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Département de Mathématiques
Université de Poitiers
Téléport 2 - BP 30179

86962 Futuroscope Chasseneuil
France

In “Quantum Potential Theory”,
Lecture Notes in Math., vol. 1954,
Springer, Berlin, 2008, pp. 3-59.

First version: February 26, 2007

This version: July 25, 2007

Abstract

These notes are an elementary introduction to classical potential theory and to its
connection with probabilistic tools such as stochastic calculus and the Markov property.
In particular we review the probabilistic interpretations of harmonicity, of the Dirichlet
problem and of the Poisson equation using Brownian motion and stochastic calculus.

Key words: Potential theory, harmonic functions, Markov processes, stochastic calculus, partial
differential equations.
Mathematics Subject Classification: 31-01, 60J45.

Contents

1 Introduction 2

2 Analytic potential theory 3

2.1 Electrostatic interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Harmonic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Representation of a function on E from its values on ∂E . . . . . . . . . . . . 9

2.4 Poisson formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Potentials and balayage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Martin boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

∗nprivault@ntu.edu.sg

1



3 Markov processes 21

3.1 Markov property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Transition kernels and semigroups . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Hitting times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Dirichlet forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Stochastic calculus 28

4.1 Brownian motion and the Poisson process . . . . . . . . . . . . . . . . . . . . 28

4.2 Stochastic integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Quadratic variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Itô’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Killed Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Probabilistic interpretations 42

5.1 Harmonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Dirichlet problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Cauchy problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Martin boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1 Introduction

The origins of potential theory can be traced to the physical problem of reconstructing a

repartition of electric charges inside a planar or a spatial domain, given the measurement

of the electrical field created on the boundary of this domain.

In mathematical analytic terms this amounts to representing the values of a function h inside

a domain given the data of the values of h on the boundary of the domain. In the simplest

case of a domain empty of electric charges, the problem can be formulated as that of finding

a harmonic function h on E (roughly speaking, a function with vanishing Laplacian, see

§ 2.2 below), given its values prescribed by a function f on the boundary ∂E, i.e. as the

Dirichlet problem: 
∆h(y) = 0, y ∈ E,

h(y) = f(y), y ∈ ∂E.

Close connections between the potential theory and the theory of Markov processes have

been observed at early stages of the development of the theory, see e.g. [Doo84] and ref-

erences therein. As a consequence, many potential theoretic problems have a probabilistic

interpretation or can be solved by probabilistic methods.

These notes aim to gather some analytic and probabilistic aspects of potential theory into a

single document. We partly follow the point of view of Chung [Chu95] with complements on

analytic potential theory coming from Helms [Hel69], some additions on stochastic calculus,
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and probabilistic applications found in Bass [Bas98].

More precisely, we proceed as follow. In Section 2 we give a summary of classical analytic po-

tential theory: Green kernels, Laplace and Poisson equations in particular, following mainly

Brelot [Bre65], Chung [Chu95] and Helms [Hel69]. Section 3 introduces the Markovian set-

ting of semigroups which will be the main framework for probabilistic interpretations. A

sample of references used in this domain is Ethier and Kurtz [EK86], Kallenberg [Kal02],

and also Chung [Chu95]. The probabilistic interpretation of potential theory also makes sig-

nificant use of Brownian motion and stochastic calculus. They are summarized in Section 4,

see Protter [Pro90] Ikeda and Watanabe [IW89], however our presentation of stochastic

calculus is given in the framework of normal martingales due to their links with quantum

stochastic calculus, cf. Biane [Bia93]. In Section 5 we present the probabilistic connection

between potential theory and Markov processes, following Bass [Bas98], Dynkin [Dyn65],

Kallenberg [Kal02], and Port and Stone [PS78]. Our description of the Martin boundary in

discrete time follows that of Revuz [Rev75].

2 Analytic potential theory

2.1 Electrostatic interpretation

Let E denote a closed region of Rn, more precisely a compact subset having a smooth

boundary ∂E with surface measure σ. Gauss’s law is the main tool for determining a

repartition of electric charges inside E, given the values of the electrical field created on ∂E.

It states that given a repartition of charges q(dx) the flux of the electric field U⃗ across the

boundary ∂E is proportional to the sum of electric charges enclosed in E. Namely we have∫
E
q(dx) = ϵ0

∫
∂E

⟨n⃗(x), U⃗(x)⟩σ(dx), (2.1)

where q(dx) is a signed measure representing the distribution of electric charges, ϵ0 > 0

is the electrical permittivity constant, U⃗(x) denotes the electric field at x ∈ ∂E, and n⃗(x)

represents the outer (i.e. oriented towards the exterior of E) unit vector orthogonal to the

surface ∂E.

On the other hand the divergence theorem, which can be viewed as a particular case of the

Stokes theorem, states that if U⃗ : E → Rn is a C1 vector field we have∫
E
div U⃗(x)dx =

∫
∂E

⟨n⃗(x), U⃗(x)⟩σ(dx), (2.2)

where the divergence div U⃗ is defined as

div U⃗(x) =

n∑
i=1

∂U⃗i

∂xi
(x).

The divergence theorem can be seen as a mathematical formulation of the Gauss law. As a

consequence, Gauss’s law, associated to the divergence theorem allows us to interpret U⃗(x)
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as the induced electric field on the surface ∂E, or equivalently by saying that div U⃗(x) is

proportional to the density of (electric) charges in E.

This leads to the Maxwell equation

q(dx) = ϵ0 div U⃗(x)dx, (2.3)

where q(dx) is the distribution of electric charge at x and U⃗(x) is the electric field at x.

When q(dx) has the density q(x) at x, i.e. q(dx) = q(x)dx, and the field U⃗(x) derives from

a potential V : Rn → R+, i.e. when

U⃗(x) = ∇V (x),

Maxwell’s equation (2.3) takes the form of the Poisson equation:

ϵ0∆V (x) = q(x), (2.4)

where the Laplacian ∆ = div∇ is given by

∆V (x) =

n∑
j=1

∂2V

∂x2i
(x).

In particular, when the domain E is empty of electric charges, the potential V satisfies the

Laplace equation

∆V (x) = 0.

As mentioned in the introduction, a typical problem in classical potential theory is to re-

cover the values of the potential V (x) in E from its values on the boundary ∂E, given that

it satisfies the Poisson equation. This can be achieved in particular by representing V (x),

x ∈ E, as an integral with respect to the surface measure over the boundary ∂E, or by

solving the Poisson equation for V (x).

Consider for example the Coulomb potential

V (x) =
q

ϵ0sn

1

∥x− y∥n−2
, x ∈ Rn \ {y},

created by a single charge q at y ∈ Rn, where s2 = 2π and s3 = 4π, and

sn =
2πn/2

Γ(n/2)

is the surface of the unit n− 1-dimensional sphere in Rn. The electrical field created by V

is

U⃗(x) = ∇V (x) =
q

ϵ0sn

x− y

∥x− y∥n−1
, x ∈ Rn \ {y}.
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Figure 2.1: Electrical field at y = 0.

Letting B(y, r), resp. S(y, r), denote the open ball, resp. the sphere, of center y ∈ Rn and

radius r > 0, we have∫
B(y,r)

∆V (x)dx =

∫
S(y,r)

⟨n⃗(x),∇V (x)⟩σ(dx)

=

∫
S(y,r)

⟨n⃗(x), U⃗(x)⟩σ(dx)

=
q

ϵ0
,

where σ denotes the surface measure on S(y, r). From this we deduce

q(dx) = qδy(dx)

i.e. we recover the fact that the potential V is generated by a single charge located at y.

We also obtain a version of the Poisson equation (2.4) in distribution sense:

∆x
1

∥x− y∥n−2
= snδy(dx),

where the Laplacian ∆x. On the other hand, taking E = B(0, r) \ B(0, ρ) we have ∂E =

S(0, r) ∪ S(0, ρ) and∫
E
∆V (x)dx =

∫
S(0,r)

⟨n⃗(x),∇V (x)⟩σ(dx) +
∫
S(0,ρ)

⟨n⃗(x),∇V (x)⟩σ(dx)

= csn − csn = 0,

hence

∆x
1

∥x− y∥n−2
= 0, x ∈ Rn \ {y}.

The electrical permittivity ϵ0 will be set equal to 1 in the sequel.
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2.2 Harmonic functions

The notion of harmonic function will be first introduced from the mean value property. Let

σx
r (dy) =

1

snrn−1
σ(dy)

denote the normalized surface measure on S(x, r), and recall that∫
f(x)dx = sn

∫ ∞

0
rn−1

∫
S(y,r)

f(z)σy
r (dz)dr.

