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Abstract

We prove that Poisson measures are invariant under (random) intensity pre-
serving transformations whose finite difference gradient satisfies a cyclic van-
ishing condition. The proof relies on moment identities of independent interest
for adapted and anticipating Poisson stochastic integrals, and is inspired by the
method of Üstünel and Zakai, Probab. Theory Relat. Fields 103, 1995, on the
Wiener space, although the corresponding algebra is more complex than in the
Wiener case. The examples of application include transformations conditioned
by random sets such as the convex hull of a Poisson random measure.
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1 Introduction

Poisson random measures on metric spaces are known to be quasi-invariant under

deterministic transformations satisfying suitable conditions, cf. e.g. [24], [20]. For
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Poisson processes on the real line this quasi-invariance property also holds under

adapted transformations, cf. e.g. [4], [10]. The quasi-invariance of Poisson measures

on the real line with respect to anticipative transformations has been studied in [13]

and in the general case of metric spaces in [1]. In the Wiener case, random non-

adapted transformations of Brownian motion have been considered by several authors

using the Malliavin calculus, cf. [23] and references therein.

On the other hand, the invariance property of the law of stochastic processes has im-

portant applications, for example to the construction of identically distributed samples

of antithetic random variables that can be used for variance reduction in the Monte

Carlo method, cf. e.g. § 4.5 of [3]. Invariance results for the Wiener measure under

quasi-nilpotent random isometries have been obtained in [22], [21], by means of the

Malliavin calculus, based on the duality between gradient and divergence operators

on the Wiener space. In comparison with invariance results, quasi-invariance in the

anticipative case usually requires more smoothness on the considered transformation.

Somehow surprisingly, the invariance of Poisson measures under non-adapted trans-

formations does not seem to have been the object of many studies to date.

The classical invariance theorem for Poisson measures states that given a determinis-

tic transformation τ : X → Y between measure spaces (X, σ) and (Y, µ) sending σ to

µ, the corresponding transformation on point processes maps the Poisson distribution

πσ with intensity σ(dx) on X to the Poisson distribution πµ with intensity µ(dy) on Y .

As a simple deterministic example in the case of Poisson jumps times (Tk)k≥1 on the

half line X = Y = IR+ with σ(dx) = µ(dx) = dx/x, the homothetic transformation

τ(x) = rx leaves πσ invariant for all fixed r > 0. However, the random transformation

of the Poisson process jump times according to the mapping τ(x) = x/T1 does not

yield a Poisson process since the first jump time of the transformed point process is

constantly equal to 1.

In this paper we obtain sufficient conditions for the invariance of random transforma-

tions τ : ΩX ×X → Y of Poisson random measures on metric spaces X, Y . Here the
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almost sure isometry condition on IRd assumed in the Gaussian case will be replaced

by a pointwise condition on the preservation of intensity measures, and the quasi-

nilpotence hypothesis will be replaced by a cyclic condition on the finite difference

gradient of the transformation, cf. Relation (3.7) below. In particular, this condition

is satisfied by predictable transformations of Poisson measures, as noted in Example 1

of Section 4.

In the case of the Wiener space W = C0(IR+; IRd) one considers almost surely defined

random isometries

R(ω) : L2(IR+; IRd)→ L2(IR+; IRd), ω ∈ W,

given by R(ω)h(t) = U(ω, t)h(t) where U(ω, t) : IRd → IRd, t ∈ IR+, is a random

process of isometries of IRd. The Gaussian character of the measure transformation

induced by R is then given by checking for the Gaussianity of the (anticipative)

Wiener-Skorohod integral δ(Rh) of Rh, for all h ∈ L2(IR+; IRd). In the Poisson case

we consider random isometries

R(ω) : L2
µ(Y )→ L2

σ(X)

given by R(ω)h(x) = h(τ(ω, x)) where τ(ω, ·) : (X, σ) → (Y, µ) is a random trans-

formation that maps σ(dx) to µ(dy) for all ω ∈ ΩX . Here, the Poisson character of

the measure transformation induced by R is obtained by showing that the Poisson-

Skorohod integral δσ(Rh) of Rh has same distribution under πσ as the compensated

Poisson stochastic integral δµ(h) of h under πµ, for all h ∈ Cc(Y ).

For this we will use the Malliavin calculus under Poisson measures, which relies on

a finite difference gradient D and a divergence operator δ that extends the Poisson

stochastic integral. Our results and proofs are to some extent inspired by the treat-

ment of the Wiener case in [22], see [15] for a recent simplified proof on the Wiener

space. However, the use of finite difference operators instead of derivation operators

as in the continuous case makes the proofs and arguments more complex from an

algebraic point of view.
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As in the Wiener case, we will characterize probability measures via their moments.

Recall that the moment Eλ[Z
n] of order n of a Poisson random variable Z with

intensity λ can be written as

Eλ[Z
n] = Tn(λ)

where Tn(λ) is the Touchard polynomial of order n, defined by T0(λ) = 1 and the

recurrence relation

Tn+1(λ) = λ

n∑
k=0

(
n

k

)
Tk(λ), n ≥ 0, (1.1)

also called the exponential polynomials, cf. e.g. §11.7 of [6], Replacing the Touchard

polynomial Tn(λ) by its centered version T̃n(λ) defined by T̃0(λ) = 1 and

T̃n+1(λ) = λ
n−1∑
k=0

(
n

k

)
T̃k(λ), n ≥ 0, (1.2)

yields the moments of the centered Poisson random variable with intensity λ > 0 as

T̃n(λ) = Eλ[(Z − λ)n], n ≥ 0.

Our characterization of Poisson measures will use recurrence relations similar to (1.2),

cf. (2.12) below, and identities for the moments of compensated Poisson stochastic

integrals which are another motivation for this paper, cf. Theorem 5.1 below.

The paper is organized as follows. The main results (Corollary 3.2 and Theorem 3.3)

on the invariance of Poisson measures are stated in Section 3 after recalling the defi-

nition of the finite difference gradient D and the Skorohod integral operator δ under

Poisson measures in Section 2. Section 4 contains examples of transformations satis-

fying the required conditions which include the classical adapted case and transfor-

mations acting inside the convex hull generated by Poisson random measures, given

the positions of the extremal vertices. Section 5 contains the moment identities for

Poisson stochastic integrals of all orders that are used in this paper, cf. Theorem 5.1.

In Section 6 we prove the main results of Section 3 based on the lemmas on moment

identities established in Section 5. In the appendix Section 7 we prove some combi-

natorial results that are needed in the proofs. Some of the results of this paper have

been presented in [14].
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2 Poisson measures and finite difference operators

In this section we recall the construction of Poisson measures, finite difference oper-

ators and Poisson-Skorohod integrals, cf. e.g. [11] and [16] Chapter 6 for reviews.

We also introduce some other operators that will be needed in the sequel, cf. Defini-

tion 2.5 below.

Let X be a σ-compact metric space with Borel σ-algebra B(X) and a σ-finite diffuse

measure σ. Let ΩX denote the configuration space on X, i.e. the space of at most

countable and locally finite subsets of X, defined as

ΩX =
{
ω = (xi)

N
i=1 ⊂ X, xi 6= xj ∀i 6= j, N ∈ IN ∪ {∞}

}
.

Each element ω of ΩX is identified with the Radon point measure

ω =

ω(X)∑
i=1

εxi ,

where εx denotes the Dirac measure at x ∈ X and ω(X) ∈ IN ∪ {∞} denotes the

cardinality of ω. The Poisson random measure N(ω, dx) is defined by

N(ω, dx) = ω(dx) =

ω(X)∑
k=1

εxk(dx), ω ∈ ΩX . (2.1)

The Poisson probability measure πσ on X can be characterized as the only probability

measure on ΩX under which for all compact disjoint subsets A1, . . . , An of X, n ≥ 1,

the mapping

ω 7→ (ω(A1), . . . , ω(An))

is a vector of independent Poisson distributed random variables on IN with respective

intensities σ(A1), . . . , σ(An).

The Poisson measure πσ is also characterized by its Fourier transform

ψσ(f) = Eσ

[
exp

(
i

∫
X

f(x)(ω(dx)− σ(dx))

)]
, f ∈ L2

σ(X),
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where Eσ denotes expectation under πσ, which satisfies

ψσ(f) = exp

(∫
X

(eif(x) − if(x)− 1)σ(dx)

)
, f ∈ L2

σ(X), (2.2)

where the compensated Poisson stochastic integral

∫
X

f(x)(ω(dx)− σ(dx)) is defined

by the isometry

Eσ

[(∫
X

f(x)(ω(dx)− σ(dx))

)2
]

=

∫
X

|f(x)|2σ(dx), f ∈ L2
σ(X). (2.3)

We refer to [8], [9], [12], for the following definition.

Definition 2.1 Let D denote the finite difference gradient defined as

DxF (ω) = ε+
x F (ω)− F (ω), ω ∈ ΩX , x ∈ X, (2.4)

for any random variable F : ΩX → IR, where

ε+
x F (ω) = F (ω ∪ {x}), ω ∈ ΩX , x ∈ X.

The operator D is continuous on the space ID2,1 defined by the norm

‖F‖2
2,1 = ‖F‖2

L2(ΩX ,πσ) + ‖DF‖2
L2(ΩX×X,πσ⊗σ), F ∈ ID2,1.

