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INDEPENDENCE OF A CLASS OF MULTIPLE
STOCHASTIC INTEGRALS

Nicolas Privault

Abstract

We show that two multiple stochastic integrals In(fn), Im(gm) with re-
spect to the solution (Mt)t∈IR+ of a deterministic structure equation are in-
dependent if and only if two contractions of fn and gm, denoted as fn ◦01 gm,
fn ◦11 gm, vanish almost everywhere.

1 Introduction

This paper aims to extend the necessary and sufficient conditions for the indepen-
dence of single or multiple stochastic integrals of [12], [14], [15], [16], [17], cf. also
[6], [7], proving and extending results that have been partially announced in [9].
Let (Mt)t∈IR+

be a martingale satisfying the structure equation

d[M,M ]t = dt+ φtdMt, (1)

where φ : IR+ → IR is a measurable deterministic function. Such martingales are
normal in the sense of [2], i.e. d < M,M >t= dt, t ∈ IR+ and they satisfy the chaos
representation property, cf. [3]. Moreover, they have independent increments, and
if (Bt)t∈IR+

, (Nt)t∈IR+
are independent standard Brownian motion and Poisson

process of intensity ds/φ2
s, then (Mt)t∈IR+

can be represented as

Mt =

∫ t

0

1{φs=0}dBs +

∫ t

0

φs

(
dNs −

ds

φ2
s

)
, t ∈ IR+. (2)

We choose to construct the processes (Bt)t∈IR+ on the classical Wiener space
(Ω1,F1, P1), where Ω1 is the space of cadlag functions starting at zero. We de-
note by (Ω2,F2, P2) the space

Ω2 =

{
i=N∑
i=1

δti : (ti)i=1,...,N ∈ IR+, N ∈ IN ∪ {∞}

}
,

with the σ-algebra and probability measure F2, P2 under which the canonical
random measure is Poisson with mean measure µ on (IR+,B(IR+)) defined as

µ(A) =

∫
A∩{φ6=0}

1

φ2
s

ds, A ∈ B(IR+).
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2 N. PRIVAULT

With this notation, (Nt)t∈IR+ is written as Nt(ω2) = ω2([0, t]), and (Bt)t∈IR+ sat-
isfies Bt(ω1) = ω1(t), t ∈ IR+. For A ∈ B(IR+) we call FA2 the σ-algebra on Ω2

generated by all random variables ω2 → ω2(A ∩ B), B ∈ B(IR+). The martingale
M is then explicitly constructed as Mt(ω1, ω2) = Xt(ω2) + Bt(ω1), t ∈ IR+, on
(Ω,F , P ) = (Ω1 × Ω2,F1 ⊗F2, P1 ⊗ P2), where

Xt =

∫ t

0

φs(dNs − ds/φ2
s), t ∈ IR+.

If fn ∈ L2(IR)⊗n, the multiple stochastic integral with respect to M , X, and B of
fn are respectively defined as

In(fn) = n!

∫ ∞
0

∫ tn

0

· · ·
∫ t2

0

f̂n(t1, . . . , tn)dMt1 · · · dMtn , (3)

IXn (fn) = n!

∫ ∞
0

∫ tn

0

· · ·
∫ t2

0

f̂n(t1, . . . , tn)dXt1 · · · dXtn , (4)

IBn (fn) = n!

∫ ∞
0

∫ tn

0

· · ·
∫ t2

0

f̂n(t1, . . . , tn)dBt1 · · · dBtn , (5)

where f̂n is the symmetrization in n variables of fn. We note the relation

In(fn) =

i=n∑
i=0

(
n
k

)
IXn−k(IBk (f̂n)) =

i=n∑
i=0

(
n
k

)
IBn−k(IXk (f̂n)). (6)

Let L2(IR+)◦n denote the subspace of L2(IR+)⊗n made of symmetric functions. Let
fn ⊗ gm denote the completed tensor product of two functions fn ∈ L2(IRn

+) and
gm ∈ L2(IRm

+ ), and let fn ◦ gm denote the symmetrization of fn ⊗ gm, n,m ∈ IN.
Since d < M,M >t= dt, we have

E [In(fn)Im(gm)] = n!(fn, gm)L2(IR+)⊗n1{n=m}, fn ∈ L2(IR+)◦n, gm ∈ L2(IR+)◦m.
(7)

Since (Mt)t∈IR+
has the chaos representation property, any square integrable func-

tional F ∈ L2(Ω,F , P ) has a chaos expansion

F =
∑
n≥0

In(fn), fk ∈ L2(IR+)◦k, k ≥ 0.