Definition 2.2.1. A continuous real-valued function on an open subset O of Rn is said to

be harmonic, resp. superharmonic, in O if one has

f(x) =

∫
S(x,r)

f(y)σx
r (dy),

resp.

f(x) ≥
∫
S(x,r)

f(y)σx
r (dy),

for all x ∈ O and r > 0 such that B(x, r) ⊂ O.

Next we show that the equivalence between the mean value property and the vanishing of

the Laplacian.

Proposition 2.2.2. A C2 function f is harmonic, resp. superharmonic, on an open subset

O of Rn if and only if it satisfies the Laplace equation

∆f(x) = 0, x ∈ O,

resp. the partial differential inequality

∆f(x) ≤ 0, x ∈ O.

Proof. In spherical coordinates, using the divergence formula and the identity

d

dr

∫
S(0,1)

f(y + rx)σ0
1(dx) =

∫
S(0,1)

⟨x,∇f(y + rx)⟩σ0
1(dx)

=
r

sn

∫
B(0,1)

∆f(y + rx)dx

yields ∫
B(y,r)

∆f(x)dx = rn−1

∫
B(0,1)

∆f(y + rx)dx

= snr
n−2

∫
S(0,1)

⟨x,∇f(y + rx)⟩σ0
1(dx)

= snr
n−2 d

dr

∫
S(0,1)

f(y + rx)σ0
1(dx)
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= snr
n−2 d

dr

∫
S(y,r)

f(x)σy
r (dx).

If f is harmonic, this shows that ∫
B(y,r)

∆f(x)dx = 0,

for all y ∈ E and r > 0 such that B(y, r) ⊂ O, hence ∆f = 0 on O. Conversely, if ∆f = 0

on O then ∫
S(y,r)

f(x)σy
r (dx)

is constant in r, hence

f(y) = lim
ρ→0

∫
S(y,ρ)

f(x)σy
ρ(dx) =

∫
S(y,r)

f(x)σy
r (dx), r > 0.

The proof is similar in the case of superharmonic functions. □

The fundamental harmonic function based at y ∈ Rn are the functions which are harmonic

on Rn \ {y} and depend only on r = ∥x− y∥, y ∈ Rn. They satisfy the Laplace equation

∆h(x) = 0, x ∈ Rn,

in spherical coordinates, with

∆h(r) =
d2h

dr2
(r) +

(n− 1)

r

dh

dr
(r).

In case n = 2 the fundamental harmonic functions are given by the logarithmic potential

hy(x) =


− 1

s2
log ∥x− y∥, x ̸= y,

+∞, x = y,

(2.5)

and by the Coulomb potential in case n ≥ 3:

hy(x) =


1

(n− 2)sn

1

∥x− y∥n−2
, x ̸= y,

+∞, x = y.

(2.6)
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More generally, for a ∈ R and y ∈ Rn, the function

x 7→ ∥x− y∥a,

is superharmonic on Rn, n ≥ 3, if and only if a ∈ [2− n, 0], and harmonic when a = 2− n.

We now focus on the Dirichlet problem on the ball E = B(y, r). We consider

h0(r) = − 1

s2
log(r), r > 0,

in case n = 2, and

h0(r) =
1

(n− 2)snrn−2
, r > 0,

if n ≥ 3, and let

x∗ := y +
r2

∥y − x∥2
(x− y)

denote the inverse of x ∈ B(y, r) with respect to the sphere S(y, r). Note the relation

∥z − x∗∥ =

∥∥∥∥z − y − r2

∥y − x∥2
(x− y)

∥∥∥∥
=

r

∥x− y∥

∥∥∥∥∥x− y∥
r

(z − y)− r

∥y − x∥
(x− y)

∥∥∥∥ ,
hence for all z ∈ S(y, r) and x ∈ B(y, r),

∥z − x∗∥ = r
∥x− z∥
∥x− y∥

, (2.7)

since ∥∥∥∥∥x− y∥ z − y

∥z − y∥
− r

x− y

∥y − x∥

∥∥∥∥ = ∥x− z∥.
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Figure 2.2: Graph of hx and of h0(∥y − x∥∥z − x∗∥/r) when n = 2.
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The function z 7→ hx(z) is not C2 hence it is not harmonic on B̄(y, r). Instead of hx we will

use z 7→ hx∗(z), which is harmonic on a neighborhood of B̄(y, r), to construct a solution of

the Dirichlet problem on B(y, r).

Lemma 2.2.3. The solution of the Dirichlet problem (2.10) for E = B(y, r) with boundary

condition hx, x ∈ B(y, r), is given by

x 7→ h0

(
∥y − x∥∥z − x∗∥

r

)
, z ∈ B(y, r).

Proof. We have if n ≥ 3:

h0

(
∥y − x∥∥z − x∗∥

r

)
=

rn−2

(n− 2)sn∥x− y∥n−2

1

∥z − x∗∥n−2

=
rn−2

∥x− y∥n−2
hx∗(z),

and if n = 2:

h0

(
∥y − x∥∥z − x∗∥

r

)
= − 1

s2
log

(
∥y − x∥∥z − x∗∥

r

)
= hx∗(y)− 1

s2
log

(
∥y − x∥

r

)
.

This function is harmonic in z ∈ B(y, r) and is equal to hx on S(y, r) from (2.7). □

The next figure represents the solution of the Dirichlet problem with boundary condition

hx on S(y, r) for n = 2 as obtained after truncation of Figure 2.2.
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Figure 2.3: Solution of the Dirichlet problem.

2.3 Representation of a function on E from its values on ∂E

As mentioned in the introduction, it can be of interest to compute a repartition of charges

inside a domain E from the values of the field generated on the boundary ∂E.
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In this section we present the representation formula for the values of an harmonic function

inside an arbitrary domain E as an integral over its boundary ∂E, that follows from the

Green identity. This formula uses a kernel which can be explicitly computed in some special

cases, e.g. E = B(y, r) is an open ball, in which case it is called the Poisson formula, cf.

Section 2.4 below.

Assume that E is an open domain in Rn with smooth boundary ∂E and let

∂nf(x) = ⟨n⃗(x),∇f(x)⟩

denote the normal derivative of f on ∂E.

Applying the divergence theorem (2.2) to the products u(x)∇v(x) and v(x)∇u(x), where

u, v are C2 functions on E yields Green’s identity:∫
E
(u(x)∆v(x)− v(x)∆u(x))dx =

∫
∂E

(u(x)∂nv(x)− v(x)∂nu(x))dσ(x). (2.8)

On the other hand, taking u = 1 in the divergence theorem yields Gauss’s integral theorem∫
∂E

∂nv(x)dσ(x) = 0, (2.9)

provided v is harmonic on E.

In the next definition, hx denotes the fundamental harmonic function defined in (2.5) and

(2.6).

Definition 2.3.1. The Green kernel GE(·, ·) of E is defined as

GE(x, y) := hx(y)− wx(y), x, y ∈ E,

where for all x ∈ Rn, wx is a smooth solution to the Dirichlet problem
∆wx(y) = 0, y ∈ E,

wx(y) = hx(y), y ∈ ∂E.
(2.10)

In the case of a general boundary ∂E, the Dirichlet problem may have no solution, even when

the boundary value function f is continuous. Note that since (x, y) 7→ hx(y) is symmetric,

the Green kernel is also symmetric in two variables, i.e.

GE(x, y) = GE(y, x), x, y ∈ Rn,

and GE(·, ·) vanishes on the boundary ∂E. The next proposition provides an integral rep-

resentation formula for C2 functions on E using the Green kernel. In the case of harmonic

functions, it reduces to a representation from the values on the boundary ∂E, cf. Corol-

lary 2.3.3 below.
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Proposition 2.3.2. For all C2 functions u on E we have

u(x) =

∫
∂E

u(z)∂nG
E(x, z)σ(dz) +

∫
E
GE(x, z)∆u(z)dz, x ∈ E. (2.11)

Proof. We do the proof in case n ≥ 3, the case n = 2 being similar. Given x ∈ E, apply

Green’s identity (2.8) to the functions u and hx, where hx is harmonic on E \ B(x, r) for

small enough r > 0 to obtain∫
E\B(x,r)

hx(y)∆u(y)dy −
∫
∂E

(hx(y)∂nu(y)− u(y)∂nhx(y))dσ(y)

=
1

n− 2

∫
S(x,r)

(
1

snrn−2
∂nu(y) +

n− 2

snrn−1
u(y)

)
dσ(y),

since

y 7→ ∂n
1

∥y − x∥n−2
=

∂

∂ρ
ρ2−n
|ρ=r = −n− 2

rn−1
.