We refer to Corollary 1 of [12] for the following definition.

Definition 2.2 The Skorohod integral operator δσ is defined on any measurable pro-

cess u : ΩX ×X → IR by the expression

δσ(u) =

∫
X

ut(ω \ {t})(ω(dt)− σ(dt)), (2.5)

provided Eσ

[∫
X

|u(ω, t)|σ(dt)

]
<∞.

Relation (2.5) between δσ and the Poisson stochastic integral will be used to charac-

terize the distribution of the perturbed configuration points. Note that if Dtut = 0,

t ∈ X, and in particular when applying (2.5) to u ∈ L1
σ(X) a deterministic function,

we have

δσ(u) =

∫
X

u(t)(ω(dt)− σ(dt)) (2.6)
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i.e. δσ(u) with the compensated Poisson-Stieltjes integral of u. In addition if X = IR+

and σ(dt) = λtdt we have

δσ(u) =

∫ ∞
0

ut(dNt − λtdt) (2.7)

for all square-integrable predictable processes (ut)t∈IR+ , where Nt = ω([0, t]), t ∈ IR+,

is a Poisson process with intensity λt > 0, cf. e.g. the Example page 518 of [12].

The next proposition can be obtained from Corollaries 1 and 5 in [12].

Proposition 2.3 The operators D and δσ are closable and satisfy the duality relation

Eσ[〈DF, u〉L2
σ(X)] = Eσ[Fδσ(u)], (2.8)

on their L2 domains Dom (δσ) ⊂ L2(ΩX × X, πσ ⊗ σ) and Dom (D) = ID2,1 ⊂
L2(ΩX , πσ) under the Poisson measure πσ with intensity σ.

The operator δσ is continuous on the space IL2,1 ⊂ Dom (δσ) defined by the norm

‖u‖2
2,1 = Eσ

[∫
X

|ut|2σ(dt)

]
+ Eσ

[∫
X

|Dsut|2σ(ds)σ(dt)

]
,

and for any u ∈ IL2,1 we have the Skorohod isometry

Eσ
[
δσ(u)2

]
= Eσ

[
‖u‖2

L2
σ(X)

]
+ Eσ

[∫
X

∫
X

DsutDtusσ(ds)σ(dt)

]
. (2.9)

cf. Corollary 4 and pages 517-518 of [12].

In addition, from (2.5) we have the commutation relation

ε+
t δσ(u) = δσ(ε+

t u) + ut, t ∈ X, (2.10)

provided Dtu ∈ IL2,1, t ∈ X.

The moments identities for Poisson stochastic integrals proved in this paper rely on

the decomposition stated in the following lemma.
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Lemma 2.4 Let u ∈ IL2,1 be such that δσ(u)n ∈ ID2,1, Dtu ∈ IL2,1, σ(dt)-a.e., and

Eσ

[∫
X

|ut|n−k+1|δσ(ε+
t u)|kσ(dt)

]
<∞, Eσ

[
|δσ(u)|k

∫
X

|ut|n−k+1σ(dt)

]
<∞,

0 ≤ k ≤ n. Then we have

Eσ[δσ(u)n+1] =
n−1∑
k=0

(
n

k

)
Eσ

[
δσ(u)k

∫
X

un−k+1
t σ(dt)

]
+

n∑
k=1

(
n

k

)
Eσ

[∫
X

un−k+1
t (δσ(ε+

t u)k − δσ(u)k)σ(dt)

]
,

for all n ≥ 1.

Proof. We have, applying (2.10) to F = δσ(u)n,

Eσ[δσ(u)n+1] = Eσ

[∫
X

utDtδσ(u)nσ(dt)

]
= Eσ

[∫
X

ut((ε
+
t δσ(u))n − δσ(u)n)σ(dt)

]
= Eσ

[∫
X

ut((ut + δσ(ε+
t u))n − δσ(u)n)σ(dt)

]
=

n−1∑
k=0

(
n

k

)
Eσ

[∫
X

un−k+1
t δσ(ε+

t u)kσ(dt)

]

=
n−1∑
k=0

(
n

k

)
Eσ

[∫
X

un−k+1
t δσ(u)kσ(dt)

]
+

n∑
k=1

(
n

k

)
Eσ

[∫
X

un−k+1
t (δσ(ε+

t u)k − δσ(u)k)σ(dt)

]
.

�

From Relation (2.6) and Lemma 2.4 we find that the moments of the compensated

Poisson stochastic integral

∫
X

f(t)(ω(dt)− σ(dt)) of f ∈
N+1⋂
p=1

Lpσ(X) satisfy the recur-

rence identity

Eσ

[(∫
X

f(t)(ω(dt)− σ(dt))

)n+1
]

(2.11)

=
n−1∑
k=0

(
n

k

)∫
X

fn−k+1(t)σ(dt)Eσ

[(∫
X

f(t)(ω(dt)− σ(dt))

)k]
,
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n = 0, . . . , N , which is analog to Relation (1.2) for the centered Touchard polynomials

and coincides with (2.3) for n = 1.

The Skorohod isometry (2.9) shows that δσ is continuous on IL2,1, and that its moment

of order two of δσ(u) satisfies

Eσ[δσ(u)2] = Eσ[‖u‖2
L2
σ(X)],

provided ∫
X

∫
X

DsutDtusσ(ds)σ(dt) = 0,

as in the Wiener case [22]. This condition is satisfied when

DtusDsut = 0, s, t ∈ X,

i.e. u is adapted in the sense of e.g. [18], Definition 4, or predictable when X = IR+.

The computation of moments of higher orders turns out to be more technical, cf.

Theorem 5.1 below, and will be used to characterize the Poisson distribution. From

(2.11), in order for δσ(u) ∈ Ln+1
σ (ΩX) to have the same moments as the compensated

Poisson integral of f ∈
n+1⋂
p=2

Lpσ(X), it should satisfy the recurrence relation

Eσ[δσ(u)n+1] =
n−1∑
k=0

(
n

k

)∫
X

fn−k+1(t)σ(dt)Eσ
[
δσ(u)k

]
, (2.12)

n ≥ 0, which is an extension of Relation (2.11) to the moments of compensated Pois-

son stochastic integrals, and characterizes their distribution by Carleman’s condition

[5] when sup
p≥1
‖f‖Lpσ(Y ) <∞.

In order to simplify the presentation of moment identities for the Skorohod integral

δσ it will be convenient to use the following symbolic notation in the sequel.

Definition 2.5 For any measurable process u : ΩX ×X → IR, let

∆s0 · · ·∆sj

n∏
p=0

usp =
∑

Θ0∪···∪Θn={s0,s1,...,sj}
s0 /∈Θ0,...,sj /∈Θj

DΘ0us0 · · ·DΘnusn , (2.13)
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s0, . . . , sn ∈ X, 0 ≤ j ≤ n, where DΘ :=
∏
sj∈Θ

Dsj when Θ ⊂ {s0, s1, . . . , sj}.

Note that the sum in (2.13) includes empty sets. For example we have

∆s0

n∏
p=0

usp = us0
∑

Θ1∪···∪Θn={s0}
s0 /∈Θ0,...,sj /∈Θj

DΘ1us1 · · ·DΘnusn = us0Ds0

n∏
p=1

usp ,

and ∆s0us0 = 0. The use of this notation allows us to rewrite the Skorohod isometry

(2.9) as

Eσ[δσ(u)2] = Eσ

[∫
X

u2
sσ(ds)

]
+ Eσ

[∫
X

∫
X

∆s∆t(usut)σ(ds)σ(dt)

]
,

since by definition we have

∆s∆t(usut) = DsutDtus, s, t ∈ X.

As a consequence of Theorem 5.1 and Relation (6.1) of Proposition 6.1 below, the

third moment of δσ(u) is given by

Eσ
[
δσ(u)3

]
= Eσ

[∫
X

u3
sσ(ds)

]
+ 3Eσ

[
δ(u)

∫
X

u2
sσ(ds)

]
(2.14)

+3Eσ

[∫
X3

∆s1∆s2(us1u
2
s2

)σ(ds1)σ(ds2)

]
+ Eσ

[∫
X3

∆s1∆s2∆s3(us1us2us3)σ(ds1)σ(ds2)σ(ds3)

]
,

cf. (5.4) and (6.2) below, which reduces to

Eσ
[
δσ(u)3

]
= Eσ

[∫
X

u3
sσ(ds)

]
+ 3Eσ

[
δ(u)

∫
X

u2
sσ(ds)

]
when u satisfies the cyclic conditions

Dt1ut2Dt2ut1 = 0, and Dt1ut2Dt2ut3Dt3ut1 = 0, t1, . . . , t3 ∈ X,

of Lemma 7.2 in the appendix, which shows that (2.13) vanishes, see also (6.4) below

for moments of higher orders. When X = IR+, (7.2) is satisfied in particular when u

is predictable with respect to the standard Poisson process filtration.
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3 Main results

The main results of this paper are stated in this section under the form of Corol-

lary 3.2 and Theorem 3.3.

Let (Y, µ) denote another measure space with associated configuration space ΩY and

σ-finite diffuse intensity measure µ(dy). Given an everywhere defined measurable

random mapping

τ : ΩX ×X → Y, (3.1)

indexed by X, let τ∗(ω), ω ∈ ΩX , denote the image measure of ω by τ , i.e.

