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Abstract

This paper aims to a unified treatment of hedging in market
models driven by martingales with deterministic bracket (M, M),
including Brownian motion and the Poisson process as particular
cases. Replicating hedging strategies for European, Asian and Look-
back options are explicitly computed using either the Clark-Ocone
formula or an extension of the delta hedging method, depending on
which is most appropriate.
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1 Introduction

The Clark formula [Cla70] allows in principle for the calculation of replicat-
ing hedging strategies in complete markets [KO91], however explicit com-
putations are in general difficult to perform via this formula. For markets
driven by Brownian motion a proof of the classical Black-Scholes formula
via the Clark-Ocone formula can be found in [Pks96], Ch. 5, p. 13. This
method has been recently extended to markets driven by a Poisson pro-
cess in [AOPUOQ0]. Brownian motion and the compensated Poisson process
share the important chaos representation property which is capital for mar-
ket completeness.

In this paper we consider a larger family of martingales (M;);c[o,1] satisfying
the following two conditions:

a) the chaotic representation property (in relation with market complete-
ness), i.e. every square-integrable functional, measurable with respect
to the filtration generated by (M;):cjo,r], can be expanded into a series
of multiple stochastic integrals of deterministic functions with respect

to (Mt)tE[O,T]7

b) the condition d(M, M), = ajdt, where (au)ep,r] is a square integrable
deterministic function.

Hypothesis (b) implies that ([M, M], — [ a2ds)cpor is a martingale, hence
from (a) there exists a process (¢¢)ico,r) such that (M).cjo.r) satisfies the
structure equation

d[M, M), = ajdt + ¢,dM,, t€[0,T), (1.0.1)

cf. [E90]. This equation can be viewed as a decomposition of d[M, M]; by
projection on dt and dM;, which yields a closed It6 type change of variable
formula, see Prop. 2.3.

Brownian motion is obtained for ay = 1 and ¢, = 0, t € [0,7], and the
Poisson process corresponds to non zero constant ¢, t € [0,7]. The choice



¢ = BM;, —2 < 8 < 0, considered in [DP99], corresponds to the Azéma
martingale and yields another complete market model with jumps. Choos-
ing (é)ico,r] to be a deterministic function allows for the driving process
to be alternatively Brownian or Poisson, depending on the vanishing of ¢,
see [JP02] for the corresponding market model.

The Clark-Ocone formula states the predictable representation of a random
variable F' as

T
F = E[F] + / B[DF | F)dM,
0

where (F;)icpo,r is the filtration generated by (My)icp,m and D, is the gra-
dient operator that lowers the degree of multiple stochastic integrals with
respect to (M;)ico,r]- One of the goals of this paper is to compute the
process t — E[D.F | F;] in several situations. We obtain explicit hedging
formulas for European calls in the mixed Brownian-Poisson model of [JP02]
and in the Azéma martingale model of [DP99] and for Asian and Lookback
options.

More precisely, let (Sir)wcjo,r) denote the stock price process driven
by (My)icpo,r), starting from x at time ¢, with volatility (oy)icpo,r), and let
it = lgg,—oy, Jo = L — iy, Sy = S§,, t € [0,7]. In a model with determin-
istic structure equation, i.e. d[M,M], = a?dt + ¢,dM; with deterministic
(¢1)icpo,r), the replicating hedging strategy of a European call with payoff
(St — K)™* is given by

e~ ftT rsds
t— WE [ZtUtSt,Tl{SZTZK}
jt T T
—I—a(at@stj - (K - St,T)+)1{S§T21ﬁ7 } )

t
r=_S%

cf. (4.1.6) and Prop. 4.1. This formula extends both the classical Black-
Scholes hedging formula in the Brownian case (¢, = 0, t € [0,7]), and
the hedging formula of [AOPUO00], Th. 6.1, in the Poissonian jump case
(pr =1, t € [0,7]). It can be obtained both from the Clark formula and
from martingale methods. The above conditional expectation can be also
explicitly computed, see. Prop. 4.2. The case of Asian options is treated
in Prop. 4.3 in the deterministic structure equation model, and Lookback

options are considered in Prop. 4.5 in a market driven by Brownian motion.
In the Azéma martingale model of [DP99], i.e. d[M, M|, = dt + SM;-dM,,



—2 < B < 0, we obtain

- fT rsds
e Jt . i
Lo Sirae B By + My — M)SE e (St)
T K)1 Sx y=M;
+( t,T - ) [WM7K}( t,T):| 2=5, )
see Prop. 4.4.

We proceed as follows. In Sect. 2 we introduce the notation of chaotic
calculus, the solutions of structure equations and the Clark-Ocone formula
which gives the predictable representation of the random variable F'. We
also state the change of variable formula and Girsanov theorem which hold in
a particular form for solutions of structure equations. In Sect. 3 we describe
different methods for the computation of predictable representations for
the general class of normal martingales having the chaos representation
property. The intrinsic expression of the gradient D is completely known if
(@¢)tepo,r) is deterministic, i.e. for the Brownian, Poisson and deterministic
structure equation models, (Sect. 3.2). In the Markovian case (Sect. 3.3) it is
possible to combine the Clark-Ocone and It6 formulas to obtain the explicit
predictable representation of F. Sect. 4 is devoted to the computation of
replicating portfolios. In Sect. 4.2 we hedge European calls using the Clark
formula, extending the method applied in the Brownian case in [Dks96],
Ch. 5, pp. 13-15. In Sects. 4.3, 4.4 and 4.5 we deal with Asian, European
and Lookback options, in particular we use the delta hedging approach to
recover some results obtained in [Ber98] from the Clark formula.