In case u is harmonic, from the Gauss integral theorem (2.9) and the mean value property

of u we get ∫
E\B(x,r)

hx(y)∆u(y)dy −
∫
∂E

(hx(y)∂nu(y)− u(y)∂nhx(y))dσ(y)

=

∫
S(x,r)

u(y)σx
r (dy)

= u(x).

In the general case we need to pass to the limit as r tends to 0, which gives the same result:

u(x) =

∫
E\B(x,r)

hx(y)∆u(y)dy +

∫
∂E

(u(y)∂nhx(y)− hx(y)∂nu(y))dσ(y). (2.12)

Our goal is now to avoid using the values of the derivative term ∂nu(y) on ∂E in the above

formula. To this end we note that from Green’s identity (2.8) we have∫
E
wx(y)∆u(y)dy =

∫
∂E

(wx(y)∂nu(y)− u(y)∂nwx(y))dσ(y)

=

∫
∂E

(hx(y)∂nu(y)− u(y)∂nwx(y))dσ(y) (2.13)

for any smooth solution wx to the Dirichlet problem (2.10). Taking the difference between

(2.12) and (2.13) yields

u(x) =

∫
E
(hx(y)− wx(y))∆u(y)dy +

∫
∂E

u(y)∂n(hx(y)− wx(y))dσ(y)

=

∫
E
GE(x, y)∆u(y)dy +

∫
∂E

u(y)∂nG
E(x, y)dσ(y), x ∈ E.

□
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Using (2.5) and (2.6), Relation (2.11) can be reformulated as

u(x) =
1

(n− 2)sn

∫
∂E

(
u(z)∂n

1

∥x− z∥n−2
− 1

∥x− z∥n−2
∂nu(z)

)
σ(dz)

+
1

(n− 2)sn

∫
E

1

∥x− z∥n−2
∆u(z)dz, x ∈ B(y, r),

if n ≥ 3, and if n = 2:

u(x) = − 1

s2

∫
∂E

(u(z)∂n log ∥x− z∥ − (log ∥x− z∥)∂nu(z))σ(dz)

−
∫
E
(log ∥x− z∥)∆u(z)dz, x ∈ B(y, r).

Corollary 2.3.3. When u is harmonic on E we get

u(x) =

∫
∂E

u(y)∂nG
E(x, y)dσ(y), x ∈ E. (2.14)

As a consequence of Lemma 2.2.3, the Green kernel GB(y,r)(·, y) relative to the ball B(y, r)

is given for x ∈ B(y, r) by

GB(y,r)(x, z) =



− 1

s2
log

(
r

∥y − x∥
∥z − x∥
∥z − x∗∥

)
, z ∈ B(y, r) \ {x}, x ̸= y,

− 1

s2
log

(
∥z − y∥

r

)
, z ∈ B(y, r) \ {x}, x = y,

+∞, z = x,

if n = 2, and

GB(y,r)(x, z) =



1

(n− 2)sn

(
1

∥z − x∥n−2
− rn−2

∥x− y∥n−2

1

∥z − x∗∥n−2

)
z ∈ B(y, r) \ {x}, x ̸= y,

1

(n− 2)sn

(
1

∥z − y∥n−2
− 1

rn−2
,

)
z ∈ B(y, r) \ {x}, x = y,

+∞, z = x,

if n ≥ 3.
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Figure 2.4: Graph of z 7→ G(x, z) with x ∈ E = B(y, r) and n = 2.

The Green function on E = Rn, n ≥ 3, is obtained by letting r go to infinity:

GRn
(x, z) =

1

(n− 2)sn∥z − x∥n−2
= hx(z) = hz(x), x, z ∈ Rn. (2.15)

2.4 Poisson formula

Given u a sufficiently integrable function on S(y, r) we let IB(y,r)
u (x) denote the Poisson

integral of u over S(y, r), defined as:

IB(y,r)
u (x) =

1

snr

∫
S(y,r)

r2 − ∥y − x∥2

∥z − x∥n
u(z)σ(dz), x ∈ B(y, r).

Next is the Poisson formula obtained as a consequence of Proposition 2.3.2.

Theorem 2.4.1. Let n ≥ 2. If u has continuous second partial derivatives on E = B̄(y, r)

then for all x ∈ B(y, r) we have

u(x) = IB(y,r)
u (x) +

∫
B(y,r)

GB(y,r)(x, z)∆u(z)dz. (2.16)

Proof. We use the relation

u(x) =

∫
S(y,r)

u(z)∂nG
B(y,r)(x, z)σ(dz) +

∫
B(y,r)

GB(y,r)(x, z)∆u(z)dz, x ∈ B(y, r),

and the fact that

z 7→ ∂nG
B(y,r)(x, z) = − 1

s2
∂n log

(
∥y − x∥

r

∥z − x∗∥
∥z − x∥

)
=

1

(n− 2)

r2 − ∥x− y∥2

snr∥z − x∥2

13



if n = 2, and similarly for n ≥ 3. □

When u is harmonic on a neighborhood of B̄(y, r) we obtain the Poisson representation

formula of u on E = B̄(y, r) using its values on the sphere ∂E = S(y, r), as a corollary of

Theorem 2.4.1.

Corollary 2.4.2. Assume that u is harmonic on a neighborhood of B̄(y, r). We have

u(x) =
1

snr

∫
S(y,r)

r2 − ∥y − x∥2

∥z − x∥n
u(z)σ(dz), x ∈ B(y, r), (2.17)

for all n ≥ 2.

Similarly, Theorem 2.4.1 also shows that

u(x) ≤ IB(y,r)
u (x), x ∈ B(y, r),

when u is superharmonic on B(y, r). Note also that when x = y, Relation (2.17) recovers

the mean value property of harmonic functions:

u(y) =
1

snrn−1

∫
S(y,r)

u(z)σ(dz),

and a similar property for superharmonic functions.

The function

z 7→ r2 − ∥x− y∥2

∥x− z∥n

is called the Poisson kernel on S(y, r) at x ∈ B(y, r).
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Figure 2.5: Two Poisson kernel graphs on S(y, r) for n = 2 for two values of x ∈ B(y, r).

A direct calculation shows that the Poisson kernel it is harmonic on Rn \ (S(y, r) ∪ {z}):

∆x
r2 − ∥y − x∥2

∥z − x∥n
= 0, (2.18)
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hence all Poisson integrals are harmonic functions on B(y, r). Moreover Theorem 2.17 of

du Plessis [dP70] asserts that for any z ∈ S(y, r), letting x tend to z without entering S(y, r)

we have

lim
x→z

IB(y,r)
u (x) = u(z).

Hence the Poisson integral provides a solution to the Dirichlet problem (2.10) on B(y, r):

Proposition 2.4.3. Given f a continuous function on S(y, r), the Poisson integral

IB(y,r)
f (x) =

1

snr

∫
S(y,r)

r2 − ∥x− y∥2

∥x− z∥n
f(z)σ(dz), x ∈ B(y, r),

provides a solution of the Dirichlet problem
∆w(x) = 0, x ∈ B(y, r),

w(x) = f(x), x ∈ S(y, r),

with boundary condition f .

Recall that the Dirichlet problem on B(y, r) may not have a solution when the boundary

condition f is not continuous.

In particular, from Lemma 2.2.3 we have

IB(y,r)
hx

(z) =
rn−2

∥x− y∥n−2
hx∗(z), x ∈ B(y, r),

for n ≥ 3, and

IB(y,r)
hx

(z) = hx∗(z)− 1

s2
log

(
∥x− y∥

r

)
, x ∈ B(y, r),

for n = 2, where x∗ denotes the inverse of x with respect to S(y, r). This function solves

the Dirichlet problem with boundary condition hx, and the corresponding Green function

satisfies

GB(y,r)(x, z) = hx(z)− IB(y,r)
hx

(z), x, z ∈ B(y, r).

When x = y the solution IB(y,r)
hy

(z) of the Dirichlet problem on B(y, r) with boundary

condition hy is constant and equal to (n−2)−1s−1
n r2−n on B(y, r), and we have the identity

1

snrn−1

∫
S(y,r)

r2 − ∥y − z∥2

∥x− z∥n
σ(dx) = r2−n, z ∈ B(y, r),

for n ≥ 3, cf. Figure 2.6 below.
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2.5 Potentials and balayage

In electrostatics, the function x 7→ hy(x) represents the Coulomb potential created at x ∈ Rn

by a charge at y ∈ E, and the function

x 7→
∫
E
hy(x)q(dy)

represents the sum of all potentials generated at x ∈ Rn by a distribution q(dy) of charges

inside E. In particular, when E = Rn, n ≥ 3, this sum equals

x 7→
∫
Rn

GRn
(x, y)q(dy)

from (2.15). The definition of potentials originates from this interpretation.