τ∗ : ΩX → ΩY (3.2)

maps

ω =

ω(X)∑
i=1

εxi ∈ ΩX to τ∗(ω) =

ω(X)∑
i=1

ετ(ω,xi) ∈ ΩY .

In other terms, the random mapping τ∗ : ΩX → ΩY shifts each configuration point

x ∈ ω according to x 7→ τ(ω, x), and in the sequel we will be interested in finding

conditions for τ∗ : ΩX → ΩY to map πσ to πµ. This question is well known to

have an affirmative answer when the transformation τ : X → Y is deterministic and

maps σ to µ, as can be checked from the Lévy-Khintchine representation (2.2) of the

characteristic function of πσ. In the random case we will use the moment identity of

the next Proposition 3.1, which is a direct application of Proposition 6.2 below with

u = Rh. We apply the convention that
0∑
i=1

li = 0, so that
{
l0, l1 ≥ 0 :

∑0
i=1 li = 0

}
is an arbitrary singleton.

Proposition 3.1 Let N ≥ 0 and let R(ω) : Lpµ(Y ) → Lpσ(X), ω ∈ ΩX , be a random

isometry for all p = 1, . . . , N + 1. Then for all h ∈
N+1⋂
p=1

Lpµ(Y ) such that Rh ∈ IL2,1 is

bounded and

Eσ

[∫
Xa+1

∣∣∣∆s0 · · ·∆sa

(
a∏
p=0

(Rh(sp))
lp

)∣∣∣σ(ds0) · · ·σ(dsa)

]
<∞, (3.3)
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l0 + · · ·+ la ≤ N + 1, l0, . . . , la ≥ 1, a ≥ 0, we have δσ(Rh) ∈ Ln+1(ΩX , πσ) and

Eσ[δσ(Rh)n+1] =
n−1∑
k=0

(
n

k

)∫
Y

hn−k+1(y)µ(dy)Eσ
[
δσ(Rh)k

]
+

n∑
a=0

a∑
j=0

n∑
b=a

∑
l0+···+la=n−b
l0,...,la≥0
la+1,...,lb=0

(
a

j

)
C l0,n

La,b

×

(
b∏

q=j+1

∫
Y

h1+lq(y)µ(dy)

)
Eσ

[∫
Xj+1

∆s0 · · ·∆sj

(
j∏

p=0

(Rh(sp))
1+lp

)
dσj+1(sj)

]
,

n = 0, . . . , N , where dσj+1(sj) = σ(ds0) · · ·σ(dsj), La = (l1, . . . , la), and

C l0,n
La,a+c = (−1)c

(
n

l0

) ∑
0=rc+1<···<r0=a+c+1

c∏
q=0

rq−1−(c−q)∏
p=rq+1+1−(c−q)

(
l1 + · · ·+ lp + p+ q − 1

l1 + · · ·+ lp−1 + p+ q − 1

)
.

(3.4)

As a consequence of Proposition 3.1, if in addition R(ω) : Lpµ(Y ) → Lpσ(X) satisfies

the condition ∫
Xj+1

∆t0 · · ·∆tj

(
j∏

p=0

(Rh(ω, tp))
lp

)
σ(dt0) · · ·σ(dtj) = 0, (3.5)

πσ(ω)-a.s. for all l0 + · · ·+ lj ≤ N + 1, l0 ≥ 1, . . . , lj ≥ 1, j = 1, . . . , N , then we have

Eσ[δσ(Rh)n+1] =
n−1∑
k=0

(
n

k

)∫
Y

hn−k+1(y)µ(dy)Eσ
[
δσ(Rh)k

]
, (3.6)

n = 0, . . . , N , i.e. the moments of δσ(Rh) satisfy the extended recurrence relation

(2.11) of the Touchard type.

Hence Proposition 3.1 and Lemma 7.2 yield the next corollary in which the sufficient

condition (3.7) is a strengthened version of the Wiener space condition trace(DRh)n =

0 of Theorem 2.1 in [22].

Corollary 3.2 Let R : Lpµ(Y ) → Lpσ(X) be a random isometry for all p ∈ [1,∞].

Assume that h ∈
∞⋂
p=1

Lpµ(Y ) is such that sup
p≥1
‖h‖Lpµ(Y ) <∞, and that Rh satisfies (3.3)

and the cyclic condition

Dt1Rh(t2) · · ·DtkRh(t1) = 0, t1, . . . , tk ∈ X, (3.7)
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πσ ⊗ σ⊗k-a.e. for all k ≥ 2. Then, under πσ, δσ(Rh) has same distribution as the

compensated Poisson integral δµ(h) of h under πµ.

Proof. Lemma 7.2 below shows that Condition (3.5) holds under (3.7) since

Ds(Rh(t))l = ε+
s (Rh(t))l − (Rh(t))l =

l∑
k=1

(
l

k

)
(Rh(t))l−k(Ds(Rh(t)))k = 0,

s, t ∈ X, l ≥ 1, hence by Proposition 3.1, Relation (3.6) holds for all n ≥ 1, and this

shows by induction from (2.12) that under πσ, δσ(Rh) has same moments as δµ(h)

under πµ. In addition, since sup
p≥1
‖h‖Lpµ(Y ) <∞, Relation (3.6) also shows by induction

that the moments of δσ(Rh) satisfy the bound Eσ[|δσ(Rh)|n] ≤ (Cn)n for some C > 0

and all n ≥ 1, hence they characterize its distribution by the Carleman condition

∞∑
k=1

(Eσ[δσ(Rh)2n])−1/(2n) = +∞,

cf. [5] and page 59 of [19]. �

We will apply Corollary 3.2 to the random isometry R : Lpµ(Y )→ Lpσ(X) is given as

Rh = h ◦ τ, h ∈ Lpµ(Y ),

where τ : ΩX × X → Y is the random transformation (3.1) of configuration points

considered at the beginning of this section. As a consequence we obtain the following

invariance result for Poisson measures when (X, σ) = (Y, µ).

Theorem 3.3 Let τ : ΩX × X → Y be a random transformation such that τ(ω, ·) :

X → Y maps σ to µ for all ω ∈ ΩX , i.e.

τ∗(ω, ·)σ = µ, ω ∈ ΩX ,

and satisfying the cyclic condition

Dt1τ(ω, t2) · · ·Dtkτ(ω, t1) = 0, ∀ω ∈ ΩX , ∀t1, . . . , tk ∈ X, (3.8)

for all k ≥ 1. Then τ∗ : ΩX → ΩY maps πσ to πµ, i.e.

τ∗πσ = πµ

is the Poisson measure with intensity µ(dy) on Y .
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Proof. We first show that, under πσ, δσ(h ◦ τ) has same distribution as the compen-

sated Poisson integral δµ(h) of h under πµ, for all h ∈ Cc(Y ).

Let (Kr)r≥1 denote an increasing family of compact subsets ofX such thatX =
⋃
r≥1

Kr,

and let τr : ΩX ×X → Y be defined for r ≥ 1 by

τr(ω, x) = τ(ω ∩Kr, x), x ∈ X, ω ∈ ΩX .

Letting Rrh = h ◦ τr defines a random isometry Rr : Lpµ(Y ) → Lpσ(X) for all p ≥ 1,

which satisfies the assumptions of Corollary 3.2. Indeed we have

DsRrh(t) = Dsh(τr(ω, t))

= 1Kr(s)(h(τr(ω, t) +Dsτr(ω, t))− h(τr(ω, t)))

= 1Kr(s)(h(τr(ω ∪ {s}, t))− h(τr(ω, t))), s, t ∈ X,

hence (3.8) implies that Condition (3.7) holds, and Corollary 3.2 shows that we have

Eσ
[
eiλδµ(h◦τr)

]
= Eµ

[
eiλδµ(h)

]
, (3.9)

for all λ ∈ IR. Next we note that Condition (3.8) implies that

Dtτr(ω, t) = 0, ∀ω ∈ ΩX , ∀t ∈ X, (3.10)

i.e. τr(ω, t) does not depend on the presence or absence of a point in ω at t, and in

particular,

τr(ω, t) = τr(ω ∪ {t}, t), t /∈ ω,

and

τr(ω, t) = τr(ω \ {t}, t), t ∈ ω.

Hence by (2.6) we have

δµ(h) ◦ τr∗ =

∫
Y

h(y)(τr∗ω(dy)− µ(dy))

=

∫
X

h(τr(ω, x))(ω(dx)− σ(dx))

=

∫
X

h(τr(ω \ {x}, x))(ω(dx)− σ(dx))

14



= δσ(h ◦ τr),

and by (3.9) we get

Eσ

[
exp

(
i

∫
Y

h(y)(τr∗ω(dy)− µ(dy))

)]
= Eσ

[
exp

(
i

∫
Y

h(y)(ω(dy)− µ(dy))

)
◦ τr∗

]
= Eσ

[
eiδµ(h)◦τr∗

]
= Eµ

[
eiδµ(h)

]
= Eµ

[
exp

(
i

∫
Y

h(y)(ω(dy)− µ(dy))

)]
.