2 Notation and preliminaries

2.1 Chaotic calculus

Let (My).ejo,r) be a martingale on the space € of cadlag functions from [0, 7]

to R, having the chaos representation property. Let (au)icjor] € L*([0,T7])

be a positive deterministic non vanishing square-integrable function, and as-

sume that (My)seo,7) has deterministic angle bracket d(M, M), = oZdt. We

denote by (F;)se(o,r] the filtration generated by (M;)iepo. 11, and by L2([0, T7)°"
the space L*([0,T], ofdt)°™ of of ---af dt;---dt, square-integrable sym-

metric functions. The multiple stochastic integral I,,(f,,) is defined as

T tn to
L,(fn) :n!/ / / falte, .o tn)dMy, - -dM,;,, n>1,
0 0 0



fn € L2([0,T])°™, with

ElLy(fo) I (gm)] = 211 tnzm) (frs Gm) 12 (01707 (2.1.1)

The chaos representation property for (M;),cpr) states that every F €
L*(Q) has a decomposition as F' = > I,(f,). Let D : Dom (D) —
L*(Q x [0,T],dP x o2dt) denote the closable, unbounded gradient operator
defined as

D,F =Y nl(fu(x,t), dPxdt—ae.,
n=1

with F =35> I,(f,) in Dom (D), i.e.
Znn!anH%Q(M) < 0.
n=1

2.2 Structure equations

Let L5(2 x [0,T7]) be the space of bounded, (F)icr,-adapted stochastic
processes. We assume that (M), is solution of the structure equation

d[M, M, = ojdt + ¢,dM,, te€[0,T], (2.2.1)

where ¢ = p(t, M;-) is a deterministic function of ¢t and M,. Existence
and uniqueness of the solutions are guaranteed when ¢, is a deterministic
function [E90]. Existence is proved when ¢, = ¢(M,-) and ¢ is a continuous
function [Mey89], and the solution is unique when ¢(x) = fz with § €
[—2,0), cf. [E90]. See also [Pha00], [Tav99] for recent results on structure
equations. Let 4, = lrg,—0y and j; = lyg,20p = 1 — iy, t € [0,7]. The
continuous part of (My)ecpor is given by dM; = i,dM, and the eventual
jump of (My)ejor) at time ¢ € [0,77] is given as AM; = ¢, t € [0,T7], see
[£290], p. 77.

a) If (¢¢)ieo,) is deterministic, let Ay = jia /@7, t € [0,T7], then (M)ieon
can be represented as

th = itOétdBt -+ ¢t(dNt — )\tdt), te [0, T], MO = O, (222)

where (B;)icjo,r] is a standard Brownian motion, and (V¢ ):ejo,7] a Pois-
son process independent of (Bi)cjor), with intensity v, = f(f Agds,
t € [0,T), cf. Prop. 4 of [E90], and [JP02].



b) If ¢, = BM,, 5 € R, then (2.2.1) has a unique solution called the Azéma
martingale, cf. [E90]. If —2 < 8 < 0, this solution has the chaos

representation property and it has been used to model a complete
market with jumps in [DP99].

Figure 1 shows a sample path of (S;);co7] and the corresponding function
(it)teo,r) chosen to be a simple indicator function, with Sy = 4, oy = 1,
a? =50, ¢, = 1.64,, t € [0, T].
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Figure 1 - Sample trajectory of (Si):co,m*

Figure 2 is a simulation of an Azéma martingale with § # —1, from a
discretization of the structure equation (2.2.1):

2
Athﬁ)th i\/<5§t> + At,

with probabilities

*Vertical lines represent jumps.
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Figure 2 - Sample path of an Azéma martingale*

In all cases of interest in this paper we have (¢¢)icpom) € Log(Q x [0,77),

since if (¢)ieor) = (BMi)icor) then supyepo 7y | Mi| < (—=2/8)Y/? (see [E0],
p. 83). Given (u)icor) € Log(§2 x [0,T7), we denote by (&(u))eco,r) the
solution of the equation

t
Zt:1+/ Zy-uydM,, t€[0,T], (2.2.3)
0

which can be written as ([Pro90], Th. 36, p. 77):
t 1 t
&(u) = exp (/ usdM — 5/ ugagisds) H (14 usgs)e ™%, (2.2.4)
0 0 seJt,

where J},; denotes the set of jump times of (M;)seo,q, t € [0,77], and let
E(u) = &r(u). If we L>®([0,T]) then &(u) can be represented as

WE
S|

§i(u) = ‘]n((m[o,t])@n%

i
o

and we have D& (u) = 1p(s)us&(u), s,t € [0,T].

Definition 2.1 Let S denote the linear space generated by exponential
vectors of the form &(u), where u € L>([0,T)).

The space S is dense in L*(2), and from the following Lemma S is an
algebra for the pointwise multiplication of random variables if (¢¢):cpo,77 is
deterministic. The following is a version of Yor’s formula [Yor76] or Th. 37
of [Pro90], page 79, for martingales with deterministic bracket (M, M),.