Definition 2.5.1. Given a measure µ on E, the Green potential of µ is defined as the

function

x 7→ GEµ(x) :=

∫
E
GE(x, y)µ(dy),

where GE(x, y) is the Green kernel on E.

Potentials will be used in the construction of superharmonic functions, cf. Proposition 5.1.1

below. Conversely, it is natural to ask whether a superharmonic function can be represented

as the potential of a measure. In general, recall (cf. Proposition 2.3.2) the relation

u(x) =

∫
∂E

u(z)∂nG
E(x, z)σ(dz) +

∫
E
GE(x, z)∆u(z)dz, x ∈ E, (2.19)

which yields, if E = B(y, r):

u(x) = IE
u (x) +

∫
E
GE(x, z)∆u(z)dz, x ∈ B(y, r),

where the Poisson integral IE
u is harmonic in general from (2.18). This formula can be seen

as a decomposition of u into the sum of a harmonic function on B(y, r) and a potential.

The question of representing superharmonic functions as potentials is examined next in

Theorem 2.5.3 below, with application to the construction of Martin boundaries.

Definition 2.5.2. Consider

i) an open subset E of Rn with Green function GE,

ii) a subset D of E, and

iii) a non-negative superharmonic function u on E.

The infimum on E over all non-negative superharmonic function on E which are (pointwise)

greater than u on D is called the reduced function of u relative to D, and denoted by RD
u .
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In other terms, if Φu denotes the set of non-negative superharmonic functions v on E such

that v ≥ u on D, we have

RD
u := inf{v ∈ Φu}.

The lower regularization

R̂D
u (x) := lim inf

y→x
RD

u (y), x ∈ E,

is called the balayage of u, and is a superharmonic function.

In case D = Rn \B(y, r), the reduced of hy on D is

RD
hy
(z) = hy(z)1{z /∈B(y,r)} + h0(r)1{z∈B(y,r)}, z ∈ Rn. (2.20)
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Figure 2.6: Reduced of hy relative to D = R2 \B(y, r).

More generally if v is superharmonic then RD
v = IB(y,r)

v on R2 \D = B(y, r), cf. p. 62 and

p. 100 of Brelot [Bre65]. Hence if D = Bc(y, r) = Rn \B(y, r) and x ∈ B(y, r) we have

R
Bc(y,r)
hx

(z) = IB(y,r)
hx

(z)

= h0

(
∥x− y∥∥z − x∗∥

r

)
=

rn−2

(n− 2)sn∥x− y∥n−2

1

∥z − x∗∥n−2
, z ∈ B(y, r).
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Figure 2.7: Reduced of hx relative to D = R2 \B(y, r) with x ∈ B(y, r) \ {y}.

Using Proposition 2.3.2 and the identity

∆R
Bc(y,r)
hy

= σy
r ,

in distribution sense, we can represent R
Bc(y,r)
hy

on E = B(y,R), R > r, as

R
Bc(y,r)
hy

(x) =

∫
S(y,R)

R
Bc(y,r)
hy

(z)∂nG
B(y,R)(x, z)σ(dz) +

∫
B(y,R)

GB(y,R)(x, z)σy
r (dz)

= h0(R) +

∫
S(y,r)

GB(y,R)(x, z)σy
r (dz), x ∈ B(y,R).

Letting R go to infinity yields

R
Bc(y,r)
hy

(x) =

∫
S(y,r)

GRn
(x, z)σy

r (dz) =

∫
S(y,r)

hx(z)σ
y
r (dz),

and we recover (2.20) since hx is harmonic on Rn \ B(y, r) when x /∈ B(y, r) and when

x ∈ B(y, r) we have

R
Bc(y,r)
hy

(x) =

∫
S(y,r)

h0

(
∥y − x∥∥z − x∗∥

r

)
σy
r (dz) = h0

(
∥y − x∥∥y − x∗∥

r

)
= h0(r).

More generally we have for the following result, for which we refer to Theorem 7.12 of

Helms [Hel69].

Theorem 2.5.3. If D is a compact subset of E and u is a non-negative superharmonic

function on E then R̂D
u is a potential, i.e. there exists a measure µ on E such that

R̂D
u (x) =

∫
E
GE(x, y)µ(dy), x ∈ E. (2.21)

If moreoverRD
v is harmonic onD then µ is supported by ∂D, cf. Theorem 6.9 in Helms [Hel69].
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2.6 Martin boundary

The Martin boundary theory extends the Poisson integral representation described in Sec-

tion 2.4 to arbitrary open domains with a non smooth boundary, or having no boundary.

Given E a connected open subset of Rn, the Martin boundary ∆E of E is defined in an

abstract sense as ∆E := Ê\E, where Ê is a suitable by constructing a compactification of E.

Next we show that every non-negative harmonic function on E admits an integral represen-

tation using its values on the boundary ∆E. For this, let u be non-negative and harmonic

on E, and consider an increasing sequence (En)n∈N of open sets with smooth boundaries

(∂En)n∈N and compact closures, such that

E =

∞⋃
n=0

En.

Then the balayage REn
u of u on En coincides with u on En, and from Theorem 2.5.3 it can

be represented as

REn
u (x) =

∫
En

GE(x, y)dµn(y)

where µn is a measure supported by ∂En. Note that since

REn
u (x) = u(x),

for all x ∈ Ek, k ≥ n, and

lim
n→∞

GE(x, y)|y∈∂En
= 0, x ∈ E,

the total mass of µn increases to infinity:

lim
n→∞

µn(En) = ∞.

For this reason one chooses to renormalize µn by choosing x0 ∈ E1 and letting

µ̃n(dy) = GE(x0, y)µn(dy), n ∈ N,

so that µ̃n has total mass

µ̃n(En) = u(x0) < ∞,

independently of n ∈ N. Next, let the kernel Kx0 be defined as

Kx0(x, y) :=
GE(x, y)

GE(x0, y)
, x, y ∈ E,

with the relation

R̂En
u (x) =

∫
En

Kx0(x, y)dµ̃n(y).

The construction of the Martin boundary of E relies on the following theorem by Constan-

tinescu and Cornea, cf. Helms [Hel69], chapter 12.
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Theorem 2.6.1. Let E denote a locally compact and non-compact space and consider a

family Φ of continuous mappings

f : E → [−∞,∞].

Then there exists a unique compact space Ê in which E is everywhere dense, such that:

a) every f ∈ Φ can be extended to a function f∗ on Ê by continuity,

b) the extended functions separate the points of the boundary ∆E = Ê \E in the sense that

if x, y ∈ ∆E with x ̸= y, there exists f ∈ Φ such that f∗(x) ̸= f∗(y).

The Martin space is then defined as the unique compact space Ê in which E is everywhere

dense, and such that the functions

{y 7→ Kx0(x, y) : x ∈ E}

admit continuous extensions which separate the boundary Ê \ E. Such a compactification

Ê of E exists and is unique as a consequence of the Constantinescu-Cornea Theorem 2.6.1,

applied to the family

Φ := {x 7→ Kx0(x, z) : z ∈ E}.

In this way the Martin boundary of E is defined as

∆E := Ê \ E.

The Martin boundary is unique up to an homeomorphism, namely if x0, x
′
0 ∈ E, then

Kx′
0
(x, z) =

Kx0(x, z)

Kx0(x
′
0, z)

and

Kx0(x, z) =
Kx′

0
(x, z)

Kx′
0
(x0, z)

have different limits in Ê′ which still separate the boundary ∆E. For this reason, in the

sequel we will drop the index x0 in Kx0(x, z).

Theorem 2.6.2. Any non-negative harmonic function h on E can be represented as

h(x) =

∫
∆E

K(z, x)ν(dz), x ∈ E,

where ν is a non-negative Radon measure on ∆E.

Proof. Since µ̃n(En) is bounded (actually it is constant) in n ∈ N we can extract a

subsequence (µ̃nk
)k∈N converging vaguely to a measure µ on Ê, i.e.

lim
k→∞

∫
Ê
f(x)µ̃nk

(dx) =

∫
Ê
f(x)µ(dx), f ∈ Cc(E),
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see e.g. Ex. 10, p. 81 of Hirsch and Lacombe [HL99]. The continuity of z 7→ K(x, z) in

z ∈ Ê then implies

h(x) = lim
n→∞

R̂En
u (x)

= lim
k→∞

R̂
Enk
u (x)

= lim
k→∞

∫
Ê
K(z, x)νnk

(dz)

=

∫
Ê
K(z, x)µ(dz), x ∈ E.

