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Abstract

We define a class of anticipating flows on Poisson space and compute its Radon-
Nikodym derivative. This result is applied to statistical testing in an anticipating
queuing problem.
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1. Introduction

In the Itô construction of stochastic integration, adaptedness conditions are imposed
on the integrand. In the anticipative case there exists several extensions of the
stochastic integral. Among these extensions the ones that seems to be the most closely
related to concrete situations are the pathwise Stratonovich and forward integral, cf.
e.g. [17] and the references therein. However these integrals do not retain certain
natural properties of the Itô integral, for example they do not have expectation zero
in the anticipative case. On the other hand, the Skorokhod integral, cf. [18] is an
extension of the stochastic integral that possesses the latter property, and acts on
stochastic processes without adaptedness requirement. It can be defined as the dual
of a gradient operator, which makes it useful in the analysis on Wiener space and the
Malliavin calculus, cf. [11]. See for example [6] for a discussion on the connection of
the Skorokhod integral on the Wiener space to engineering problems. On the Poisson
space, as in most non-gaussian settings, cf. [4], [12], [14], there exists two different
Skorokhod integral operators defined as the adjoints of different gradient operators.
Their common property is to coincide with the Itô integral on adapted integrands.
The aim of this paper is to show that on the Poisson space one of the constructions
of the Skorokhod integral can be connected via hypothesis testing to an engineering
problem.
We proceed as follows. Sect. 2 consists in a description of a queuing problem in which
jobs are processed by a server. At time zero a prediction of expected completion times
is made, and has a Poisson distribution over IR+. The processing speed of the server
changes over time, and its increase or decrease at time t is governed by a function that
may depend on all of the processing times, including predicted completion times. In
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this way a flow of transformations of Poisson trajectories is constructed, and this flow
is naturally anticipating with respect to the Poisson filtration since it acts on whole
Poisson trajectories. The construction of this flow is formalised in Sect. 3. In Sect. 4
we devise statistical procedures for testing and estimation using the Radon-Nikodym
density function of the flow as a likelihood ratio, see Th. 1. Given a sample trajectory
made of completion times that are predicted or have been measured at time t, we
test the hypothesis “the sample is Poisson distributed” at time t. The main tool is
an anticipative Girsanov theorem on Poisson space, which is presented in Sect. 5. In
Sect. 6 the queuing problem is formulated in a more abstract way, and a Girsanov
theorem for anticipating flows on Poisson space is proved. We refer to [2], [3], for the
analog of this result on the Wiener space, to [9] for the anticipative Girsanov theorem
on the Wiener space and to [19] for its extension to non-invertible shifts. Whereas in
the adapted case the equation satisfied by the process of Radon-Nikodym densities is
a well-known linear stochastic differential equation, in our case the equation remains
formally the same except that the Itô integral has to be replaced by the Skorokhod
integral. This shows the relation between anticipative stochastic integration in the
Skorokhod sense and the queuing problem considered above. Anticipating stochastic
differential equations on the Poisson space have been studied in [10], [13] using the
Skorokhod integral of [12] and in [16] using the integral of [4].

2. An anticipating queuing problem

The aim of this section is to state the considered queuing problem. For simplicity of
exposition we adopt an intuitive approach that will be formalized in the next section.
Let B be the vector space of sequences

B = {(ωk)k≥1 : ωk ∈ IR, k ≥ 1} ,

with the norm

‖w‖B = sup
k≥1

|ωk|
k
.

Let H = l2(IN∗), and let (ek)k≥1 denote the canonical basis of H. Let P be the prob-
ability measure on the Borel σ-algebra of B under which the coordinate functionals

τk : B −→ IR, k ≥ 1,
ω 7→ τk(ω) = ωk

are independent identically distributed exponential random variables, cf. [14]. We let

T0 = 0 and define the family (Tk)k≥1 as Tk =
i=k∑
i=1

τi, k ≥ 1, i.e. (Tk)k≥1 represents

the jump times of the standard Poisson process

Nt =
∞∑
k=1

1[Tk,∞[(t), t ∈ [0, 1].

We consider that the sequence (τk)k≥1 represents an estimation (τ0,0
k )k≥1 made at

time t = 0 of processing times of a given countable sequence of jobs. While the k-th
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job is being processed, the server is able to modify its speed by taking into account
the processing times of all jobs in the sequence, whether they are completed or not,
i.e. predicted completion times may also be taken into account. For t ∈ [0, 1] we
denote by T 0,t

k the estimation or measure at time t ≥ 0 of the completion time of job
n◦k, where T 0

k = Tk, k ≥ 1, and

• 0 ≤ t < T 0,t
k−1 means job k is not yet processed,

• T 0,t
k−1 ≤ t < T 0,t

k means job k is being processed,

• T 0,t
k ≤ t means job k is already completed.

We also let τ0,t
k = T 0,t

k − T
0,t
k−1, k ≥ 1, t ∈ [0, 1]. The processing speed is controlled

by a function σ : [0, 1]×B −→ IR which depends on time as well as on all processing
times (measured or predicted), and satisfies the following hypothesis.
Hypothesis (H) We assume that ess sup σ < 1 and that for any k ≥ 1 there is a
random variable Gk which is σ(τi : i 6= k) measurable with

|σt(ω)− σt(ω + xek)| ≤ |x|Gk(ω), x ∈ IR, t ∈ [0, 1], ω ∈ B, k ≥ 1.

