goes to 0 and infinity respectively.

Proposition 5.1 Let A ∈ F be a monotone subset of Ω and let p, q ∈ [1,∞] such
that 1/p+ 1/q = 1.

a) If A is increasing we have

Πθ(A) ≥ Πλ(A)e(θ−λ)(1−Πθ(A))h−p δ
1/q
A , 0 < λ < θ.
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b) In case A is decreasing we have

Πθ(A) ≤ Πλ(A)e−(θ−λ)(1−Πλ(A))h+
p δ

1/q
A , 0 < λ < θ.

Proof. In case A is increasing we have

∂

∂λ
Πλ(A) ≥ h−p δ

1/q
A Πλ(A)(1−Πλ(A)) ≥ h−p δ

1/q
A Πλ(A)(1−Πθ(A)), 0 < λ < θ,

and in case A is decreasing we have

∂

∂θ
Πθ(A) ≤ −h+

p δ
1/q
A Πθ(A)(1−Πθ(A)) ≤ −h+

p δ
1/q
A Πθ(A)(1−Πλ(A)), 0 < λ < θ.

�

An application of Lemma 4.5 for p = 2 yields the following bounds.

Proposition 5.2 Let A ∈ F be a monotone subset of Ω.

a) In case A is increasing we have

Πθ(A) ≥ Φ
(

Φ−1(Πλ(A)) +
√

2δA(
√
θ −
√
λ)
)
, 0 < λ < θ.

b) In case A is decreasing we have

Πθ(A) ≤ Φ
(

Φ−1(Πλ(A))−
√

2δA(
√
θ −
√
λ)
)
, 0 < λ < θ.

Proof. Letting f(λ) = Πλ(A) and applying Lemma 4.5 with p = 2 and Proposi-
tion 2.3 we get from (2.5) for A increasing:

f ′(λ) = Eλ[|D1A|L1(σ)] ≥
√
δAEλ[|D1A|L2(σ)] ≥

√
δA
2λ
I(f(λ)) =

−
√
δA√

2λI ′′(f(λ))
.

Hence for λ < θ,

Φ−1(f(λ))− Φ−1(f(θ)) = I ′(f(θ))− I ′(f(λ)) =
∫ θ

λ
I ′′(f(t))f ′(t)dt

≤−
∫ θ

λ

√
δA√
2t
dt =

√
2δA(
√
λ−
√
θ).

The argument is similar in case A is decreasing. �

In particular, for A increasing and Πθ(A) = 1/2 we have

Πλ(A) ≤ Φ(−
√

2δA(
√
θ −
√
λ)), 0 < λ < θ,

whereas for Πλ(A) = 1/2 we have

Πθ(A) ≥ Φ(
√

2δA(
√
θ −
√
λ)), 0 < λ < θ,
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and if A is decreasing and Πλ(A) = 1/2,

Πθ(A) ≤ Φ(−
√

2δA(
√
θ −
√
λ)), 0 < λ < θ.

whereas for Πθ(A) = 1/2,

Πλ(A) ≥ Φ(
√

2δA(
√
θ −
√
λ)), 0 < λ < θ.

In Figure 1 below we compare the uppers bounds obtained in Propositions 5.1 and
5.2 for θ = 18 and Πθ(A) = 1/2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  2  4  6  8  10  12  14  16  18

lambda

Prop. 5.2
Prop. 5.1

Fig. 1. Comparison of the upper bounds of Propositions 5.1 and 5.2.

As a consequence of Proposition 5.2 we have the following thresholding result, which
can be seen as a Poisson space version of Russo’s approximate zero-one law Russo
(1982), Talagrand (1993), and extends Proposition 3.6 of Bobkov and Götze (1999)
from finite dimensional Poisson vectors to the setting of configuration spaces.

Corollary 5.3 Let ε > 0 and let A be a monotone subset of Ω such that

0 < ε = Πλ(A) < Πθ(A) = 1− ε,

then
0 ≤
√
θ −
√
λ ≤ 1√

2δA
Φ−1(1− ε).

The above result can be interpreted by saying that the function r 7→ Πr2(A) can go
from ε to 1− ε on an interval of length at most (2δA)−1/2Φ−1(1− ε). This type of
result has been first obtained in the framework of Bernoulli measures with parameter
p ∈ (0, 1) on {0, 1}n, cf. Margulis (1974), Russo (1982), Talagrand (1993).

6 Bounds on isoperimetric constants

In this section we establish some bounds on the isoperimetric constants used in
Proposition 5.1 of Section 5.
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First, note that for all p ∈ [1,∞] we have the bounds hp ≤ h+
p = h−p and

h∞ ≥
hp

(σ(X))1/p
and h±∞ ≥

h±p

(σ(X))1/p
, (6.1)

since E[|D1A|Lp(σ)] ≤ (σ(X))1/pE[|D1A|L∞(σ)], A ∈ F .

