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Abstract
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1 Introduction

Consider a Poisson process (Xt)t∈[0,T ] with intensity u of the form u(t) = λh(t),

t ∈ [0, T ], under a probability Pu, where (h(t))t∈[0,T ] is a given deterministic function.

As is well-known, cf. [6], or [8], p. 351, Example 2, Ch. XIX, the classical parametric

maximum likelihood estimator (MLE)

λ̂T :=
XT

h(T )

∗nprivaul@cityu.edu.hk
†anthony.reveillac@univ-lr.fr
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of λ on the time interval [0, T ] is obtained by maximization of the Girsanov density,

i.e. under the condition:

d

dλ

(

λXT e−(λh(T )−T )

XT
∏

k=1

ḣ(Tk)

)

=

(

XT

λ
− h(T )

)

λXT e−(λh(T )−T )

XT
∏

k=1

ḣ(Tk) = 0.

The MLE λ̂T is efficient in the sense that it attains the Cramer-Rao bound

IEu

[

|λ̂T − λ|2
]

=
λ

h(T )

over all unbiased estimators ζT satisfying IEu[ζT ] = λ, for all λ > 0, where IEu denotes

expectation under Pu.

In this paper we construct superefficient estimators for the intensity parameter λ > 0

when the intensity (u(t))t∈[0,T ] of (Xt)t∈[0,T ] is constrained to have the form u(t) =

λh(t), t ∈ [0, T ].

We use integration by parts and harmonic analysis on the Poisson space, via the

technique introduced by Stein [15] for the estimation of the mean of a standard Gaus-

sian random vector Z in R
d, and extended to drift estimation on the Wiener space in

[14], [13]. Recall that Stein’s argument relies on:

a) the integration by parts

IEµ[(Zi − µi)gi(Z)] = IEµ[∂igi(Z)], (1.1)

where IEµ denotes expectation under the standard Gaussian measure with mean

µ ∈ R
d,

b) the chain rule of derivation for the partial derivative ∂i on R
d,

c) the existence and properties of non-negative superharmonic functions on R
d for

d ≥ 3.
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Precisely, given an estimator of µ ∈ R
d of the form Z + grad log f(Z), where f : R

d →
R

d is sufficiently smooth, one gets, using the chain rule of derivation,

IEµ[‖Z + grad log f(Z) − µ‖2
Rd]

= IEµ[‖Z − µ‖2
Rd] + IEµ[‖ grad log f(Z)‖2

Rd] + 2
d
∑

i=1

IEµ[(Zi − µi)∂i log f(Z)]

= d + IEµ[‖ grad log f(Z)‖2
Rd] + 2 IEµ

[

d
∑

i=1

∂2
i log fi(Z)

]

(1.2)

= d + 4
d
∑

i=1

IEµ

[

∂2
i

√
f(Z)√

f(Z)

]

,

i.e. Z+ grad log f(Z) improves in the mean square sense over the maximum likelihood

estimator (MLE) Z if d ≥ 3 and
√

f is superharmonic on R
d.

Integration by parts for g : N → R with respect to the discrete Poisson distribution

P (X = k) = e−λλk/k!, k ∈ N, can be written as

IEλ[(X − λ)g(X)] = λ IEλ[g(X + 1) − g(X)].

where IEλ denotes expectation under the Poisson distribution with parameter λ > 0,

and has been used to derive Stein identities for jump processes, such as

IEλ[|X − λ + g(X)|2] = λ + IEλ[|g(X)|2] + 2 IEλ[(X − λ)g(X)]

= λ + IEλ[|g(X)|2] + 2λ IEλ[g(X + 1) − g(X)],

cf. [1], [3]. However the absence of chain rule for the finite difference operation

g 7→ g(·+ 1)− g(·) prevents us from continuing the calculation as in (1.2) above, and

from using superharmonic functions as in the Gaussian case. On a more general level

the derivation property requirement prevents us from using finite difference gradients

on Poisson functionals cf. e.g. [9].

In this paper we apply Stein’s argument on the Poisson space, and construct su-

perefficient estimators for the discrete Poisson law, by replacing the Stein equation

(1.1) with the integration by parts formula of [2], [4], extended to arbitrary intensity
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functions on the Poisson space as in [11], in which the gradient ∇ satisfies the chain

rule of derivation. When u(t) has the form u(t) = λh(t) we apply our result to the

parametric estimation of the Poisson process intensity λ > 0 via estimators of the

form

λ̂T +
c

ḣ(T )
1{XT =0} +

1

h(T )
∇T log F,

where F is a positive superharmonic random variable on the Poisson space, c ∈ R is

a suitably chosen constant, and ∇T is a gradient operator on the Poisson space.