Lemma 2.2 For any u,v € L*>([0,T]), we have the relation

§(w)€(v) = exp((u, v) 2 (o, ) (u + v + Puv). (2.2.5)
Proof. 'We have for u,v € L*([0,T)):

d(&e(u)&i(v)) = w&y— ()& (v)d My + V&4~ (V) (u)d M,
oy (v)&- (u)d[ M, M];
= wé (W)€ (0)dMy + & (0)&- (w)dM; + viu, &y (v)& (u)afdt
Foruvi&y- (V) (u)dMy
= v ()& (w)addt + & (v) € (u) (ug + vy + Grugvy)d M.

hence
d(e o veveadsg, (u)€, (v)
= e Jousvsatdsg, ()6 (u)(uy + vp + drugvy )M,

which shows that exp(—(u, v) 2 (o,17))§(u)§(v) = &(u + v + ¢uv). Relation
(2.2.5) follows then by comparison with (2.2.3).

OJ
2.3 Change of variable formula
We recall the following change of variable formula, which follows from
Prop. 2 of [E90] after addition of an absolutely continuous drift term.
Proposition 2.3 Let X = (Xy)icjo,r) be a R"-valued process satisfying
dX; = Ridt + thMt, Xy >0,
where R = (Ry)icpo,r) and K = (Ky)iepo,r) are two predictable
square-integrable R™-valued processes. For any function
Ry X R" > (t,x) = fi(z) in CE(Ry x R™;R) we have
t t t af
700 = o)+ [ Lapgarte+ [ Ugxgds+ [ s,
0 0 0
(2.3.1)

where
MM&Fﬂﬂ%VM&»+f%M&+@&J—ﬁ@ﬂ%
and

Usfs(Xs) = RSVfS(XS>



+a? (%is<Hessfs(X5), K, ® K,)
I 1 0.0 ) = L0 = 0L VECGD)),
with the convention 0/0 = 0.

2.4 Girsanov theorem

The Girsanov theorem holds in a particular form when (M;);c(o.1] is the
solution of a structure equation (1.0.1). Let (1;)cjo,r] be a bounded
predictable process such that 1+ ¢ > 0, t € [0,T7, let (I;)¢cpo,r) denote
the solution of the equation

dly = - dM,, t€[0,T], Io=1,
and let () be the probability defined by

dQ

l,=F {@ | }}} , telo,T). (2.4.1)

Proposition 2.4 Under the probability (), the process
t
Zy = M, —/ apeds, te0,T], (2.4.2)
0

1s a local martingale which satisfies the structure equation

d[Z,7Z), = a(1 + ¢pby)dt + ¢,dZ;, t € 1[0,T). (2.4.3)

Proof. From the Girsanov theorem,

1
dZt = th — l—d<L, M)t = th — a?¢tdt
-

is a local martingale under Q, with d(L, M); = l,-a21,dt, and

d[Z, Z]t = d[M7 M]t = O[fdt + ¢tht = Oé?(l + ¢t¢t>dt + ¢tdZt'

O

If (¢¢)tepo,r and (¢ )iejo,r) are deterministic, then (Z;):cjo,r) has the chaos
representation property under @, since (2.4.3) is a deterministic structure
equation.



3 Computations of predictable
representations

3.1 Clark formula

The Clark-Ocone formula, cf. [Cla70], [KO91] is a consequence of the
chaos representation property for (M;)cjo,r1, and states that any
F € Dom (D) C L*(2, Fr, P) has a representation

F = E[F] + /T E[D,F | F)dM,. (3.1.1)

It can be proved as follows:

oo T tn to
n—=1 0 0 0
00 T
= B+ 300 [ Ll pn)dM,
n=1 0

— E[F) +/TE[DtF | FJdM,.

Although D : L*(Q, Fr, P) — L*(Q x [0,T],dP X a?dt) is unbounded,
the representation formula (3.1.1) can be extended to F' € L*(Q, Fr, P).

Proposition 3.1 The operator F — E[D.F | F)] taking its values in the

space of square-integrable adapted processes has a continuous extension
from Dom (D) to L*(Q, Fr, P).

Proof. We use the bound:

IEID.F | Flll2@xpory = IEF] = Flli2q) = var(F)
IF||Z2 (). F € Dom (D).

IN

O

Instead of the adapted projection (E[DyF' | Fi])icpo,r) one may also use the
predictable projection (E[D¢F' | Fi-])icpo,r)- Here this leads to the same
representation since both processes coincide in L*(2 x [0, T],dP x aZdt).

3.2 Deterministic structure equation

In this subsection we consider the case where (¢;)icpo,r) € L>([0,7]) is a
deterministic function. In this case, the probabilistic interpretation of D;

10



is known and D, F' is explicitly computable. We define the operator
DB:S — [2(Q xR, ,dP x a?dt) on S as

d :
(DPF,u)r2 o = —F (w(-) + 6/ isusds , Fes.
o de 0 le=0

We have for F' = &(u) and g € L2([0,T7):

d r )
(D°F, 91201 = P (5/ gsusaslsds) £(u)je=o
0
T
= / gstsQisisds E(u),
0

hence DB¢(u) = iyué(u), t € [0,T], where

T T
§(u) = exp (/0 usdMs — %/O u?@?@'ﬂs) I @+ wg)e™?. (3.2.1)

SGJ]E

Note that the definition of D®F by duality in L2([0,T]) implies
T
Df/ usa,dBs = vy, t€[0,T).
0

We define a linear transformation be of exponential vectors, and more
generally of elements of S, as

TPE(u) = (1 +wen)é(u), e L=([0,T)).