A linear operator ∇ : L2(Ω)→ L2(Ω)⊗ L2(IR+) is defined by annihilation as

∇tIn(fn) = nIn−1(fn(·, t)), t ∈ IR+, (8)

fn ∈ L2(IR+)◦n, n ∈ IN∗, cf. e.g. [5]. This operator is closable, of L2-domain
Dom2(∇), and its closed adjoint ∇∗ : L2(Ω)⊗ L2(IR+)→ L2(Ω) satisfies

∇∗In(fn+1) = In+1(f̂n+1),
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fn+1 ∈ L2(IR+)◦n ⊗ L2(IR+). We denote by Dom1(∇) the set of functionals F ∈
L2(Ω) such that there exists a sequence (Fn)n∈IN ⊂ Dom2(∇) converging to F in
L2(Ω) and such that (∇Fn)n∈IN converges in L1(Ω×IR+). The limit of the sequence
(∇Fn)n∈IN is denoted ∇F which is well-defined, due to the relation

E[(∇Fn, u)L2(IR+)] = E[Fn∇∗(u)], n ∈ IN,

u ∈ Dom(∇∗) ∩ L∞(Ω × IR+), and since Dom(∇∗) ∩ L∞(Ω × IR+) is dense in
L1(Ω × IR+). For fn ∈ L2(IR+)◦n and gm ∈ L2(IR+)◦m, we define fn ⊗lk gm, 0 ≤
l ≤ k, to be the function

(xl+1, . . . , xn, yk+1, . . . , ym) 7→

φ(xl+1) · · ·φ(xk)

∫
IRl

fn(x1, . . . , xn)gm(x1, . . . , xk, yk+1, . . . , ym)dx1 · · · dxl

of n+m−k−l variables. We denote by fn◦lk gm the symmetrization in n+m−k−l
variables of fn ⊗lk gm, 0 ≤ l ≤ k.

Definition 1 Let S denote the vector space in L2(Ω) generated by

{In(f1 ◦ · · · ◦ fn) : f1, . . . , fn ∈ Cc(IR+), n ≥ 1}.

The vector space S is dense in L2(Ω). For F ∈ S and f ∈ L2(IR+), we have from
a general result in quantum stochastic calculus, cf. for example Th. II.1 of [1]:

F

∫ ∞
0

f(s)dMs =

∫ ∞
0

f(s)∇sFds+∇∗(fF ) +∇∗(φf∇F ). (9)

This formula is usually stated under the form∫ ∞
0

f(s)dMs =

∫ ∞
0

f(s)da−s +

∫ ∞
0

f(s)da+
s +

∫ ∞
0

φsf(s)da◦s

by quantum probabilists, where
∫∞

0
f(s)dMs is identified to a multiplication oper-

ator. The identity (9) can be easily rewritten into a multiplication formula between
first and nth order stochastic integrals:

I1(h)In(fn) = In+1(fn ◦ h) + n

∫ ∞
0

htIn−1(fn(·, t))dt+ nIn(fn ◦01 (φh)). (10)

We note that as a consequence of this formula, every element of S has a unique
expression as a polynomial in single stochastic integrals and conversely, any poly-
nomial in stochastic integrals has a finite chaos expansion.

Remark 1 This implies that each element of S has a version which is defined for
every ω = (ω1, ω2) ∈ Ω, since I1(f) ∈ S can be written as

I1(f) = −
∫ ∞

0

f ′(s)Bs1{φs=0}ds+
∑

{t : dNt=1}

φtf(t)−
∫ ∞

0

1{φs 6=0}f(s)
1

φs
ds.

Throughout this paper, F ∈ S will always refer to the version of F defined via the
above identity.
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From (10), one can prove the following result which shows that the function φ ac-
counts for the perturbation of the usual derivation rule for the Malliavin derivative
on Wiener space.