Unlike in the Gaussian case, the Laplacian considered here contains first order terms

and is not the standard Laplacian on R
d. As a consequence the d ≥ 3 dimension

condition imposed in the Gaussian case can be waived and superharmonic functionals

can be constructed as functions of d jump times for d ≥ 1.

We proceed as follows. In Section 2 we introduce the Poisson space and derive the

Cramer-Rao bound for a non-parametric estimator of the intensity. Our proof uses

stochastic calculus, and in this respect it differs from the ones usually found in the

literature, cf. e.g. § 1.2 of [7]. In Section 3 we recall the elements of analysis and

integration by parts on the Poisson space which will be needed in Section 4 to construct

superefficient estimators for the intensity of a Poisson process. In case u has the form

u(t) = λt, numerical applications and simulations are given in Section 5 using simple

examples of (pseudo) superharmonic functionals.

2 Preliminaries

In this section we state some notation on the Poisson space and Poisson process,

and derive the Cramer-Rao bound. Let T > 0 and consider (Xt)t∈[0,T ] the canonical

process on

Ω =

{

ω =
n
∑

k=1

δtk : 0 ≤ t1 < · · · < tn ≤ T, n ∈ N ∪ {∞}
}

,

defined as

Xt(ω) = ω([0, t]), t ∈ [0, T ],
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where δx denotes the Dirac measure at x ∈ [0, T ]. Let (Tk)k≥1 denote the jump times

of (Xt)t∈[0,T ], i.e. any ω ∈ {XT = n} is written as

ω =

n
∑

k=1

δTk
.

Let P denote the standard Poisson measure on Ω, under which (Xt)t∈R+
is a standard

Poisson process, and let (Ft)t∈[0,T ] denote the filtration generated by (Xt)t∈[0,T ].

Definition 2.1. Let P denote the set of functions of the form

u(t) =

∫ t

0

u̇(s)ds, t ∈ [0, T ],

where u̇ : [0, T ] → [0,∞) is a non-negative function.

Let now u ∈ P. By the Girsanov theorem, the measure Pu on Ω, under which the

canonical process (Xt)t∈[0,T ] is a Poisson process with intensity u̇(t)dt, is absolutely

continuous with respect to P with

dPu = Λ(u)dP,

where

Λ(u) = exp

(

−
∫ T

0

(u̇(s) − 1)ds

) XT
∏

k=1

u̇(Tk)

denotes the Girsanov density. In the sequel we will denote by IEu the expectation

under Pu and let L2
u(Ω) = L2(Ω, Pu).

We close this section with a derivation of the Cramer-Rao inequality using stochastic

calculus, for non-parametric estimation of the intensity. In case the intensity is con-

strained to be constant on intervals, our bound can be recovered from the Cramer-Rao

inequality for arbitrary finite dimensional estimators, cf. Theorem 1.5 of [7].

Definition 2.2. An estimator ξt of u ∈ P is called unbiased if

IEu[ξt] = u(t), t ∈ [0, T ],

and adapted if the process (ξt)t∈[0,T ] is adapted to the filtration (Ft)t∈[0,T ] generated by

(Xt)t∈[0,T ].
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Here, Xt can be considered as an unbiased maximum likelihood estimator of its own

intensity u(t) under Pu, t ∈ [0, T ]. From the next proposition, this estimator is efficient

since its mean square error is equal to

IEu

[

|Xt − u(t)|2
]

= u(t), t ∈ [0, T ]. (2.1)

Proposition 2.3. Cramer-Rao inequality. Let u ∈ P and t ∈ [0, T ]. For any unbiased

and adapted estimator ξt of u(t) we have

IEu

[

|ξt − u(t)|2
]

≥ u(t), u ∈ P, (2.2)

where for all u ∈ P the lower bound u(t) is attained by ξt = Xt.

Proof. Since ξt is unbiased, for all v ∈ P and ε ∈ R we have

IEu+εv[ξt] = u(t) + εv(t) = IEu+εv[u(t)] + εv(t),

hence

v(t) =
d

dε
IEu+εv[ξt − u(t)]|ε=0

=
d

dε
IE[(ξt − u(t))Λ(u + εv)]|ε=0

= IE

[

(ξt − u(t))
d

dε
Λ(u + εv)|ε=0

]

= IEu

[

(ξt − u(t))
d

dε
log Λ(u + εv)|ε=0

]

= IEu

[

(ξt − u(t))

∫ T

0

1{u̇(s)6=0}
v̇(s)

u̇(s)
(dXs − u̇(s)ds)

]

= IEu

[

(ξt − u(t))

∫ t

0

1{u̇(s)6=0}
v̇(s)

u̇(s)
(dXs − u̇(s)ds)

]

.

