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Abstract

We define a class of anticipating flows on Poisson space and compute its Radon-
Nikodym derivative. This result is applied to statistical testing in an anticipating
queuing problem.
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1. Introduction

In the Ito6 construction of stochastic integration, adaptedness conditions are imposed
on the integrand. In the anticipative case there exists several extensions of the
stochastic integral. Among these extensions the ones that seems to be the most closely
related to concrete situations are the pathwise Stratonovich and forward integral, cf.
e.g. [17] and the references therein. However these integrals do not retain certain
natural properties of the It6 integral, for example they do not have expectation zero
in the anticipative case. On the other hand, the Skorokhod integral, cf. [18] is an
extension of the stochastic integral that possesses the latter property, and acts on
stochastic processes without adaptedness requirement. It can be defined as the dual
of a gradient operator, which makes it useful in the analysis on Wiener space and the
Malliavin calculus, cf. [11]. See for example [6] for a discussion on the connection of
the Skorokhod integral on the Wiener space to engineering problems. On the Poisson
space, as in most non-gaussian settings, cf. [4], [12], [14], there exists two different
Skorokhod integral operators defined as the adjoints of different gradient operators.
Their common property is to coincide with the It6 integral on adapted integrands.
The aim of this paper is to show that on the Poisson space one of the constructions
of the Skorokhod integral can be connected via hypothesis testing to an engineering
problem.

We proceed as follows. Sect. 2 consists in a description of a queuing problem in which
jobs are processed by a server. At time zero a prediction of expected completion times
is made, and has a Poisson distribution over R. The processing speed of the server
changes over time, and its increase or decrease at time t is governed by a function that
may depend on all of the processing times, including predicted completion times. In
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this way a flow of transformations of Poisson trajectories is constructed, and this flow
is naturally anticipating with respect to the Poisson filtration since it acts on whole
Poisson trajectories. The construction of this flow is formalised in Sect. 3. In Sect. 4
we devise statistical procedures for testing and estimation using the Radon-Nikodym
density function of the flow as a likelihood ratio, see Th. 1. Given a sample trajectory
made of completion times that are predicted or have been measured at time ¢, we
test the hypothesis “the sample is Poisson distributed” at time . The main tool is
an anticipative Girsanov theorem on Poisson space, which is presented in Sect. 5. In
Sect. 6 the queuing problem is formulated in a more abstract way, and a Girsanov
theorem for anticipating flows on Poisson space is proved. We refer to [2], [3], for the
analog of this result on the Wiener space, to [9] for the anticipative Girsanov theorem
on the Wiener space and to [19] for its extension to non-invertible shifts. Whereas in
the adapted case the equation satisfied by the process of Radon-Nikodym densities is
a well-known linear stochastic differential equation, in our case the equation remains
formally the same except that the It integral has to be replaced by the Skorokhod
integral. This shows the relation between anticipative stochastic integration in the
Skorokhod sense and the queuing problem considered above. Anticipating stochastic
differential equations on the Poisson space have been studied in [10], [13] using the
Skorokhod integral of [12] and in [16] using the integral of [4].

2. An anticipating queuing problem

The aim of this section is to state the considered queuing problem. For simplicity of
exposition we adopt an intuitive approach that will be formalized in the next section.
Let B be the vector space of sequences

B = {(wp)k>1 : wg €R, k>1},

with the norm
ol = sup 4.
>1 K

Let H = [>(IN*), and let (eg)g>1 denote the canonical basis of H. Let P be the prob-
ability measure on the Borel o-algebra of B under which the coordinate functionals

w:B — R, E>1,
w o Tp(w) =wg

are independent identically distributed exponential random variables, cf. [14]. We let
i=k

To = 0 and define the family (Ty)r>1 as Ty, = ZTi, k >1,ie. (T))k>1 represents
i=1

the jump times of the standard Poisson process

Ny =Y 1ig (1), t€[0,1].
k=1

We consider that the sequence (73)r>1 represents an estimation (T]S’O)k21 made at
time ¢ = 0 of processing times of a given countable sequence of jobs. While the k-th
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job is being processed, the server is able to modify its speed by taking into account
the processing times of all jobs in the sequence, whether they are completed or not,
i.e. predicted completion times may also be taken into account. For t € [0,1] we
denote by T ,S * the estimation or measure at time ¢ > 0 of the completion time of job
n°k, where T = Ty, k > 1, and

e 0<t< T,S’_tl means job k is not yet processed,

. T,g’_tl <t< T,?’t means job k is being processed,

° T,S " <t means job k is already completed.
We also let T,?’t = T,S’t — T,S’fl, k >1,t € [0,1]. The processing speed is controlled
by a function o : [0,1] x B — R which depends on time as well as on all processing
times (measured or predicted), and satisfies the following hypothesis.