Finally, ν is supported by ∆E since for all f ∈ Cc(En),∫
E
f(x)µ(dx) = lim

k→∞

∫
Ek

f(x)µ̃nk
(dx) = 0.

□

When E = B(y, r) one can check by explicit calculation that

lim
ζ→z

Ky(x, ζ) =
r2 − ∥x− y∥2

∥z − x∥n
, z ∈ S(y, r),

is the Poisson kernel on S(y, r). In this case we have

µ = σy
r ,

which is the normalized surface measure on S(y, r), and the Martin boundary ∆B(y, r) of

B(y, r) equals the usual boundary S(y, r).

3 Markov processes

3.1 Markov property

Let C0(Rn) denote the class of continuous functions tending to 0 at infinity. Recall that f

is said to tend to 0 at infinity if for all ε > 0 there exists a compact subset K of Rn such

that |f(x)| ≤ ε for all x ∈ Rn \K.

Definition 3.1.1. An Rn-valued stochastic process, i.e. a family (Xt)t∈R+ of random vari-

ables on a probability space (Ω,F , P ), is a Markov process if for all t ∈ R+ the σ-fields

F+
t := σ(Xs : s ≥ t)

and

Ft := σ(Xs : 0 ≤ s ≤ t).

are conditionally independent given Xt.
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This condition can be restated by saying that for all A ∈ F+
t and B ∈ Ft we have

P (A ∩B | Xt) = P (A | Xt)P (B | Xt),

cf. Chung [Chu95]. This definition naturally entails that:

i) (Xt)t∈R+ is adapted with respect to (Ft)t∈R+ , i.e. Xt is Ft-measurable, t ∈ R+, and

ii) Xu is conditionally independent of Ft given Xt, for all u ≥ t, i.e.

IE[f(Xt) | Fs] = IE[f(Xt) | Xs], 0 ≤ s ≤ t,

for any bounded measurable function f on Rn.

In particular,

P (Xu ∈ A | Ft) = IE[1A(Xu) | Ft] = IE[1A(Xu) | Xt] = P (Xu ∈ A | Xt), A ∈ B(Rn).

Processes with independent increments provide simple examples of Markov processes. In-

deed, for all bounded measurable functions f , g we have

IE[f(Xt1 , . . . , Xtn)g(Xs1 , . . . , Xsn) | Xt]

= IE[f(Xt1 −Xt + x, . . . ,Xtn −Xt + x)g(Xs1 −Xt + x, . . . ,Xsn −Xt + x)]x=Xt

= IE[f(Xt1 −Xt + x, . . . ,Xtn −Xt + x)]x=Xt IE[g(Xs1 −Xt + x, . . . ,Xsn −Xt + x)]x=Xt

= IE[f(Xt1 , . . . , Xtn) | Xt] IE[g(Xs1 , . . . , Xsn) | Xt],

0 ≤ s1 < · · · < sn < t < t1 < · · · < tn.

In discrete time, a sequence (Xn)n∈N of random variables is said to be a Markov chain for

all n ∈ N, the σ-algebras

Fn = σ({Xk : k ≤ n})

and

F+
n = σ({Xk : k ≥ n})

are independent conditionally to Xn. In particular, for all F+
n -measurable bounded random

variable F we have

IE[F | Fn] = IE[F | Xn], n ∈ N.

3.2 Transition kernels and semigroups

A transition kernel is a mapping P (x, dy) such that

i) for every x ∈ E, A 7→ P (x,A) is a probability measure, and

ii) for every A ∈ B(E), the mapping x 7→ P (x,A) is a measurable function.
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The transition kernel µs,t associated to (Xt)t∈R+ is defined as

µs,t(x,A) = P (Xt ∈ A | Xs = x) 0 ≤ s ≤ t,

and we have

µs,t(Xs, A) = P (Xt ∈ A | Xs) = P (Xt ∈ A | Fs), 0 ≤ s ≤ t.

The transition operator (Ts,t)0≤s≤t associated to (Xt)t∈R+ is defined as

Ts,tf(x) = IE[f(Xt) | Xs = x] =

∫
Rn

f(y)µs,t(x, dy), x ∈ Rn.

Letting ps,t(x) denote the density of Xt −Xs we have

µs,t(x,A) =

∫
A
ps,t(y − x)dy, A ∈ B(Rn),

and

Ts,tf(x) =

∫
Rn

f(y)ps,t(y − x)dy.

In the sequel we will assume that (Xt)t∈R+ is time homogeneous, i.e. µs,t depends only

on the difference t − s, and we will denote it by µt−s. In this case the family (T0,t)t∈R+ is

denoted by (Tt)t∈R+ and defines a transition semigroup associated to (Xt)t∈R+ , with

Ttf(x) = IE[f(Xt) | X0 = x] =

∫
Rn

f(y)µt(x, dy), x ∈ Rn.

It satisfies the semigroup property

TtTsf(x) = IE[Tsf(Xt) | X0 = x]

= IE[IE[f(Xt+s) | Xs] | X0 = x]]

= IE[IE[f(Xt+s) | Fs] | X0 = x]]

= IE[f(Xt+s) | X0 = x]

= Tt+sf(x),

which leads to the Chapman-Kolmogorov equation

µs+t(x,A) = µs ∗ µt(x,A) =

∫
Rn

µs(x, dy)µt(y,A). (3.1)

By induction we obtain

Px((Xt1 , . . . , Xtn) ∈ B1 × · · · ×Bn) =

∫
B1

· · ·
∫
Bn

µ0,t1(x, dx1) · · ·µtn−1,tn(xn−1, dxn),

for 0 < t1 < · · · < tn and B1, . . . , Bn Borel subsets of Rn.
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If (Xt)t∈R+ is a homogeneous Markov processes with independent increments then the den-

sity pt(x) of Xt satisfies the convolution property

ps+t(x) =

∫
Rn

ps(y − x)pt(y)dy, x ∈ Rn,

which is satisfied in particular by processes with stationary and independent increments such

as Lévy processes. A typical example of a probability density satisfying such a convolution

property is the Gaussian density, i.e.

pt(x) =
1

(2πt)n/2
exp

(
− 1

2t
∥x∥2Rn

)
, x ∈ Rn.

From now on we assume that (Tt)t∈R+ is a strongly continuous Feller semigroup, i.e. a

family of positive contraction operators on C0(Rn) such that

i) Ts+t = TsTt, s, t ≥ 0,

ii) TtC0(Rn) ⊂ C0(Rn),

iii) Ttf(x) → f(x) as t → 0, f ∈ C0(Rn), x ∈ Rn.

The resolvent of (Tt)t∈R+ is defined as

Rλf(x) :=

∫ ∞

0
e−λtTtf(x)dt, x ∈ Rn,

i.e.

Rλf(x) = IEx

[∫ ∞

0
e−λtf(Xt)dt

]
, x ∈ Rn,

for sufficiently integrable f on Rn, where IEx denotes the conditional expectation given that

{X0 = x}. It satisfies the resolvent equation

Rλ −Rµ = (µ− λ)RλRµ, λ, µ > 0.

We refer to [Kal02] for the following result.

Theorem 3.2.1. Let (Tt)t∈R+ be a Feller semigroup on C0(Rn) with resolvent Rλ, λ > 0.

Then there exists an operator A with domain D ⊂ C0 such that

R−1
λ = λI −A, λ > 0. (3.2)

The operator A is called the generator of (Tt)t∈R+ and it characterizes (Tt)t∈R+ . Further-

more, the semigroup (Tt)t∈R+ is differentiable in t for all f ∈ D and it satisfies the forward

and backward Kolmogorov equations

dTtf

dt
= TtAf, and

dTtf

dt
= ATtf.
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Note that for the Gaussian transition density pt(x, y), the integral∫ ∞

0
pt(x, y)dt =

Γ(n/2− 1)

2πn/2∥x− y∥n−2

=
n− 2

2sn∥x− y∥n−2

= (n/2− 1)hy(x)

is a Newtonian potential for n ≥ 3. Hence the resolvent R0f associated to the Gaussian

semigroup Ttf(x) =
∫
Rn f(y)pt(x, y)dy is also a potential in the sense of Definition 2.5.1,

since:

R0f(x) =

∫ ∞

0
Ttf(x)dt

= IEx

[∫ ∞

0
f(Bt)dt

]
=

∫
Rn

f(y)

∫ ∞

0
pt(x, y)dtdy

=
n− 2

2sn

∫
Rn

f(y)

∥x− y∥n−2
dy.