Note that the adaptedness hypothesis on the estimator ξt was used to get the last

equality above, and that the exchange between expectation and derivative can be

justified by standard uniform integrability arguments. Thus, by the Cauchy-Schwarz

inequality and the Itô isometry, we have

v2(t) ≤ IEu

[

(
∫ t

0

1{u̇(s)6=0}
v̇(s)

u̇(s)
(dXs − u̇(s)ds)

)2
]

IEu[|ξt − u(t)|2]
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=

∫ t

0

1{u̇(s)6=0}
|v̇(s)|2
u̇(s)

ds IEu[|ξt − u(t)|2].

It then suffices to take

v̇(s) := u̇(s), s ∈ [0, t],

to get

Varu[ξt] = IEu[|ξt − u(t)|2] ≥ u(t), (2.3)

which leads to (2.2). As noted in (2.1), ût = Xt is clearly unbiased under Pu and

attains the lower bound u(t). �

3 Analysis on the Poisson space

In this section we recall the elements of analysis and integration by parts on the

Poisson space which will be needed for the construction of Stein estimators.

Definition 3.1. We denote by S the space of Poisson functionals of the form

F = f01{XT =0} +

∞
∑

n=1

1{XT =n}fn(T1, . . . , Tn), (3.1)

where f0 ∈ R and fn, n ≥ 1, is C1 on {0 ≤ t1 ≤ · · · ≤ tn ≤ T}, and satisfying the

continuity condition

fn(t1, . . . , tn) = fn+1(t1, . . . , tn, T ), 0 ≤ t1 ≤ · · · ≤ tn ≤ T, n ∈ N. (3.2)

Recall that for all F ∈ S of the form (3.1), letting

f̃n(t1, . . . , tn) := fn

(

t(1), . . . , t(n)

)

, n ≥ 1,

where (t(1), . . . , t(n)) represents the arrangement of (t1, . . . , tn) ∈ [0, T ]n in increasing

order, we have:

IEu[F ] (3.3)

= e−u(T )f0 + e−u(T )
∞
∑

n=1

1

n!

∫ T

0

· · ·
∫ T

0

f̃n(t1, . . . , tn)u̇(t1) · · · u̇(tn)dt1 · · · dtn
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= e−u(T )f0 + e−u(T )
∞
∑

n=1

1

n!

∫ u(T )

0

· · ·
∫ u(T )

0

f̃n(u−1(t1), . . . , u
−1(tn))dt1 · · · dtn.

From now we assume that u ∈ P is such that u̇(t) is lower bounded by a (strictly)

positive constant for all t ∈ R+ in order to satisfy the integrability conditions needed

in the sequel.

Definition 3.2. For F ∈ S of the form (3.1), let

ḊtF = −
∞
∑

n=1

1{XT =n}

n
∑

k=1

1[0,Tk](t)
1

u̇(Tk)
∂kfn(T1, . . . , Tn), t ∈ [0, T ],

for F of the form (3.1), where ∂kfn denotes the partial derivative of fn with respect

to its k-th variable.

Let

H =

{

v : [0, T ] → R : v(t) :=

∫ t

0

v̇(s)ds, t ∈ [0, T ], v̇ ∈ L2([0, T ], u̇(t)dt)

}

denote the Cameron-Martin space with inner product

〈v, w〉H =

∫ T

0

v̇(s)ẇ(s)u̇(s)ds, v, w ∈ H.

We have

〈DF, v〉H =

∫ T

0

v̇(t)ḊtF u̇(t)dt, F ∈ S, v ∈ H.

Let L2
u(Ω; H) denote the space of processes (v(t))t∈[0,T ] of the form

v(t) =

∫ t

0

v̇(s)ds, t ∈ [0, T ],

such that

IEu

[
∫ T

0

|v̇(s)|2u̇(s)ds

]

< ∞.

We now turn to the definition of the operator δ adjoint of D. Note that as D has the

derivation property, the operator δ is different from the Kabanov-Skorohod integral

[5], whose adjoint is a finite difference operator [9]. See [10], [12] for a comparative

study of these gradient and Skorohod type integral operators.
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Proposition 3.3. i) The operator D is closable and admits a closable adjoint δ :

L2
u(Ω; H) → L2

u(Ω) under Pu, which satisfies the integration by parts formula

IEu[Fδ(v)] = IEu[〈v, DF 〉H], F ∈ Dom(D), v ∈ Dom(δ). (3.4)

ii) We have

δ(v) =

∫ T

0

v̇(t)(dXt − u̇(t)dt), (3.5)

for every Ft-adapted process v ∈ L2
u(Ω; H).