Hypothesis (H) We assume that ess sup o < 1 and that for any k > 1 there is a
random variable Gy, which is o(1; : i # k) measurable with

jo0(w) — 1w+ wey)| < [2|Gr(w), @ €R, t€[0,1], we B, k> 1.

With this notation, the evolution of ¢ — T,S " is described inductively on k > 1 as
follows. Let Tg’oo =0and let t — T,ijl be the solution, for ¢ > T,S’Oo, of the ordinary
differential equation

0,00 0,00 _0,t

0,t 0,
(2.1) %TkJrl:Ut(Tl ey Ty ,TkJrl,T,?_,_Q,...), t>T.™, k>0.

Hypothesis (H) ensures the existence and uniqueness of a solution to (2.1).
One lets

0,00 _ 3 0,00 0,t 0,00 _ 0,00 0,00
Ty =inf{te Ry  T)" +m, =ty n oy =T,7 1,7,

and o 0
Tk’t—l—7’,g_~_1 for 0 <t < T,
0,t __ 0,t 0,t 0,00 0,00
Ty = T% + 714, for Ty OgthHp
;00 ,00
Th for t > T\ 7,

The expected remaining time until completion of job k is T,S ' — . This definition of
the flow can be summarized as

d
ot =1

0, 0,00 _0,t
prl’ 0t TO,t[(t)Ut(Tl T T 77',?4_1,...), k>1, tel0,1],

k—1'"k

with the initial condition T,S O — 7., k > 1. Hypothesis (H) also implies that
limg_ 00 T,S’OO = +00. The condition ess sup o < 1, ensures that all jobs can terminate
in finite time. Fig. 1 gives a typical graphic representation of ¢ — (T,S’t)kzl.

Remark 1 The statements T,S’_Sl <s < T,S’S and T,S’_tl <s < Tko’t are equivalent,
0<s<t<l1,k>1.
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. . t
Figure 1. Sample trajectory of the flow ¢ +— (T}")y>1.

3. Construction of the flow

In this section we formalise the definition of the flow as a differential equation in
the Banach space B. Let i : H — L?(]0,1]) be the random mapping defined as

(31) Zt(f) = f(Nt + 1) = f(k)l[Tk—l,Tk[(t)’ te [0’ 1]
k=1
Let (js)sejo,1) denote the H-valued process defined as
js = (is(ek))kZM s € [Oa l]a
ie. js=-er € H if and ounly if s € [Tp—1,Tx[, £ > 1.
Proposition 3.1 Let o : [0,1] x B — R satisfy (H).

e The equation in B
t
(3.2) st =W +/ (Jrov) (Pspw)dr, we B, 0<s,t<1,
S

has a unique solution that defines ¢s+: B — B.

o We have js =jso ¢y s, 0 < s <t, and (3.2) is equivalent to
t
(3.3) W =w — / Jror(rrw)dr, we B, 0<s<t<I.

o The family (¢s : B — B)o<s<t Satisfies the flow property
(34) ¢s,t o ¢u,s = ¢u,t, u, s, t> 07

and ¢sy : B — B, is invertible with inverse ¢ s, 0 < s, < 1.
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Proof. Existence and uniqueness of the solution of (3.2) follow from the Lipschitz
hypothesis (H) on o. The flow property (3.4) follows from

t
¢s,t o ¢u,sw = (bu,sw + / (jrar)(¢s,r o (bu,sw)dr

s t
= WJF/ (jrar)(¢u,rw)dr+/(jrgr)(¢5,ro¢u,tw)dr'

From Remark 1 we have j, 0 ¢g,, = jr 0o hence j,. 0@y, = j,, r <t, by composition
with ¢, and (3.2) is equivalent to (3.3). Note that (3.3) is wrong if s > ¢, this

point will be important in the calculations of Sect. 6, Lemma 5. The notation

i=k
Tyt = ¢auli), 0<st<1,
i=1
is consistent with that of the preceding section.