Next, letting r go to infinity we get

Eσ

[
exp

(
i

∫
Y

h(y)(τr∗ω(dy)− µ(dy))

)]
= Eµ

[
exp

(
i

∫
Y

h(y)(ω(dy)− µ(dy))

)]
for all h ∈ Cc(Y ), hence the conclusion. �

In Theorem 3.3 above the identity (3.8) is interpreted for k ≥ 2 by stating that

ω ∈ ΩX , and t1, . . . , tk ∈ X, the k-tuples

(τ(ω ∪ {t1}, t2), τ(ω ∪ {t2}, t3), . . . , τ(ω ∪ {tk−1}, tk), τ(ω ∪ {tk}, t1))

and

(τ(ω, t2), τ(ω, t3), . . . , τ(ω, tk), τ(ω, t1))

coincide on at least one component no i ∈ {1, . . . , k} in Y k, i.e. Dtiτ(ω, ti+1 mod k) = 0.

4 Examples

In this section we consider some examples of transformations satisfying the hypothe-

ses of Section 3, in case X = Y for σ-finite measures σ and µ. Using various binary

relations on X we consider successively the adapted case, and transformations that

are conditioned by a random set such as the convex hull of a Poisson random mea-

sure. Such results are consistent with the fact that given the position of its extremal

vertices, a Poisson random measure remains Poisson within its convex hull, cf. the
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unpublished manuscript [7], see also [25] for a related use of stopping sets.

1. First, we remark that if X is endowed with a total binary relation � and if

τ : ΩX ×X → Y is (backward) predictable in the sense that

x � y =⇒ Dxτ(ω, y) = 0, (4.1)

i.e.

τ(ω ∪ {x}, y) = τ(ω, y), x � y, (4.2)

then the cyclic Condition (3.8) is satisfied, i.e. we have

Dx1τ(ω, x2) · · ·Dxkτ(ω, x1) = 0, x1, . . . , xk ∈ X, ω ∈ ΩX , (4.3)

for all k ≥ 1. Indeed, for all x1, . . . , xk ∈ X there exists i ∈ {1, . . . , k} such that

xi � xj, for all 1 ≤ j ≤ k, hence Dxiτ(ω, xj) = 0, 1 ≤ j ≤ k, by the predictability

condition (4.1), hence (4.3) holds. Consequenly, τ∗ : ΩX → ΩY maps πσ to πµ by

Theorem 3.3, provided τ(ω, ·) : X → Y maps σ to µ for all ω ∈ ΩX .

Such binary relations on X can be defined via an increasing family (Cλ)λ∈IR of subsets

whose reunion is X and such that for all x 6= y ∈ X there exists λx, λy ∈ IR with

x ∈ Cλx \Cλy and y ∈ Cλy , or y ∈ Cλy \Cλx and x ∈ Cλx , which is equivalent to y � x

or x � y, respectively.

This framework includes the classical adaptedness condition when X has the form

X = IR+ × Y . For example, if X and Y are of the form X = Y = IR+ × Z, consider

the filtration (Ft)t∈IR+ , where Ft is generated by

{σ([0, s]× A) : 0 ≤ s < t, A ∈ Bb(Z)},

where Bc(Z) denotes the compact Borel subsets of Z. In this case it is well-known

that ω 7→ τ∗ω is Poisson distributed with intensity µ under πσ, provided τ(ω, ·) :

IR+ × Z → IR+ × Z is predictable in the sense that ω 7→ τ(s, z) is Ft-measurable for

all 0 ≤ s ≤ t, z ∈ Z, cf. e.g. Theorem 3.10.21 of [2]. Here, Condition (4.1) holds for

16



the partial order

(s, x) � (t, y) ⇐⇒ s ≥ t, (4.4)

on Z × IR+ by taking Cλ = [λ,∞) × X, λ ∈ IR+, and the cyclic Condition (3.8) is

satisfied when τ(ω, ·) : IR+ × Z → IR+ × Z is predictable in the sense of (4.1).

Next, we consider other examples in which the binary relation � is configuration de-

pendent. This includes in particular transformations of Poisson measures within their

convex hull, given the positions of extremal vertices.

2. Let X = B̄(0, 1) denote the closed unit ball in IRd. For all ω ∈ ΩX , let C(ω) denote

the convex hull of ω in IRd with interior Ċ(ω), and let ωe = ω ∩ (C(ω) \ Ċ(ω)) denote

the extremal vertices of C(ω). Consider a measurable mapping τ : ΩX ×X → X such

that for all ω ∈ ΩX , τ(ω, ·) is measure preserving, maps Ċ(ω) to Ċ(ω), and for all

ω ∈ ΩX ,

τ(ω, x) =


τ(ωe, x), x ∈ Ċ(ω),

x, x ∈ X \ Ċ(ω),

(4.5)

i.e. the points of Ċ(ω) are shifted by τ(ω, ·) depending on the positions of the extremal

vertices of the convex hull of ω, which are left invariant by τ(ω, ·). The next figure

shows an example of a transformation that modifies only the interior of the convex

hull generated by the random measure, in which the number of points is taken to be

finite for simplicity of illustration.
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Next we prove the invariance of such transformations as a consequence of Theorem 3.3.

This invariance property is related to the intuitive fact that given the positions of the

extreme vertices, the distribution of the inside points remains Poisson when they are

shifted according to the data of the vertices, cf. e.g. [7].

Here we consider the binary relation �ω given by

x �ω y ⇐⇒ x ∈ C(ω ∪ {y}), ω ∈ ΩX , x, y ∈ X.

The relation �ω is clearly reflexive, and it is transitive since x �ω y and y �ω z

implies

x ∈ C(ω ∪ {y}) ⊂ C(ω ∪ {z}),

hence x �ω z. Note that �ω is also total on C(ω) and it is an order relation on

X \ C(ω), since it is also antisymmetric on that set, i.e. if x, y /∈ C(ω) then

x �ω y and y �ω x

means x ∈ C(ω ∪ {y}) and y ∈ C(ω ∪ {x}), which implies x = y. We will need the

following lemma.

Lemma 4.1 For all x, y ∈ X and ω ∈ ΩX we have

x �ω y =⇒ Dxτ(ω, y) = 0, (4.6)

and

x 6�ω y =⇒ Dyτ(ω, x) = 0. (4.7)

Proof. Let x, y ∈ X and ω ∈ ΩX . First, if x 6�ω y then we have x /∈ C(ω ∪ {y})
hence τ(ω ∪ {y}, x) = τ(ω, x) = x by (4.5). Next, if x �ω y, i.e. x ∈ C(ω ∪ {y}), we

can distinguish two cases:

a) x ∈ C(ω). In this case we have C(ω ∪ {x}) = C(ω), hence τ(ω ∪ {x}, y) = τ(ω, y)

for all y ∈ X.

b) x ∈ C(ω ∪ {y}) \ C(ω). If y ∈ C(ω ∪ {x}) then x = y /∈ Ċ(ω ∪ {x}), hence

τ(ω ∪ {x}, y) = τ(ω, y). On the other hand if y /∈ C(ω ∪ {x}) then y 6�ω x and

τ(ω ∪ {x}, y) = τ(ω, y) = y as above.

18



We conclude that Dxτ(ω, y) = 0 in both cases. �

Let us now show that τ : ΩX × X → ΩX satisfies the cyclic condition (3.8). Let

t1, . . . , tk ∈ X. First, if ti ∈ C(ω) for some i ∈ {1, . . . , k}, then for all j = 1, . . . , k we

have ti �ω tj and by Lemma 4.1 we get

Dtiτ(ω, tj) = 0,

thus (3.8) holds, and we may assume that ti /∈ C(ω) for all i = 1, . . . , k. In this case,

if ti+1 mod k 6�ω ti for some i = 1, . . . , k, then by Lemma 4.1 we have

Dtiτ(ω, ti+1 mod k) = 0,

which shows that (3.8) holds. Finally, if t1 �ω tk �ω · · · �ω t2 �ω t1, then by

transitivity of �ω we have t1 �ω tk �ω t1, which implies t1 = tk /∈ C(ω) by antisym-

metry on X \ C(ω), hence Dtkτ(ω, t1) = 0, and τ : ΩX ×X → X satisfies the cyclic

Condition (3.8) for all k ≥ 2. Hence τ satisfies the hypotheses of Theorem 3.3, and

τ∗πσ = πµ provided τ(ω, ·) : X → Y maps σ to µ for all ω ∈ ΩX .

5 Moment identities for stochastic integrals

In this section we prove a moment identity for Poisson stochastic integrals of arbi-

trary orders in Theorem 5.1, whose application will be to prove Proposition 3.1. More

precisely, given F : ΩX → IR a random variable and u : ΩX ×X → IR a measurable

process, we aim at decomposing Eσ [δσ(u)nF ] in terms of the gradient D, while re-

moving all occurrences of δσ using the integration by parts formula (2.8).

In Theorem 5.1 and in the rest of this section we will use the notation

ε+
sb

= ε+
s1
· · · ε+

sb
, sb = (s1, . . . , sb) ∈ Xb, b ≥ 1.

