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Abstract

Using the Malliavin calculus on Poisson space and a method initiated by
Fournié et al. (1999) for continuous financial markets, we compute the prob-
ability density of risk reserve processes and the sensitivities of probabilities of
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than the standard approximation of derivatives by finite differences.
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1 Introduction

In Norberg (2002) a method based on differential equations is proposed for the com-

putation of sensitivities of conditional expected values of reserve processes in life

insurance. In this paper we present a sensitivity analysis with respect to a parame-

ter ζ for expectations of the form E[h(Uζ(T ))], where Uζ(T ) is the value at time T

∗Corresponding author. E-mail: nprivaul@univ-lr.fr.
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of a risk reserve process, ζ represents the initial reserve x or the interest rate r, and

h is a not necessarily smooth, arbitrary integrable function. In particular when h is

the indicator function 1(−∞,ζ], this corresponds to the density of ruin probabilities at

a given date. Our method relies on the Malliavin calculus, which has been recently

applied to numerical computations of price sensitivities of financial derivatives in

continuous markets (Fournié et al., 1999) and in a market with jumps (El Khatib

and Privault, 2004).

In models with interest force, probabilities of ruin at a given date have den-

sities with respect to the Lebesgue measure, and we present a formula that allows

for faster and more accurate numerical computation of this density. This method is

also applied to compute the sensitivity of probabilities of ruin at a given date with

respect to the initial reserve x and the interest rate parameter r. More precisely we

will compute derivatives of the form

∂

∂ζ
E [h(Uζ(T ))] ,

where

Uζ(T ) = g(ζ) +

∫ T

0

fζ(t)dX(t),

(X(t))t∈[0,T ] is a compound Poisson process representing the number of claims oc-

curring in (0, T ] and ζ is a parameter (initial reserve x, or interest force r). Such

derivatives may be expressed as

∂

∂ζ
E [h(Uζ(T ))] = E

[(

∂ζg(ζ) +

∫ T

0

∂ζfζ(t)dX(t)

)

h′ (Uζ(T ))

]

.

However this expression makes sense only when h is differentiable, in particular h

can not be an indicator function, hence the above expression can not be used for ruin

probabilities. Alternatively this derivative can be estimated by finite differences:

1

2ε
E [h(Uζ+ε(T ))− h(Uζ−ε(T ))] , (1)

but this approximation yields poor convergence results when combined with Monte

Carlo methods, as shown in the simulations of Section 5. Instead of (1) we will show

that ∂
∂ζ
E [h(Uζ(T ))] can be expressed as

∂

∂ζ
E [h(Uζ(T ))] = E [Wζh(Uζ(T ))] , (2)

2



where Wζ is a random variable called a weight which is explicitly computable and

independent of h. Expression (2) above yields a substantial improvement over the

finite difference method (1) in the precision and speed of Monte Carlo numerical

simulations. This formula is obtained by integration by parts on the Poisson space,

using a gradient operator which acts on the Poisson jump times of (X(t))t∈R+
. Our

approach actually requires the considered random variable Uζ(T ) to be sufficiently

smooth to be in the domain of Dw with DwUζ(T ) 6= 0, a.s. These assumptions

are linked to the existence of density with respect to the Lebesgue measure for the

probability law of Uζ(T ). For example, Dw vanishes on functions of the Poisson

random variable N(T ), which do not have a density, and this excludes in particular

models without interest force from our analysis.

We proceed as follows. Section 2 contains preliminaries on the Malliavin

calculus on Poisson space and on the differentiability of random functionals. In Sec-

tion 3 we present the integration by parts formula which is the main tool to compute

sensitivities (i.e. derivatives with respect to ζ) using a random variable called a

weight. The model and explicit computations for reserve processes are presented

in Section 4. In Section 5 we provide numerical simulations which demonstrate the

efficiency of the Malliavin approach over finite difference methods.

2 Malliavin Calculus on Poisson space

This section gives a presentation of Malliavin calculus on Poisson space of Carlen and

Pardoux (1990), Privault (1994, 1999), adapted to our framework. Let (N(t))t∈[0,T ]

be a standard Poisson process with intensity λ > 0 and jump times (Tk)k≥1, on

a probability space (Ω,FT , P ). Let C0([0, T ]), resp. C1
0([0, T ]), denote the space

of continuous, resp. continuously differentiable, functions on [0, T ], and such that

w(0) = w(T ) = 0.