4. Hypothesis testing

Statistical testing for point processes, cf. e.g. [8], often aims to test an hypothesis on
the intensity of a Poisson process. The central tool of this approach is the computation
of the Radon-Nikodym derivative Lo = dPpo:t /dP where POt ig a probability under
which (T"")x>1 is Poisson distributed. Let € [0,1]. We will test the hypothesis

Hy: (T,S’t)k21 is not exponentially i.i.d.
against the hypothesis
Hy: (T,S’t)kzl is exponentially i.i.d.,

i.e. the sample (T,g’t)kzl is Poisson distributed, e.g. (Tg’t)k21 does not result of
a perturbation of (7%)g>1 driven by the function o. The following decision rule is
justified from the fact that if £ is an event such that P(E) < § then P%*(Lg, >
@) > PYY(E), cf. [1], [8].

Decision rule Let & € R and § > 0 such that P(Lo; > o) = 3. Then the hypothesis
H, is accepted at the level 3 whenever Lo > o

The Likelihood ratio L. is usually computed via the Girsanov theorem for point
processes, cf. [1], [7]. However this theorem relies on the adaptedness assumptions
of the It6 stochastic calculus, hence it is not applicable to our problem. For this
reason we use an anticipative Girsanov theorem on Poisson space, cf. [15], in order to
find a probability P%t under which (Tg’t)k21 is exponentially i.i.d. and to compute
dpot /dP. We define a space of smooth random variables

S = {f”(Tl""7Tn) : fn € CSO(RZL—)a n Z 1}7
and an operator D:S— LQ(B x [0,1]) by

o0
(4.1) DF = _21[Tk71,Tk[a,€fn(n,...,Tn),
k=1
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where F' € S is of the form f,(m,...,7,). A discrete-time gradient D : § —
L?(B x N*) is also defined by

(42) DF = (DkF)k21 = (8kfn(ﬁ, - 7Tn)), FesS.

The operators D : L?(B) — L?*(B)® H, and D : L?(B) — L?(B x [0,1]) are closable
and ID; > denotes the domain of the closed extension of D. They are linked by the
relation D = —io D, where i : H — L?([0,1]) is the random mapping defined in (3.1).
The closable adjoint § : L?*(B x [0,1]) — L?(B) of D corresponds to one of two
notions of Skorokhod integral on the Poisson space, cf. [4] and [14]. Tts interpretation
as an extension of the stochastic integral with respect to the compensated Poisson
process comes from the fact that §(u) coincides with the Itd stochastic integral of u
if u is adapted and square-integrable.

Definition 1 We call ID1 o the subspace of ID1 2 made of the random variables F'
such that

IFlD, .. = IFllec + [[1DF|kllo0 < oo
We also let IL1 o = L*(]0,1],D1.o), and Iy » = L*([0,1], D1 2).

If T : B — B is measurable we denote by 7 P the image measure of P by 7. We
say that 7 is absolutely continuous if 7 P is absolutely continuous with respect to
P. The following is the main result of this paper, and will be proved in Sect. 6.
For clarity we may denote o¢(w) by o(t,w). In particular, U(T,S’t,% T}S,t) denotes
(Ur o ¢O,T,8’t) \r:T,S’t.

Theorem 1 Let o € ILj . We assume that o has a version with continuous
trajectories and supo < 1. Then the equation in B

t
Boso = w + / (jr0v) (bosw)dr, we B, 0<s,t<1,

has a unique solution. Moreover, ¢s+P is absolutely continuous, 0 < s,t <1, and for
0<s<t<1 we have

(4.3)
by P tro ' =4 o -
dP = exp <_‘/5 [Drgr:| ° ¢s,rdr - /3 Oy O ¢s,rdr ]];[1 (1 - U(Tk 7¢37T;‘t)) ’
and
d < P to t k=N
(4.4) ‘ZI’; = exp ( / {DTJT} o durdr + / ororbt’rdr) kl:[l (1= o(Th, ér.1,)).