Moreover, by saying that u : ΩX × X → IR has a compact support in X we mean

that there exists a compact subset K of X such that u(ω, x) = 0 for all ω ∈ ΩX and

x ∈ X \K.
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Theorem 5.1 Let F : ΩX → IR be a bounded random variable and let u : ΩX ×X →
IR be a bounded process with compact support in X. For all n ≥ 0 we have

Eσ [δσ(u)nF ] =
n∑
a=0

n∑
b=a

(−1)b−a
∑

l1+···+la=n−b
l1,...,la≥0
la+1,...,lb=0

CLa,bEσ

[∫
Xb

ε+
saF

b∏
p=1

ε+
sa\spu

1+lp
sp dσb(sb)

]
, (5.1)

where dσb(sb) = σ(ds1) · · ·σ(dsb), La = (l1, . . . , la), and

CLa,a+c =
∑

0=rc+1<···<r0=a+c+1

c∏
q=0

rq+q−c−1∏
p=rq+1+q−c+1

(
l1 + · · ·+ lp + p+ q − 1

l1 + · · ·+ lp−1 + p+ q − 1

)
. (5.2)

Before turning to the proof of Theorem 5.1 we consider some examples.

1. For n = 2 and F = 1, Theorem 5.1 recovers the Skorohod isometry (2.9) as follows:

Eσ
[
δσ(u)2

]
= Eσ

[∫
X2

us1us2σ(ds1)σ(ds2)

]
[a = 0, b = 2]

− 2Eσ

[∫
X2

us1(I +Ds1)us2σ(ds1)σ(ds2)

]
[a = 1, b = 2]

+ Eσ

[∫
X
|us1 |2σ(ds1)

]
[a = 1, b = 1]

+ Eσ

[∫
X2

(I +Ds1)us2(I +Ds2)us1σ(ds1)σ(ds2)

]
[a = 2, b = 2]

= Eσ

[∫
X
|us|2σ(ds)

]
+ Eσ

[∫
X2

∆s1∆s2(us1us2)σ(ds1)σ(ds2)

]
. (5.3)

2. For n = 3 and F = 1, Theorem 5.1 yields the following third moment identity:

Eσ
[
δσ(u)3

]
= Eσ

[∫
X
u3
s1σ(ds1)

]
[a = 1, b = 1]

− 3Eσ

[∫
X2

u2
s1(I +Ds1)us2σ(ds1)σ(ds2)

]
[a = 1, b = 2]

+ 3Eσ

[∫
X2

(I +Ds2)us1(I +Ds1)u2
s2σ(ds1)σ(ds2)

]
[a = 2, b = 2]

− Eσ
[∫

X3

us1us2us3σ(ds1)σ(ds2)σ(ds3)

]
[a = 0, b = 3]

+ 3Eσ

[∫
X3

us1(I +Ds1)us3(I +Ds1)us2σ(ds1)σ(ds2)σ(ds3)

]
[a = 1, b = 3]

− 3Eσ

[∫
X3

(I +Ds1)(I +Ds2)us3(I +Ds1)us2(I +Ds2)us1

σ(ds1)σ(ds2)σ(ds3)
]

[a = 2, b = 3]
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+ Eσ

[∫
X3

(I +Ds1)(I +Ds2)us3(I +Ds1)(I +Ds3)us2(I +Ds2)(I +Ds3)us1

σ(ds1)σ(ds2)σ(ds3)
]

[a = 3, b = 3]

= Eσ

[∫
X
u3
s1σ(ds1)

]
+ 3Eσ

[∫
X2

us1Ds1u
2
s2σ(ds1)σ(ds2)

]
+ 3Eσ

[∫
X3

∆s1∆s2(us1u
2
s2)σ(ds1)σ(ds2)

]
+ Eσ

[∫
X3

∆s1∆s2∆s3(us1us2us3)σ(ds1)σ(ds2)σ(ds3)

]
.

(5.4)

3. Noting that CLa,c defined in (5.2) represents the number of partitions of a set of

l1 + · · ·+ la+a+ c elements into a subsets of lengths 1+ l1, . . . , 1+ la and c singletons,

we find that when F = 1 and u = 1A is a deterministic indicator function, and

Theorem 5.1 reads

Eσ [(Z − λ)n] =
n∑
a=0

λa
a∑
c=0

(−1)c
(
n

c

)
S(n− c, a− c)

for Z − λ = δ(1A) = ω(A) − σ(A) a compensated Poisson random variable with

intensity λ = σ(A), where S(n, c) denotes the Stirling number of the second kind, i.e.

the number of ways to partition a set of n objects into c non-empty subsets. This

coincides with the moment formula

Eλ [(Z − λ)n] =
n∑
a=0

λaS2(n, a),

where S2(n, a) denotes the number of partitions of a set of size n into a non-singleton

subsets, which can be obtained from the sequence (0, λ, λ, . . .) of cumulants of the

compensated Poisson distribution, through the combinatorial identity

S2(n, a) =
a∑
c=0

(−1)c
(
n

c

)
S(n− c, a− c), 0 ≤ a ≤ n,

which is the binomial dual of

S(m,n) =
n∑
k=0

(
m

k

)
S2(m− k, n− k),

cf. [17] for details. The proof of Theorem 5.1 will be done by induction based on the

following lemma.
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Lemma 5.2 Let G : ΩX → IR be a bounded random variable and let u : ΩX×X → IR

be a bounded process with compact support in X. For all n ≥ 0 we have

Eσ [δσ(u)nG] =
∑

0=kd<···<k0=n
0≤d≤n

cKdEσ

[∫
Xd

ε+
sd
G

d∏
p=1

ε+
sd\spu

kp−1−kp
sp dσd(sd)

]
(5.5)

−
∑

0=kd<···<k0=n
1≤d≤n

cKdEσ

[∫
Xd

δσ(ε+
sd−1

u)kd−1−1ε+
sd−1

(usdG)
d−1∏
p=1

ε+
sd−1\spu

kp−1−kp
sp dσd(sd)

]
,

where cKd =
d−1∏
p=0

(
kp − 1

kp+1

)
, Kd = (k0, . . . , kd) ∈ INd+1.

Proof. The formula clearly holds when n = 0, while when n ≥ 1, the first summation

in (5.5) actually starts from d = 1. The proof follows by application to l = n − 1 or

l = n of the following identity:

Eσ [δσ(u)nG] (5.6)

=
∑

0=kl+1<···<k0=n

cKl+1

Eσ

[∫
Xl+1

δσ(ε+
sl
u)kl−1ε+

sl+1
Gε+

sl
usl+1

ε+
sl+1

l∏
p=1

ε+
sl+1\spu

kp−1−kp
sp dσl+1(sl+1)

]

+
l∑

d=1

∑
0=kd<···<k0=n

cKdEσ

[∫
Xd

ε+
sd
G

d∏
p=1

ε+
sd\spu

kp−1−kp
sp dσd(sd)

]

−
l+1∑
d=1

∑
0=kd<···<k0=n

cKdEσ

[∫
Xd

δσ(ε+
sd−1

u)kd−1−1ε+
sd−1

(usdG)
d−1∏
p=1

ε+
sd−1\spu

kp−1−kp
sp dσd(sd)

]

= Al +
l∑

d=1

Bd −
l+1∑
d=1

Cd, (5.7)

which will be proved by induction on l = 0, . . . , n. First, note that (5.6) holds for

l = 0 as by (2.4) and (2.8) we have

Eσ [δσ(u)nG] = Eσ

[∫
X

us1Ds1(δσ(u)n−1G)σ(ds1)

]
= Eσ

[∫
X

us1ε
+
s1
δσ(u)n−1ε+

s1
Gσ(ds1)

]
− Eσ

[
G

∫
X

us1δσ(u)n−1σ(ds1)

]
= Eσ

[∫
X

us1(us1 + δσ(ε+
s1
u))n−1ε+

s1
Gσ(ds1)

]
− Eσ

[
G

∫
X

us1δσ(u)n−1σ(ds1)

]
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= A0 − C1,

which also proves the lemma in case n = 1. Next, when n ≥ 2, for l = 0, . . . , n − 1,

using the duality formula (2.8) and the relations ε+
sl+1

δσ(ε+
sl
u) = ε+

sl
usl+1

+ δσ(ε+
sl+1

u),

cf. (2.10), and Dsl+2
= ε+

sl+2
− I, we rewrite the first term in (5.6) as

Al =
∑

0=kl+1<···<k0=n

cKl+1

Eσ

[∫
Xl+1

ε+
sl+1

Gε+
sl
usl+1

(
ε+
sl
usl+1

+ δσ(ε+
sl+1

u)
)kl−1

l∏
p=1

ε+
sl+1\spu

kp−1−kp
sp dσl+1(sl+1)

]

=
∑

0≤kl+1<···<k0=n

cKl+1
Eσ

[∫
Xl+1

δσ(ε+
sl+1

u)kl+1ε+
sl+1

Gε+
sl
ukl−kl+1
sl+1

l∏
p=1

ε+
sl+1\spu

kp−1−kp
sp dσl+1(sl+1)

]

=
∑

1≤kl+1<···<k0=n

cKl+1
Eσ

[∫
Xl+1

δσ(ε+
sl+1

u)kl+1ε+
sl+1

G

l+1∏
p=1

ε+
sl+1\spu

kp−1−kp
sp dσl+1(sl+1)

]

+
∑

0=kl+1<···<k0=n

cKl+1
Eσ

[∫
Xl+1

ε+
sl+1

G
l+1∏
p=1

ε+
sl+1\spu

kp−1−kp
sp dσl+1(sl+1)

]
=

∑
1≤kl+1<···<k0=n

cKl+1

Eσ

[∫
Xl+2

ε+
sl+1

usl+2
Dsl+2

(
δσ(ε+

sl+1
u)kl+1−1ε+

sl+1
G

l+1∏
p=1

ε+
sl+1\spu

kp−1−kp
sp

)
dσl+2(sl+2)

