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Abstract

We propose a recursive method for the computation of the cumulants of self-exciting
point processes of Hawkes type, based on standard combinatorial tools such as Bell
polynomials. This closed-form approach is easier to implement on higher-order cu-
mulants in comparison with existing methods based on differential equations, tree
enumeration or martingale arguments. The results are corroborated by Monte Carlo
simulations, and also apply to the computation of joint cumulants generated by multi-
dimensional self-exciting processes.
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1 Introduction

Hawkes processes were introduced in Hawkes (1971) as self-exciting point processes repre-
senting an alternative to doubly stochastic point processes. In recent years they have found
applications in many fields, from neuroscience, see e.g. Cardanobile and Rotter (2010), to ge-
nomics analysis, see e.g. Reynaud-Bouret and Schbath (2010), as well as finance Embrechts
et al. (2011) and social media Rizoiu et al. (2018). As noted in Jovanovi¢ et al. (2015), the
analysis of statistical properties of Hawkes processes is still incomplete, in particular in terms

of moments, cumulants and other statistical parameters such as skweness and kurtosis.

In Dassios and Zhao (2011) the moment and probability generating functions of (gen-

eralized) Hawkes processes and their intensity have been obtained by ODE methods, with



the computation of first and second moments in the stationary case, see also Errais et al.
(2010). In Bacry et al. (2012), a stochastic calculus and martingale approach has been ap-
plied to the computation of first and second moments, however it seems difficult to generalize
to higher orders, see also Cui et al. (2020) and Daw and Pender (2020) for other methods
based on differential equations. In Jovanovi¢ et al. (2015), a tree-based method for the
computation of cumulants has been introduced, with an explicit computation of third order
cumulants. However, this type of algorithm requires to perform tree enumerations, which

can be computationally expensive.

Third-order cumulant expressions for Hawkes processes have been used in Achab et al.
(2018) for the estimation of branching ratio matrices in the analysis of order books, and in
Ocker et al. (2017), Montangie et al. (2020) for the estimation of third order correlations in
spiking neuronal networks. Higher order cumulants can also be useful in order to provide
finer estimates of the evolution of time correlations and of the probability density functions
of neuronal membrane potentials by Gram-Charlier density expansions, see e.g. Brigham

and Destexhe (2015), Privault (2020).

In this paper, we derive a general recursion formula using the standard Bell polynomials
for the computation of the cumulants of a self-exciting point process on R¢, d > 1, with
immigrant intensity v(dr) and branching intensity v(dxr) on (R? B(R?)). Our approach
is based on a recursive relation for the Probability Generating Functional (PGFl) G, of a
self-exciting point process from a single point at z € R?, derived in Proposition 3.1. Such
an implicit relation has already been observed in Adamopoulos (1975), and applied in e.g.
Bordenave and Torrisi (2007) to large deviations, however it does not seem to have been

exploited for the computation of cumulants.

In Section 2 we start by reviewing the combinatorial approach of § 3.2 of Consul and
Famoye (2006) to the computation of the cumulants of the integer-valued Borel distribution,
and show that it can be extended as an explicit recursion using Bell polynomials. This
provides an elementary model for subsequent computations, as the Borel distribution can be

used to represent the cardinality of a self-exciting Poisson cluster point process.

Next, in Section 3 we extend this argument to the computation of the cumulants of
self-exciting Hawkes Poisson cluster processes in Proposition 3.1, with an extension to the

computation of joint cumulants. This provides a closed-form alternative, suitable for sys-



tematic higher-order computations, to the tree-based approach of Jovanovi¢ et al. (2015).
Explicit computations for the time-dependent third and fourth cumulants and skewness and
kurtosis of Hawkes processes with exponential kernels are presented in Section 4, and are

confirmed by Monte Carlo estimates.