Note that hypothesis (H) is not assumed here in order to obtain the existence and
uniqueness of ¢ ;. Also, the process (DTO'T)TG[OJ] is well-defined since ¢t — D;o, is
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constant on each interval |Ty_1,Tx[, k¥ > 1, a.s. In fact, from Remark 1 we have
Jro¢sr =7Jr0¢ss, 0<s<r<t<1 and (4.3) can be rewritten using D as

d(bt,spi
dP
t © - AtATY! k=N 1
exp —/ Jr0¢s,rd7’+2/ [DkUT]OQSS,TdT) H 7 ,
( s =1 JIAT o1 L —o(T ’d’s,T,j’t))

0 <s<t<1. In the adapted case, D,o, =0, cf. [14], hence the terms f(f |:DTO'T:| o

¢s,rdr and fot [D,,UT} o ¢ rdr vanish in (4.3) and (4.4) and we obtain the classical
expression of the Radon-Nikodym density function. Denoting by (N, O’t)re[oyl] the

T

point process whose jump times are given by (T,S ™ E>1

NOt = Z 1[T£,t’oo[(s), s €[0,1].

k>1

We have Lg; = d‘f’;gp and the log-likelihood ratio becomes

¢ ¢ ¢
bt = —/ {DTUT} o ¢ rdr — / Oy 0 ¢ordr — / log(1 — o, 0 ¢, )JAND".
0 0 0

From Remark 1 we have explicitly

AT

t
oy = —/ oy 0 Pordr — / log(1 — 0, 0 ¢ ) JANDt + Z/ [Dror] o ¢o rdr.

0 t/\TO i
The evaluation of ly; is made according to measures or estimations between time 0
and time ¢ of completion times.
5. Anticipating Girsanov theorem

We now introduce a formalism which is helpful for the proof of the anticipating
Girsanov theorem Th. 3. Given a real separable Hilbert space X with orthonormal
basis (h;)i>1, let

:{ZFihi . Fy,....F, €S, nZl},
i=1

with § = S(R). Let H ® X denote the completed Hilbert-Schmidt tensor product of
H with X. Any u € S(H ® X), is written as

U= Zuke;€7 up € S(X), k>1.
k=1

Let

= {Zmukek u € S(H@X)}.
k=1
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It is known that S(X) is dense in L?(B, P; X), and that U(X) is dense in L?(B x
N*; X), cf. [14]. We extend the definition of D to S(X) as
F(w+¢eh) — F(w)

(DF,h)y = lim . Feds(X).
e—0 £

We call ID; 5(X) the completion of S(X) with respect to the norm
1D, ,x) = IIFIxll2 + [[I1DF|rox|l2:

We define 6§ : S(H ® X) — L*(B; X) by

(5.1) 5(u):Zuk—Dkuk, u e S(H® X).
k=1

The operators D : S(X) — L*(B x N*; X) and 6 : U(X) — L?*(B; X) are closable
and mutually adjoint:

E[(DF,w)pgx]=E[(6(u), F)x], welU(X),F eSX).

With this notation the anticipating Girsanov theorem (Th. 1 of [15]) can be formu-
lated as follows.

Theorem 2 Let F : B — H be a measurable mapping such that

o h— F(w+h) is continuously differentiable on H in the completed tensor product
H®H, for any w € B,

o F,=0o0n{r, =0}, k>1,

o Ip + F leaves invariant the cone {(wr)k>1 € B + wy >0, k> 1} of strictly
positive sequences,

e deto(Iy + DF) #0, a.s., and
e Ip+ F is a.s. bijective.

Then
E(fl=E[fo(Ip+F)Arl], feC)(B).

The functional A is the density d(Ig + F)~1P/dP, with
(5.2) Ap = deto(Igy + DF) exp(—6(F)), F € Dys(H) N Dom(s),

where deto (I + K) is the Carleman-Fredholm determinant of Iy + K:

o0

deto (I + K) = [ (1 + Xi) exp(= ),

i=1

(Ak)r>1 being the eigenvalues of the Hilbert-Schmidt operator K, counted with their
multiplicities, cf. [5], Th. 26. If F € Dom(d) N ID12(H) and DF is a trace class
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oo

operator, then ZFk is summable, a.s., and Ap admits from (5.1) the simpler
k=1
factorization
(5.3) Ap = det(Ig + DF)exp (- ZFk> ,
k=1

where det is the limit of finite-dimensional classical determinants. We note that
Th. 2 is not directly applicable in the present situation where the transformation
Ip + F = ¢p. is given by a flow which is solution of a differential equation. In
particular the differentiability hypothesis of Th. 2 are not directly verified and the
Carleman-Fredholm determinant deto(Iy + DF') remains to be explicitly computed
in terms of ¢. For this reason we use Th. 1.