With this notation, the evolution of t 7→ T 0,t
k is described inductively on k ≥ 1 as

follows. Let T 0,∞
0 = 0 and let t 7→ τ0,t

k+1 be the solution, for t > T 0,∞
k , of the ordinary

differential equation

(2.1)
d

dt
τ0,t
k+1 = σt(τ

0,∞
1 , . . . , τ0,∞

k , τ0,t
k+1, τ

0
k+2, . . .), t ≥ T 0,∞

k , k ≥ 0.

Hypothesis (H) ensures the existence and uniqueness of a solution to (2.1).
One lets

T 0,∞
k+1 = inf{t ∈ IR+ : T 0,∞

k + τ0,t
k+1 = t}, τ0,∞

k+1 = T 0,∞
k+1 − T

0,∞
k ,

and

T 0,t
k+1 =


T 0,t
k + τ0

k+1 for 0 ≤ t ≤ T 0,∞
k ,

T 0,t
k + τ0,t

k+1 for T 0,∞
k ≤ t ≤ T 0,∞

k+1 ,

T 0,∞
k+1 for t > T 0,∞

k+1 ,

The expected remaining time until completion of job k is T 0,t
k − t. This definition of

the flow can be summarized as

d

dt
τ0,t
k = 1[T 0,t

k−1,T
0,t
k [(t)σt(τ

0,∞
1 , . . . , τ0,∞

k−1 , τ
0,t
k , τ0

k+1, . . .), k ≥ 1, t ∈ [0, 1],

with the initial condition τ0,0
k = τk, k ≥ 1. Hypothesis (H) also implies that

limk→∞ T 0,∞
k = +∞. The condition ess sup σ < 1, ensures that all jobs can terminate

in finite time. Fig. 1 gives a typical graphic representation of t 7→ (T 0,t
k )k≥1.

Remark 1 The statements T 0,s
k−1 ≤ s < T 0,s

k and T 0,t
k−1 ≤ s < T 0,t

k are equivalent,
0 ≤ s ≤ t ≤ 1, k ≥ 1.
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Figure 1. Sample trajectory of the flow t 7→ (T 0,t
k )k≥1.

3. Construction of the flow

In this section we formalise the definition of the flow as a differential equation in
the Banach space B. Let i : H → L2([0, 1]) be the random mapping defined as

(3.1) it(f) = f(Nt + 1) =
∞∑
k=1

f(k)1[Tk−1,Tk[(t), t ∈ [0, 1].

Let (js)s∈[0,1] denote the H-valued process defined as

js = (is(ek))k≥1, s ∈ [0, 1],

i.e. js = ek ∈ H if and only if s ∈ [Tk−1, Tk[, k ≥ 1.

Proposition 3.1 Let σ : [0, 1]×B −→ IR satisfy (H).

• The equation in B

(3.2) φs,tω = ω +
∫ t

s

(jrσr) (φs,rω)dr, ω ∈ B, 0 ≤ s, t ≤ 1,

has a unique solution that defines φs,t : B −→ B.

• We have js = js ◦ φt,s, 0 ≤ s < t, and (3.2) is equivalent to

(3.3) φt,sω = ω −
∫ t

s

jrσr(φt,rω)dr, ω ∈ B, 0 ≤ s ≤ t ≤ 1.

• The family (φs,t : B −→ B)0≤s≤t satisfies the flow property

(3.4) φs,t ◦ φu,s = φu,t, u, s, t ≥ 0,

and φs,t : B −→ B, is invertible with inverse φt,s, 0 ≤ s, t ≤ 1.
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Proof. Existence and uniqueness of the solution of (3.2) follow from the Lipschitz
hypothesis (H) on σ. The flow property (3.4) follows from

φs,t ◦ φu,sω = φu,sω +
∫ t

s

(jrσr)(φs,r ◦ φu,sω)dr

= ω +
∫ s

u

(jrσr)(φu,rω)dr +
∫ t

s

(jrσr)(φs,r ◦ φu,tω)dr.

From Remark 1 we have jr ◦φ0,r = jr ◦φ0,t hence jr ◦φt,r = jr, r ≤ t, by composition
with φt,0, and (3.2) is equivalent to (3.3). Note that (3.3) is wrong if s > t, this

point will be important in the calculations of Sect. 6, Lemma 5. The notation

T s,tk =
i=k∑
i=1

φs,t(i), 0 ≤ s, t ≤ 1,

is consistent with that of the preceding section.