Definition 2.1 Given T > 0, let ST denote the set of smooth Poisson functionals

of the form

F = f01{N(T )=0} +

m
∑

n=1

1{N(T )=n}fn(T1, . . . , Tn), (3)

where f0 ∈ R and fn ∈ C1([0, T ]n), 1 ≤ n ≤ m, is symmetric in n variables, m ≥ 1.
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Note that ST is an algebra dense in Lp(Ω,FT , P ), p ≥ 2, and recall that under P we

have, for all F ∈ ST of the form (3):

E[F ] = e−λTf0 + e−λT

m
∑

n=1

λn

n!

∫ T

0

· · ·

∫ T

0

fn(t1, . . . , tn)dt1 · · ·dtn.

Definition 2.2 Given w ∈ C0([0, T ]), let Dw denote the gradient operator defined

on F ∈ ST of the form (3) by

DwF = −
m
∑

n=1

1{N(T )=n}

n
∑

k=1

w(Tk)∂kfn(T1, . . . , Tn),

where ∂kfn denotes the partial derivative of fn with respect to its k-th variable.

The next proposition is proved by finite dimensional integration by parts on jump

times conditionally to the value of N(T ). It shows in particular that Dw is closable,

hence Dw can be extended to the space Dom(Dw) of functionals F ∈ L2(Ω) for

which there exists a sequence (Fn)n∈N ⊂ ST converging to F such that (DwFn)n∈N

converges in L2(Ω). For all such F ∈ Dom(Dw) we let DwF = limn→∞DwFn, and

DwF is well-defined due to the closability of Dw. Similarly, the adjoint D∗
w of Dw will

be shown to have the closability property and will be extended to its closed domain

Dom(D∗
w). Throughout this paper, w

′(t) denotes the derivative with respect to the

time parameter t.

Proposition 2.1 Let w ∈ C1
0([0, T ]).

a) The operator Dw is closable and admits a closable adjoint D∗
w such that

E[GDwF ] = E[FD∗
wG], F, G ∈ ST . (4)

b) For all F ∈ Dom (Dw)
⋂

L4(Ω) we have F ∈ Dom (D∗
w) and:

D∗
wF = F

∫ T

0

w′(t)dN(t)−DwF. (5)

Proof. By standard integration by parts we first prove (4) when G = 1, using the

boundary condition w(0) = w(T ) = 0:

E[DwF ] = −e−λT

m
∑

n=1

λn

n!

∫ T

0

· · ·

∫ T

0

n
∑

k=1

w(tk)∂kfn(t1, . . . , tn)dt1 · · · dtn
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= e−λT

m
∑

n=1

λn

n!

∫ T

0

· · ·

∫ T

0

fn(t1, . . . , tn)
n
∑

k=1

w′(tk)dt1 · · · dtn

= E



F

k=N(T )
∑

k=1

w′(Tk)



 = E

[

F

∫ T

0

w′(t)dN(t)

]

.

Next we define D∗
wG, G ∈ ST , by (5), with for all F ∈ ST :

E[GDwF ] = E[Dw(FG)−FDwG] = E

[

F

(

G

∫ T

0

w′(t)dN(t)−DwG

)]

= E[FD∗
wG],

which proves (4). The closability of Dw then follows from the integration by parts

formula (4): if (Fn)n∈N ⊂ ST is such that Fn → 0 in L2(Ω) and DFn → U in L2(Ω),

then (4) implies

|E[UG]| ≤ |E[FnD
∗
wG]− E[UG]|+ |E[FnD

∗
wG]|

= |E[(DwFn − U)G]| + |E[FnD
∗
wG]|

≤ ‖DwFn − U‖L2(Ω)‖G‖L2(Ω) + ‖Fn‖L2(Ω)‖D
∗
wG‖L2(Ω), n ∈ N,

hence E[UG] = 0, G ∈ ST , i.e. U = 0. The proof of the closability of D∗
w is similar.

Finally, (5) is extended by closability to F ∈ Dom(Dw)
⋂

L4(Ω). �

In particular, D∗
w1Ω coincides with the Poisson stochastic integral of w′:

D∗
w1Ω =

∫ T

0

w′(t)dN(t).