Proof. By standard integration by parts we first prove (3.4) when v ∈ H :

IEu[〈DF, v〉H]

= −e−u(T )
∞
∑

n=1

1

n!

n
∑

k=1

∫ T

0

· · ·
∫ T

0

∫ tk

0

u̇(s)

u̇(tk)
v̇(s)ds∂kf̃n(t1, . . . , tn)u̇(t1) · · · u̇(tn)dt1 · · · dtn

= −e−u(T )

∞
∑

n=1

1

n!

n
∑

k=1

∫ u(T )

0

· · ·
∫ u(T )

0

∫ u−1(tk)

0

v̇(s)u̇(s)ds
∂

∂tk
f̃n(u−1(t1), . . . , u

−1(tn))dt1 · · · dtn

= −e−u(T )

∞
∑

n=1

1

n!

n
∑

k=1

∫ u(T )

0

· · ·
∫ u(T )

0

∫ tk

0

v̇(u−1(s))ds
∂

∂tk
f̃n(u−1(t1), . . . , u

−1(tn))dt1 · · · dtn

= e−u(T )
∞
∑

n=1

1

n!

n
∑

k=1

∫ u(T )

0

· · ·
∫ u(T )

0

f̃n(u−1(t1), . . . , u
−1(tn))v̇(u−1(tk))dt1 · · · dtn

−e−u(T )
∞
∑

n=1

1

(n − 1)!

∫ u(T )

0

v̇(u−1(s))ds

∫ u(T )

0

· · ·
∫ u(T )

0

f̃n(u−1(t1), . . . , u
−1(tn−1), T )dt1 · · ·dtn−1

= e−u(T )
∞
∑

n=1

1

n!

n
∑

k=1

∫ T

0

· · ·
∫ T

0

f̃n(t1, . . . , tn)v̇(tk)u̇(t1) · · · u̇(tn)dt1 · · · dtn

−e−u(T )

∞
∑

n=1

1

(n − 1)!

∫ T

0

v̇(s)u̇(s)ds

∫ T

0

· · ·
∫ T

0

f̃n(t1, . . . , tn−1, T )u̇(t1) · · · u̇(tn−1)dt1 · · · dtn−1.

The continuity condition (3.2), i.e.

f̃n−1(t1, . . . , tn−1) = f̃n(t1, . . . , tn−1, T ), n ≥ 1,

yields

IEu[〈DF, v〉H]

= e−u(T )
∞
∑

n=1

1

n!

∫ T

0

· · ·
∫ T

0

f̃n(t1, . . . , tn)u̇(t1) · · · u̇(tn)
n
∑

k=1

v̇(tk)dt1 · · · dtn
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−e−u(T )

∫ T

0

v̇(s)u̇(s)ds
∞
∑

n=0

1

n!

∫ T

0

· · ·
∫ T

0

f̃n(t1, . . . , tn)u̇(t1) · · · u̇(tn)dt1 · · ·dtn

= IEu

[

F

(

XT
∑

k=1

v̇(Tk) −
∫ T

0

v̇(s)u̇(s)ds

)]

= IEu

[

F

(
∫ T

0

v̇(s)(dX(s) − u̇(s)ds

)]

.

Next we define δ(Gv), G ∈ S, v ∈ H , by

δ(Gv) = G

∫ T

0

v̇(t)(dXt − u̇(t)dt) − 〈v, DG〉H, (3.6)

with for all G ∈ S:

IEu[G〈DF, v〉H] = IEu[〈D(FG), v〉H − F 〈DG, v〉H]

= IEu

[

F

(

G

∫ T

0

v(t)dXt − 〈DG, v〉H
)]

= IEu[Fδ(Gv)],

which proves (3.4). The closability of D then follows from the integration by parts

formula (3.4): if (Fn)n∈N ⊂ S is such that Fn → 0 in L2
u(Ω) and DFn → U in

L2
u(Ω; H), then (3.4) implies

| IEu[〈U, Gv〉H]| ≤ | IEu[Fnδ(Gv)] − IEu[〈U, Gv〉H]| + | IEu[Fnδ(Gv)]|

= | IEu[〈DFn − U, Gv〉H]| + | IEu[Fnδ(Gv)]|

≤ ‖〈DFn, v〉H − 〈U, v〉H‖L2
u(Ω)‖G‖L2

u(Ω) + ‖Fn‖L2
u(Ω)‖δ(Gv)‖L2

u(Ω),

n ∈ N, hence IEu[〈U, Gv〉H] = 0, G ∈ S, v ∈ H , i.e. U = 0. The proof of the

closability of δ is similar. Finally, by standard arguments we consider processes of

the form v̇ = G1[t,T ] where G ∈ S is Ft-measurable, t ∈ [0, T ], for which we have

1[t,T ](s)DsG = 0, s ∈ [0, T ], which shows from (3.6) that

δ(v) = G

∫ T

0

1[t,T ](s)(dXs − u̇(s)ds) =

∫ T

0

v̇s(dXs − u̇(s)ds),

hence δ extends the Itô integral on all square-integrable Ft-adapted processes, and

(3.5) is proved. �
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For all t ∈ [0, T ] we let χt(s) = min(s, t), s ∈ [0, T ].