Proposition 1 For any F,G ∈ S we have

∇t(FG) = F∇tG+G∇tF + φt∇tF∇tG, t ∈ IR+. (11)

If φ ∈ L∞(IR+) then for any F,G ∈ Dom2(∇), we have FG ∈ Dom1(∇) and the
above relation holds.

Proof. We first notice that for F = I1(h) and G = In(fn), this formula is a
consequence of the multiplication formula (10), since

∇t(I1(h)In(fn))

= ∇t
(
In+1(fn ◦ h) + n

∫ ∞
0

hsIn−1(fn(·, s)ds+ nIn(fn ◦01 (φh))

)
= In(fn)∇tI1(h) + nIn(fn(·, t) ◦ h) + n(n− 1)

∫ ∞
0

hsIn−2(fn(·, t, s))ds

+n(n− 1)In(fn(·, t) ◦01 (φh)) + φt∇tI1(h)∇tIn(fn)

= In(fn)∇tI1(h) + I1∇tIn(fn) + φt∇tI1(h)∇tIn(fn).

Next, we prove by induction on k ≥ 1 that

∇t(In(fn)I1(h)k) = I1(h)k∇tIn(fn) + In(fn)∇tI1(h)k + φt∇tI1(h)k∇tIn(fn).

We have

∇t(In(fn)I1(h)k+1)

= I1(h)k∇t(In(fn)I1(h)) + In(fn)I1(h)∇tI1(h)k

+φt∇tI1(h)k∇t(In(fn)I1(h))

= I1(h)k+1∇tIn(fn) + In(fn)I1(h)∇tI1(h)k + In(fn)I1(h)k∇tI1(h)

+φtIn(fn)∇tI1(h)∇tI1(h)k + φtI1(h)∇tI1(h)k∇tIn(fn)

+φtI1(h)k∇tI1(h)∇tIn(fn) + φ2
t∇tI1(h)∇tI1(h)k∇tIn(fn)

= I1(h)k+1∇tIn(fn) + In(fn)∇tI1(h)k+1 + φt∇tI1(h)k+1∇tIn(fn).

Consequently, (11) holds for any polynomial in single stochastic integrals, hence
it holds for any F,G ∈ S. In order to prove the second part of the proposi-
tion, we assume that F,G ∈ Dom2(∇) and choose two sequences (Fn)n∈IN and
(Gn)n∈IN contained in S, converging respectively to F and G in L2(Ω) and such
that (∇Fn)n∈IN and (∇Gn)n∈IN converge to ∇F and ∇G in L2(Ω × IR+). Then
(φ∇Fn∇Gn)n∈IN converges in L1(Ω× IR+) to φ∇F∇G, hence (∇(FnGn))n∈IN con-
verges in L1(Ω× IR+) to F∇G+G∇F + φ∇F∇G, and FG ∈ Dom1(∇). 2
The product rule for ∇ unifies the chain rule of derivation of the Wiener space
Malliavin derivative and the finite difference rule of the Poisson space gradient of
[8].
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Proposition 2 For any F ∈ S we have

∇tF = lim
ε→0

F
(
M· + (ε+ φt)1[t,∞[(·)

)
− F (M·)

ε+ φt
, t ∈ IR+. (12)

Proof. The statement (12) can be more precisely formulated as

∇tF (ω1, ω2) = lim
ε→0

F (ω1 + ε1[t,∞[, ω2 + φtδt)− F (ω1, ω2)

ε+ φt
,

where the notation F refers to the version defined in Remark 1. We first show that
(12) holds for F = I1(f):

lim
ε→0

F (ω1 + ε1[t,∞[, ω2 + φtδt)− F (ω1, ω2)

ε+ φt

= 1{φt 6=0}
1

φt

 ∑
{s : dNs=1}

φsf(s)−
∫ ∞

0

1{φs 6=0}f(s)
1

φs
ds+ φtf(t)

−
∑

{s : dNs=1}

φsf(s)−
∫ ∞

0

1{φs 6=0}f(s)
1

φs
ds


+1{φt=0} lim

ε→0

1

ε

(
−
∫ ∞

0

f ′(s)(Bs + ε)1[t,∞[(s)1{φs=0}ds

+

∫ ∞
0

f ′(s)Bs1{φs=0}ds

)
= 1{φt=0}f(t) + 1{φt 6=0}f(t) = f(t), t ∈ IR+.