Cumulants, Faa di Bruno formula and Bell polynomials

We close this section with background results on combinatorics that will be needed in the

sequel. Recall that if f(¢) admits the formal series expansion

o
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by the Faa di Bruno formula we have
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is the complete Bell polynomial of degree n > 1, and
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is the partial Bell polynomial of order (n, k). Given the Moment Generating Function (MGF)

My (t) := E[e*¥] —1+Z—EX”

n>1

of a random variable X, the cumulants of X are the coefficients (/{(”)) appearing in the

n>1
log-MGF series expansion

log Mx (t) = log (E Zm (1.3)

n>1



for t in a neighborhood of zero. The moments E[X"] of a random variable X are linked to

its cumulants (m(”))n>1 through the relation

E[X"] = i > glmD . gmeD)

k=1 mU--Urp={1,...,n}

which runs over the partitions 1, ..., 7 of the set {1,...,n}, where |m;| denotes the cardi-
nality of m;. By the Faa di Bruno formula, (1.3) can be inverted as

n

R = (k= 1)I(=1)F! > E[x™] . E[XI™], n>1,
k=1 mU--Urp={1,...,n}
see e.g. Theorem 1 of Lukacs (1955), and also Leonov and Shiryaev (1959), Relations (2.8)-
(2.9) in McCullagh (1987), or Corollary 5.1.6 in Stanley (1999). The third and fourth cumu-
lants can be used to define the skewness £/ (/4;(2))3/ ? and the excess kurtosis £/ (K,(Q))2 of

X.

2 Borel cumulants

In this section we consider the recursive computation of the cumulants of integer-valued
Borel-distributed random variables using the Faa di Bruno formula. For this, we review the
method of § 3.2 of Consul and Famoye (2006) which applies to Lagrangian distributions,
and note that it admits an explicit formulation using Bell polynomials. Let (X,),>o be a
branching process started at Xy = 1 with Poisson distributed offspring count N of parameter
€ (0,1). Denoting by X the total count of offsprings generated by (X, )n>o and letting
(x0)
(PGF) of X can be estimated by the standard branching recursion

>1 denote a sequence of independent copies of X, the Probability Generating Function

Gx(s) = E[sY]
N
= SE HSX(I)]
=1
k
= sY E HSX(Z)] P(N = k)
k>0 =1
_ Wy U
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where

Gu(s) =e* Z Eogn = ets=h), s e€R,
is the PGF of the Poisson distribution with mean g > 0. The equation
Gx(s) = sG,(Gx(9)), -1<s<1, (2.1)

can be solved using Lagrange series, see page 145 of Pdlya and Szegd (1998), showing that
X has the Borel distribution

pn)"

P(X:n):e_“”( — n>1,
n!

which belongs to the class of Lagrangian distributions, see § 8.4 of Consul and Famoye (2006).
The following proposition then extends the relations (3.12) in Consul and Famoye (2006) for
the computation of the cumulants of the Borel distribution, via a general expression based
on the Bell polynomials. Another, less direct, recursion can be found in § 8.4.3 in Consul

and Famoye (2006), based on the derivatives of moments of X with respect to p.

Proposition 2.1 Let X be a Borel distributed random variable with parameter p € (0,1). We

have kK = 1/(1 — p) and the induction relation
kW = L(Bn (/i(l), VN /f(”)) — m(”)) =t Z B, i (/1(1), U n("_k+1)), n > 2,
-z
where B,,, resp. B, 1, is the complete, resp. partial, Bell polynomial.
Proof. From (2.1), the moment generating function Mx (t) = E[e*X] = G(e') satisfies
log Mx(t) =t+ pu(Mx(t)—1)=t+ u(elogMX(t) —1)

for ¢ in a neighborhood of zero, see also Relation (19) in Haight and Breuer (1960) with

r = 1. Based on the cumulant expansion (1.3) and the Faa di Bruno formula (1.2), we have
>oe
kW — = log Mx(t)
= {+ u(elogMX(t) — 1)

= ()Y an(w, ),
n=2
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which shows that £ = 1 4+ ux( and

w0 = 1B, (50, K™ +“ZB (KO, .. D) >0

since By, 1 (/-1(1), - ,/f(”)) = kM), [

In particular, since By(r1,22) = 23 + x5 we have

@_ M (B < 1 <2)> _ (2)) I
K ) K K = :
l—p 1—p (1—p)?