6. Proofs

We now prove Th. 1, using the formalism of Sect. 5.

Definition 2 Let V denote the class of processes of the form v(-,71,...,T,), where
v € CH[0,1] x R") satisfies v(t,x1,...,0p) =0 ift > 1+ - +x,, n > 1.

We will need the following Lemmas, which are adapted from [3]. They do not rely
on the nature of the underlying (Poisson or Wiener) measure, hence their proofs are
similar to that of [3], see also [16].

Lemma 1 Let F € ID1 5. For any € > 0, there is a sequence (Fy)nen C S that
converges to F' in IDq 2 and such that

e essinf FF< F,, <esssup F, neN.

o |[| DF, |ulloo<I[| DF |ulloc +& . n € N.

Lemma 2 Let 0 € ILy » with ess sup o < 1.

o There is a sequence (0™)nen C V, uniformly bounded in ILi o, that converges
to o in ILy o, with sup o} (w) < 1.

n,t,w

e If 0 has a version (also denoted by o) with continuous trajectories, then the
sequence (0" )nen can be chosen such that (o}, Jnen converges in L*(B) to o,
k>1.

Lemma 3 Let T, R be two absolutely continuous transformations, respectively de-
fined by

T(w)=w —|—/0 Js(w)Us(w)ds,

and

R(w) = w +/0 Jo(@)Va(w)ds,
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w € B, with U,V € L*(B) ® L?([0,1]). Let F € ID; . We have
|[F'oT —FoR|<||[DF|ulloolU = V201, a-s.,

and

(6.1) |F(w) = F(w+h)| < |IDF|allcollbller, b€ H, a.s.

Lemma 4 Let (7T,)nen be a sequence of absolutely continuous transformations with
1
Tow=w —|—/ Ul (w)ds,
0

defined by a sequence (U™),en C L?(B) ® L2([0,1]; H) of processes that converges to
U € L*(B)®L?*([0,1]; H), such that the sequence of densities (L™ )nen = (AT, P/dP), oy
is uniformly integrable. If (F,)nen converges to F' in probability, then (F, o Tp)nen
converges to F o T in probability, where T : B — B is defined by

1
Tw=w —|—/ Us(w)ds.
0

Moreover, T : B — B is absolutely continuous.
The proofs of Lemma 1, 2, 3 and 4 are postponed to the end of this section.
Lemma 5 Letc € V and 0 < s <t < 1. We have for F = ¢ s — Ip

t t k=N,
Ap =exp (_/ |:Dr0'r:| © (bs,rdr - / Or O (bs,rdr) H (1 - O(le,t7 ¢5,T,f’t))_1a
S S k,:l
and for F' = ¢s1 — Ip
t o t k=N,
re=oxp ([ [Dior] oousart [oo0ar) T 0~ oTionm))
s s k=1

Proof. (of Lemma 5). We use the expression (5.2) of Ap. We have for 0 < s <t <1,
using (3.3):

—o (T, ¢y, Tl)l{s<Tl<t} +o(Ti—1, 0,1 ) {s<ti_1 <t}
—/ iner ZDmt, )IDio]obupdr,  1<k<l<n,

1—o(Ti, ¢ Tl)l{k<l}1{s<Tl<t}
—/ iner ZDkqﬁt,. ) [Dio] o bupdr,  1<k=l<n,

Dk(bt,s(l)

—/ ir(er ZDk¢tr [Do,] © ¢y rdr, 1<l<k<n,

1{k:l}a k> n.
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Let M; s € M,,(R) be the n x n matrix
My s = (Drors(l))i<kicn, 0<s<t<L