A conditional integration by parts formula can also be obtained, and will be used in

the proof of Proposition 3.1 below.

Corollary 2.1 Let G denote a sub σ-algebra of F such that for all A ∈ G,

1A ∈ Dom (Dw) and Dw1A = 0. (6)

Then we have for w ∈ C1
0([0, T ]):

E[GDwF | G] = E[FD∗
wG | G], F ∈ Dom (Dw), G ∈ Dom (D∗

w).

Proof. We have from (4):

E[1AGDwF ] = E[GDw(1AF )] = E[1AFD∗
wG], F, G ∈ ST , A ∈ G, (7)

and this relation is extended by closability to F ∈ Dom(Dw) and G ∈ Dom(D∗
w).

�
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For example, for every function g : N → R with support in [0, m], m ≥ 1, we have

g(N(T )) =

m
∑

n=0

1{N(T )=n}g(n),

hence

Dw(g(N(T ))) = 0, w ∈ C0([0, T ]),

and as a consequence, taking G = σ(N(T )) we get:

E[GDwF | N(T )] = E[FD∗
wG | N(T )], F, G ∈ ST .

The following proposition provides a derivation rule for Poisson stochastic integrals.

Proposition 2.2 Let f(·, k) ∈ C1([0, T ]), k ∈ N, and let w ∈ C0([0, T ]). Then

Dw

∫ T

0

f(t, N(t−))dN(t) = −

∫ T

0

w(t)f ′(t, N(t−))dN(t), (8)

where f ′(t, k) denotes the derivative of f(t, k) with respect to t.

Proof. We have

Dw

∫ T

0

f(t, N(t−))dN(t) = Dw

(

lim
m→∞

m
∑

n=1

1{N(T )=n}

n
∑

k=1

f(Tk, k − 1)

)

= − lim
m→∞

m
∑

n=1

1{N(T )=n}

n
∑

k=1

w(Tk)f
′(Tk, k − 1)

= −

∫ T

0

w(t)f ′(t, N(t−))dN(t).

�

3 Computations of sensitivities

The main tool for the computation of sensitivities is presented in the next proposi-

tion. It follows from a classical Malliavin calculus argument that uses the derivation

operator Dw. Let I = (a, b) be an open interval of R.

Proposition 3.1 Let (F ζ)ζ∈I be a family of random functionals, continuously dif-

ferentiable in Dom (Dw) in the parameter ζ ∈ I. Let w ∈ C1
0([0, T ]), and let A ∈ F

such that 1A ∈ Dom (Dw) and Dw1A = 0, with

DwF
ζ 6= 0, a.s. on A, ζ ∈ I,
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and such that 1A∂ζF
ζ/DwF

ζ is continuous in ζ in Dom (Dw)
⋂

L4(Ω). We have for

any function f such that f(F ζ) ∈ L2(Ω), ζ ∈ I:

∂

∂ζ
E
[

1Af(F
ζ)
]

= E
[

1AWζf(F
ζ)
]

, (9)

where the weight Wζ is given on A by

Wζ =
∂ζF

ζ

DwF ζ

(
∫ T

0

w′(t)dN(t) +
DwDwF

ζ

DwF ζ

)

−
Dw∂ζF

ζ

DwF ζ
. (10)

Proof. Assuming that f ∈ C∞
b (R), we have from Corollary 2.1:

∂

∂ζ
E
[

1Af(F
ζ)
]

= E

[

1Af
′
(

F ζ
) ∂

∂ζ
F ζ

]

= E

[

1A

∂ζF
ζ

DwF ζ
Dwf(F

ζ)

]

= E

[

f(F ζ)D∗
w

(

1A

∂ζF
ζ

DwF ζ

)]

.

Using (5), the weight D∗
w

(

1A
∂ζF

ζ

DwF ζ

)

can be computed using Poisson stochastic inte-

grals:

D∗
w

(

1A

∂ζF
ζ

DwF ζ

)

= 1A

∂ζF
ζ

DwF ζ

∫ T

0

w′(t)dN(t)−Dw

(

1A

∂ζF
ζ

DwF ζ

)

= 1A

(

∂ζF
ζ

DwF ζ

∫ T

0

w′(t)dN(t)−
Dw∂ζF

ζ

DwF ζ
+

∂ζF
ζ

(DwF ζ)2
DwDwF

ζ

)

.