Given that Bs(xy, 19, 13) = 23 + 32179 + 3, We have

,_@(3>:L(Bg( L w 7,43))_,%(3)):”&‘
1—p L—p (1T—p)? (1 —p)?

Since By(x1, %9, 73, 74) = 2] + 62309 + 42103 + 323 + 14, We find

2
L@ <B4< L _p LIr 7,{(4)) _,44)) R T
l—p L—p' (T =p)* " (1= p) (L—p)7

which recovers (8.85) page 159 of Consul and Famoye (2006).

3 Hawkes cumulants

In this section we work in the cluster process framework of Hawkes and Oakes (1974). We
consider a self-exciting point process on R¢, d > 1, with Poisson offspring intensity ~(dx)

and Poisson immigrant intensity v(dz) on R¢, built on the space
Q= {5 ={z;}icr CR? © #(ANE) < oo for all compact A € B(Rd)}

of locally finite configurations on R?, whose elements & € € are identified with the Radon

point measures £(dz) = Zex(dz), where ¢, denotes the Dirac measure at x € RY. In
e
particular, any initial immigrant point y € R? branches into a Poisson random sample

denoted by &, (y + dz) = Z €x4+y(dz) and centered at y, with intensity measure v(y + dz)
el

on R, We let
GZ(f) =

E Hf(z—l—x)

el




denote the Probability Generating Functional (PGFI) of the branching process starting from
a single point at z € R?, for sufficiently integrable f : R¢ — R. The next proposition states
a recursive property for the Probability Generating Functional G, (f), see also Theorem 1 in

Adamopoulos (1975).

Proposition 3.1 The Probability Generating Functional G,(f) satisfies

6.9 = F@e ([ G = Intan)), 2

and the PGFI of the Hawkes process with immigrant intensity v(dz) is given by

Gulh) = e ([ (G0 - 1utas)).
R
Proof. Viewing the self-exciting point process £ as a marked point process we have, see e.g.

Lemma 6.4.VI of Daley and Vere-Jones (2003),

G.(f) = fRE|[[fGz+x)

Lzef
= f(2)E H (H flz+z+ y))
_513657 yes

= fRE|[]E

TELy

Hf(z+a:+y)

IS3

TELy

eiw(Rd)J%z) Z % (R%) Ger:vl(f) T Ger:vk (f)V(dxl) T ’V(dxk)
o v J (R

= 1o ([ (Geanl) - (),

and

[M]8

Guf) = Y S G () Gl o vldz)
n: (Rd)n

Il
o

n

~ oo ([ (.0 - 1pta).



Mz(f) = Gz(ef) =E

exp (f(z) +> flz+ x))

el

denote the Moment Generating Functional (MGF1) of the stochastic integral Z f(z) given
TSI
that the cluster process ¢ starts from a single point at z € R% The following corollary

is an immediate consequence of Proposition 3.1, see also Proposition 2.6 in Bogachev and

Daletskii (2009) for Poisson cluster processes.

Corollary 3.2 The Moment Generating Functional M,(f) satisfies the recursive relation

M) = e (1) + [ (Mealf) — @) 2B (31)

The MGFI of the Hawkes process with immigrant intensity v(dz) is given by
M) =esp ([ 007 - Dia:)). 32)
R

The next proposition provides a way to compute the cumulants mﬁ")( f) of Z f(x) by an

el
induction relation based on the Bell polynomials. Note that the sum of coefficients in

Bp(xy,...,x,) is the Bell number

n
1 n!
B”:Zg Z AN
k=1 I+ +l=n
sl =1

that represents the count of partitions of a set of n elements. In the sequel, we assume that