Definition 3.4. Let

∇tF := 〈DF, χt〉H =

∫ t

0

u̇(s)ḊsFds, F ∈ Dom(D).

For F of the form (3.1) we have:

∇tF =

∫ t

0

ḊsF u̇(s)ds = −
∞
∑

n=1

1{XT =n}

n
∑

k=1

u(t ∧ Tk)

u̇(Tk)
∂kfn(T1, . . . , Tn).

In the parametric case u(t) = λh(t), t ∈ [0, T ], h ∈ P, we have

∇tF = −
∞
∑

n=1

1{XT =n}

n
∑

k=1

h(t ∧ Tk)

ḣ(Tk)
∂kfn(T1, . . . , Tn), (3.7)

which is independent of λ.

We close this section by introducing a Laplacian on the Poisson space.

Definition 3.5. We define the Laplacian ∆t by

∆tF = ∇t∇tF, F ∈ S.

The operator ∆t is easily shown to be closable, i.e. for any sequence (Fn)n∈N of random

variables converging to 0 in L2
u(Ω) and such that (∆tFn)n∈N converges in L2

u(Ω), we

have

lim
n→∞

∆tFn = 0.

This allows one to define the domain of ∆t, denoted by Dom(∆t), as the set of

functionals F for which there exists a sequence of cylindrical functionals (Fn)n∈N,

which converges in L2
u(Ω) to F and such that the sequence (∆tFn)n∈N converges in

L2
u(Ω). We will say that a random variable F in Dom(∆t) is ∆t-superharmonic on Ω

if

∆tF (ω) ≤ 0, ω ∈ Ω. (3.8)

For example if u(t) = λt, then for any F ∈ S of the form (3.1) we have

∆tF = −
∞
∑

n=1

1{XT =n}∇t

n
∑

k=1

∂kfn(T1, . . . , Tn)(t ∧ Tk)
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=
∞
∑

n=1

1{XT =n}

n
∑

k,l=1

(t ∧ Tl)(t ∧ Tk)∂k∂lfn(T1, . . . , Tn)

+

∞
∑

n=1

1{XT =n}

n
∑

k=1

1[0,t](Tk)Tk∂kfn(T1, . . . , Tn),

which is independent of λ. Note that due to the presence of first order terms this

Laplacian differs from the canonical Laplacian used in the Gaussian case, as a conse-

quence the existence of associated positive superharmonic functions is not conditioned

by a lower bound (such as n ≥ 3) on the number of variables, see the examples in

Section 5.

4 Stein estimators

Our aim is to construct a superefficient estimator λ̃T of λ of the form

λ̂T +
ξT

h(T )
,

whose mean square error will be strictly smaller than the Cramer-Rao bound when

ξT ∈ L2
u(Ω) is suitably chosen, where λ̂T = XT /h(T ) is the MLE of λ. In agreement

with Proposition 2.3, this estimator will be biased and anticipating with respect to

the Poisson filtration.

The next proposition is our main result on estimation of the intensity parameter

λ > 0.

Proposition 4.1. In the parametric case u(t) = λh(t), t ∈ [0, T ], for any F ∈ S of

the form (3.1) the estimator

λ̃T := λ̂T − 1

ḣ(T )

f ′
1(T )

f1(T )
1{XT =0} +

1

h(T )
∇T log F,

of λ, where ∇T F is given in (3.7), has risk

IEλh[|λ̃T − λ|2] =
λ

h(T )
+

1

ḣ2(T )

∣

∣

∣

∣

f ′
1(T )

f1(T )

∣

∣

∣

∣

2

e−λh(T ) +
4

h2(T )
IEλh

[

∇T∇T

√
F√

F

]

. (4.1)
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The proof of Proposition 4.1 will relies on the following two lemmas. First in the

next lemma we construct an unbiased risk estimator by applying Stein’s integration

by parts argument in which we replace (1.1) by the duality relation (3.4) between the

gradient and divergence operators on the Poisson space.