Moreover, the limit (12) satisfies the product rule (11), hence if F,G ∈ S are of
the form F = I1(f) and G = I1(g), we have

lim
ε→0

(FG)
(
M· + (ε+ φt)1[t,∞[(·)

)
− (FG)(M·)

ε+ φt
= F∇tG+G∇tF + φt∇t(FG)

= ∇t(FG), t ∈ IR+.

Thus by induction, (12) holds for any polynomial in single stochastic integrals,
and for any element of S. 2
With help of Prop. 11, the following multiplication formula has been proved in
[9], as a generalization of (10). We refer to p. 216 of [2], and to [4], [13], [14], for
different versions of this formula in the Poisson case. In [11] a more general result
is proven, allowing to represent the product In(fn)Im(gm) as a sum of n∧m terms
that are not necessarily linear combinations of multiple stochastic integrals with
respect to (Mt)t∈IR+ , except if d[M,M ]t is a linear deterministic combination of
dt and dMt, cf. [10].
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Proposition 3 The product In(fn)Im(gm) ∈ L2(Ω) is in L2(B) if and only if the
function

hn,m,s =
∑

s≤2i≤2(s∧n∧m)

i!

(
n
i

)(
m
i

)(
i

s− i

)
fn ◦s−ii gm

is in L2(IR+)◦n+m−s, 0 ≤ s ≤ 2(n ∧m), and in this case the chaotic expansion of
In(fn)Im(gm) is

In(fn)Im(gm) =

2(n∧m)∑
s=0

In+m−s(hn,m,s). (13)

The fact that In(fn)Im(gm) can be expanded as a sum of multiple stochastic
integrals with respect to (Mt)t∈IR+

is essential in the proof of independence, cf.
Th. 1.

2 Independence of multiple stochastic integrals

In the case of single stochastic integrals, the following proposition extends the
result of [15] to a process that does not have stationary increments. In the case of
multiple stochastic integrals, it extends the result of [17] since it includes a Poisson
component in the martingale (Mt)t∈IR+

.

Theorem 1 Let fn ∈ L2(IR+)◦n and gm ∈ L2(IR+)◦m. The random variables
In(fn) and Im(gm) are independent and if and only if fn◦11gm = 0 and fn◦01gm = 0
a.e., i.e.∫ ∞

0

fn(t, x2, . . . , xn)gm(t, xn+1, . . . , xn+m−2)dt = 0, dx2 · · · dxn+m−2 a.e. (14)

and

fn(x1, x2, . . . , xn)gm(x1, xn+1, . . . , xn+m−1) = 0, | φx1
| dx1dx2 · · · dxn+m−1 a.e.

(15)

Proof. If In(fn) and Im(gm) are independent, then In(fn)Im(gm) ∈ L2(Ω,F , P )
and following [16],

| fn ◦ gm |2L2(IR+)◦(m+m)= (n+m)! | fn ⊗ gm |2L2(IR+)⊗(n+m)

≥ n!m! | fn |2L2(IR+)⊗n | gm |2L2(IR+)⊗m

= E
[
In(fn)2

]
E
[
Im(gm)2

]
= E

[
(In(fn)Im(gm))

2
]

=

2(n∧m)∑
r=0

(n+m− r)! | hn,m,r |2L2(IR+)⊗(n+m−r)
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≥ (n+m)! | hn,m,0 |2L2(IR+)⊗(n+m) +(n+m− 1)! | hn,m,1 |2L2(IR+)⊗(n+m−1)

+(n+m− 2)! | hn,m,2 |2L2(IR+)⊗(n+m−2)

≥ (n+m)! | fn ⊗ gm |2L2(IR+)⊗(n+m) +nm(n+m− 1)! | fn ◦01 gm |2L2(IR+)⊗(n+m−1)

+(n+m− 2)! | nmfn ◦11 gm + n(n− 1)
m(m− 1)

2
fn ◦02 gm |2L2(IR+)⊗(n+m−2) .

We obtain fn ◦01 gm = 0 a.e., and fn ◦11 gm = 0 a.e.
Conversely, if (14) is satisfied, then dP2(ω2) almost surely, In(fn)(·, ω2) and
Im(gm)(·, ω2) are Wiener integrals of square-integrable functions that also satisfy
(14), hence In(fn)(·, ω2) is independent of Im(gm)(·, ω2) under P1 from [16], and
for any u, v ∈ Cb(IR),∫

Ω1

u(In(fn))v(Im(gm))dP1 =

∫
Ω1

u(In(fn))dP1

∫
Ω1

v(Im(gm))dP1, dP2(ω2)−a.s.