7(R?) < 1 and consider the integral operator I" defined as
Lf(z)= | fz+ynldy), =R
R

and the inverse operator (I; — I')~! given by

<Id—F)1f(z)=f(z>+Z/Rd~- Rdf<z+:c1+--~+xm)v(dx1)~~v<d:cm), zeR%

Proposition 3.3 The first cumulant f{gl)(f) of Z f(x) given that £ is started from a single
ze€
point at z € R? is given by mgl)(f) = (I;—T)"f(2) forn=1, and /i(zn)(f) is given forn > 2

by the induction relation
() = (La—T) T (Bu(sl), .. &) = &)
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n

= Y = D)TB (s, T,
k=2

Proof. By (1.3), (3.1) and the Faa di Bruno formula (1.2), we have

oo

S0 - et
= tf(z)+ /Rd (elos M=) — 1) y(dx)
= tf(2) +¢ /R d k0 y(dx) + i t—"' /R d Bu(5)s, . w0 )y (de), (3.3)
hence
SO(f) = G+ / ()
= ) + Z / f 24z 4+ xp)y(dey) - y(dey,),
as solution of the renewal equation
W) =0+ [ L), s R
For n > 2, (3.3) yields
RO = | Bu(sle, o k) A(dr) = TR (F) + T(Ba(slL, . 5l = 1Y),

yet
(Is = D)R(f) = T(Ba (58, w0) = 1),

which yields

() =g —T)7" ( ( L mT) = k)
= Z/ z+:c1+ AT "'7/£S’—L|-);131+...+a;m) - i@x1+ ay, )Y (dxr) -y (day)
m=1 Re Rd

1 n—k+1
= Z /]Rd c /Rd Bn,k (’ii—grl—i—w—ﬁ—xmu SRR ,(z+x1i )+xm) (d‘rl) e /Y(dxm% n 2.
2



Unconditional cumulants can be obtained in the next corollary as a consequence of Propo-

sition 3.3.

Corollary 3.4 The cumulant of order n > 1 onf(:c) s given by
el

and the recursion

Bu(k(f), - 6(f) = (La—T)(Bu(sll, .. x7) = &%)

n

= Y (-0 Bup(sl, . xUTY), zerY

k=2
Proof. By (1.3), (3.2) and the Faa di Bruno formula (1.2), we have

oo t"

n=1

and therefore
/ﬁ(”)(f):/ Bn</€gl)(f),...,/ﬁ:zn)(f))l/(dz), n > 2.
Rd

We conclude from the equalities

B (K (f), -, 5(f))
= "+ (B (K)o R E() = RE())

— Z /Rd /Rd Bn z+a;1+ AT Hg@xl++mm) - »(ZT-L‘F):E1+ +ﬂ’3m) (dxl) “ e f}/(da:m)
+(B (KO, 60 (F)) = KE(S)))
= Z /]Rd /]Rd z+ac1+ ATy /f,(zﬁ-)zl.t,_..._;,_mm) — 2‘1)3614- +$m) (d;cl) . ’Y(d&lm),

that follow from Proposition 3.3. OJ
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Second cumulant

For n = 2, Proposition 3.3 shows that

Z/Rd /Rd (K st () (1) - (),

and by Corollary 3.4 we have

11(2)(]‘) - / (2)<f) (dz) + / ((1)(f))2y(dz)
- Z/Rd /]Rd 214le+ g f))ZV(dxl)'"W(dl‘m)v(dz),

see e.g. Proposition 2 in Bacry et al. (2012) and Eq. (37) in Jovanovi¢ et al. (2015).

Third cumulant

For n = 3, we have

N;EC‘B

=

||

w
1

IS

/R i R (1) 2 (d)

Y

/Rd : / (s (D) () 1),

WE

+
1

3
Il

and

K (f) = / By (k0 k&), ) 1 (dz)
Rd

= [ 60wt 3 [ A0sPuga) 4 [ v

Rd
=3 Z / / 22x1+ +a:m ) gzx1+---+xm<f)7(d$1) - "V(dxm)l/(dz)

+Z/d /Rd i (1)) () -y (d )1 (d2),

which corresponds to Eq. (39) in Jovanovié et al. (2015).