4. Hypothesis testing

Statistical testing for point processes, cf. e.g. [8], often aims to test an hypothesis on
the intensity of a Poisson process. The central tool of this approach is the computation
of the Radon-Nikodym derivative L0,t = dP̃ 0,t/dP where P̃ 0,t is a probability under
which (T 0,t

k )k≥1 is Poisson distributed. Let t ∈ [0, 1]. We will test the hypothesis

H0: (τ0,t
k )k≥1 is not exponentially i.i.d.

against the hypothesis

H1: (τ0,t
k )k≥1 is exponentially i.i.d.,

i.e. the sample (T 0,t
k )k≥1 is Poisson distributed, e.g. (τ0,t

k )k≥1 does not result of
a perturbation of (τk)k≥1 driven by the function σ. The following decision rule is
justified from the fact that if E is an event such that P (E) ≤ β then P̃ 0,t(L0,t ≥
α) ≥ P̃ 0,t(E), cf. [1], [8].
Decision rule Let α ∈ IR and β > 0 such that P (L0,t ≥ α) = β. Then the hypothesis
H1 is accepted at the level β whenever L0,t ≥ α.
The Likelihood ratio L0,t is usually computed via the Girsanov theorem for point
processes, cf. [1], [7]. However this theorem relies on the adaptedness assumptions
of the Itô stochastic calculus, hence it is not applicable to our problem. For this
reason we use an anticipative Girsanov theorem on Poisson space, cf. [15], in order to
find a probability P̃ 0,t under which (τ0,t

k )k≥1 is exponentially i.i.d. and to compute
dP̃ 0,t/dP . We define a space of smooth random variables

S =
{
fn(τ1, ..., τn) : fn ∈ C∞c (IRn

+), n ≥ 1
}
,

and an operator D̃ : S −→ L2(B × [0, 1]) by

(4.1) D̃F = −
∞∑
k=1

1[Tk−1,Tk[∂kfn(τ1, . . . , τn),
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where F ∈ S is of the form fn(τ1, . . . , τn). A discrete-time gradient D : S −→
L2(B × IN∗) is also defined by

(4.2) DF = (DkF )k≥1 = (∂kfn(τ1, . . . , τn)), F ∈ S.

The operators D : L2(B)→ L2(B)⊗H, and D̃ : L2(B)→ L2(B × [0, 1]) are closable
and ID1,2 denotes the domain of the closed extension of D̃. They are linked by the
relation D̃ = −i◦D, where i : H → L2([0, 1]) is the random mapping defined in (3.1).
The closable adjoint δ̃ : L2(B × [0, 1]) −→ L2(B) of D̃ corresponds to one of two
notions of Skorokhod integral on the Poisson space, cf. [4] and [14]. Its interpretation
as an extension of the stochastic integral with respect to the compensated Poisson
process comes from the fact that δ̃(u) coincides with the Itô stochastic integral of u
if u is adapted and square-integrable.

Definition 1 We call ID1,∞ the subspace of ID1,2 made of the random variables F
such that

‖F‖ID1,∞
= ‖F‖∞ + ‖|DF |H‖∞ <∞.

We also let IL1,∞ = L∞([0, 1], ID1,∞), and IL1,2 = L2([0, 1], ID1,2).

If T : B −→ B is measurable we denote by T P the image measure of P by T . We
say that T is absolutely continuous if T P is absolutely continuous with respect to
P . The following is the main result of this paper, and will be proved in Sect. 6.
For clarity we may denote σt(ω) by σ(t, ω). In particular, σ(T 0,t

k , φ0,T 0,t
k

) denotes(
σr ◦ φ0,T 0,t

k

)
|r=T 0,t

k

.

Theorem 1 Let σ ∈ IL1,∞. We assume that σ has a version with continuous
trajectories and supσ < 1. Then the equation in B

φs,tω = ω +
∫ t

s

(jrσr) (φs,rω)dr, ω ∈ B, 0 ≤ s, t ≤ 1,

has a unique solution. Moreover, φs,tP is absolutely continuous, 0 ≤ s, t ≤ 1, and for
0 ≤ s ≤ t ≤ 1 we have
(4.3)
dφt,sP

dP
= exp

(
−
∫ t

s

[
D̃rσr

]
◦ φs,rdr −

∫ t

s

σr ◦ φs,rdr
) k=Nt∏

k=1

(1− σ(T s,tk , φs,T s,t
k

))−1,

and

(4.4)
dφs,tP

dP
= exp

(∫ t

s

[
D̃rσr

]
◦ φt,rdr +

∫ t

s

σr ◦ φt,rdr
) k=Nt∏

k=1

(1− σ(Tk, φt,Tk
)).

Note that hypothesis (H) is not assumed here in order to obtain the existence and
uniqueness of φs,t. Also, the process (D̃rσr)r∈[0,1] is well-defined since t 7→ D̃tσr is
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constant on each interval ]Tk−1, Tk[, k ≥ 1, a.s. In fact, from Remark 1 we have
jr ◦ φs,r = jr ◦ φs,t, 0 ≤ s ≤ r ≤ t ≤ 1, and (4.3) can be rewritten using D as

dφt,sP

dP
=

exp

(
−
∫ t

s

σr ◦ φs,rdr +
∞∑
k=1

∫ t∧T s,t
k

t∧T s,t
k−1

[Dkσr] ◦ φs,rdr

)
k=Nt∏
k=1

1
1− σ(T s,tk , φs,T s,t

k
))
,

0 ≤ s ≤ t ≤ 1. In the adapted case, D̃rσr = 0, cf. [14], hence the terms
∫ t

0

[
D̃rσr

]
◦

φs,rdr and
∫ t

0

[
D̃rσr

]
◦ φt,rdr vanish in (4.3) and (4.4) and we obtain the classical

expression of the Radon-Nikodym density function. Denoting by (N0,t
r )r∈[0,1] the

point process whose jump times are given by (T 0,t
k )k≥1:

N0,t
s =

∑
k≥1

1[T 0,t
k ,∞[(s), s ∈ [0, 1].