The transformation T} is well-defined on S because &(u1), . . ., &(uy) are
linearly independent if uy, . .., u, are distinct elements of L*(R,). Since
we have AM, = 0, dt x dP-a.e., T?¢(u) coincides dt x dP-a.e. with the
value at time T of the solution of the equation

Zt=1 +/ Zt_u.dM!, s €0,T], (3.2.2)
0
where (M!)scpo,r) is defined as
M;:Ms+¢t1[t7T](S)7 S € [O,T]
In order to see this we check that Z! = &, (u), s < t,

Z: = (1 + ¢tut>fo = (1 + ¢tut)ft— (U) = (1 + ¢tut)§t(u),

11



(since &-(u) = & (u) a.s. for fixed t), and for s > t:
72— 7+ / 2t uydM,
t

s

= (14 drue)ée(u) + /S Zt_u,dM,,

hence 7 . Zt
u.dM,, s>t,
1+ ¢ruy gt( ) /t L+ druy
which implies from (2.2.3):
Zt
s s> 1,
™ = &(u),

and ZL = (1 + puy)é(u) = TPE(u), P-as., t € [0,T).

In other terms, Tf’F , ' € S, can be interpreted as the evaluation of F' on
the trajectories of (Mj)seo,r) perturbed by addition of a jump of height ¢,
at time t.

Proposition 3.2 The transformation Ttd’ 18 multiplicative, i.e.
TY(FG) = (TP F)(T7G), F,GE€S.
Moreover we have

D,F = DFF + ;—t(Tf’F ~F), tel0,T], FeS, (3.2.3)
t

and

D FG)=FD,G+ GD,F + ¢»,D,FD,G, tel0,T], F,GeS. (3.24)
Proof. For the multiplicativity we note that

Tf(f(u)f("/)) = exp({u, v) £z (o,1)) )T §(u+ v+ guv)
= exp((u, ) 2 (o,m)) (1 + D¢ (g + v + drusvy) ) (u + v + puv)
= (1 + du)(1 + ¢rvp)€(u)é(v)
= TPEWTVE().

When ¢; = 0 we have DPF = i;u;€(u) = i, D F, hence

Dié(u) = iDi&(u) + jiDe&(u)
= qu(u) + jou(u)

12



= DPe(u)+ LT ~ §(w) 1 0.T]

Concerning the product rule we have from Lemma 2.2:
T
Di(&(u)é(v)) = exp (/ usvsaidfs) Di&(u+ v+ puv)
0

= eXp (/ usvsagds) (us + ve + Gruve)E(u + v + puw)
0

= (ug + v + drugvy)§(u)é(v)

= &(u)Di&(v) + &(v) D& (u) + ¢ D& (u) Di&(v),

u,v € L*(]0,TY]), see also Relation (6) of [Pri96].
U

If (¢+)icpo,r) is random the probabilistic interpretation of D is unknown,
however we have the product rule

E[D(FG) | F] = E[FDG | 7] + E[GDF | Fy] + ¢, E[D F'D,G | F],
(3.2.5)
F,Ge S, tel0,T]. cf. Prop. 5 of [PSV00].

3.3 Markovian case

This section presents a representation method which is based on the Ito
formula and the Markov property, see also [Pro01] in the continuous case.
Let (Xi)icpo,m be a R"-valued Markov (not necessarily time homogeneous)
process defined on €, satisfying a change of variable formula of the form

ﬂmzﬂ%wllmxwmﬁ[mmmm te.T), (331

where L, U, are operators defined on C? functions. We assume that the
semi-group (Ps¢)o<s<t<r associated to (Xi)iepo 1y, 1€

Ps,tf(Xs):E[f(Xt)|FS]ZE[f(Xt)|X5]7 OSSStST,

acts on CZ(R™) functions, with P,;0 Py = P, 0<s <t <u<T.
Although the probabilistic interpretation of D is not known when
(@¢)tepo,r is random, it is still possible to compute the explicit predictable
representation of f(X7) using the It6 formula and the Markov property.

Lemma 3.3 Let f € CZ(R™). We have

E[Df(Xr) | F] = (Le(Pirf))(X2),  t€[0,T]. (3.3.2)

13



Proof. We apply the change of variable formula (3.3.1) to

t— Porf(Xy) = E[f(X7) | F, since P,rf is C*. Using the fact that the
finite variation term vanishes since ¢t — P.rf(X}) is a martingale, (see e.g.
Cor. 1, p. 64 of [Pro90]), we obtain:

Porf(Xe) = Porf(Xo) + /0 (Ls(Psr f))(Xs)dM,, te[0,T7,

with Pyrf(Xo) = E[f(Xr)]. Letting ¢t = T', we obtain (3.3.2) by
uniqueness of the representation (3.1.1) applied to F' = f(Xr).
O

In practice, we will use Prop. 3.1 to extend (E[Dyf(Xr) | Fi])tcpo,n to a
less regular function f : R™ — R. As an example, if ¢; is written as

o1 = p(t, M), and dS; = o(t, Sy)dM; + p(t, Sy)dt, we can apply Prop. 2.3,
with (X¢)eor7 = ((St, My))eepo,m and

Lif(Se, My) = izo(t, St)01 f(Se, My) + .02 f (St My)

I (F(Si + ot Mi)o(t, Sy), My + o(t, My)) — £(Sy, My)),

+
@(ta Mt)

since the eventual jump of (My)icp,r) at time ¢ is (¢, M;). Here, 01, resp.
0y, denotes the partial derivative with respect to the first, resp. second,
variable. Hence

E[D:f(Sr, Mr) | F]
= io(t, St)(alpt,Tf)((Stv M) + 1(02 P f ) ((Se, My))

Jt
5 1 P (S 0, Mo, ), Mo, 1)

Jt
S P (5.