Fourth cumulant

For n = 4, we have
2
/4(4) = 6Z/d /Rd z+x1+ +zm f)) gmﬁ +xm(f)7<df’31)"'7(dxm)
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"ns / .. / W (DA, (D1 d1) - ()

3 [y ST ST BRRTCE
3 [ [ D) () 5 (),
and _
KY(f) = /R B (kM &P, 63 kD) (d2) (3.8)
= [y ) +6 [ () et

—|—4/ kWP (dz) + 3/Rd (k 2))21/(dz) + /Rd kM (dz)
- 62 / S (D) R (P(d) 2 () (9)

+4;) / = / W (DR, () - ()
D DY IR N CC ey TN RSN

+Z/d /Rd Y o (1)) (1) - (). (3.10)

We note that the count of 4 terms in (3.6)-(3.7) and the total count of 6+4x44+3x14+1x1 =
26 terms in (3.9)-(3.10), due to 4 terms in nfﬁm.,,ﬂm (f), is matching the 26 terms obtained

in Figure 4 of Jovanovi¢ et al. (2015) using tree enumeration.

Joint cumulants

The expression of Proposition 3.3 can be extended to joint cumulants by standard combina-

torial arguments.

Proposition 3.5 For n > 2, the joint cumulants R (fl, coosfn) of Zfl(:v), ce an(m)
el €l
given that & is started from a single point at z € R? are given by the induction relation

SUTNSAES SIS / / i‘iﬂH st (Fiem ) (da) -y (dy),

k=2 mU--Urp={1,...,n} m=1
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n > 2, where the above sum is over set partitions my U---Um, ={1,...,n}, k=2,... n.

As in Corollary 3.4, we obtain the expressions

O b= S [ T (el
p IR =1

k=1 mU---Ump={1,...,n

=> > > / / d1_11ni'ﬁh..ﬂm((fi)mj>v<dm1>---7<dxm>y<dz>,

k=2 mU---Ump={1,...,n} m=0

as a consequence of Proposition 3.5.

Second joint cumulant
We have
] = [ [ R (7 () 1),
m=1

and

it = | RORD (o) (d)

R

O ) + [

R

Third joint cumulant

For n = 3, we have

010089 = 32 [ oo [ W W U F () 2 d)

+m221 /Rd .. /Rd figzxﬁ...ﬂ:m(f2)/€,(232x1+...+$m(fl, f3)’y(dg;1) R V(dxm)
+m2:1 /Rd e /Rd /f,(zlsz1+---+mm(f3)/‘€£242x1+...+xm(fl, fQ)’y(dxl) R fy(dl.m)
+ mZ:1 /Rd .. /Rd K?,Ejle-‘r‘..-‘,-xm (fl)/ﬁ,(zl—gx1+...+xm<f2)f€22$1+..,+$m (fg)’y(dxl) .. .f)/(dxm)y
and
K(3)<f1’ far f3) = / “gl)(fl)’igl)(fz)ﬁil)(fg)v(dz)
Rd
[ RO o et + [ RO et + [ RO (ool
Rd R y

+/Rd fi@(fl, f2, f3)v(dz).