]

+
∑

0=kl+1<···<k0=n

cKl+1
Eσ

[∫
Xl+1

ε+
sl+1

G
l+1∏
p=1

ε+
sl+1\spu

kp−1−kp
sp dσl+1(sl+1)

]
=

∑
1≤kl+1<···<k0=n

cKl+1

Eσ

[∫
Xl+2

ε+
sl+1

usl+2
ε+
sl+2

(
δσ(ε+

sl+1
u)kl+1−1ε+

sl+1
G

l+1∏
p=1

ε+
sl+1\spu

kp−1−kp
sp

)
dσl+2(sl+2)

]

−
∑

1≤kl+1<···<k0=n

cKl+1
Eσ

[∫
Xl+2

δσ(ε+
sl+1

u)kl+1−1ε+
sl+1

(usl+2
G)

l+1∏
p=1

ε+
sl+1\spu

kp−1−kp
sp dσl+2(sl+2)

]

+
∑

0=kl+1<···<k0=n

cKl+1
Eσ

[∫
Xl+1

ε+
sl+1

G

l+1∏
p=1

ε+
sl+1\spu

kp−1−kp
sp dσl+1(sl+1)

]
= Al+1 + Bl+1 − Cl+2,
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which proves (5.6) by induction on l = 1, . . . , n− 1, as

Eσ [δσ(u)nG] = A0−C1 = −C1+
n−1∑
d=0

Ad−Ad+1 = −C1+
n−1∑
d=0

Bd+1−Cd+2 =
n∑
d=1

Bd−
n+1∑
d=1

Cd.

�

Proof of Theorem 5.1. We check that in (5.1), all terms with a = 0 and 0 ≤ b ≤ n− 1

vanish, hence in particular the formula also holds when n = 0. When n ≥ 1 the proof

of (5.1) is obtained by application to c = n or c = n+ 1 of the following identity:

Eσ [δσ(u)nF ] = (−1)c
n−c∑
a=0

∑
l1+···+la+1=n−c−a

l1,...,la+1≥0

CLa+1,a+c (5.8)

Eσ

[∫
Xa+c

δσ(ε+
sau)la+1ε+

saF
a+c∏

q=a+1

ε+
sausq

a∏
p=1

ε+
sa\spu

1+lp
sp dσa+c(sa+c)

]

+
c−1∑
b=0

(−1)b
n−b∑
a=0

∑
l1+···+la=n−b−a

l1,...,la≥0

CLa,a+bEσ

[∫
Xa+b

ε+
saF

a+b∏
q=a+1

ε+
sausq

a∏
p=1

ε+
sa\spu

1+lp
sp dσa+b(sa+b)

]

= Dc +
c−1∑
b=0

Eb,

which will be proved by induction on c = 1, . . . , n+ 1. First, we note that since

CLa,a =
a∏
p=1

(
l1 + · · ·+ lp + p− 1

l1 + · · ·+ lp−1 + p− 1

)
,

the identity (5.8) holds for c = 1 from Lemma 5.2. Next, for all c = 1, . . . , n − 1,

applying Lemma 5.2 with n = la+1 and

G = ε+
saF

a+c∏
q=a+1

ε+
sausq

a∏
p=1

ε+
sa\spu

1+lp
sp

and fixing s1, . . . , sa+c, we rewrite the first term in (5.8) using (5.2) and the change

of index

kd−p = p+m1 + · · ·+mp, 0 ≤ p ≤ d,

as

Dc = (−1)c
n−c∑
a=0

∑
l1+···+la+1=n−c−a

l1,...,la+1≥0

CLa+1,a+c
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×Eσ

[∫
Xa+c

δσ(ε+
sau)la+1ε+

saF

a+c∏
q=a+1

ε+
sausq

a∏
p=1

ε+
sa\spu

1+lp
sp dσa+c(sa+c)

]

= (−1)c
n−c∑
a=0

∑
l1+···+la+1=n−c−a

l1,...,la+1≥0

CLa+1,a+c

la+1∑
d=0

∑
m1+···+md=la+1−d

m1,...,md≥0

d∏
p=1

(
m1 + · · ·+mp + p− 1

m1 + · · ·+mp−1 + p− 1

)

×Eσ

[∫
Xa+c+d

ε+
sa+d

F

a+c+d∏
q=a+d+1

ε+
sa+d

usq

a∏
p=1

ε+
sa+d\spu

1+lp
sp

a+d∏
k=a+1

ε+
sa+d\spu

1+mk−a
sk

dσa+c+d(sa+c+d)

]

−(−1)c
n−c∑
a=0

∑
l1+···+la+1=n−c−a

l1,...,la+1≥0

CLa+1,a+c

la+1∑
d=1

∑
m1+···+md=la+1−d

m1,...,md≥0

d∏
p=1

(
m1 + · · ·+mp + p− 1

m1 + · · ·+mp−1 + p− 1

)

×Eσ

[∫
Xa+c+d

δσ(ε+
sa+d−1

u)mdε+
sa+d−1

F

a+c+d∏
q=a+d

ε+
sa+d−1

usq

×
a∏
p=1

ε+
sa+d−1\spu

1+lp
sp

a+c+d−1∏
k=a+c+1

ε+
sa+d−1\spu

1+mk−a−c
sk

dσa+c+d(sa+c+d)

]

= (−1)c
n−c∑
a′=0

∑
l′1+···+l′

a′
=n−c−a′

l′1,...,l
′
a′
≥0

CLa′ ,a
′+cEσ

[∫
Xa′+c

ε+
sa′
F

a′+c∏
q=a′+1

ε+
sa′+c

usq

a′∏
p=1

ε+
sa′\sp

u
1+l′p
sp dσa

′+c(sa′+c)

]

(5.9)

+(−1)c+1

n−c∑
a′=0

∑
l′1+···+l′

a′+1
=n−c−a′−1

l′1,...,l
′
a′+1

≥0

CLa′+1,a
′+c+1 (5.10)

×Eσ

[∫
Xa′+c+1

δσ(ε+
sa′
u)l
′
a′+1ε+

sa′
F

a′+c+1∏
q=a′+1

ε+
sa′
usq

a′∏
p=1

ε+
sa′\sp

u
1+l′p
sp dσa

′+c+1(sa′+c+1)

]
= Ec +Dc+1,

under the changes of indices

l′1 + · · ·+ l′a′ = l1 + · · ·+ la +m1 + · · ·+md, a′ = a+ d,

in (5.9) when d = 0, . . . , la+1, and

l′1 + · · ·+ l′a′+1 = l1 + · · ·+ la +m1 + · · ·+md, a′ + 1 = a+ d,

in (5.10) when d = 1, . . . , la+1. Noting that in (5.10), the summation on a′ actually
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ends at a′ = n− c− 1 when c < n. We conclude the proof by induction, as

Eσ [δσ(u)nF ] = D1 −Dn+1 + E0 = E0 +
n∑
b=1

Db −Db+1 =
n∑
b=0

Eb,

and by the change of indices (a, b)→ (a, b− a) in (5.1). �

6 Recursive moment identities

The main results of this section are Propositions 6.1 and 6.2. Their proofs are stated

using Lemma 2.4 above and Proposition 6.3 below, and they are used to prove the

main results of Section 3. In the next theorem we use the notation ∆s of Definition 2.5

and let

∆sj = ∆s0 · · ·∆sj , sj = (s0, . . . , sj),

and

dσb+1(sb) = σ(ds0) · · ·σ(dsb), sb = (s0, . . . , sb),

0 ≤ j ≤ b.

Proposition 6.1 Let N ≥ 0 and let u ∈ IL2,1 be bounded with u ∈
N+1⋂
p=1

L∞(ΩX , Lpσ(X))

and

Eσ

[∫
Xb+1

∣∣∣∆s0 · · ·∆sj

(
b∏

q=a+1

usq

a∏
p=0

ulpsp

)∣∣∣dσb+1(sb)

]
<∞,

l0 + · · · + la ≤ N + 1, l0, . . . , la ≥ 1, 0 ≤ j ≤ a ≤ b ≤ N . Then for all n = 0, . . . , N

we have δσ(u) ∈ Ln+1(ΩX , πσ) and

Eσ[δσ(u)n+1] =
n−1∑
k=0

(
n

k

)
Eσ

[
δσ(u)k

∫
X

un−k+1
t σ(dt)

]
(6.1)

+
n∑
a=0

a∑
j=0

n∑
b=a

∑
l0+···+la=n−b
l0,...,la≥0

(
a

j

)
C l0,n

La,b
Eσ

[∫
Xb+1

∆sj

(
b∏

q=a+1

usq

a∏
p=0

u1+lp
sp

)
dσb+1(sb)