We have L0,t = dφt,0P
dP and the log-likelihood ratio becomes

l0,t = −
∫ t

0

[
D̃rσr

]
◦ φ0,rdr −

∫ t

0

σr ◦ φ0,rdr −
∫ t

0

log(1− σr ◦ φ0,r)dN0,t
r .

From Remark 1 we have explicitly

l0,t = −
∫ t

0

σr ◦ φ0,rdr −
∫ t

0

log(1− σr ◦ φ0,r)dN0,t
r +

∞∑
k=1

∫ t∧T 0,t
k

t∧T 0,t
k−1

[Dkσr] ◦ φ0,rdr.

The evaluation of l0,t is made according to measures or estimations between time 0
and time t of completion times.

5. Anticipating Girsanov theorem

We now introduce a formalism which is helpful for the proof of the anticipating
Girsanov theorem Th. 3. Given a real separable Hilbert space X with orthonormal
basis (hi)i≥1, let

S(X) =

{
i=n∑
i=1

Fihi : F1, . . . , Fn ∈ S, n ≥ 1

}
,

with S = S(IR). Let H ⊗X denote the completed Hilbert-Schmidt tensor product of
H with X. Any u ∈ S(H ⊗X), is written as

u =
∞∑
k=1

ukek, uk ∈ S(X), k ≥ 1.

Let

U(X) =

{ ∞∑
k=1

τkukek : u ∈ S(H ⊗X)

}
.
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It is known that S(X) is dense in L2(B,P ;X), and that U(X) is dense in L2(B ×
IN∗;X), cf. [14]. We extend the definition of D to S(X) as

(DF, h)H = lim
ε→0

F (ω + εh)− F (ω)
ε

, F ∈ S(X).

We call ID1,2(X) the completion of S(X) with respect to the norm

‖F‖ID1,2(X) = ‖|F |X‖2 + ‖|DF |H⊗X‖2,

We define δ : S(H ⊗X) −→ L2(B;X) by

(5.1) δ(u) =
∞∑
k=1

uk −Dkuk, u ∈ S(H ⊗X).

The operators D : S(X) → L2(B × IN∗;X) and δ : U(X) → L2(B;X) are closable
and mutually adjoint:

E [(DF, u)H⊗X ] = E [(δ(u), F )X ] , u ∈ U(X), F ∈ S(X).

With this notation the anticipating Girsanov theorem (Th. 1 of [15]) can be formu-
lated as follows.

Theorem 2 Let F : B → H be a measurable mapping such that

• h 7→ F (ω+h) is continuously differentiable on H in the completed tensor product
H ⊗H, for any ω ∈ B,

• Fk = 0 on {τk = 0}, k ≥ 1,

• IB + F leaves invariant the cone {(ωk)k≥1 ∈ B : ωk > 0, k ≥ 1} of strictly
positive sequences,

• det2(IH +DF ) 6= 0, a.s., and

• IB + F is a.s. bijective.

Then
E [f ] = E [f ◦ (IB + F )|ΛF |] , f ∈ C+

b (B).

The functional ΛF is the density d(IB + F )−1P/dP , with

(5.2) ΛF = det2(IH +DF ) exp(−δ(F )), F ∈ ID1,2(H) ∩Dom(δ),

where det2(IH +K) is the Carleman-Fredholm determinant of IH +K:

det2(IH +K) =
∞∏
i=1

(1 + λi) exp(−λi),

(λk)k≥1 being the eigenvalues of the Hilbert-Schmidt operator K, counted with their
multiplicities, cf. [5], Th. 26. If F ∈ Dom(δ) ∩ ID1,2(H) and DF is a trace class
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operator, then
∞∑
k=1

Fk is summable, a.s., and ΛF admits from (5.1) the simpler

factorization

(5.3) ΛF = det(IH +DF ) exp

(
−
∞∑
k=1

Fk

)
,

where det is the limit of finite-dimensional classical determinants. We note that
Th. 2 is not directly applicable in the present situation where the transformation
IB + F = φ0,t is given by a flow which is solution of a differential equation. In
particular the differentiability hypothesis of Th. 2 are not directly verified and the
Carleman-Fredholm determinant det2(IH + DF ) remains to be explicitly computed
in terms of σ. For this reason we use Th. 1.

6. Proofs

We now prove Th. 1, using the formalism of Sect. 5.

Definition 2 Let V denote the class of processes of the form v(·, τ1, . . . , τn), where
v ∈ C1

c ([0, 1]× IRn) satisfies v(t, x1, . . . , xn) = 0 if t ≥ x1 + · · ·+ xn, n ≥ 1.

We will need the following Lemmas, which are adapted from [3]. They do not rely
on the nature of the underlying (Poisson or Wiener) measure, hence their proofs are
similar to that of [3], see also [16].

Lemma 1 Let F ∈ ID1,2. For any ε > 0, there is a sequence (Fn)n∈IN ⊂ S that
converges to F in ID1,2 and such that

• ess inf F < Fn < ess sup F , n ∈ IN.