Lemma 4.2. Let t ∈ [0, T ]. For any ξt ∈ Dom(D) we have

IEu

[

|Xt + ξt − u(t)|2
]

= u(t) + ‖ξt‖2
L2

u(Ω) + 2 IEu [∇tξt] . (4.2)

Proof. We have

IEu

[

|Xt − u(t) + ξt|2
]

= IEu

[

|Xt − u(t)|2
]

+ ‖ξt‖2
L2

u(Ω) + 2 IEu [(Xt − u(t))ξt]

= u(t) + ‖ξt‖2
L2

u(Ω) + 2 IEu [(Xt − u(t))ξt] .

We now use the duality relation (3.4) and Relation (3.5) to get

IEu [(Xt − u(t))ξt] = IEu

[

δ(χt)ξt

]

= IEu

[

〈χt, Dξt〉H
]

= IEu

[
∫ t

0

u̇(s)Ḋsξtds

]

= IEu [∇tξt] ,

which yields (4.2). �

The proof of Proposition 4.1 is then a consequence of the following result which applies

Lemma 4.2 to processes (ξt)t∈[0,T ] of the form

ξt = c
u(t)

u̇(T )
1{XT =0} + ∇t log F, t ∈ [0, T ],

where c is chosen in such a way that ξt ∈ Dom(D), t ∈ [0, T ], and F ∈ Dom(D) is

such that F > 0 and
√

F ∈ Dom(∆t).

Lemma 4.3. Let t ∈ [0, T ] and let F ∈ S of the form (3.1) such that F > 0, P-a.s.,

F ∈ Dom(∆t), and

∂nfn(t1, . . . , tn−1, T ) = 0 and ∂kfn(t1, . . . , tn) = ∂kfn+1(t1, . . . , tn, T ),

13



0 ≤ t1 ≤ · · · ≤ tn ≤ T , 1 ≤ k < n, n ≥ 2. Let also

ξt := − u(t)

u̇(T )

f ′
1(T )

f1(T )
1{XT =0} + ∇t log F. (4.3)

Then ξt ∈ S ⊂ Dom(D) and

IEu

[

|Xt + ξt − u(t)|2
]

= u(t) +
u2(t)

u̇2(T )

∣

∣

∣

∣

f ′
1(T )

f1(T )

∣

∣

∣

∣

2

e−u(T ) + 4 IEu

[

∆t

√
F√

F

]

, t ∈ [0, T ].

(4.4)

Proof. By construction we have ξt ∈ S, t ∈ [0, T ], and from Lemma 4.2:

IEu

[

|Xt + ξt − u(t)|2
]

= u(t) + ‖ξt‖2
L2

u(Ω) + 2 IEu [∇tξt]

= u(t) +
u2(t)

u̇2(T )

∣

∣

∣

∣

f ′
1(T )

f1(T )

∣

∣

∣

∣

2

e−u(T ) + IEu

[

∣

∣

∣

∣

∇tF

F

∣

∣

∣

∣

2

+ 2∇t∇t log F

]

= u(t) +
u2(t)

u̇2(T )

∣

∣

∣

∣

f ′
1(T )

f1(T )

∣

∣

∣

∣

2

e−u(T ) + IEu

[

2
∇t∇tF

F
−
∣

∣

∣

∣

∇tF

F

∣

∣

∣

∣

2
]

(4.5)

= u(t) +
u2(t)

u̇2(T )

∣

∣

∣

∣

f ′
1(T )

f1(T )

∣

∣

∣

∣

2

e−u(T ) + 4 IEu

[

∇t∇t

√
F√

F

]

.

�

Proof of Proposition 4.1. Apply (4.3) and (4.4) above at t = T with u(t) = λh(t). �

As a consequence, the ∆t-superharmonicity of F may imply the superefficiency of

X +ξ. Note also that Xt+ξt may not be positive and replacing ξt with max(Xt+ξt, 0)

will yield a lower risk since the intensity u̇ is known to be positive.

We close this section with some additional remarks.

Remarks

a) Relation (4.5) established in proof of Lemma 4.3 shows that the ∆t-superharmonicity

of F implies

IEu[|Xt + ξt − u(t)|2] (4.6)
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≤ u(t) +
u2(t)

u̇2(T )

∣

∣

∣

∣

f ′
1(T )

f1(T )

∣

∣

∣

∣

2

e−u(T ) − IEu

[

|∇t log F |2
]

, t ∈ [0, T ],

with equality in (4.6) when F is ∆t-harmonic. Nevertheless the ∆t-superharmonicity

of
√

F is a weaker condition.

b) Note that the risk of any non-adapted estimator ζt of u(t) can be lowered by

adapted projection, indeed we have

IEu[| IEu[ζt | Ft] − u(t)|2] = IEu

[

|ζt − u(t)|2
]