More generally we have

Rλf(x) = (λI −A)−1f(x)

=

∫ ∞

0
e−λtTtf(x)dt

=

∫ ∞

0
e−λtetAf(x)dt

=

∫ ∞

0
e−λtTtf(x)dt

=

∫ ∞

0

∫
Rn

f(y)e−λtpt(x, y)dydt

=

∫
Rn

f(y)gλ(x, y)dy, x ∈ Rn,

where gλ(x, y) is the λ-potential kernel defined as

gλ(x, y) :=

∫ ∞

0
e−λtpt(x, y)dt,

and Rλf is also called a λ-potential.

Recall that the Hille-Yosida theorem allows one to construct a strongly continuous semi-

group from a generator A.

In another direction it is possible to associate a Markov process to any time homogeneous

transition function satisfying µ0(x, dy) = δx(dy) and the Chapman-Kolmogorov equation

(3.1), cf. e.g. Theorem 4.1.1 of Ethier and Kurtz [EK86].
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3.3 Hitting times

Definition 3.3.1. An a.s. non-negative random variable τ is called a stopping time with

respect to a filtration Ft if

{τ ≤ t} ∈ Ft, t > 0.

The σ-algebra Fτ is defined as the collection of measurable sets A such that

A ∩ {τ < t} ∈ Ft

for all t > 0. Note that for all s > 0 we have

{τ < s}, {τ ≤ s}, {τ > s}, {τ ≥ s} ∈ Fτ .

The strong Markov property for the process (Xt)t∈R+ states that for any P -a.s. finite Ft-

stopping time τ we have

IE[f(X(τ + t)) | Fτ ] = IE[f(X(t)) | X0 = x]x=Xτ = Ttf(Xτ ), (3.3)

for all bounded measurable f .

The hitting time τB of a Borel set B is defined as

τB = inf{t > 0 : Xt ∈ B},

with the convention inf ∅ = +∞. A set B such that Px(τB < ∞) for all x ∈ Rn is said to

be polar.

In discrete time it can be easily shown that hitting times are stopping times, from the

relation

{τB ≤ n}c = {τB > n} =

n⋂
k=0

{Xk /∈ B} ∈ Fn.

In continuous time the situation is more complicated. From e.g. Lemma 7.6 of Kallen-

berg [Kal02], τB is a stopping time provided B is closed and (Xt)t∈R+ is continuous, or B

is open and (Xt)t∈R+ is right-continuous.

Definition 3.3.2. The last exit time from B is denoted by lB and defined as

lB = sup{t > 0 : Xt ∈ B},

with lB = 0 if τB = +∞.

We say that B is recurrent if Px(lB = +∞) = 1, x ∈ Rn, and that B is transient if lB < ∞,

P -a.s., i.e. Px(lB = +∞) = 0, x ∈ Rn.

The λ-capacity Cλ(B) of a Borel set B is defined as

Cλ(B) = IEy

[∫
Rn

e−λτBcdy

]
,

and it is finite when B is bounded. A given set B is said to be polar if Cλ(B) = 0.
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3.4 Dirichlet forms

Dirichlet forms provide a functional analytic approach to the Dirichlet problem. A Dirichlet

form is a positive bilinear form E defined on a domain ID dense in a real Hilbert space H,

such that

i) the space ID, equipped with the norm

∥f∥ID :=
√
∥f∥2H + E(f, f),

is a Hilbert space, and

ii) for any f ∈ ID we have f ∧ 1 ∈ ID and

E(f ∧ 1, f ∧ 1) ≤ E(f, f).

The classical example of Dirichlet form is given by H = L2(Rn) and

E(f, g) :=
∫
Rn

n∑
i=1

∂f

∂xi
(x)

∂g

∂xi
(x)dx.

The generator L of E is defined by Lf = g, f ∈ ID, if for all h ∈ ID we have

E(f, h) = −⟨g, h⟩H .

It is known, cf. e.g. Bouleau and Hirsch [BH91], that a self-adjoint operator L on H =

L2(Rn) with domain Dom(L) is the adjoint of a Dirichlet form if and only if

⟨Lf, (f − 1)+⟩L2(Rn) ≤ 0, f ∈ Dom(L).

It is in turn the generator of a strongly continuous semi-group (Pt)t∈R+ on H = L2(Rn) if

and only if (Pt)t∈R+ is sub-Markovian, i.e. for all f ∈ L2(Rn),

0 ≤ f ≤ 1 ⇒ 0 ≤ Ptf ≤ 1, t ∈ R+.

We refer to Ma and Röckner [MR92] for more details on the connection between stochastic

processes and Dirichlet forms. Coming back to the Dirichlet problem
∆u = 0, x ∈ D,

u(x) = 0, x ∈ ∂D.

If f and g are C1 with compact support in D we have∫
D
g(x)∆f(x)dx = −

n∑
i=1

∫
D

∂f

∂xi
(x)

∂g

∂xi
(x)dx = −E(f, g).
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Here, ID is the subspace of functions in L2(Rn) whose derivative in distribution sense belongs

to L2(Rn), with norm

∥f∥2ID =

∫
Rn

|f(x)|2dx+

∫
Rn

n∑
i=1

∣∣∣ ∂f
∂xi

(x)
∣∣∣2dx.

Hence the Dirichlet problem for f can be formulated as

E(f, g) = 0,

for all g in the completion of C∞
c (D) with respect to the ∥ · ∥ID-norm. The capacity of an

open set A is defined as

C(A) = inf{∥u∥ID : u ∈ ID and u ≥ 1 on A},

and is connected to the notion of λ-capacity Cλ, cf. Fukushima et al. [FOT94]. The notion

of zero-capacity set is finer than that of zero-measure sets and gives rise to the notion of

properties that hold in the quasi-everywhere sense, cf. Bouleau and Hirsch [BH91].

In discrete time, a sequence (Xn)n∈N of random variables is called a homogeneous Markov

chain with transition kernel P if

IE[f(Xn) | Fm] = Pn−mf(Xm), 0 ≤ m ≤ n. (3.4)

4 Stochastic calculus

4.1 Brownian motion and the Poisson process

Let (Ω,F , P ) be a probability space and (Ft)t∈R+ a filtration, i.e. an increasing family of

sub σ-algebras of F . We assume that (Ft)t∈R+ is continuous on the right, i.e.

Ft =
⋂
s>t

Fs, t ∈ R+.

Recall that a process (Mt)t∈R+ in L1(Ω) is called an Ft-martingale if IE[Mt|Fs] = Ms,

0 ≤ s ≤ t.

For example, if (Xt)t∈[0,T ] is a (non homogeneous) Markov process with semi-group (Ps,t)0≤s≤t≤T

satisfying

Ps,tf(Xs) = IE[f(Xt) | Xs] = IE[f(Xt) | Fs], 0 ≤ s ≤ t ≤ T,

on C2
b (Rn) functions, with

Ps,t ◦ Pt,u = Ps,u, 0 ≤ s ≤ t ≤ u ≤ T,

then (Pt,T f(Xt))t∈[0,T ] is an Ft- martingale:

IE[Pt,T f(Xt) | Fs] = IE[IE[f(XT ) | Ft] | Fs] = IE[f(XT ) | Fs] = Ps,T f(Xs),

0 ≤ s ≤ t ≤ T .
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Definition 4.1.1. A martingale (Mt)t∈R+ in L2(Ω) (i.e. IE[|Mt|2] < ∞, t ∈ R+) and such

that

IE[(Mt −Ms)
2|Fs] = t− s, 0 ≤ s < t, (4.1)

is called a normal martingale.

Every square-integrable process (Mt)t∈R+ with centered independent increments and gener-

ating the filtration (Ft)t∈R+ satisfies

IE[(Mt −Ms)
2|Fs] = IE[(Mt −Ms)

2], 0 ≤ s ≤ t,

hence the following remark.

Remark 4.1.2. A square-integrable process (Mt)t∈R+ with centered independent increments

is a normal martingale if and only if

IE[(Mt −Ms)
2] = t− s, 0 ≤ s ≤ t.

In our presentation of stochastic integration we will restrict ourselves to normal martingales.

As will be seen in the next sections, this family contains Brownian motion and the standard

Poisson process as particular cases.