Let now the Poincaré constant λp, p ∈ [1,∞], be defined as

λp = inf
F 6=C

E
[
|DF |2Lp(σ)

]
Var (F )

,

where C denotes any constant function. Clearly, for all p ∈ [1,∞], we have

hp/2 ≥ λp (6.2)

since

λpΠ(A)(1−Π(A)) = λpVar (1A) ≤ E[|D1A|2Lp(σ)] = E[|D1A|Lp/2(σ)], A ∈ F .

Lemma 6.1 We have λ2 = 1 and λ∞ = 1/σ(X).

Proof. The fact that λ2 = 1 is well-known, cf. e.g. Houdré and Privault (2003) for
details, and it implies that

VarF ≤ E[|DF |2L2(σ)] ≤ σ(X)E[|DF |2L∞(σ)],

and so λ∞ ≥ 1/σ(X). Letting F (ω) = ω(X), we have DxF = 1, σ(dx)-a.e., and so

Var (F ) = σ(X) = E[|DF |2L2(σ)] = σ(X)E[|DF |2L∞(σ)],

which shows that λ∞ ≤ 1/σ(X). �

Proposition 6.2 We have h2 ≥ 1/
√
π.

Proof. From (2.5) we get

E[|D1A|L2(σ)] ≥
1√
2
I(Π(A)) ≥ 1√

π
Π(A)(1−Π(A)), A ∈ F .

�

The relation (6.3), below, improves on the lower bound h∞ ≥ 1/
√
πσ(X), see (3.15)

of Bobkov and Götze (1999) in the finite dimensional Poisson case.

Proposition 6.3 We have

max

(
1√

πσ(X)
,

1
σ(X)

)
≤ h∞ ≤

8
σ(X)

+
8√
σ(X)

. (6.3)
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Proof. First, note that (6.1) and Proposition 6.2 show that

h∞ ≥ h2/
√
σ(X) ≥ 1/

√
πσ(X).

On the other hand, from (6.2) and Lemma 6.1 we have h∞ ≥ λ∞ = 1/σ(X).

We will conclude the proof of (6.3) by showing that

λ∞ =
1

σ(X)
≥

(
√

1 + h∞/2− 1)2

4
. (6.4)

In case F has a vanishing median m(F ) = 0, from the co-area formula of Lemma 3.3
we have:

2E[|DF |L∞(σ)]≥
∫ +∞

−∞
Π(∂{F > t})dt

≥ h∞
2

∫ +∞

−∞
min(Π({F > t}),Π({F ≤ t}))dt

=
h∞
2
E[F ].

Applying the above inequality to (F+)2 we have

h∞
2
E[F+2]≤ 2E[|D(F+)2|L∞(σ)]

≤ 2E[ess supσ(dx) |F+(ω)− F+(ω + δx)|(F+(ω) + F+(ω + δx))]

≤ 2E[ess supσ(dx) |F+(ω)− F+(ω + δx)|(F+(ω + δx)− F+(ω))

+2|F+(ω)− F+(ω + δx)|F+(ω)]
≤ 2E[ess supσ(dx)(F

+(ω)− F+(ω + δx))2]

+4E[ess supσ(dx) |F+(ω)− F+(ω + δx)|F+(ω)]

≤ 2E[ess supσ(dx)(F (ω)− F (ω + δx))2]

+4E[ess supσ(dx) |F (ω)− F (ω + δx)|F+(ω)].

Similarly we have

h∞
2
E[(F−)2]≤ 2E[ess supσ(dx)(F (ω)− F (ω + δx))2]

+4E[ess supσ(dx) |F (ω)− F (ω + δx)|F−(ω)].

Hence

h∞
2
E[F 2]≤ h∞

2
E[(F+)2] +

h∞
2
E[(F−)2]

≤ 4E[|DF |2L∞(σ)] + 4E[|DF |L∞(σ)|F |]
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≤ 4E[|DF |2L∞(σ)] + 4E[|DF |2L∞(σ)]
1/2E[F 2]1/2,

which implies

(
√

1 + h∞/2− 1)2

4
VarF ≤

(
√

1 + h∞/2− 1)2

4
E[F 2] ≤ E[|DF |2L∞(σ)].

In the general case (m(F ) 6= 0), use the fact that VarF ≤ E[(F −m(F ))2]. �

Proposition 6.4 We have

1 ≤ h1 ≤ 8 + 8
√
σ(X). (6.5)

Proof. From (6.2) and Lemma 6.1 we have h1 ≥ λ2 = 1, and we conclude using
(6.3) and (6.1) for p = 1. �
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