The above computation can be rewritten as
t
(62) Mt,s = At,s +/ Mt’er’rdT, 0 S S S t S ].7
S

where A; s € M,,(R) is the n x n matrix
_U(Tj7 ¢t7Tj)1{S<Tj<t} + O’(TJ‘*h ¢t;Tj—1)1{S<T7’_1<t}a 1<e<g<n,
At,s(iyj) = 1- U(Tja ¢t,T_¢)1{s<Tj<t}a 1 < 1 :j < n,
0, 1<j<i<n,

and Qy, € M, (R) is the n x n matrix Q;,, = (ir(e1) [Dror] © ¢t.r);<p 1<,,- We have
from (3.4):

D¢t,u =D (¢s,u o (ybt,s) = [Dd)t,s] [D¢9,u] © ¢t,57 0 Su<s<t< 17

hence
Mt,u = [Mt,s] [Ms,u o d)t,s] 5 0<u<s<t<L

We will show that for fixed w € B,
t
(6.3) det M; s = exp (—/ trace der) , Tho1<s<t<Ty, k>1.

Let € > 0. We have

det Mt,s — det Mtwsfe = det Mt,s — det (Mt,sMs,sfs o d)t,s)
= (1 — det Ms,s—s o d)t,s) det Mt,s

= (det Mt,s) (1 — det (As,ss o ¢t,s - / Mt,r o ¢t,th,r © ¢t,sdr>) .
s—e

Moreover,

s
det (As,ss © d)t,s - / Mt,r © ¢t,th,r © ¢t,sdr)
s—e

is equivalent to 1 — etrace Q4 s © @1 s as € goes to zero since for Tj,_1 < s < s4+¢ <
t < Ty, we have Ag s = Ig» and My, — Ig» as r | s. Moreover, from Remark 1
we have Qs s 0 ¢y s = Qys, hence for T, < s <t < T,

(6.4) %(det M, s) = trace (Q¢,s) det My s,
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which proves (6.3). Since Q; s(%, j) may be nonzeroonly if 7,1 < s <Tj,i=1,...,n
we obtain
oo
trace (Qt,s) = Z 1[T;¢ 1,Tk Dkas} ¢t,s = Zis(ek) [Dko-s} o ¢t,s
k=1 k=1

= iZS 0 ¢ s [Dros| o prs = — |:DSO—S:| O Pt,s,
k=1

hence for Tj_1 < s <t < 1;:

TiAt
det(M,.,) = exp ( / [Drar] o ¢mdr> det My 47y, 1EN,
and

tATy N
det(M@Tlil) = (1 — U(ﬂ_l, ¢t7ﬂ71)) exp </ |:DT'U7":| o ¢t7rdr> det Mt,t/\Tl .

Hence for 0 < s <t <1,
t ~
(65) det(D¢t,s) = exp </ |:Dro—r:| o ¢t,rdr> H (1 - U(Tk’a d)t,Tk)) .
S s<Tp<t
tATy

Hence from (5.3), (6.5) and ZFk = Z/ oy © ¢y pdr, we obtain

tAT 1

d s P tATy
% = exp (Z/f 0y 0 ¢y pdr | det Doy o

Nk 1
o t k=N,
= exp </ [Drgr] o ¢t,rdr + / Op O (bt,rd'r) H (]- - U(Tk, ¢t,Tk))'
s s k=1

Moreover, we have ¢; 7, © ¢s ¢ = ¢57T’:,t, T < t, since

t
¢t,Tk © ¢s,tw = (bs,tw - (/ 0r O ¢t,rdr) © ¢s7tw

Tk

t
= (bs,tw - / . ar(¢t,r o ¢s,tw)dr

S,
Tlc

t t
w+ / UT(d’S,Tw)dT - / - UT(¢t,r o ¢s,tw)dr

"

Tt
w —|—/ or(¢spw)dr = (bS’T:,tw, w € B.
S
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Hence for 0 < s <t <1,

d(bt,sp <d¢s,tp>1
= o ¢s,t

dP dP
t B t k=N¢
= €xp (_/ |:D'r0-ri| o ¢s,rdr - / Oy O ¢s,rdr) H (1 - U(Tka ¢t7Tk) o ¢S,t)_1
s s k1
t o t k=N,
= exp <_/ |:DTJT:| o Qbs,rdr - / Op O (Zss,rd'r) H (1 - U(le’tv d)s,T:”f’))il'
s s b1