If (My)iepo,r is an Azéma martingale (¢, = BM,, t € [0,T1]), then i, =0
dP x dt a.s.

4 Computations of hedging strategies

4.1 Market model

In this subsection we introduce the price process which will be considered
in the sequel. Let p: [0,7] — R and o : [0,7] —]0, 00| be deterministic

14



bounded functions. Let (r¢)co,r) be a deterministic non negative function
which models a risk-less asset, and let (1;).c,r) be defined as
ry —
1/%:2 : gta tE[O,T]

We assume that 1+ ¢yp; > 0, t € [0,T]. If (¢¢)scjo,77 is not deterministic
this choice is still possible due to the boundedness of (¢)icp, 7] or from
Th. 2.1-iii) of [DP99]. Let @ denote the probability defined by

E[%| 7] =1, t €[0,T], where dl, = li-dM,, t € [0,T], lo = 1. From
Prop. 2.4,

t
Zt = Mt - / aiwsdsu te [O,T],
0

is a local martingale under () with angle bracket
d(Z,Z), = o (1 + ¢yiby)dt. If (¢1)sepo,r) is deterministic then (Z;)ep,r is a

true martingale under (). This also holds if

(¢t)te[0,T] = (6Mt)t€[0,T}a

from the boundedness of (M;)icio,r). If (¢1)icpo,r) is deterministic, we may
start from the data of (& )eo 1y, take d[Z, Z), = &jdt + ¢,dZ, and define
(w)teppr by of = ai/(1+ ¢uiy), t € [0,T]. Let the price (S)iepo,r) of a
risky asset satisfy the equation

dSt - [LtStdt + O-tSt*dZty t € [O,T], So - 1 (411)
We have
dSt = TtStdt + UtSt—th; t e {O, T], (412)
and under P, (Ste_ I Wls) o is a martingale, i.e. the market is
tef0,T

arbitrage free. Let n; and (; denote the number of units invested at time ¢
in the risky and risk-less assets respectively. Thus the value V; of the
portfolio at time t is given by

V; = CtAt + ntSty le [OaT]a (413)

where

dAt = ’I“tAtdt, AO = 1, t [O,T] (414)

We assume that the portfolio is self-financing, i.e.

d‘/t = CtdAt + ntdst, te [O, T],
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therefore

dVy = r Vidt + Utntst—tha te [07 T]a
and T
Vipe™Jo 7t — v 4 / omeSi-€” Joredsqn,, (4.1.5)
0

Suppose that we are required to find a portfolio ((;, 7¢)+ejo,r] Which leads to
a given value Vp = F. By the Clark-Ocone formula,

T
F:E[F]+/ E[D.F | F)dM,,
0

and comparing with (4.1.5) we obtain
Vo = e Iy rads BIR,
m = o, S;IE[DF | Fle st e (0,7 (4.1.6)

Next we consider different models with explicit computations of hedging
strategies.

4.2 European options and deterministic structure

In this section we hedge European calls using the Clark formula. Let
(My)ieo,r) be the martingale described in Sect. 2.2-a), with deterministic
(@¢)teio,r)s 1-e. (My)iepo,r) is alternatively Brownian or Poisson depending
on the vanishing of (¢¢)sc,r7. We assume that 1+ o, > 0, t € [0,T]. We
have

t t 1 k=N,
S, = exp (/ os015dBg + / (rs — ¢sAs05 — §isaza§)ds> H (1+or,¢1.),
0 0

k=1

0 <t <T, where (T})r>1 denotes the jump times of (Ny)ier,. We will
denote by (S¥

¥ u)uele,r) the process defined as

dsy, =S¢, du+ 0,S¢,~dM,, uel[t,T], Si =u.
We have
T T 1
Sir = wexp (/ OuQylydBy, + / (ry — GuruOy — éiuaiai)du)
t t

k=N

X H (1 + UTkngk),

k=1+N;

0<t<T,with S, =S{,, t0,T].
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Proposition 4.1 Assume that ¢, > 0, t € [0,T]. Then for 0 <t <T we
have

E[Dt(ST — K)Jr ‘ ft} = E [’itO'tS{;ETl[K oo[(S{:T)
¢t (Ut¢tSfT (K - StI,T)—’_)]‘[TI(Jt7OO[(StJjT)
=5}
Proof. By Prop. 3.2, for any F' € § we have

D,F = DEF + (‘;—t(J?F —F), telo,T]. (4.2.1)
t

We have TSy = (1 + 01¢;)St, t € [0,T], and the chain rule

DB f(F) = f/(F)DPF holds for F € S and f € C}(R). Since S is an
algebra for deterministic (¢¢):cjo,7], we may approach x — (x — K)* by
polynomials on compact intervals and proceed e.g. as in [Oks96], p. 5-13.
By dominated convergence, (S — K)™ € Dom (D) and (4.2.1) becomes