Similar expressions for ®)(f) can be obtained from (3.8).
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4 Example - exponential kernel

In this section we take d = 1 and consider the exponential kernel v(dz) = aljy ) (z)e " dz,
0 < a < b, and constant Poisson intensity v(dz) = vdz, v > 0. In this case, N;(&) :=

£([0,¢]) = Z 14 () defines the self-exciting Hawkes process with stochastic intensity
el

t
A=V + a/ e M=9)aN,, teR,.
0
The recursive calculation of the cumulants £ (£) := m,(zn)(l[ojt]) will be performed using the

family of functions e, () := xPe™1g4(x), n < b, p > 0, which satisfy the relation
o0 t t
(Is—T) 'Te,,(2) = Z/ . / epn(z + 21+ + x,)y(dxy) - - y(dy,)
n=1"0 0
t—z

= a/ yPemrta=by gy, z € 10,1,
0

with
. emta=b)(t—z) _ 1
(La=T) " Teoy(z) = ae”1—oy(?) n+a—b
a—b
S 6(77+ )teo,—n+b—a(2) — 60}0(2), (41>
n+a—2>
and
1 _ee00(2) e V% o (2)(n+a—b)(t—2) — 1)
([d - F) F61,77<Z) = ae’ (77 +a— b)2 ) (42)
where (I; — I')"'Te, ,(2) can be similarly evaluated for p > 2.
First cumulant
We have
o0 t t
kD) = 1+ Z/ s / eo0(z + a1+ + @) y(day) - - y(dey)
n=1"0 0
_ a
= 1+ o be(“ ey al(2) — — b60’0(2>’ z€eRy, (4.3)

which recovers

B[N =500 = [ (0w:) =

as solution of the differential equation

(—a+b(b—a)t+ae"),

(b—a)?

t
dE[N,] = v +a / et gR[N,].
0

14



Second cumulant

Using (4.1), we have

_ i / L / Wi () d2) - (d)

N b—a z;/ ‘/em Y(day) -y (dw,,)
%A /pam oz 431+ zp)y(day) -y (da)

+(b a)t / /eogba (z+x + -+ Tp)y(day) - - - y(dayy,)
— Jo 0
ab? 2a2b e72(b7a)(tfz) _ ef(bfa)(tfz)
— o —(b—a)(t—2)\ _ t— —(b—a)(t—2) _ .3
<b—a>3<1 ‘ "ot ‘ = ap ’
(4.4)
and
W2 fb @ i)
(V) v(dz) = P S v(dz)
0 0
vb?t 2vba va?
_ _ 1 — —(b—a)t 1 — —2(b—a)t
G- oapt ¢ D tapoaptioe )
hence

Var[V;] = ()

= —ﬁ <6ab2 — a’b+2b*(a — b)t + 2a(a® — 3b* + 2ab(a — b)t)e(“_b)t +a?(b — 2a)eg(“_b)t>.
a/ p—

The following Figures 1-3 are plotted with v = 1, a = 0.5, b = 1, and 107 Monte Carlo

samples.
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(a) First cumulant £ (¢). (b) Square root of second cumulant (3 (t).

Figure 1: Mean and standard deviation with exponential kernel.

Third cumulant

The recursive computation of ) (t) can be carried out from (3.4)-(3.5) and (4.1)-(4.2) using
Mathematica, based on the expressions of /-ﬁ;iljle tota,, () and ni%le toga,, (f) given in (4.3)-

(4.4), which yields

k() = — 42ab* + 30a*V® — 7a’b? + a*b + 6b*(2a* — ab — b*)t

o
6(a — b)S
+ 3(18a°” — 16a’b” — a*b — 14ab* — 2a° + 6a”b(4ab® — 4b° + a*b — a®)t — 6a’b*(a — b)QtQ)e(“_b)t

+9(20°0° — 5a°b* — a'b + 2a° + 2a°b(b” — 3ab + 2a°)t)e* " — ¢ (20" — 11ab + 12a2)e3(“_b)t>.

Figure 2 shows the numerical evaluation of £® (t) and of the associated skewness ) (t) /(k2)(t))3/2.