• ‖| DFn |H‖∞≤‖| DF |H‖∞ +ε , n ∈ IN.

Lemma 2 Let σ ∈ IL1,∞ with ess sup σ < 1.

• There is a sequence (σn)n∈IN ⊂ V, uniformly bounded in IL1,∞, that converges
to σ in IL1,2, with sup

n,t,ω
σnt (ω) < 1.

• If σ has a version (also denoted by σ) with continuous trajectories, then the
sequence (σn)n∈IN can be chosen such that (σnTk

)n∈IN converges in L2(B) to σTk
,

k ≥ 1.

Lemma 3 Let T ,R be two absolutely continuous transformations, respectively de-
fined by

T (ω) = ω +
∫ 1

0

js(ω)Us(ω)ds,

and

R(ω) = ω +
∫ 1

0

js(ω)Vs(ω)ds,
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ω ∈ B, with U, V ∈ L2(B)⊗ L2([0, 1]). Let F ∈ ID1,∞. We have

|F ◦ T − F ◦ R| ≤ ‖|DF |H‖∞|U − V |L2([0,1]), a.s.,

and

(6.1) |F (ω)− F (ω + h)| ≤ ‖|DF |H‖∞‖h‖H , h ∈ H, a.s.

Lemma 4 Let (Tn)n∈IN be a sequence of absolutely continuous transformations with

Tnω = ω +
∫ 1

0

Uns (ω)ds,

defined by a sequence (Un)n∈IN ⊂ L2(B)⊗L2([0, 1];H) of processes that converges to
U ∈ L2(B)⊗L2([0, 1];H), such that the sequence of densities (Ln)n∈IN = (dTnP/dP )n∈IN

is uniformly integrable. If (Fn)n∈IN converges to F in probability, then (Fn ◦ Tn)n∈IN

converges to F ◦ T in probability, where T : B −→ B is defined by

T ω = ω +
∫ 1

0

Us(ω)ds.

Moreover, T : B −→ B is absolutely continuous.

The proofs of Lemma 1, 2, 3 and 4 are postponed to the end of this section.

Lemma 5 Let σ ∈ V and 0 ≤ s ≤ t ≤ 1. We have for F = φt,s − IB:

ΛF = exp
(
−
∫ t

s

[
D̃rσr

]
◦ φs,rdr −

∫ t

s

σr ◦ φs,rdr
) k=Nt∏

k=1

(1− σ(T s,tk , φs,T s,t
k

))−1,

and for F = φs,t − IB:

ΛF = exp
(∫ t

s

[
D̃rσr

]
◦ φs,rdr +

∫ t

s

σr ◦ φt,rdr
) k=Nt∏

k=1

(1− σ(Tk, φt,Tk
)).

Proof. (of Lemma 5). We use the expression (5.2) of ΛF . We have for 0 ≤ s ≤ t ≤ 1,
using (3.3):

Dkφt,s(l) =



−σ(Tl, φt,Tl
)1{s<Tl<t} + σ(Tl−1, φt,Tl−1)1{s<Tl−1<t}

−
∫ t

s

ir(el)
i=n∑
i=1

Dkφt,r(i) [Diσr] ◦ φt,rdr, 1 ≤ k < l ≤ n,

1− σ(Tl, φt,Tl
)1{k≤l}1{s<Tl<t}

−
∫ t

s

ir(el)
i=n∑
i=1

Dkφt,r(i) [Diσr] ◦ φt,rdr, 1 ≤ k = l ≤ n,

−
∫ t

s

ir(el)
i=n∑
i=1

Dkφt,r(i) [Diσr] ◦ φt,rdr, 1 ≤ l < k ≤ n,

1{k=l}, k > n.
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Let Mt,s ∈Mn(IR) be the n× n matrix

Mt,s = (Dkφt,s(l))1≤k,l≤n, 0 ≤ s ≤ t ≤ 1.

The above computation can be rewritten as

(6.2) Mt,s = At,s +
∫ t

s

Mt,rQt,rdr, 0 ≤ s ≤ t ≤ 1,

where At,s ∈Mn(IR) is the n× n matrix

At,s(i, j) =


−σ(Tj , φt,Tj )1{s<Tj<t} + σ(Tj−1, φt,Tj−1)1{s<Tj−1<t}, 1 ≤ i < j ≤ n,

1− σ(Tj , φt,Tj
)1{s<Tj<t}, 1 ≤ i = j ≤ n,

0, 1 ≤ j < i ≤ n,

and Qt,r ∈ Mn(IR) is the n× n matrix Qt,r = (ir(el) [Dkσr] ◦ φt,r)1≤k,l≤n. We have
from (3.4):

Dφt,u = D (φs,u ◦ φt,s) = [Dφt,s] [Dφs,u] ◦ φt,s, 0 ≤ u ≤ s ≤ t ≤ 1,

hence
Mt,u = [Mt,s] [Ms,u ◦ φt,s] , 0 ≤ u ≤ s ≤ t ≤ 1.

We will show that for fixed ω ∈ B,

(6.3) detMt,s = exp
(
−
∫ t

s

trace Qt,rdr
)
, Tk−1 < s ≤ t < Tk, k ≥ 1.