Dy(Sy — K)* = 1008t 1l (S7) + j;<<1+ot¢t>sT— K)* (S — K)*),

t

0 <t <T. The Markov property of (S;):cpo,r) implies
E[DP(Sr— K)" | F] = i0iB [SErloel(Sir)] g, »
and

I [(T¢ST— Kt — (Sr— K)* | J—"t]

o
B ;i [((1 +01de) S — K)" — (Str — K)Jr]xzst
_ ;tt (1 + 0160t = K e ,oo[(SZT)L:st
_EE (S5 — K)+1[K,oo[(SZT)]z:st
_ @E _O’t¢tSZE,T1[1+ci¢t’°O[<SZT) + (St — K)lmfrimv’(](SzT)L:&
— ﬁE :Ut@S;Tl[HvaOO[(SzT) — (K - ngT)ﬂ[Him ’OO}(SgT)]x—St
_ ;tt E (0unSir — (K = Sir) ) s ,oo[(ngT)Lst

17



If (¢¢)icjo,r) is not constrained to be positive then

E[Dy(Sy — K)" | 7] = i04F [ngTl[Koo[(S,;’fT)}x:St

]t T T T T
+¢tE [Ut@st:r ool (Str) + (Sir — K)1[1+§<t¢t,K](St,T) s,
with the convention 1p, = —1[a7b], 0<a<b<T. Prop. 4.1 can also be

proved using Lemma 3.3 and the It6 formula (2.3.1). In the deterministic

case, the semi-group P, can be explicitly computed Let

I, = ft isao2ds denote the variance of j; isas05dBs, t € [0,T], and let

Lir = ft vsds, t € [0,T], denote the intensity of Ny — N; under @, where
=M1+ ), t €[0,T7.

Proposition 4.2 We have for f € Cy(R)

e~ Ter
-PtTf k' / Vto/[;T

i=k
f (l‘e tT’T—&-(FU )!/2t0— [ dssosds H(l + Utﬁbti)) dty - - - dtgdto,

=1

where v denotes the standard Gaussian density.

Proof. We have P, rf(x) = E[f(Sr) | S; = 2] = E[f(SFr)], and

Fk
Porf(x ZE Sir) | Ny — N, = k] exp(=Lyr) ];T
k € N. Since (N, il Nt)se[t 7] is a standard Poisson process, conditionally
to {Np — N, = k;} the n first jump times (77, ...,7,) of (Ns)sep,r have
the law Ll

(Ft’—T)k1{t<t1<...<tk<T}'Yt1 oy dty -y,

and conditionally to { Ny — N; = k}, the jump times (I't 1y, ..., It 7, ) have
a uniform law on [0,T;7]*. We then use the identity in law between S},

and
T ]{?:NT
xXt,T €xXp (_/ gbs/\s(l + gbsd}s)gsds) H (1 + O-Tkngk)’
t k=1+N;
where

X =exp (-T7,/2+ (F;T)1/2W) ,

and W a standard Gaussian random variable, independent of (N;)icpo,77-
This identity holds because (By)icjo,r) is a standard Brownian motion,
independent of (N;)icpo,77-

18



See Prop. 8 of [JP02] for a computation of

T
E {exp (—/ Tsds) (St — K)Jﬂ
0
in terms of the classical Black-Scholes function
BS(z, T;r, 0% K) = Ele™" T (we’T=0"T/2+oWe _ [0)H],

where W, is a centered Gaussian random variable with variance ¢.

4.3 Asian options and deterministic structure

The price at time t of such an option is

—fTr ds 1 g ’
e Jt °° ? SudU—K ’E .
0

The next proposition gives us a replicating hedging strategy for Asian

E

options in the the case of deterministic structure equation model

Proposition 4.3 There exists a measurable function C on Ry x R such
that C(t,-) is C' for allt € Ry, and

1 (7 *

Moreover, the replicating portfolio for an Asian option with payoff

1 7 *

StC(tv }/t) =F

is given by (4.1.3) and

ne = Ulte‘ Ji"reds [C“(t, Yi)oy (4.3.1)
(1 + 0vhy) (;7 (é (t, %) — é(t,m) — ztamaQé(t,Yt))] .

Proof. Following [LL96], p. 91, we define the auxiliary process

1 /1 [
V= — (= K 7).
t St (T/O Sudu ) 5 tE [0, ]

With this notation, the price of the Asian option at time ¢ becomes

E [e‘ ftT’/‘sdsST(YT)-‘r | ]_—t] _
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For 0 < s <t <T, we have

1 K Sy
0

hence

S,Y; 1/t8u
Vit = [ Ztau
S AR

Let H € CZ(R). We have
A
¢

T
= F {H (xy—i—z/ édu)} )
T ), St J=Ys, =5,

Let C € C3(Ry x R?) be defined as
z (TS
t =E|H — | —d
C(t,z,y) [ (fverT/t s, U)]

When H(z) =z, since for any ¢ € [0,T], S; is positive and
Fi-measurable, and S, /S; is independent of F;, u > t, we have:

1.e.