− IEu

[

| IEu[ζt | Ft] − ζt|2
]

< IEu

[

|ζt − ut|2
]

, (4.7)

for all u ∈ P, and in particular

IEu[Xt + ζt | Ft] = Xt −
u(t)

u̇(T )

f ′
1(T )

f1(T )
1{Xt=0}e

−(u(T )−u(t)) + IEu[∇t log F | Ft],

t ∈ [0, T ], which is however dependent on the intensity u.

c) Both estimators Xt + ξt and Xt + IEu[ξt | Ft] have bias

b(t) = IEu[Xt + ξt − u(t)] = IEu[ξt], t ∈ [0, T ],

which, using the relation

∣

∣

∣

∣

∇tF

F

∣

∣

∣

∣

2

= 2
∇t∇tF

F
− 4√

F
∇t∇t

√
F,

can be bounded as follows:

b2(t) = | IEu[ξt]|2

≤ IEu

[

|ξt|2
]

= 2 IEu

[∇t∇tF

F

]

+
u2(t)

u̇2(T )

∣

∣

∣

∣

f ′
1(T )

f1(T )

∣

∣

∣

∣

2

e−u(T ) − 4 IEu

[

∇t∇t

√
F√

F

]

,

hence when F is ∆t-superharmonic we have

b2(t) ≤ u2(t)

u̇2(T )

∣

∣

∣

∣

f ′
1(T )

f1(T )

∣

∣

∣

∣

2

e−u(T ) − 4 IEu

[

∇t∇t

√
F√

F

]

, t ∈ [0, T ].
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d) By integration over [0, T ], Proposition 2.3 immediately yields, for any unbiased

and adapted estimator ζ of u ∈ P:

IEu

[
∫ T

0

|ζt − u(t)|2dt

]

≥ ‖u‖L1([0,T ]), u ∈ P, (4.8)

where the lower bound ‖u‖L1([0,T ]) is attained by ζ = X. This bound can be

used to derive a nonparametric estimation result for the process (u(t))t∈[0,T ].

On the other hand, formal maximization of the Girsanov density Λ(u) gives

d

dε
Λ(u + εv)|ε=0 = Λ(u)

∫ T

0

v̇(s)

u̇(s)
(dXs − du(s)) = 0

for all v ∈ H , i.e. ût = Xt. Hence the canonical process û = (Xt)t∈[0,T ] be

considered as an unbiased maximum likelihood estimator of its own intensity

(u(t))t∈[0,T ] under Pu, which is efficient in the sense that it attains the Cramer-

Rao bound

IEu

[

‖X − u‖2
L2([0,T ])

]

= ‖u‖L1([0,T ]). (4.9)

Given (X
(1)
t )t∈[0,T ], . . . , (X

(N)
t )t∈[0,T ], N independent samples of (Xt)t∈[0,T ], the

process

X̄t =
1

N

(

X
(1)
t + · · ·+ X

(N)
t

)

is a point process with intensity u under Pu, which is consistent as T tend to 0

and as N goes to infinity, since by independence we have

IEu

[

‖X̄ − u‖2
L2([0,T ])

]

=
1

N2
IEu

[ N
∑

i=1

∫ T

0

|X(i)
t − u(t)|2dt

]

=
1

N

∫ T

0

u(t)dt.

Similarly to the above, integration over [0, T ] and Lemma 4.3 show that for ξt

defined as in (4.3), t ∈ [0, T ], ξt ∈ S, t ∈ [0, T ], and

IEu

[

‖X + ξ − u‖2
L2([0,T ])

]

= ‖u‖L1([0,T ]) +
‖u‖2

L2([0,T ])

u̇2(T )

∣

∣

∣

∣

f ′
1(T )

f1(T )

∣

∣

∣

∣

2

e−u(T )

+4 IEu

[

1√
F

∫ T

0

∆t

√
Fdt

]

,
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hence the ∆t-superharmonicity of F , t ∈ [0, T ], may imply the superefficiency

of (Xt + ξt)t∈[0,T ]. Note however that in the general non-parametric case, the

estimator (Xt + ξt)t∈[0,T ] of u is dependent on u.

-1

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1

Time

Poisson path
Intensity

Stein estimator

Figure 4.1: u(t) = 3t, t ∈ [0, T ]; N = 5.

Figure 4.1 represents a sample path of the process Xt + ξt, t ∈ [0, T ] when

u(t) = λt, λ = 3.