Remark 4.1.3. A martingale (Mt)t∈R+ is normal if and only if (M2
t −t)t∈R+ is a martingale,

i.e.

IE[M2
t − t|Fs] = M2

s − s, 0 ≤ s < t.

Proof. This follows from the equalities

IE[(Mt −Ms)
2|Fs]− (t− s) = IE[M2

t −M2
s − 2(Mt −Ms)Ms|Fs]− (t− s)

= IE[M2
t −M2

s |Fs]− 2Ms IE[Mt −Ms|Fs]− (t− s)

= IE[M2
t |Fs]− t− (IE[M2

s |Fs]− s).

□

Throughout the remainder of this chapter, (Mt)t∈R+ will be a normal martingale.

We now turn to the Brownian motion and the compensated Poisson process as the fun-

damental examples of normal martingales. Our starting point is now a family (ξn)n∈N of

independent standard (i.e. centered and with unit variance) Gaussian random variables

under γN, constructed as the canonical projections from (RN,BRN , γN) into R. The measure

γN is characterized by its Fourier transform

α 7→ IE
[
e
i⟨ξ,α⟩ℓ2(N)

]
= IE

[
ei

∑∞
n=0 ξnαn

]
=

∞∏
n=0

e−α2
n/2 = e

− 1
2
∥α∥2

ℓ2(N) , α ∈ ℓ2(N),

i.e. ⟨ξ, α⟩ℓ2(N) is a centered Gaussian random variable with variance ∥α∥2ℓ2(N). Let (en)n∈N

be of L2(R+) denote an orthonormal basis(en)n∈N be of L2(R+).
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Definition 4.1.4. Given u ∈ L2(R+) with decomposition

u =

∞∑
n=0

⟨u, en⟩en,

we let J1 : L
2(R+) −→ L2(RN, γN) be defined as

J1(u) =

∞∑
n=0

ξn⟨u, en⟩.

We have the isometry property

IE[|J1(u)|2] =
∞∑
k=0

|⟨u, en⟩|2 IE[|ξn|2] =
∞∑
k=0

|⟨u, en⟩|2 = ∥u∥2L2(R+). (4.2)

We have

IE
[
eiJ1(u)

]
=

∞∏
n=0

IE
[
eiξn⟨u,en⟩

]
=

∞∏
n=0

e
− 1

2
⟨u,en⟩2

L2(R+) = exp

(
−1

2
∥u∥2L2(R+)

)
,

hence J1(u) is a centered Gaussian random variable with variance ∥u∥2L2(R+). Next is a

constructive approach to the definition of Brownian motion, using the decomposition

1[0,t] =

∞∑
n=0

en

∫ t

0
en(s)ds.

Definition 4.1.5. For all t ∈ R+, let

Bt(ω) = J1(1[0,t]) =
∞∑
n=0

ξn(ω)

∫ t

0
en(s)ds. (4.3)
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Figure 4.1: Sample paths of one-dimensional Brownian motion.
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Clearly, Bt −Bs = J1(1[s,t]) is a Gaussian centered random variable with variance:

IE[(Bt −Bs)
2] = IE[|J1(1[s,t])|2] = ∥1[s,t]∥2L2(R+) = t− s. (4.4)

Moreover, the isometry formula (4.2) shows that if u1, . . . , un are orthogonal in L2(R+)

then J1(u1), . . . , J1(un) are also mutually orthogonal in L2(Ω), hence from Corollary 16.1

of Jacod and Protter [JP00], we get the following.

Proposition 4.1.6. Let u1, . . . , un be an orthogonal family in L2(R+), i.e.

⟨ui, uj⟩L2(R+) = 0, 1 ≤ i ̸= j ≤ n.

Then (J1(u1), . . . , J1(un)) is a vector of independent Gaussian centered random variables

with respective variances ∥u1∥2L2(R+), . . . , ∥u1∥
2
L2(R+).

As a consequence of Proposition 4.1.6, (Bt)t∈R+ has centered independent increments hence

it is a martingale.

Moreover, from (4.4) and Remark 4.1.2 we deduce the following proposition.

Proposition 4.1.7. The Brownian motion (Bt)t∈R+ is a normal martingale.

The n-dimensional Brownian motion will be constructed as (B1
t , . . . , B

n
t )t∈R+ where (B1

t )t∈R+ ,

. . .,(Bn
t )t∈R+ are independent copies of (Bt)t∈R+ .

The compensated Poisson process will provide a second example of normal martingale. Let

now (τn)n≥1 denote a sequence of independent and identically exponentially distributed

random variables, with parameter λ > 0, i.e.

IE[f(τ1, . . . , τn)] = λn

∫ ∞

0
· · ·
∫ ∞

0
e−λ(s1+···+sn)f(s1, . . . , sn)ds1 · · · dsn,

for all sufficiently integrable measurable f : Rn
+ → R. Let now

Tn = τ1 + · · ·+ τn, n ≥ 1.

We now consider the canonical point process associated to (Tk)k≥1.

Definition 4.1.8. The point process (Nt)t∈R+ defined by

Nt =
∞∑
k=1

1[Tk,∞)(t), t ∈ R+ (4.5)

is called the standard Poisson point process.

The process (Nt)t∈R+ has independent increments which are distributed according to the

Poisson law, i.e. for all 0 ≤ t0 ≤ t1 < · · · < tn,

(Nt1 −Nt0 , . . . , Ntn −Ntn−1)
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is a vector of independent Poisson random variables with respective parameters

(λ(t1 − t0), . . . , λ(tn − tn−1)).

Compound Poisson processes provide other examples of normal martingales. Given (Yk)k≥1

a sequence of independent identically distributed random variables, define the compound

Poisson process as

Xt =

Nt∑
k=1

Yk, t ∈ R+.

The compensated compound Poisson martingale defined as

Mt :=
Xt − λt IE[Y1]√

λVar[Y1]
, t ∈ R+,

is a normal martingale.

4.2 Stochastic integration

In this section we construct the Itô stochastic integral of square-integrable adapted processes

with respect to normal martingales. The filtration (Ft)t∈R+ is generated by (Mt)t∈R+ :

Ft = σ(Ms : 0 ≤ s ≤ t), t ∈ R+.

A process (Xt)t∈R+ is said to be Ft-adapted if Xt is Ft-measurable for all t ∈ R+.

Definition 4.2.1. Let Lp
ad(Ω×R+), p ∈ [1,∞], denote the space of Ft-adapted processes in

Lp(Ω× R+).

Stochastic integrals will be first constructed as integrals of simple predictable processes.

Definition 4.2.2. Let S be a space of random variables dense in L2(Ω,F , P ). Consider the

following spaces of simple processes: let P denote the space of simple predictable processes

(ut)t∈R+ of the form

ut =
n∑

i=1

Fi1(tni−1,t
n
i ]
(t), t ∈ R+, (4.6)

where Fi is Ftni−1
-measurable, i = 1, . . . , n.

One easily checks that the set P of simple predictable processes forms a linear space. Part

(ii) of the next proposition also follows from Lemma 1.1 of Ikeda and Watanabe [IW89],

p. 22 and p. 46. For any p ≥ 1, the space P of simple predictable processes are dense in

Lp(Ω× R+) and Lp
ad(Ω× R+) respectively.

Proposition 4.2.3. The stochastic integral with respect to the normal martingale (Mt)t∈R+,

defined on simple predictable processes (ut)t∈R+ of the form (4.6) by∫ ∞

0
utdMt :=

n∑
i=1

Fi(Mti −Mti−1), (4.7)
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extends to u ∈ L2
ad(Ω× R+) via the isometry formula

IE

[∫ ∞

0
utdMt

∫ ∞

0
vtdMt

]
= IE

[∫ ∞

0
utvtdt

]
. (4.8)

Proof. We start by showing that the isometry (4.8) holds for the simple predictable process

u =
∑n

i=1Gi1(ti−1,ti], with 0 = t0 < t1 < · · · tn:

IE

[(∫ ∞

0
utdMt

)2
]
= IE

( n∑
i=1

Gi(Mti −Mti−1)

)2


= IE

[
n∑

i=1

|Gi|2(Mti −Mti−1)
2

]

+2 IE

 ∑
1≤i<j≤n

GiGj(Mti −Mti−1)(Mtj −Mtj−1)


=

n∑
i=1

IE[IE[|Gi|2(Mti −Mti−1)
2|Fti−1 ]]

+2
∑

1≤i<j≤n

IE[IE[GiGj(Mti −Mti−1)(Mtj −Mtj−1)|Ftj−1 ]]

=

n∑
i=1

IE[|Gi|2 IE[(Mti −Mti−1)
2|Fti−1 ]]

+2
∑

1≤i<j≤n

IE[GiGj(Mti −Mti−1) IE[(Mtj −Mtj−1)|Ftj−1 ]]

= IE

[
n∑

i=1

|Gi|2(ti − ti−1)

]
= IE[∥u∥2L2(R+)].