The extension to square-integrable f is obtained as in Fournié et al. (1999), or

El Khatib and Privault (2004), using an approximating sequence (fn)n∈N of smooth

functions and the bound
∣

∣

∣

∣

∂

∂ζ
E
[

fn(F
ζ)
]

− E

[

f(F ζ)D∗
w

(

1A

∂ζF
ζ

DwF ζ

)]∣

∣

∣

∣

≤ ‖f(F ζ)− fn(F
ζ)‖L2(Ω)

∥

∥

∥

∥

D∗
w

(

1A

∂ζF
ζ

DwF ζ

)∥

∥

∥

∥

L2(Ω)

.

�

If f ∈ C1
b (R) we have

∂

∂ζ
E
[

f(F ζ)
]

= E
[

1AWζf(F
ζ)
]

+
∂

∂ζ
E
[

1Acf(F ζ)
]

,
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and if moreover F ζ is a.s. constant and equal to C(ζ) ∈ R on Ac, then:

∂

∂ζ
E
[

f(F ζ)
]

= E
[

1AWζf(F
ζ)
]

+ P (Ac)f ′(F ζ)C ′(ζ).

When F y = F − y, i.e. for the computation of probability densities, we have ∂
∂y
F y =

−1 and the weight Wy becomes on A:

Wy =
−1

DwF

(
∫ T

0

w′(t)dN(t) +
DwDwF

DwF

)

, (11)

hence

∂

∂y
E[1Ah(F − y)] = −E

[

1A

h(F − y)

DwF

(
∫ T

0

w′(t)dN(t) +
DwDwF

DwF

)]

.

In particular, if h is the indicator function h = 1[0,∞), the density of the law of F

conditionally to A is given by

y 7→
1

P (A)
E

[

1A

1[y,∞)(F )

DwF

(
∫ T

0

w′(t)dN(t) +
DwDwF

DwF

)]

, (12)

and if moreover F = C ∈ R is constant on Ac, the law of F has a point mass P (Ac)δC

at C.

In applications to insurance we will consider functionals F ζ of the form

F ζ = g(ζ)−

∫ T

0

fζ(t, N(t−))dN(t),

where A = {N(T ) ≥ 1}, g ∈ C1([a, b]), and fζ(t, k), k ∈ N, is C2 in (ζ, t). We have

∂ζF
ζ = ∂ζg(ζ)−

∫ T

0

∂ζfζ(t, N(t−))dN(t),

DwF
ζ = −Dw

∫ T

0

fζ(t, N(t−))dN(t) =

∫ T

0

w(t)f ′
ζ(t, N(t−))dN(t),

Dw∂ζF
ζ = −Dw

∫ T

0

∂ζfζ(t, N(t−))dN(t) =

∫ T

0

w(t)∂ζf
′
ζ(t, N(t−))dN(t),

DwDwF
ζ = −DwDw

∫ T

0

fζ(t, N(t−))dN(t)

= −

∫ T

0

(w′(t)f ′
ζ(t, N(t−)) + w(t)f ′′

ζ (t, N(t−)))dN(t).
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Hence the weight Wζ in the relation

∂

∂ζ
E[1{N(T )≥1}h(F

ζ)] = E
[

1{N(T )≥1}Wζh(F
ζ)
]

,

cf. Proposition 3.1, is given by

Wζ =
∂ζg(ζ)−

∫ T

0
∂ζfζ(t, N(t−))dN(t)

∫ T

0
w(t)f ′

ζ(t, N(t−))dN(t)

∫ T

0

w′(t)dN(t)−

∫ T

0
w(t)∂ζf

′
ζ(t, N(t−))dN(t)

∫ T

0
w(t)f ′

ζ(t, N(t−))dN(t)

−
∂ζg(ζ)−

∫ T

0
∂ζfζ(t, N(t−))dN(t)

(

∫ T

0
w(t)f ′

ζ(t, N(t−))dN(t)
)2

∫ T

0

(w′(t)f ′
ζ(t, N(t−)) + w(t)f ′

ζ(t, N(t−)))dN(t).

In the particular case where F y = F − y, the weight for density of F in (11) is given

by:

Wy =
1

∫ T

0
w(t)f ′

ζ(t, N(t−))dN(t)
(13)

×

(

∫ T

0

w′(t)dN(t)−

∫ T

0
(w′(t)f ′

ζ(t, N(t−)) + w(t)f ′′
ζ (t, N(t−)))dN(t)

∫ T

0
w(t)f ′

ζ(t, N(t−))dN(t)

)

.