Proof. (of Th. 1). We start by assuming that o € V. In this case the assumptions of

Th. 2 are satisfied by F' = ¢, — Ip
E(fodis)=E[fAr], E[fl=E[fo¢.Ar], feCf(B),

where the expression of Ap = d¢ s/dP is given by Lemma 5, 0 < s < ¢t < 1, this
statement is in fact finite dimensional. It remains to extend this result to o € IL; .
For this we follow [16] which uses ideas applied in the Wiener case by [3]. From (6.1),
o € I satisfies (H). From Lemma 2 we choose a sequence (¢™)pen C V that
converges to o in ILq o, with || log(l — 0™)||ec < C and ||0"]|ec + |[||Do™|u]ls < C,
n € N, for some C' > 0. The sequence (¢"),en defines a sequence of transformations
( Zt)nEN’ and a sequence of density functions (L} ;)nen = d¢y,P/dP, 0 < s,t < 1.
We have

E[L3,[log L3, |] = E [[log LY, 0 ¢54]

U log(1 — o™ |oodN] /HD U”||Oodr+/ o™ | dr

< [ on — o+ [ N0l + [ o7l <30,
0 0 0

IN

hence the sequence (LY ;)nen is uniformly integrable. We now have that (¢% ;—I)nen
converges in L?(B) ® H since

E[l60, - 603 gE[/ o7 ( <:?T>2dr}
< 2F / |af—o}”|2LZTdT+/ lo7™( o (o )|2dr}

r t
< om[[or—orprz e [ / L(0) o2 (¢ P |

oot
< 2F / loy — al”|2L27Td7“} exp (|t — s|C?)

n,m € N, 0 < s,t <1, by the Gronwall lemma and Lemma 3. As n and m go
to infinity, E [|¢7, — ¢7%|3;] converges to 0 by uniform integrability of (LZ,)nen,
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and from Lemma 4, the sequence (o7 (¢7,))nen converges to o,(¢s,.) in L?(B), for
r € [0,1], hence by boundedness of ¢ the limit of (¢ ) nex solves (3.2) and coincides
with ¢s+. The uniqueness of ¢;; follows from Lemma 3 and 1ts absolute continuity
from Lemma 4. The above argument also shows that ((bt T, — )neN converges in
L*(B)® L?([0,1], H) to ¢ 1, — Ip which is absolutely continuous, k > 1 (we let 0 = 0
outside of [0, 1] x B). Consequently, (" (T}, 71, )) and (6™ (Tk, ¢f' 7, )) © ¢, converge
respectively to o(Tk, ¢r1,.) and o(Ty, de1y) © Pst = U(T,f’t,qbsz;,t) in probability

as n — oo, from Lemma 2 and Lemma 4, £ > 1. Moreover, ({D.a,”] ogb?,)
"/ neN

converges to [D.a} o ¢s,. in L?(B x [0,1]):

B[ [ |[peor] o6z, - [Deon] o0us] ]

1 1
< 25| [ | Dotlor, - 1Dalodt,fydr+ [ 11Do]o6t, - (Dorlo o, rar]
0 0

E

which converges to 0 as n goes to infinity since | Doy (67 )| g < |||Dor|i oo, r € [0,1].
Finally, a subsequence of (LY ;)nen, resp. (Li's)neN, also denoted by (L ;)nen, resp.
(L} s)nen, converges almost surely to (4.3), resp. (4.4), 0 < s <t < 1. By uniform
integrability of {L?, : n € N} we have for f € C (B):

IN

1 1
28 | [ 1Dtor ~ o ttar + [ 1Da 0ot - 1Da o0,
0 0

E[f] = lim E[fo¢l, Lt =E[fodsiLss]. 0<s,t<1.
n—o00 ’ ’
For completeness we state the proofs of Lemmas 1, 2, 3 and 4. They are the respective

analogs of Props. 2.5, 2.6, 2.7 and 2.10 in [3], see also Props. 2,3,4 and 5 in [16].
Proof. (of Lemma 1). Let F,, denote the o-algebra generated by 71,...,7, and

let F,, = (1 — 1)E[F|F,], n > 1. We have essinf F < F, < esssup F, n > 1.
We have ||[|[DF,|allec < [||DF|Hllco, and (Fp)n>1 converges to F in ID7 5. Hence
it suffices to prove the result for F = f(r,...,7,) € DD 2 Assume first that f
has a compact support in R, let ¥ € CX(R'}) with fR” xz)dx =1, ¥ > 0, and