Let ε > 0. We have

detMt,s − detMt,s−ε = detMt,s − det (Mt,sMs,s−ε ◦ φt,s)
= (1− detMs,s−ε ◦ φt,s) detMt,s

= (detMt,s)
(

1− det
(
As,s−ε ◦ φt,s −

∫ s

s−ε
Mt,r ◦ φt,sQt,r ◦ φt,sdr

))
.

Moreover,

det
(
As,s−ε ◦ φt,s −

∫ s

s−ε
Mt,r ◦ φt,sQt,r ◦ φt,sdr

)
is equivalent to 1 − εtrace Qs,s ◦ φt,s as ε goes to zero since for Tk−1 < s < s + ε <
t < Tk, we have As,s−ε = IIRn and Mt,r −→ IIRn as r ↓ s. Moreover, from Remark 1
we have Qs,s ◦ φt,s = Qt,s, hence for Tk−1 < s ≤ t < Tk,

(6.4)
d

ds
(detMt,s) = trace (Qt,s) detMt,s,
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which proves (6.3). Since Qt,s(i, j) may be nonzero only if Tj−1 ≤ s < Tj , i = 1, . . . , n,
we obtain

trace (Qt,s) =
∞∑
k=1

1[Tk−1,Tk[(s) [Dkσs] ◦ φt,s =
∞∑
k=1

is(ek) [Dkσs] ◦ φt,s

=
∞∑
k=1

is(ek) ◦ φt,s [Dkσs] ◦ φt,s = −
[
D̃sσs

]
◦ φt,s,

hence for Tl−1 < s ≤ t < Tl:

det(Mt,s) = exp

(∫ Tl∧t

s

[
D̃rσr

]
◦ φt,rdr

)
detMt,t∧Tl

, l ∈ IN,

and

det(Mt,Tl−1) = (1− σ(Tl−1, φt,Tl−1)) exp

(∫ t∧Tl

s

[
D̃rσr

]
◦ φt,rdr

)
detMt,t∧Tl

.

Hence for 0 ≤ s ≤ t ≤ 1,

(6.5) det(Dφt,s) = exp
(∫ t

s

[
D̃rσr

]
◦ φt,rdr

) ∏
s<Tk<t

(1− σ(Tk, φt,Tk
)) .

Hence from (5.3), (6.5) and
∞∑
k=1

Fk =
∞∑
k=1

∫ t∧Tk

t∧Tk−1

σr ◦ φt,rdr, we obtain

dφs,tP

dP
= exp

( ∞∑
k=1

∫ t∧Tk

t∧Tk−1

σr ◦ φt,rdr

)
detDφt,s

= exp
(∫ t

s

[
D̃rσr

]
◦ φt,rdr +

∫ t

s

σr ◦ φt,rdr
) k=Nt∏

k=1

(1− σ(Tk, φt,Tk
)).

Moreover, we have φt,Tk
◦ φs,t = φs,T s,t

k
, Tk < t, since

φt,Tk
◦ φs,tω = φs,tω −

(∫ t

Tk

σr ◦ φt,rdr
)
◦ φs,tω

= φs,tω −
∫ t

T s,t
k

σr(φt,r ◦ φs,tω)dr

= ω +
∫ t

s

σr(φs,rω)dr −
∫ t

T s,t
k

σr(φt,r ◦ φs,tω)dr

= ω +
∫ T s,t

k

s

σr(φs,rω)dr = φs,T s,t
k
ω, ω ∈ B.
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Hence for 0 ≤ s ≤ t ≤ 1,

dφt,sP

dP
=

(
dφs,tP

dP

)−1

◦ φs,t

= exp
(
−
∫ t

s

[
D̃rσr

]
◦ φs,rdr −

∫ t

s

σr ◦ φs,rdr
) k=Nt∏

k=1

(1− σ(Tk, φt,Tk
) ◦ φs,t)−1

= exp
(
−
∫ t

s

[
D̃rσr

]
◦ φs,rdr −

∫ t

s

σr ◦ φs,rdr
) k=Nt∏

k=1

(1− σ(T s,tk , φs,T s,t
k

))−1.

Proof. (of Th. 1). We start by assuming that σ ∈ V. In this case the assumptions of

Th. 2 are satisfied by F = φs,t − IB :

E [f ◦ φt,s] = E [fΛF ] , E [f ] = E [f ◦ φs,tΛF ] , f ∈ C+
b (B),

where the expression of ΛF = dφt,s/dP is given by Lemma 5, 0 ≤ s ≤ t ≤ 1, this
statement is in fact finite dimensional. It remains to extend this result to σ ∈ IL1,∞.
For this we follow [16] which uses ideas applied in the Wiener case by [3]. From (6.1),
σ ∈ IL1,∞ satisfies (H). From Lemma 2 we choose a sequence (σn)n∈IN ⊂ V that
converges to σ in IL1,2, with ‖ log(1 − σn)‖∞ < C and ‖σn‖∞ + ‖|Dσn|H‖∞ ≤ C,
n ∈ IN, for some C > 0. The sequence (σn)n∈IN defines a sequence of transformations(
φns,t
)
n∈IN