E[H (SrYr) | F] = E[Sr(Yr)™ | F]

with

C(t7 y) =F

1 (TS, \*

We now proceed as in [Bel99], which deals with the sum of a Brownian
motion and a Poisson process. From the expression of 1/S; we have

1 1 a’o? o
d{=)=—1(- 2t ) dt — — dM],
(St) Si- {( e 1+0t¢t) 1+ oy !
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hence by (2.3.1)

alo? Y- o0y
A, =Y, | —rs + dt + dt — dM,.
t ! ( " 1 + Ut¢t) T 1 + O'tqbt t

Applying Lemma. 3.3 we get

E [DtH (STYT) | ft] - LtC(t, St, Y;g)

) Y,
= i (Utstagc(t, S, Y;) — 1+t2¢ta3c(t, St,Yt)> (4.3.2)
]t Yioy
Clt, S+ 0.5-,Y- — —C(t,S-,Y-) | .
¢t ( ( t -t t 1 + O—t¢t) ( t t ))

Given a family (H,),en of C7 functions, such that |H,(z)| < z* and
|H! ()| <2, 2z € R, n €N, and converging pointwise to x — =™, by
dominated convergence (4.3.2) holds for C(t,z,y) = =C(t,y) and we
obtain:

1 (7 *
Dt(?/o Sudu—K) | 7,

= Zté(t }/t)O-tSt

Jt [ = ~
5 (¢t (C( 1 +Ut¢t) C(t, Yt)) —ZtUthaQC(t,Yt)>

+St0t¢t <¢t (C ( 1+ Ut¢t t Y;g ) — itatYﬁgC(t,YtO .

U

E

As a particular case we consider the Brownian motion model, i.e. ¢; = 0,
for all t € [0,T],s0 iy =1, j; = 0 for all ¢t € [0,T], and we are in the
Brownian motion model. In this case we have

m o= e Jireds (-}gaQé(t,mHé(t,m)

= i s (St ( ( /S du — )> —i—é(t,n))
|z=S¢
— 3 (xeftT’”stC* (t,l (l/ Sudu—K))> , te€]0,T],
ox z \T Jo |z=5;

which can be denoted informally as a partial derivative with respect to .S;.



4.4 European options and Azéma martingales

Let —2 < 8 <0, and let (M;)¢cjo,r) be the unique solution of the structure
equation

This process has the chaos representation property, hence the results of
Sect. 3 apply in this case. This allows to obtain an explicit hedging
formula for the model of [DP99]. We use the convention 1y, = —1j44),
0<a<b<T.

Proposition 4.4 We have

E [Dy(Sr— K)* | A

1 N i

= ﬁMtE [Utﬁ(y + My — Mt)st’Tl[m,oo[<St,T)
x - y=M;
St = KV (Sir) s

Proof. Let (Xt)te[o,T] = ((StaMt))te[O,T]a (Rt)te[o,T] = ((rtStao))te[O,T]v
(Kt)iejor) = (0654, 1) )eepo.r), and Xy = (1,0). By Lemma 3.3, for
[ € C}(R?) we have

E[th(XT) ‘ ‘Ft} = (Lt(Pt,Tf))(Xt>

1

= 1, (Porf)( Xy + BMKy) — (Porf)(Xy))
1

= 5 (Prr f)((1+ BMoy) Sy, (1 + B)My) — (P f)(Se, My))
1

= ﬁMtE [f(L4 0By + Mp — M,)) Sy,

(14 By + My — My)))]"—g'
1

M,

y=M;

B [f(Siry+ Mr = M)J;_g'

In particular if f(z,y) = f(z) depends only on the first variable we have
E[D.f(S7) | 7]

= ﬁE [f((l + 0B(y + My — My)) fT) — f( fT)}zzg/t[t .

Approaching the function z + (z — K)* with a sequence (f,,)nen of C?
functions converging pointwise with |f,(z)| < (x — K)*, and |f/ (x)] < 2,
x € R, n € N, we obtain

E [Dy(Sr — K)* | F]
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—1 T T =M,
= ﬁMtE (1 + By + My — My))Siz — K)* = (Sir = K)*]7
1 x xr

- ﬁMtE [((1 + By + M = M))Siz = Kl om o ool (Sir)

y=M;

—(Sf7 = K)re ool (SEr)] g,

1 . i
= ﬁMtE [Utﬁ(y + My — Mt)&,:ﬁhmm[(&j)
x x y:Mt
+(SFr — K)l[m,m(sw)] .

4.5 Lookback options

Hedging strategies for Lookback options have been computed in [Ber98§]
using the Clark-Ocone formula. In this section we show that classical
martingale methods also apply in this case. We assume that
(My)iejo,r) = (Bt)tepo,r is a standard Brownian motion, i.e. a; = 1 and
¢ = 0 for every t € [0,T], and take r, = r > 0 and o, = 0 > 0 for every
t € [0,7]. Under the risk-free probability P the asset price (S;)ico,r] has
the dynamic

dS; = rSydt + 0S;dBy, t€10,T],

so (4.1.5) becomes
T
Vee T =V, +/ onSie” " dBy, t e [0,T].
0

Let m{ = infue(s s Su, M{ = SUP,es g Su, 0 < s <t < T, and let My be
either m! or M!. In the Lookback option case the payoff H(Sy, M)
depends not only on the price of the underlying asset at maturity but also
it depends on all prices of the underlying asset over the period which
starts from the initial time and ends at maturity, and let Look; be the
price of the Lookback option given by

Look; = e " T E[H(Sp, M) | Fi], H € CR?), t €[0,T).
Proposition 4.5 There exists a C* function f such that
f(Se, M, t) = E[H(Sr, M{) | F], 0<t<T.