4 Application to insurance portfolios

We refer to Sundt and Teugels (1995) for the insurance framework of this section. We

consider an insurance portfolio in which the accumulated amount of claims occurring

in the time interval (0, t] is given by

X(t) =

N(t)
∑

k=1

Xk−1,

where (Xk)k∈N is a sequence of random variables representing claim sizes, indepen-

dent of (N(t))t∈R+
, and sufficiently integrable. Since the gradient operator Dw does

not act on Xi, i ∈ N, these random variables may be considered as constants with

respect to Dw, and defined on an auxiliary probability space which is not mentioned

for the sake of simplicity. In addition to a premium income paid with constant rate

p > 0, the company receives interests of its reserve with constant interest rate r > 0.

The risk reserve process is then given by

Ux
r (T ) = xerT + p

erT − 1

r
−

∫ T

0

er(T−t)dX(t),
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where x is the initial reserve of the company. The discounted value at time 0 of

Ux
r (T ) is

V x
r (T ) = e−rTUx

r (T ) = x+ p
1− e−rT

r
−

∫ T

0

e−rtdX(t).

We are interested in expectations of the form

E[h(Ux
r (T ))],

and in particular in the probability P (Ux
r (T ) < 0) of ruin at date T , obtained with

h = 1(−∞,0). We are now in a position to compute the sensitivities ∂
∂x
E[h(Ux

r (T ))]

and ∂
∂r
E[h(Ux

r (T ))], as well as the probability density of Ux
r (T ), by applying the

results of Section 3 with

g(x, r) = xerT + p
erT − 1

r
, and fr(t, k) = er(T−t)Xk, k ∈ N.

Density of probabilities of ruin at date T

The density of Ux
r (T ) conditionally to A = {N(T ) ≥ 1} is given by

y 7→
1

1− e−λT
E
[

1{N(T )≥1}Wy1{Ux
r (T )>y}

]

,

with from (13):

Wy =
1

r
∫ T

0
w(t)er(T−t)dX(t)

(

∫ T

0

w′(t)dN(t) +

∫ T

0
e−rtw(t)(rw(t)− w′(t))dX(t)

∫ T

0
w(t)e−rtdX(t)

)

.

Moreover the law of Ux
r (T ) has a Dirac mass e−λT δc at c = xerT +p(erT −1)/r, which

can be neglected in practice since λT is usually large.

Sensitivity with respect to the initial reserve x

We have
∂

∂x
Ux
r (T ) = erT , Dw

∂

∂x
Ux
r (T ) = 0,

and

DwU
x
r (T ) = −r

∫ T

0

w(t)er(T−t)dX(t), DwDwU
x
r (T ) = r

∫ T

0

(w′(t)−rw(t))er(T−t)dX(t).

The sensitivity with respect to x is computed as

∂

∂x
E[1{N(T )≥1}h(U

x
r (T ))] = E[1{N(T )≥1}Wxh(U

x
r (T ))], (14)

10



where Wx is given by a formula similar to (13):

Wx = −erTWy = −
erT

r







∫ T

0
w′(t)dN(t)

∫ T

0
w(t)er(T−t)dX(t)

+

∫ T

0
(rw(t)− w′(t))w(t)e−rtdX(t)
(

∫ T

0
w(t)e−rtdX(t)

)2






.

Sensitivity with respect to the interest rate parameter r

We have

∂rU
x
r (T ) = xTerT + p

rTerT − erT + 1

r2
−

∫ T

0

(T − t)er(T−t)dX(t),

DwU
x
r (T ) = −r

∫ T

0

w(t)er(T−t)dX(t),

Dw∂rU
x
r (T ) = −

∫ T

0

w(t)er(T−t)(1 + r(T − t))dX(t),

DwDwU
x
r (T ) = r

∫ T

0

(w′(t)− rw(t))er(T−t)dX(t),

hence the sensitivity with respect to r is computed as

∂

∂r
E[1{N(T )≥1}h(U

x
r (T ))] = E[1{N(T )≥1}Wrh(U

x
r (T ))], (15)

where from (10):

Wr = −
1

r
−

∫ T

0
(T − t)e−rtdX(t)
∫ T

0
w(t)e−rtdX(t)

+

∫ T

0
(rw(t)− w′(t))e−rtdX(t)− r

∫ T

0
w′(t)dN(t)

∫ T

0
w(t)e−rtdX(t)

r2(
∫ T

0
w(t)e−rtdX(t))2

×

(

Tx+ p
rT − 1 + e−rT

r2
−

∫ T

0

(T − t)e−rtdX(t)

)

.