, and a sequence of density functions (Lns,t)n∈IN = dφns,tP/dP , 0 ≤ s, t ≤ 1.
We have

E
[
Lns,t| logLns,t|

]
= E

[
| logLns,t ◦ φns,t|

]
≤ E

[∫ 1

0

‖ log(1− σnr )‖∞dNr
]

+
∫ t

0

‖D̃rσ
n
r ‖∞dr +

∫ t

0

‖σnr ‖∞dr

≤
∫ 1

0

‖ log(1− σnr )‖∞dr +
∫ 1

0

‖|Dσnr |H‖∞dr +
∫ t

0

‖σnr ‖∞dr ≤ 3C,

hence the sequence (Lns,t)n∈IN is uniformly integrable. We now have that (φns,t−IB)n∈IN

converges in L2(B)⊗H since

E
[
|φns,t − φms,t|2H

]
≤ E

[∫ t

s

|σnr (φns,r)− σmr (φms,r)|2dr
]

≤ 2E
[∫ t

s

|σnr − σmr |2Lns,rdr +
∫ t

s

|σmr (φns,r)− σmr (φms,r)|2dr
]

≤ 2E
[∫ t

s

|σnr − σmr |2Lns,rdr + C2

∫ t

s

∫ r

s

|σnu(φns,u)− σmu (φms,u)|2dudr
]

≤ 2E
[∫ t

s

|σnr − σmr |2Lns,rdr
]

exp
(
|t− s|C2

)
n,m ∈ IN, 0 ≤ s, t ≤ 1, by the Gronwall lemma and Lemma 3. As n and m go
to infinity, E

[
|φns,t − φms,t|2H

]
converges to 0 by uniform integrability of (Lns,t)n∈IN,
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and from Lemma 4, the sequence (σnr (φns,r))n∈IN converges to σr(φs,r) in L2(B), for
r ∈ [0, 1], hence by boundedness of σ the limit of (φns,t)n∈IN solves (3.2) and coincides
with φs,t. The uniqueness of φs,t follows from Lemma 3 and its absolute continuity
from Lemma 4. The above argument also shows that

(
φnt,Tk

− IB
)
n∈IN

converges in
L2(B)⊗L2([0, 1], H) to φt,Tk

−IB which is absolutely continuous, k ≥ 1 (we let σ = 0
outside of [0, 1]×B). Consequently, (σn(Tk, φnt,Tk

)) and (σn(Tk, φnt,Tk
))◦φns,t converge

respectively to σ(Tk, φt,Tk
) and σ(Tk, φt,Tk

) ◦ φs,t = σ(T s,tk , φs,T s,t
k

) in probability

as n → ∞, from Lemma 2 and Lemma 4, k ≥ 1. Moreover,
([
D̃·σ

n
·

]
◦ φns,·

)
n∈IN

converges to
[
D̃·σ·

]
◦ φs,· in L2(B × [0, 1]):

E

[∫ 1

0

∣∣∣[D̃rσ
n
r

]
◦ φns,r −

[
D̃rσr

]
◦ φs,r

∣∣∣2 dr]
≤ 2E

[∫ 1

0

| [Dσnr ] ◦ φns,r − [Dσr] ◦ φns,r|2Hdr +
∫ 1

0

| [Dσr] ◦ φns,r − [Dσr] ◦ φs,r|2Hdr
]

≤ 2E
[∫ 1

0

|D(σnr − σr)|2HLnr dr +
∫ 1

0

| [Dσr] ◦ φns,r − [Dσr] ◦ φs,r|2Hdr
]
,

which converges to 0 as n goes to infinity since |Dσr(φns,r)|H ≤ ‖|Dσr|H‖∞, r ∈ [0, 1].
Finally, a subsequence of (Lns,t)n∈IN, resp. (Lnt,s)n∈IN, also denoted by (Lns,t)n∈IN, resp.
(Lnt,s)n∈IN, converges almost surely to (4.3), resp. (4.4), 0 ≤ s ≤ t ≤ 1. By uniform
integrability of

{
Lns,t : n ∈ IN

}
we have for f ∈ C+

b (B):

E [f ] = lim
n→∞

E
[
f ◦ φns,tLns,t

]
= E [f ◦ φs,tLs,t] . 0 ≤ s, t ≤ 1.

For completeness we state the proofs of Lemmas 1, 2, 3 and 4. They are the respective

analogs of Props. 2.5, 2.6, 2.7 and 2.10 in [3], see also Props. 2,3,4 and 5 in [16].
Proof. (of Lemma 1). Let Fn denote the σ-algebra generated by τ1, . . . , τn and

let Fn = (1 − 1
n )E[F |Fn], n ≥ 1. We have ess inf F < Fn < ess sup F , n ≥ 1.