The replicating portfolio of a Lookback option with payoff H(St, MY), and
price Look, = f(Sy, M§,t) at time t, is given by (4.1.3), and

N = eiT(Tit)alf(Sh 67 t)? te [OvT] (451>
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Proof. Tt suffices to deal with the case M’ = m!. The existence of f
follows from the Markov property, more precisely

fz,y,t)=FE [H( fT,y/\MtT)] )
Applying the change of variable formula, for ¢ € [0, T], we have
df (Sp, My, t) = |Osf +1Sonf + %aQS,?a%f (S, Mg, t)dt
+0o f (S, M, )dME + 0S:0, f (S, Mpy, t)dB.

Since (E[H(Sp, MJ) | Ft])tew
finite variation (it is in fact a decreasing process), we have:

} is a P-martingale and (MB)te[O,T] has

df(St, S,t) = UStalf(St,Mé,t)dBt t e [07T]

Then
T 0
e TF =e"TE[F] —I—/0 e_TTaSt%f(x,Mé, t)je=s,dB; t €[0,T),

which shows (4.5.1).

It is stated in Bermin [Ber98] that we should have
t
/ 0o f(Ss, Mg, s)dMg = 0, (4.5.2)
0

for the delta hedging method to work. We showed in Prop. 4.5 that the
delta hedging approach can be applied without having to verify (4.5.2),
since (M{)ejo.r] is a monotone process with finite variation.

Relation (4.5.1) can be written informally as

0
nm = —=Look;, t€[0,T].

0,
Let
log 5t + (r + 16?)(T — 1) 1 v,
dr (y) = —2 2 , and N(y) = —/ —2% du,
t(y) U\/ﬁ an (y) \/% _Ooe u

A standard Lookback call option is the right to buy the underlying asset at
the historically lowest price. In this case the strike is m{ and the payoff is

G:ST—mg.
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From [DJ98], Prop. 4, p. 271, the price Look; at time ¢ is given by

Look, = Egle ™™ Y(Sp —ml) | Fj (4.5.3)
= SN (d (m})) —e’T(T’t)th<dtT(m6) —a\/T—t>
e " Sta [ i dtT(mé)Jrzr— ”T_t)
m o
RG]

In the following proposition we recover the result of [Ber98], § 2.6.1, p. 29,
using the delta hedging approach instead of the Clark formula, as an
application of Prop. 4.5.

Proposition 4.6 The hedging strateqy for a standard Lookback call option

15 given by
2
o
ne = N(d](m})) — gj\/'(—df(mg)) (4.5.4)
(2 /T —
+e T (itt) <a_ - 1) N (—dtT(mf)) pve 0 t) .
my 2r o
Proof. We need to compute the following derivatives:
0

55 O ()

_ %(\/%/(d?(mé) B )
" Lo ) e (gt
I e Y
N Sta\/m ( (e tm ))

and

a5, (¥ (afnt) = ovT=1))

0S5,
1

T ST - < (% mi _NT—)Q)

Similarly we have

)

l\DI»—t
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Sio/2m(T —t) o
and
0 T(mt))) = 1 ox Lo mi))2
a_St (N( d; (mo))) StU\/m p( Q(dt( 0)) )
Finally,

A T A
S, \ 'mf _m602 ml .

The above expressions can be combined to compute the derivative of
Look; in (4.5.3), and to obtain:

o (o))

1 1 2

__—r(T-t), t g emty — T3 )

€ m, ex m oV
OStO'\/27T(T t) P ( 2( ¢« (mo) >

LT t)27‘ [(St) N(_dz(mBHQT\/ﬁ)

mg o

me =N (df (mf)) +

—e"TON (=di (mp))]
4T Syo? [ —2r (i) ‘73—1/\[ <—dtT(m6) L 2VT - t)

t 2 t
2r | myo? \ 'mg o

(5) sy 2

1 1 9

+em (T o (__ AT (mt )
StO' /27T(T—— t) Xp 2( t( 0))

- N(_dtT(mé) +2T—T_t) [ —r(T-1)7_ (i>_62 4+ e T(T-1) Sio?

g 2r 2r
_277“_1
St o2
X —2
mbo? \ mb

2
Wy [

+ N (df (mp))

% €T(Tt)1
r

+; {eX (—1 (dT(mt)) ) {1+6_TT D) S0 y r(T—t)
U\/m P 9\t A0 2r S

(=t | Mo N N i
€ {Stexp< 2<dt(m0) ovT 75))
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£ (20 =T

_% 9 A
= T (ii) (0— — 1) N (—dtT(mg) + vl t)

_rT lﬁg exp <—1 (f (mh) - U\/m)Q)

o (S,\ 1/ oryT -1\
To obtain (4.5.4), it is sufficient to show that
o’ 1
0 = <1 + Z) exp <—§dtT(m6)2)

t 1 2
—e (T [%to exp (—5 (dtT(mg) —oVT — t> >

o? (S, o 1 7o ey 2r/T —t ?
_'_2_7' (m—g) exp (—5 (_dt (mo) + o > .

To see this, one can observe that
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o2
1, 7 2
= €exp <—§ (dt (y)) )
—2r? 2r S, 2r?
Xexp( 3 (T—t)+ﬁlog?—i—?(T—t)—i-r(T—t))
S, B 1 2
_ r(T—t) [ ~t (T
3P e 1)

O

Similar calculations using (4.5.1) are possible for other Lookback options,
such as options on extrema and partial Lookback options, cf. [Kha02].
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