Again, (15) gives a rather precise estimation of ∂
∂r
E[1{Ux

r (T )>y}] when P (N(T ) = 0)

is small.

5 Numerical simulations

The following graphs allow to compare the Malliavin method to the finite difference

method for the estimation of the density of probabilities of ruin at a given date.

The parameters of the model are set to the following values: T = 10, p = 42,
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r = 0.05, x = 100, λ = 50, ε = 0.001, and the simulations presented use the function

w(t) = sin(πt/T ), t ∈ [0, T ]. The density is estimated by finite differences as

y 7→
1

2εy
E
[

1[y(1−ε),y(1+ε)](U
x
r (T ))

]

. (16)

This quantity, as well as the expectation occurring in the Malliavin method, are

evaluated via Monte Carlo simulations. Here the random variables Xi, i ∈ N, are

taken constant equal to 1, but the simulations can be performed with an arbitrary

claim size distribution. The next graph is a simulation of the probability density of

Ux
r (T ), the Malliavin formula being given by (12).
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Figure 1 - Probability density of reserve process at time T (sample size: 20000)

The sensitivity graph with respect to the initial reserve is an affine transformation

of the density. For the finite difference method we use (1) with h = 1(−∞,y):

x 7→
1

2εx
E
[

1(−∞,y](U
x(1+ε)
r (T ))− 1(−∞,y](U

x(1−ε)
r (T ))

]

,

and y = −30, i.e. we compute the sensitivity of P (U r
x(T ) < −30) with respect to x.

The Malliavin formula is obtained from (14).
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Figure 2 - Sensitivity with respect to the initial reserve x (sample size: 10000)

For the sensitivity with respect to the interest rate parameter r, the performance

of the finite difference method is still degraded due to additional numerical errors

in the evaluation of the integral
∫ T

0
e−rtdX(t) at r(1 ± ε). For this reason the next

graph has been simulated with a sample size of 50000. The finite difference method

uses the formula

r 7→
1

2εr
E
[

1(−∞,0)(U
x
r(1+ε)(T ))− 1(−∞,0)(U

x
r(1−ε)(T ))

]

,

i.e. we compute the sensitivity of P (U r
x(T ) < 0) with respect to r, and the Malliavin

formula is obtained from (15) with h = 1(−∞,0).

13



-8

-7

-6

-5

-4

-3

-2

-1

 0

 0.02  0.04  0.06  0.08  0.1

S
en

si
tiv

ity

interest parameter r

Malliavin formula
Finite differences

Figure 3 - Sensitivity with respect to the interest rate parameter r (sample size: 50000)

The simulation graphs show a better convergence and stability for the Monte Carlo

estimation of the density via the Malliavin method on Poisson space, compared to

the finite difference method.

Remark 5.1 The values of the sensitivities are independent of the choice of the

function w within C1
0([0, T ]). Other choices for w, such as w(t) = t ∧ (T − t) and

w(t) = t(T − t), t ∈ [0, T ], have been tried without notable consequences on conver-

gence speed. In a sequel to this work we plan to address the issue of optimization

of convergence regarding the choice of w, as done in Fournié et al. (2001) for the

sensitivity analysis of options in finance.

Remark 5.2 The method proposed in this paper does not seem to apply to finite

time ruin probabilities. For example in the simplest case of the probability

P

(

min
k=1,...,N(T )

(pTk − λk) < y

)

,

in a Poisson model with r = 0 and x = 0, the functional

min
k=1,...,N(T )

(pTk − λk)

belongs to the domain of Dw, however it is not twice differentiable for Dw as required

in Proposition 3.1.
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[2] Fournié, E., Lasry J.M., Lebuchoux, J., Lions, P.L., 2001. Applications of Malliavin
calculus to Monte-Carlo methods in finance. II. Finance and Stochastics 5, 201-236.
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