We have ‖|DFn|H‖∞ ≤ ‖|DF |H‖∞, and (Fn)n≥1 converges to F in ID1,2. Hence
it suffices to prove the result for F = f(τ1, . . . , τn) ∈ ID1,2. Assume first that f
has a compact support in IRn

+, let Ψ ∈ C∞c (IRn
+) with

∫
IRn

+
Ψ(x)dx = 1, Ψ ≥ 0, and

fk(y) = 1
kn

∫
IRn

+
Ψ(kx)f(y + x)dx, k > 0, y ∈ IRn

+. With Fk = fk(τ1, . . . , τn), we have
ess inf F ≤ Fk ≤ ess sup F , k ≥ 1, and ‖|DFk|H‖∞ ≤ ‖|DF |H‖∞. If f does not
have a compact support, let Φ ∈ C∞c (IRn, [0, 1]) such that Φ(x) = 1 for |x| < 1. Let
Fk = E[F |Fn]Φ(τ1/k, . . . , τm/k). Then (Fk)k≥1 converges to F in ID1,2 and

‖|DFk|H‖∞ ≤ ‖|DF |H‖∞ +
1
k
‖F‖∞ sup

i=n∑
i=0

(∂iΦ)2 ≤ ‖|DF |H‖∞ + ε

for k great enough.

Proof. (of Lemma 2). For π = {∆1, . . . ,∆n} a partition of [0, 1], let
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σπ =
i=n∑
i=1

1
|∆i|

1∆i

∫
∆i

σrdr.

Let (πn)n∈IN be a sequence of partitions of [0, 1], mutually increasing with max1≤i≤n |∆n
i |

converging to 0 as n goes to infinity. We have that (σπn)n∈IN converges to σ in L1,2

with |σπn
s | ≤ ‖σ‖∞ and ess sup σπn ≤ ess sup σ < 1. We apply Lemma 1 to construct

a sequence (σπn,m)m∈IN ⊂ V, bounded in IL1,∞, such that σπn,m
t converges a.s. to

σπn
t , t ∈ [0, 1], as m → ∞. If σ has a version with continuous trajectories, then
σπn

Tk
converges a.s. to σTk

, and a subsequence of (σπn,m
Tk

)m∈IN converges a.s. to σπn

Tk
,

t ∈ [0, 1], k ≥ 1, as m→∞.

Proof. (of Lemma 3). Let δ > 0 and ε > 0. If F ∈ ID1,∞, then from Lemma 1 there

is a sequence (Fn)n∈IN ⊂ S that converges to F in ID1,2 and

|Fn ◦ T − Fn ◦ R| ≤ ‖|DFn|H‖∞|U − V |L2([0,1])

≤ (‖|DF |H‖∞ + ε)|U − V |L2([0,1]), a.s.

Since T and R are absolutely continuous, we have that P (|Fn ◦ T − F ◦ T | ≥ δ) and
P (|Fn ◦ R − F ◦ R| ≥ δ) converge to 0 as n goes to ∞. Hence

|F ◦ T − F ◦ R| ≤ (‖|DF |H‖∞ + ε) |U − V |L2([0,1]), a.s.

Proof. (of Lemma 4). Let ε > 0. By uniform integrability there is Mε > 0 such that

sup
n∈IN

E
[
Ln1{Ln>Mε}

]
≤ ε/2.

There is n0 ∈ IN such that

P (|F (Tn)− Fn(Tn)| ≥ δ) = E
[
1{|F−Fn|≥δ}L

n
]

≤ E
[
1{L2>Mε}L

n
]

+MεP (|F − Fn| ≥ δ)
≤ ε/2 +MεP (|F − Fn| ≥ δ) ≤ ε, n ≥ n0.

Let (Gn)n∈IN ⊂ S be a sequence that converges to F in L2(B). There is k0 ∈ IN such
that

P (|F ◦ Tn −Gk0 ◦ Tn| ≥ δ) + P (|F ◦ T −Gk0 ◦ T | ≥ δ)

≤ E
[
1{|F−Gk0 |≥δ}(L

n + L)
]
≤ 2ε, n ≥ k0.

From Lemma 3, there is n1 ∈ IN such that

P (|Gk0 ◦ T −Gk0 ◦ Tn| ≥ δ) ≤
1
δ
‖|DGk0 |H‖∞|σ − σn|L2([0,1]) ≤ ε, n ≥ n1.

Hence
P (|F ◦ T − F ◦ Tn|3 ≥ δ) ≤ 3ε, n ≥ max(n0, k0, n1).
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The transformation T is absolutely continuous because its density is obtained as the
weak limit of (Ln)n∈IN in the weak topology σ(L1(B), L∞(B)). Finally we mention

a result that shows the link between the queuing problem exposed in Sect. 2 and the
anticipative Skorokhod integral δ̃, cf. [16].

Theorem 3 Let σ ∈ IL1,∞ have a version with continuous trajectories, such that
ess inf σ < 1. Let b ∈ L2([0, 1], L∞(B)) and η ∈ L∞(B). The anticipating stochastic
differential equation

(6.6) Xt = η − δ̃
(
1[0,t]σX

)
+
∫ t

0

bsXsds t ∈ [0, 1]

has for solution

Xt = η ◦ φt,0 exp
(∫ t

0

bs ◦ φt,sds
)
dφ0,tP

dP

= η ◦ φt,0 exp
(∫ t

0

[
D̃sσs

]
◦ φt,sds+

∫ t

0

σs ◦ φt,sds+
∫ t

0

bs ◦ φt,sds
)

×
k=Nt∏
k=1

(1− σ(Tk, φt,Tk
)), t ∈ [0, 1].
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