If further (15) is satisfied, we choose two version f̄n and ḡm of fn, gm and let

A =
{
s : ‖ f̄n(s, ·) ‖L2(IR+)◦(n−1) 6= 0 and φs 6= 0

}
,

and

B =
{
s : ‖ ḡm(s, ·) ‖L2(IR+)◦(m−1) 6= 0 and φs 6= 0

}
.

Then
∫

Ω1
u(In(fn))dP1 and

∫
Ω1
v(Im(gm))dP1 are respectively FA1 -measurable and

FB1 -measurable. Moreover,

0 =

∫ ∞
0

‖ f̄n(s, ·) ‖L2(IR+)◦(n−1)‖ ḡm(s, ·) ‖L2(IR+)◦(m−1) | φs | ds

=

∫
A∩B

‖ f̄n(s, ·) ‖L2(IR+)◦(n−1)‖ ḡm(s, ·) ‖L2(IR+)◦(m−1) | φs | ds,

hence µ(A ∩ B) = 0 and FA1 , FB2 are independent σ-algebras because (Nt)t∈IR+

has independent increments, and∫
Ω

u(In(fn))v(Im(gm))dP =

∫
Ω

u(In(fn))dP

∫
Ω

v(Im(gm))dP, u, v ∈ Cb(IR),

proving the independence of In(fn) and Im(gm). 2
The following corollaries, cf. [16], [17], can be extended from the Wiener case to
the martingale (Mt)t∈IR+ .

Proposition 4 Two arbitrary families {Ink
(fnk

) : k ∈ I} and {Iml
(gml

) : l ∈
J} of Poisson multiple stochastic integrals are independent if and only if Ink

(fnk
)

is independent of Iml
(gml

) for any k ∈ I, l ∈ J .
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Proof. We start by considering families of the form {In(fn)}, {Ik(gk), Im(hm)}. If
In(fn) is independent of Ik(gk) and In(fn) is independent of Im(hm), then (14) is
satisfied for fn, gk and for fn, gm. Moreover, dP2(ω2) almost surely, In(fn)(·, ω2),
Ik(gk)(·, ω2) and Im(hm)(·, ω2) are multiple Wiener integrals of square-integrable
functions that also satisfy (14), hence for u ∈ Cb(IR) and v ∈ Cb(IR2), u(In(fn))(·, ω2)
is independent of v(Ik(gk), Im(hm))(·, ω2) under P1 from the analog of this propo-
sition in [16], and∫

Ω1

u(In(fn))v(Ik(gk), Im(hm))dP1 =

∫
Ω1

u(In(fn))dP1

∫
Ω1

v(Ik(gk), Im(hm))dP1,

dP2(ω2)-a.s.
We choose three versions f̄n, ḡk, and h̄m of of fn, gk, hm and let

A =
{
s : ‖ f̄n(s, ·) ‖L2(IR+)◦(n−1) 6= 0 and φs 6= 0

}
,

B =
{
s : ‖ ḡk(s, ·) ‖L2(IR+)◦(k−1) 6= 0 and φs 6= 0

}
,

and
C =

{
s : ‖ f̄m(s, ·) ‖L2(IR+)◦(m−1) 6= 0 and φs 6= 0

}
.

Since In(fn) is independent of Ik(gk) and In(fn) is independent of Im(hm), (15)
holds for fn, gk and fn, hm. This implies