5 Examples

In this section we present some examples of estimators satisfying the hypotheses

of the previous sections, and we test their superefficiency. In the parametric case

u(t) = λh(t), t ∈ [0, T ], the percentage gain of an estimator λ̃T of λ over the MLE

λ̂T = XT /h(T ) is defined as

100 × IEu[|λ̂T − λ|2] − IEu[|λ̃T − λ|2]
IEu[|λ̂T − λ|2]

= 100 × λ/h(T ) − IEu[|λ̃T − λ|2]
λ/h(T )

.

In the sequel we assume that u(t) = λt, t ∈ [0, T ], hence (4.1) reads

IEu[|λ̃T − λ|2] =
λ

T
+

∣

∣

∣

∣

f ′
1(T )

f1(T )

∣

∣

∣

∣

2

e−u(T ) +
4

T 2
IEu

[

∇T∇T

√
F√

F

]

17



and λ̃T is superefficient, i.e. its gain is positive, provided
√

F is ∆T -superharmonic

and f ′
1(T )/f1(T ) vanishes or is small enough.

The positive ∆t-superharmonic functionals we consider are of the form

√
F =

∫ T

0

gNt
(t)dNt =

∞
∑

n=1

1{XT =n}

n
∑

k=1

gk(Tk),

where gk : [0, T ] → (0,∞), k ≥ 1, and

g1(t1) + · · ·+ gn(tn) ≥ 0, 0 ≤ t1 ≤ · · · ≤ tn ≤ T, n ≥ 1. (5.1)

Then, ξt defined from (4.3) as

ξt := −2t
g′
1(T )

g1(T )
1{XT =0} + ∇t log F

= −2t
g′
1(T )

g1(T )
1{XT =0} − 2

∞
∑

n=1

1{XT =n}

n
∑

k=1

(t ∧ Tk)g
′
k(Tk)

g1(T1) + · · ·+ gn(Tn)

= −2t
g′
1(T )

g1(T )
1{XT =0} −

2√
F

∫ T

0

(t ∧ s)g′
Ns

(s)dNs,

belongs to Dom(D) provided

gk(T ) = 0, and g′
k(T ) = 0, k ≥ 2, (5.2)

and for the condition ∆T

√
F ≤ 0 to hold it suffices that

g′
k(x) + xg′′

k(x) ≤ 0, x ∈ [0, T ], k ≥ 1. (5.3)

a) Let g1(x) = T (1 + β) − x and gk = 0, k ≥ 2, i.e.

F = 1{XT ≥1} (βT + T − T1)
2 ,

with β > 0. We have from (4.3):

ξt = 1{XT =0}
2

βT
t + 1{XT ≥1}

2

T + βT − T1
(t ∧ T1),

and

∇t∇t

√
F = −T11[0,t](T1)1{XT ≥1} ≤ 0,
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hence

IEλh[|λ̃T − λ|2] =
λ

T
+

4

β2T 2
e−λT − 4

T 2
IEλh

[

T1

βT + T − T1

]

=
λ

T
+

4

β2T 2
e−λT − 4λ

T 2

∫ T

0

x

βT + T − x
e−λxdx.

The gain of this estimator is equal to the function of λT :

4

T

∫ T

0

x

βT + T − x
e−λxdx − 4

λTβ2
e−λT = 4

∫ 1

0

x

1 + β − x
e−λTxdx − 4

λTβ2
e−λT

≥ 4e−λT

(
∫ 1

0

1 − x

1 + β
eλTxdx − 1

λTβ2

)

= 4
e−λT

βλT

(

((λT )2 − λT + 1)eλT − 1

(1 + 1/β)λT
− 1

β

)

,

which is strictly positive (i.e. λ̃T is superefficient) provided β ≥ 2λ−1T−1.

Figure 5.1 represents the gain of λ̃T as a function of β.
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Figure 5.1: Gain as a function of β with λ = 1 and N = 1.

b) When k ≥ 2, conditions (5.2) and (5.3) are not compatible and as a consequence,

superefficiency of λ̃T will be dependent on the value of λ. We take

g1(x) = C, gk(x) = −(− log((c + x)/(c + T )))αk , 2 ≤ k ≤ N,

gk = 0, k > N , with C ≥
∑N

k=1(− log(c/(c + T )))αk and αk > 1, 2 ≤ k ≤ N . In

this case, ∆T gk is not everywhere negative as shown in Figure 5.2, with α2 = 2,
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k = 2, T = 1, and c = 0.01, but this suffices to achieve superefficiency for most

values of λ, see below.
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Figure 5.2: Graph of ∆T g2

Figure 5.3 represents the gain of λ̃T as a function of λ, with 106 samples, α2 =

α3 = 2, N = 3, and C = g2(0) + g3(0).
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Figure 5.3: Gain as a function of λ.
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