3.5 T T 9 T
Third cumulant gl Skewness
3+ Monte Carlo © Monte Carlo ©
7 -
25} 6L
2t 5|
1.5t ar
3 -
1r Sl
0.5f 1l
0 L 1 L | O 1 1 I L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t
. 3/2
(a) Third cumulant £®)(t). (b) Skewness x(®) (t)/(m@) (t)) /2,

Figure 2: Third cumulant and skewness with exponential kernel.
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Fourth cumulant

The recursive computation of K®(¢) can be similarly carried out from (3.8) and (4.1)-(4.2)

using Mathematica, which yields

k() = —ﬁ (180ab6 + 570a%0° + 100a°b* — 15a*b® 4 2a°b? + 126° (66> + 2a2b — b° — Tab®)t
+ 4(5a°b — 45ab° + 3a” — 59a°b* — 180a°b° + 75a’b* + T5a’b’

+ 6a*b(5ab* — 25b° + 41a*b* — 22a°b* — a*b + 2a°)t + 18a*b*(10ab® — 5b* — 4a*b* — 2a°b + a*)t?
+12a** (a — b)*)e™" + (150a°° — 360a°b* — 564a*b® + 5884a°b* + 18a°b — 84a”

+ 4ab(90b* — 306ab® + 180ab? + 108a®b — 72a*)t + 144a*b*(—4ab® + b + 5a°b — 2a°)t?) >~V

+ (276a*® — 40a%b* — 132a°b — 320a°b* + 144a” + 24a*b(13ab® — 23a®b — 2b° + 12a°)t) 3"

+ a*(3b° — 34ab® + 94a’b — 72@3)64(“’b)t>.

Figure 2 shows the numerical evaluation of x¥(¢) and of the associated excess kurtosis

KO)/(k@(1))*.
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t t
. 2
(a) Fourth cumulant £ (t). (b) Excess kurtosis s (2)/ (k2 (2))".

Figure 3: Fourth cumulant and excess kurtosis with exponential kernel.

Intensity cumulants

Intensity cumulants can also be computed recursively from Corollary 3.4 and the expression

of \;. We have

t t
E[N] =v+aE {/ e_b(t_s)st] =v4ae kW (egy) = v+ ae_bt/ kM (ep)v(dz),
0 0
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with

o0 t t
Kgl)(eo,b) = eop(2) + Z/ e / eop(z + a1+ +w,)y(dey) - - - y(day)
n=1"0 0

= ebzeoﬂ(t —2)
= ebteoﬂ,b(t —2)

= eateﬂ,bfa('z%

hence

t
E[N] =v+ ae’btm(l)(eoyb) =v+ aebt/ ﬁgl)(eo7b)y(dz) =v+ bya (1-— e(“’b)t),
0 —a

see e.g. Theorem 3.6 in Dassios and Zhao (2011). Next, we compute the joint moment

E[A\;N¢]. Using (4.1), we have

e8] t t
1 1
kP (€00, c0) = Y / / K oot (€0.0) K e o, (o) (dy) - - ()
m=1

b o) t t
S / / C0p-alz + 1 + -+ Tp)y(dy) - (da)
- S}

a
m=1

a

0 t t
_me(zaib)t W;-/O‘ e /(; 60,2(1)—(1) (Z _|_ T + [N + xm)ﬂy<dx1> e 7(d$m>

— elb—a)(t=2)
_ ab eat2+a26(2a—b)t1 e

- “—ar z €10,1].

Hence we have

¢
aE th/ e_b(t_s)st} = ae_bt/{m)(eop, €op) + ae_btli(l)(eoyb)/ﬁ(l)(eop)
0

¢ ¢
= ae_bt/ H2,2)(€070,6075)V(d2)—I—ae_bt/ kD (e0.0)w M (e0p)v(dz) + ae™ kM (o) k™M (e0,0)
0

0
= T Vab)g <b2 —va—ab+vb(b—a)t+ala—v+alb— a)t)eZ(a—b)t
a J—

+(2va — a* + ab — b* + (vab — vb* — a(a — b)*)t + ab(a — b)2t2/2)e(“_b)t>, t>0.

The following figures are plotted with v =2, a = 0.5, b = 1, and 10° Monte Carlo samples.
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Figure 4: Mean intensity and joint moment with exponential kernel.
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