= /i " y+x)da¢ k >0,y e R}. With kafk(ﬁ,.. Tn), We have

ess 1nf F < Fk § esssup F, k > 1, and |||DFg|allco < |||DF|glloo. If f does not
have a compact support, let ® € C°(R", [0, 1]) such that ®(x) = 1 for |z| < 1. Let
Fy, = E[F|F,|®(11/k,...,Tm/k). Then (Fy)k>1 converges to F' in IDq 2 and

[[DFylalloc < [[IDF gl + ||F||oosupz (0:9)" < [IDF|iloc +e
=0

for k great enough.

Proof. (of Lemma 2). For m = {Ay,...,A,} a partition of [0, 1], let
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1=n 1
T = — 1A, rdr.
’ ;mﬂ A’/AYJ '

1

Let (7, )nen be a sequence of partitions of [0, 1], mutually increasing with max;<;<y |A}]
converging to 0 as n goes to infinity. We have that (6™ ),en converges to ¢ in Lj o
with |[077| < ||o||ec and ess sup o™ < ess sup o < 1. We apply Lemma 1 to construct
a sequence (6™ "™),,en C V, bounded in ILq o, such that ;™™ converges a.s. to
or™, t € [0,1], as m — oo. If o has a version with continuous trajectories, then
oq converges a.s. to or,, and a subsequence of (o7/"™)en converges a.s. to o,
te[0,1], k> 1, as m — co.

Proof. (of Lemma 3). Let § > 0 and € > 0. If F' € IDq o, then from Lemma 1 there
is a sequence (Fy,)nen C S that converges to F' in ID; 5 and

|F,oT — F,, o R| I[DF|mlloo|lU = VL2,

<
< (IPFlalloc + U = V2o, as.

Since 7 and R are absolutely continuous, we have that P(|F,,07T — FoT| > §) and
P(|F, o R — FoR| > 4) converge to 0 as n goes to oo. Hence
‘F oT — F O'R,‘ < (|||DF|HH0<> +e) |U — V‘L2([0’1]), a.s.

Proof. (of Lemma 4). Let € > 0. By uniform integrability there is M. > 0 such that

sup E [L™1{pnony] < €/2.
neN

There is ng € N such that
P(|F(T,) = Fu(To)| 26) = E[lgrp,»0L"]

< E[lgesmy L] + M.P(|F — F,| > 6)
< 5/2+M5P(|F—Fn|25)§57 n = ng.

Let (G)nen C S be a sequence that converges to F in L?(B). There is kg € N such
that

P(FoT, - Gy oT,| > 8) + P(FoT — Gy, 0 T| > )
< F 1{\F7Gk0|26}(Ln —|—L):| <2 n>kp
From Lemma 3, there is n1 € N such that

1
P(|Gry 0T — Gy, 0Tp| > 6) < g|||DGko|H||oo|U — "2 <& n>ng.

Hence
P(|FoT —FoT,|3>4)<3e, n>max(ng,ko,ni).
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The transformation 7 is absolutely continuous because its density is obtained as the
weak limit of (L"),en in the weak topology o(L'(B), L>°(B)). Finally we mention

a result that shows the link between the queuing problem exposed in Sect. 2 and the
anticipative Skorokhod integral §, cf. [16].

Theorem 8 Let 0 € I~ have a version with continuous trajectories, such that
ess inf o < 1. Let b € L?([0,1],L>°(B)) and n € L>=(B). The anticipating stochastic
differential equation

t
(6.6) Xi=n—06(lpyoX) +/ bsXsds te€]0,1]
0

has for solution

t doo P
Xi = nouoenn ([ bosnds) Lol
t - t t
= 10 ¢t0exp (/ [Dsas} o ¢t sds + / 050 ¢r,sds + / bs o ¢t,sd8>
0 0 0
k=N,
< [[ = o(Te,dem)),  teo,1].
k=1
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