]
,

where

C l0,n
La,b

= (−1)b−a
(
n

l0

)
CLa,b,

and CLa,b is defined in (5.2).
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Proof. When u : ΩX × X → IR is a bounded process with compact support in X

this result is a direct consequence of Lemma 2.4 and Proposition 6.3 below applied

with n = k and l0 + k− b = n− b. We conclude the proof by induction and a limiting

argument, as follows. Let (Kr)r≥1 denote an increasing family of compact subsets of X

such that X =
⋃
r≥1

Kr. The family of processes u
(r)
x (ω) := ux1Kr(x), r ≥ 1, converges

in IL2,1 to u as r goes to infinity, hence δσ(u(r)) converges to δ(u) in L2(ΩX , πσ) as r

goes to infinity. Clearly the result holds for N = 0 by applying the formula to the

process u(r) which is bounded with compact support by letting r go to infinity. Next,

letting N ≥ 0 and assuming that δσ(u) ∈ Ln+1(ΩX , πσ) and that (6.1) holds for all

n = 0, . . . , N , we note that for all even integer m ∈ {2, . . . , N + 1} we have the bound

Eσ[δσ(u)m] ≤
m−2∑
k=0

(
m− 1

k

)
Eσ
[
δσ(u)m−2

]k/(m−2)

∥∥∥∥∫
X

|ut|m−kσ(dt)

∥∥∥∥
∞

+
m−1∑
a=0

a∑
j=0

m−1∑
b=a

∑
l0+···+la=m−b−1

l0,...,la≥0

(
a

j

)
C l0,m−1

La,b
Eσ

[∫
Xb+1

∣∣∣∣∣∆sj

(
b∏

q=a+1

usq

a∏
p=0

u1+lp
sp

)∣∣∣∣∣ dσb+1(sb)

]
,

which, applied to u(r)(ω), allows us to extend (6.1) to the order N + 1 by uniform

integrability after taking the limit as r goes to infinity. �

Let us consider some particular cases of Proposition 6.1. For n = 1, Relation (6.1)
reads

Eσ
[
δσ(u)2

]
= Eσ

[∫
X
|us|2σ(ds)

]
− Eσ

[∫
X2

∆s1(us1us2)σ(ds1)σ(ds2)

]
[a = 0, b = 1, j = 0]

+ Eσ

[∫
X2

∆s1(us1us2)σ(ds1)σ(ds2)

]
[a = 1, b = 1, j = 0]

+ Eσ

[∫
X2

∆s1∆s2(us1us2)σ(ds1)σ(ds2)

]
[a = 1, b = 1, j = 1]

= Eσ

[∫
X
|us|2σ(ds)

]
+ Eσ

[∫
X2

∆s1∆s2(us1us2)σ(ds1)σ(ds2)

]
,

which coincides with (5.3). On the other hand for n = 2 Relation (6.1) yields the
third moment

Eσ
[
δσ(u)3

]
= Eσ

[∫
X
u3
sσ(ds)

]
+ 2Eσ

[
δ(u)

∫
X
u2
sσ(ds)

]
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− 2Eσ

[∫
X2

∆s0(u2
s0us1)σ(ds0)σ(ds1)

]
[a = 0, b = 1, j = 0]

+ Eσ

[∫
X2

∆s0(us0us1us2)σ(ds0)σ(ds1)

]
[a = 0, b = 2, j = 0]

+ Eσ

[∫
X2

∆s0(us0u
2
s1)σ(ds0)σ(ds1)

]
+ 2Eσ

[∫
X2

∆s0(u2
s0us1)σ(ds0)σ(ds1)

]
[a = 1, b = 1, j = 0]

+ 3Eσ

[∫
X2

∆s0∆s1(us0u
2
s0)σ(ds0)σ(ds1)

]
[a = 1, b = 1, j = 1]

− Eσ
[∫

X2

∆s0(us0us1us2)σ(ds0)σ(ds1)

]
[a = 1, b = 2, j = 0]

− Eσ
[∫

X3

∆s0∆s1(us0us1us2)σ(ds0)σ(ds1)σ(ds2)

]
[a = 1, b = 2, j = 1]

+ Eσ

[∫
X3

∆s0(us0us1us2)σ(ds0)σ(ds1)σ(ds2)

]
[a = 2, b = 2, j = 0]

+ Eσ

[∫
X3

∆s0∆s1(us0us1us2)σ(ds0)σ(ds1)σ(ds2)

]
[a = 2, b = 2, j = 1]

+ Eσ

[∫
X3

∆s0∆s1∆s2(us0us1us2)σ(ds0)σ(ds1)σ(ds2)

]
[a = 2, b = 2, j = 2]

= Eσ

[∫
X
u3
sσ(ds)

]
+ 2Eσ

[
δ(u)

∫
X
u2
sσ(ds)

]
+ Eσ

[∫
X2

us0Ds0u
2
s1σ(ds0)σ(ds1)

]
+ 3Eσ

[∫
X2

∆s0∆s1(us0u
2
s1)σ(ds0)σ(ds1)

]
+ Eσ

[∫
X3

∆s0∆s1∆s2(us0us1us2)σ(ds0)σ(ds1)σ(ds2)

]
,

(6.2)

which recovers (5.4) by the duality relation (2.8). As a consequence of Proposition 6.1

and Lemma 7.2 in the appendix, when the process u satisfies the cyclic condition

Dt1ut2(ω) · · ·Dtkut1(ω) = 0, ω ∈ ΩX , t1, . . . , tk ∈ X, (6.3)

k ≥ 2, Relation (6.1) becomes

Eσ[δσ(u)n+1] =
n−1∑
k=0

(
n

k

)
Eσ

[
δσ(u)k

∫
X

un−k+1
t σ(dt)

]
(6.4)

+
n∑
a=0

a∧(b−1)∑
j=0

n∑
b=a

∑
l0+···+la=n−b
l0,...,la≥0

(
a

j

)
C l0,n

La,b
Eσ

[∫
Xb+1

∆sj

(
b∏

q=a+1

usq

a∏
p=0

u1+lp
sp

)
dσb+1(sb)

]
,

i.e. the last two terms of (6.2) vanish when n = 2. In case X = IR+ × Z, Condi-

tion (6.3) is satisfied when u is predictable, by the same argument as the one leading

to (4.3).

28



The next Proposition follows from Proposition 6.1 and is used to prove Proposition 3.1.

Proposition 6.2 Let N ≥ 0 and let u ∈ IL2,1 be a bounded process such that u ∈
N+1⋂
p=1

L∞(ΩX , Lpσ(X)) and the integral

∫
X

unt σ(dt) is deterministic, for all n = 1, . . . , N+

1, and

Eσ

[∫
Xa+1

∣∣∣∆s0 · · ·∆sa

(
a∏
p=0

ulpsp

)∣∣∣dσa+1(sa)

]
<∞,

l0 + · · · + la ≤ N + 1, l0, . . . , la ≥ 1, 0 ≤ a ≤ N + 1. Then for all n = 0, . . . , N we

have δσ(u) ∈ Ln+1(ΩX , πσ) and

Eσ[δσ(u)n+1] =
n−1∑
k=0

(
n

k

)∫
X

un−k+1
t σ(dt)Eσ

[
δσ(u)k

]
+
∑

0≤j≤a≤b≤n

∑
l0+···+la=n−b
l0,...,la≥0
la+1,...,lb=0

(
a

j

)
C l0,n

La,b
Eσ

[∫
Xj+1

∆sj

j∏
p=0

u1+lp
sp dσj+1(sj)

]
b∏

q=j+1

∫
X

u
1+lq
t σ(dt).

Proof. We apply Proposition 6.1 after integrating in sj+1, . . . , sa and using (2.13).

�

Consequently if u : ΩX → IR satisfy the hypotheses of Proposition 6.2 and is such

that ∫
Xj+1

∆s0 · · ·∆sj

(
j∏

p=0

ulpsp

)
dσj+1(sj) = 0, (6.5)

πσ-a.s., for all l0 + · · · + lj ≤ N + 1, l0 ≥ 1, . . . , lj ≥ 1, j = 1, . . . , N , or simply the

cyclic condition

Dt0ut1(ω) · · ·Dtjut0(ω) = 0, ω ∈ ΩX , t1, . . . , tj ∈ X,

j = 1, . . . , N , cf. Lemma 7.2 below, then we have

Eσ[δσ(u)n+1] =
n−1∑
k=0

(
n

k

)∫
X

un−k+1
t σ(dt)Eσ

[
δσ(u)k

]
, n = 0, . . . , N,

i.e. the moments of δσ(u) satisfy the same recurrence relation (5.8) as the moments

of compensated Poisson integrals.

The next proposition is used to prove Proposition 6.1 with the help of Lemma 2.4.
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Proposition 6.3 Let u : ΩX × X → IR and v : ΩX × X → IR be bounded processes

with compact support in X. For all k ≥ 0 we have

Eσ

[∫
X

vsδσ(ε+
s u)kσ(ds)

]
= Eσ

[
δσ(u)k

∫
X

vsσ(ds)

]
+

k∑
a=0

a∑
j=0

(
a

j

) k∑
b=a

(−1)b−a
∑

l1+···+la=k−b
l1,...,la≥0

CLa,bEσ

[∫
Xb+1

∆sj

(
vs0

b∏
q=a+1

usq

a∏
p=1

u1+lp
sp

)
dσb+1(sb)

]
,

where CLa,b is defined in (5.2).