0 =

∫ ∞
0

‖ f̄n(s, ·) ‖L2(IR+)◦(n−1)‖ ḡk(s, ·) ‖L2(IR+)◦(k−1) | φs | ds

=

∫
A∩B

‖ f̄n(s, ·) ‖L2(IR+)◦(n−1)‖ ḡk(s, ·) ‖L2(IR+)◦(k−1) | φs | ds,

hence µ(A∩B) = 0 and in the same way we get µ(A∩C) = 0, hence µ(A∩(B∪C)) =
0. Consequently, FA1 is independent of FB∪C2 since (Nt)t∈IR+

has independent incre-
ments. Moreover,

∫
Ω1
u(In(fn))dP1 and

∫
Ω1
v(Ik(gk), Im(hm))dP1 are respectively

FA2 and FB∪C2 -measurable, hence∫
Ω

u(In(fn))v(Ik(gk), Im(hm))dP =

∫
Ω

u(In(fn))dP

∫
Ω

v(Ik(gk), Im(hm))dP,

u ∈ Cb(IR), v ∈ Cb(IR2), and u(In(fn)) is independent of v(Ik(gk), Im(hm)). The
above proof generalizes to arbitrary families of multiple stochastic integrals. 2

Corollary 1 Let fn ∈ L2(IR+)◦n, gm ∈ L2(IR+)◦m, and

Sfn = {fn ◦n−1
n−1 h : h ∈ L2(IR+)◦n−1}, Sgm = {gn ◦m−1

m−1 h : h ∈ L2(IR+)◦m−1}.

The following statements are equivalent.
(i) In(fn) is independent of Im(gm).
(ii) For any f ∈ Sfn and g ∈ Sgm we have fg = 0, | φt |dt-a.e. and (f, g)L2(IR+) = 0
(iii) The σ-algebras σ(I1(f) : f ∈ Sfn) and σ(I1(g) : g ∈ Sgm) are independent.
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Proof. (i) ⇔ (ii) relies on the fact that any f ∈ Sfn and g ∈ Sgm can be written
as f = fn ◦n−1

n−1 h, g = gm ◦m−1
m−1 k with h ∈ L2(IR+)◦n−1, k ∈ L2(IR+)◦m−1, and

that φtf(t)g(t) = (fn ⊗0
1 gm(t, ·), h ⊗ k)L2(IR+)◦n+m−2 , t ∈ IR+, and (f, g)L2(IR+) =

(fn ◦11 gm, h⊗ k)L2(IR+)◦n+m−2 . (ii)⇔ (iii) is a consequence of Prop. 4. 2
Let (hk)k∈IN∗ be an orthonormal basis of L2(IR+). For simplicity, we denote by

σ(In(fn),∇In(fn), . . . ,∇n−1In(fn))

the σ-algebra

σ

(
In(fn),

(
∇In(fn), hk11

)
L2(IR+)

, . . . ,(
∇n−1In(fn), hkn−1

1
◦ · · · ◦ hkn−1

n−1

)
L2(IR+)◦n−1

, kij ∈ IN∗, 1 ≤ i ≤ j
)
.

Corollary 2 The multiple stochastic integrals In(fn) and Im(gm) are independent
if and only if the σ-algebras

σ(In(fn),∇In(fn), . . . ,∇n−1In(fn))

and

σ(Im(gm),∇Im(gm), . . . ,∇m−1Im(gm))

are independent.

Proof. This is a consequence of Th. 1, Prop. 4, and the definition (8) of ∇. 2
Let λ denote the Lebesgue measure on (IR+,B(IR+)).

Corollary 3 If F ∈ Dom2(∇) and G ∈ L2(Ω,F , P ) with G =
∑
m≥0 Im(gm),

then F is independent of G if for any m ≥ 1,

gm ◦11 ∇F = 0 λ⊗(m−1) ⊗ P − a.e. and gm ◦01 ∇F = 0, λ⊗m ⊗ P − a.e. (16)

Proof. Assume that F =
∑
n≥0 In(fn). Condition (16) is equivalent to gm ◦11 fn =

0 and gm ◦01 fn = 0 a.e. for any n,m ∈ IN, since the decomposition ∇F =∑
n≥0 nIn−1(fn) is orthogonal in L2(Ω) ⊗ L2(IR+). The result follows then from

Th. 1 and Prop. 4. 2
Remarks. a) In the Poisson case, the results of this paper can also be obtained
for a Poisson measure on a metric space with a σ-finite diffuse measure.
b) The independence criterion also means that In(fn) and Im(gm) are independent
if and only if their Wick product coincides with their ordinary product:

In(fn)Im(gm) = In+m(fn ◦ gm) = In(fn) : Im(gm).
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[6] D. Nualart and A.S. Üstünel. Geometric analysis of conditional independence on
Wiener space. Probab. Theory Relat. Fields, 89(4):407–422, 1991.
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