Proof. This proof is an application of Theorem 5.1 with F = vs. Using Proposi-

tion 7.1 below and the expansion

j∏
i=0

(I + ∆si) =

j∑
l=0

∑
0≤i0<···<il≤j

∆si0
· · ·∆sil

,

we have, up to the symmetrization due to the integral in σ(ds0) · · ·σ(dsa) and the

summation on l1, . . . , la,

ε+
savs0(I +Ds0)

(
b∏

q=a+1

ε+
sausq

a∏
p=1

ε+
sa\spu

1+lp
sp

)

=

(
a∏
i=1

(I + ∆si)

)(
vs0(I +Ds0)

(
a∏
p=1

u1+lp
sp

b∏
q=a+1

usq

))

=

(
a∏
i=1

(I + ∆si)

)(
vs0

a∏
p=1

u1+lp
sp

b∏
q=a+1

usq

)

+

(
a∏
i=1

(I + ∆si)

)(
vs0Ds0

(
a∏
p=1

u1+lp
sp

b∏
q=a+1

usq

))

=

(
a∏
i=1

(I + ∆si)

)(
vs0

a∏
p=1

u1+lp
sp

b∏
q=a+1

usq

)

+
a∑
j=0

(
a

j

)
∆s1 · · ·∆sj

(
vs0Ds0

(
a∏
p=1

u1+lp
sp

b∏
q=a+1

usq

))

= ε+
savs0

b∏
q=a+1

ε+
sausq

a∏
p=1

ε+
sa\spu

1+lp
sp +

a∑
j=0

(
a

j

)
∆s0 · · ·∆sj

(
vs0

a∏
p=1

u1+lp
sp

b∏
q=a+1

usq

)
,

hence by Theorem 5.1 applied to G = vs with fixed s ∈ X we have

Eσ

[∫
X

vsδσ((I +Ds)u)kσ(ds)

]
30



=
k∑
a=0

k−a∑
b=0

(−1)b−a
∑

l1+···+la=k−b
l1,...,la≥0

CLa,b

Eσ

[∫
Xb+1

ε+
savs0 (I +Ds0)

(
b∏

q=a+1

ε+
sausq

a∏
p=1

ε+
sa\spu

1+lp
sp

)
dσb+1(sb)

]

=
k∑
a=0

k−a∑
b=0

(−1)b−a
∑

l1+···+la=k−b
l1,...,la≥0

CLa,bEσ

[∫
Xb+1

ε+
savs0

b∏
q=a+1

ε+
sausq

a∏
p=1

ε+
sa\spu

1+lp
sp dσb+1(sb)

]
(6.6)

+
k∑
a=1

a∑
j=0

(
a

j

) k−a∑
b=0

(−1)b−a
∑

l1+···+la=k−b
l1,...,la≥0

CLa,b

Eσ

[∫
Xb+1

∆s0 · · ·∆sj

(
vs0

b∏
q=a+1

usq

a∏
p=1

u1+lp
sp

)
dσb+1(sb)

]

= Eσ

[
δσ(u)k

∫
X

vsσ(ds)

]
+

k∑
a=1

a∑
j=0

(
a

j

) k−a∑
b=0

(−1)b−a
∑

l1+···+la=k−b
l1,...,la≥0

CLa,bEσ

[∫
Xb+1

∆sj

(
vs0

b∏
q=a+1

usq

a∏
p=1

u1+lp
sp

)
dσb+1(sb)

]
,

where we identified Eσ

[
δσ(u)k

∫
X

vsσ(ds)

]
to (6.6) on the last step, by another ap-

plication of Theorem 5.1 to F =
∫
X
vsσ(ds). �

7 Appendix

In this appendix we state some combinatorial results that have been used above.

Proposition 7.1 Let u : ΩX ×X → IR be a measurable process. For all 0 ≤ j, p ≤ n

we have the relation

n∏
p=0

ε+
sj\spusp =

(
j∏
i=0

(I + ∆si)

)
n∏
p=0

usp , (7.1)

for mutually different sn = (s0, . . . , sn) ⊂ X.
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Proof. We will prove Relation (7.1) for all n ≥ 0 by induction on j ∈ {0, 1, . . . , n}.
Clearly for j = 0 the relation holds since

us0

n∏
p=1

ε+
s0
usp = us0

n∏
p=1

usp + us0
∑

Ξ1∪···∪Ξn={s0}

DΞ1us1 · · ·DΞnusn

= us0

n∏
p=1

usp +
∑

Ξ0∪···∪Ξn={s0}
s0 /∈Ξ0

DΞ0us0 · · ·DΞnusn

= (I + ∆s0)
n∏
p=0

usp .

Next, assuming that (7.1) holds at the rank j ∈ {0, 1, . . . , n−1} and taking {s0, . . . , sn} ⊂
X mutually different we have

n∏
p=0

ε+
sj+1\spusp =

n∏
p=0

(I + 1{p 6=j+1}Dsj+1
)

j∏
i=0
i6=p

(I +Dsi)usp


=

∑
Ξ0∪···∪Ξn⊂{sj+1}

sj+1 /∈Ξj+1

n∏
p=0

 j∏
i=0
i6=p

(I +Dsi)DΞpusp


=

∑
Ξ0∪···∪Ξn⊂{sj+1}

sj+1 /∈Ξj+1

(
j∏
i=0

(I + ∆si)

)
n∏
p=0

DΞpusp

=
∑

Ξ0∪···∪Ξn⊂{sj+1}
sj+1 /∈Ξj+1

∑
Θ0∪···∪Θn={s0,s1,...,sj}

s0 /∈Θ0,...,sj /∈Θj

DΘ0DΞ0us0 · · ·DΘnDΞnusn

=
∑

Θ0∪···∪Θn={s0,s1,...,sj}
s0 /∈Θ0,...,sj /∈Θj

DΘ0us0 · · ·DΘnusn

+
∑

Ξ0∪···∪Ξn={sj+1}
sj+1 /∈Ξj+1

∑
Θ0∪···∪Θn={s0,s1,...,sj}

s0 /∈Θ0,...,sj /∈Θj

DΞ0DΘ0us0 · · ·DΞnDΘnusn

=

(
j∏
i=0

(I + ∆si)

)
n∏
p=0

usp + ∆sj+1

(
j∏
i=0

(I + ∆si)

)
n∏
p=0

usp

=

(
j+1∏
i=0

(I + ∆si)

)
n∏
p=0

usp .

�
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Finally in the next lemma, which is used to prove Corollary 3.2, we show that Rela-

tion (6.5) is satisfied provided Dsut(ω) satisfies the cyclic condition (7.2).

Lemma 7.2 Let N ≥ 1 and assume that u : ΩX×X → IR satisfies the cyclic condition

Dt0ut1(ω) · · ·Dtjut0(ω) = 0, ω ∈ ΩX , t0, t1, . . . , tj ∈ X, (7.2)

for j = 1, . . . , N . Then we have

∆t0 · · ·∆tj

(
ut0(ω) · · ·utj(ω)

)
= 0, ω ∈ ΩX , t0, t1, . . . , tj ∈ X,

for j = 1, . . . , N .

Proof. By Definition 2.5 we have

∆t0 · · ·∆tj

j∏
p=0

utp =
∑

Θ0∪···∪Θj={t0,t1,...,tj}
t0 /∈Θ0,...,tj /∈Θj

DΘ0ut0 · · ·DΘjutj , (7.3)

t0, . . . , tj ∈ X, j = 2, . . . , N . Without loss of generality we may assume that

{t0, t1, . . . , tj} are not equal to eachother and that Θ0 6= ∅, . . . ,Θj 6= ∅ and Θk∩Θl = ∅,
0 ≤ k 6= l ≤ j in the above sum. In this case we can construct a sequence (k1, . . . , ki)

by choosing

t0 6= tk1 ∈ Θ0, tk2 ∈ Θk1 , . . . , tki−1
∈ Θki−2

,

until tki = t0 ∈ Θki−1
for some i ∈ {2, . . . , j} since Θ0∩· · ·∩Θj = ∅ and Θ0∪· · ·∪Θj =

{t0, t1, . . . , tj}. Hence by (7.2) we have

Dtk1
ut0Dtk2

utk1
· · ·Dtki−1

utki−2
Dtk0

utki−1
= 0,

by (7.2), which implies

DΘ0ut0DΘk1
utk1
· · ·DΘki−1

utki−1
= 0,

since

(tk1 , tk2 , . . . , tki−1
, t0) ∈ Θ0 ×Θk1 × · · · ×Θki−1

,

hence

DΘ0ut0DΘk1
utk1
· · ·DΘkj

utj = 0,

and (7.3) vanishes. �
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Again, in case X = IR+, Condition (7.2) holds in particular when either Dsut = 0,

0 ≤ s ≤ t, as in (4.2), resp. Dtus = 0, 0 ≤ s ≤ t, which is the case when u is

backward, resp. forward, predictable.
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aléatoire de Poisson. In Séminaire de Probabilités, XXII, volume 1321 of Lecture Notes in Math.,
pages 477–484, Berlin, 1988. Springer.

[9] Y. Ito. Generalized Poisson functionals. Probab. Theory Related Fields, 77:1–28, 1988.

[10] J. Jacod and A. N. Shiryaev. Limit theorems for stochastic processes, volume 288 of Grundlehren
der Mathematischen Wissenschaften. Springer-Verlag, Berlin, second edition, 2003.

[11] G. Di Nunno, B. Øksendal, and F. Proske. Malliavin Calculus for Lévy Processes with Appli-
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[21] A.S. Üstünel and M. Zakai. Analyse de rotations aléatoires sur l’espace de Wiener. C. R. Acad.
Sci. Paris Sér. I Math., 319(10):1069–1073, 1994.
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