The stochastic integral operator extends to L2
ad(Ω×R+) by density and a Cauchy sequence

argument, applying the isometry (4.8) with s = 0. □

Proposition 4.2.4. For any u ∈ L2
ad(Ω× R+) we have

IE

[∫ ∞

0
usdMs

∣∣∣Ft

]
=

∫ t

0
usdMs, t ∈ R+.

In particular,
∫ t
0 usdMs is Ft-measurable, t ∈ R+.

Proof. Let u ∈ P have the form u = G1(a,b], where G is bounded and Fa-measurable.

i) If 0 ≤ a ≤ t we have

IE

[∫ ∞

0
usdMs

∣∣∣Ft

]
= IE [G(Mb −Ma)|Ft]
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= G IE [(Mb −Ma)|Ft]

= G IE [(Mb −Mt)|Ft] +G IE [(Mt −Ma)|Ft]

= G(Mt −Ma)

=

∫ ∞

0
1[0,t](s)usdMs.

ii) If 0 ≤ t ≤ a we have for all bounded Ft-measurable random variable F :

IE

[
F

∫ ∞

0
usdMs

]
= IE [FG(Mb −Ma)] = 0,

hence

IE

[∫ ∞

0
usdMs

∣∣∣Ft

]
= IE [G(Mb −Ma)|Ft] = 0 =

∫ ∞

0
1[0,t](s)usdMs.

This statement is extended by linearity and density, since from the continuity of the condi-

tional expectation on L2 we have:

IE

[(∫ t

0
usdMs − IE

[∫ ∞

0
usdMs

∣∣∣Ft

])2
]

= lim
n→∞

IE

[(∫ t

0
uns dMs − IE

[∫ ∞

0
usdMs

∣∣∣Ft

])2
]

= lim
n→∞

IE

[(
IE

[∫ ∞

0
uns dMs −

∫ ∞

0
usdMs

∣∣∣Ft

])2
]

≤ lim
n→∞

IE

[
IE

[(∫ ∞

0
uns dMs −

∫ ∞

0
usdMs

)2 ∣∣∣Ft

]]

≤ lim
n→∞

IE

[(∫ ∞

0
(uns − us)dMs

)2
]

= lim
n→∞

IE

[∫ ∞

0
|uns − us|2ds

]
= 0.

□

In particular, since F0 = {∅,Ω}, the Itô integral is a centered random variable:

IE

[∫ ∞

0
usdMs

]
= 0. (4.9)

The following is an immediate corollary of Proposition 4.2.4.
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Corollary 4.2.5. The indefinite stochastic integral
(∫ t

0 usdMs

)
t∈R+

of u ∈ L2
ad(Ω×R+) is

a martingale, i.e.:

IE

[∫ t

0
uτdMτ

∣∣∣Fs

]
=

∫ s

0
uτdMτ , 0 ≤ s ≤ t.

Recall that since the Poisson martingale (Mt)t∈R+ = (Nt − t)t∈R+ is a normal martingale,∫ T

0
utdMt

is defined in Itô sense as an L2(Ω)-limit of stochastic integrals of simple adapted processes.

4.3 Quadratic variation

We now introduce the notion of quadratic variation for normal martingales.

Definition 4.3.1. The quadratic variation of (Mt)t∈R+ is the process ([M,M ]t)t∈R+ defined

as

[M,M ]t = M2
t − 2

∫ t

0
MsdMs, t ∈ R+. (4.10)

Let now

πn = {0 = tn0 < tn1 < · · · < tnn−1 < tnn = t}

denote a family of subdivision of [0, t], such that |πn| := maxi=1,...,n |tni − tni−1| converges to
0 as n goes to infinity.

Proposition 4.3.2. We have

[M,M ]t = lim
n→∞

n∑
i=1

(Mtni
−Mtni−1

)2, t ≥ 0,

where the limit exists in L2(Ω) and is independent of the sequence (πn)n∈N of subdivisions

chosen.

Proof. As an immediate consequence of the definition 4.7 of the stochastic integral we have

Ms(Mt −Ms) =

∫ t

s
MsdMτ , 0 ≤ s ≤ t,

hence

[M,M ]tni − [M,M ]tni−1
= M2

tni
−M2

tni−1
− 2

∫ tni

tni−1

MsdMs

= (Mtni
−Mtni−1

)2 + 2

∫ tni

tni−1

(Mtni−1
−Ms)dMs,
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hence

IE

([M,M ]t −
n∑

i=1

(Mtni
−Mtni−1

)2

)2


= IE

( n∑
i=1

[M,M ]tni − [M,M ]tni−1
− (Mtni

−Mtni−1
)2

)2


= 4 IE

( n∑
i=1

∫ t

0
1(tni−1,t

n
i ]
(s)(Ms −Mtni−1

)dMs

)2


= 4 IE

[
n∑

i=1

∫ tni

tni−1

(Ms −Mtni−1
)2ds

]

= 4 IE

[
n∑

i=1

∫ tni

tni−1

(s− tni−1)
2ds

]
≤ 4t|π|.

□

Clearly, from the definition (4.3), J1(u) coincides with the single stochastic integral I1(u)

with respect to (Bt)t∈R+ .

Proposition 4.3.3. The quadratic variation of Brownian motion (Bt)t∈R+ is

[B,B]t = t, t ∈ R+.

Proof. (cf. e.g. Protter [Pro90], Theorem I-28). For every subdivision {0 = tn0 < · · · <
tnn = t = t} we have, by independence of the increments of Brownian motion:

IE

(t− n∑
i=1

(Btni
−Btni−1

)2

)2
 = IE

( n∑
i=1

(Btni
−Btni−1

)2 − (tni − tni−1)

)2


=
n∑

i=1

(tni − tni−1)
2 IE

((Btni
−Btni−1

)2

tni − tni−1

− 1

)2


= IE[(Z2 − 1)2]

n∑
i=0

(tni − tni−1)
2

≤ t|π| IE[(Z2 − 1)2],

where Z is a standard Gaussian random variable. □

A simple analysis of the Poisson paths shows that the quadratic variation of the compensated

Poisson process (Mt)t∈R+ = (Nt − t)t∈R+ is

[M,M ]t = Nt, t ∈ R+.
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Similarly for the compensated compound Poisson martingale

Mt :=
Xt − λt IE[Y1]√

λVar[Y1]
, t ∈ R+,

we have

[M,M ]t =

Nt∑
k=1

|Yk|2, t ∈ R+.

Definition 4.3.4. An equation of the form

[M,M ]t = t+

∫ t

0
ϕsdMs, t ∈ R+, (4.11)

where (ϕt)t∈R+ is a square-integrable adapted process, is called a structure equation, cf.

Emery [É90].

Definition 4.3.5. The angle bracket ⟨M,M⟩t is the unique increasing process such that

M2
t − ⟨M,M⟩t, t ∈ R+,

is a martingale.

As a consequence of Remark 4.1.3 we have

⟨M,M⟩t = t, t ∈ R+,

for every normal martingale. Moreover,

[M,M ]t − ⟨M,M⟩t, t ∈ R+,

is also a martingale as a consequence of Remark 4.1.3 and Proposition 4.2.4, since by Defi-

nition 4.3.1 we have

[M,M ]t − ⟨M,M⟩t = [M,M ]t − t = M2
t − t− 2

∫ t

0
MsdMs, t ∈ R+. (4.12)

We say that the martingale (Mt)t∈R+ has the predictable representation property if any

square-integrable martingale (Xt)t∈R+ with respect to (Ft)t∈R+ can be represented as

Xt = X0 +

∫ t

0
usdMs, t ∈ R+, (4.13)

where (ut)t∈R+ ∈ L2
ad(Ω × R+) is an adapted process such that u1[0,T ] ∈ L2(Ω × R+) for

all T > 0. It is known that Brownian motion and the compensated Poisson process have

the predictable representation property. This is however not true of compound Poisson pro-

cesses in general.

As a consequence of (4.12) and (4.13) we have the following proposition.
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Proposition 4.3.6. Assume that (Mt)t∈R+ is in L4(Ω) and has the predictable represen-

tation property. Then (Mt)t∈R+ satisfies the structure equation (4.11), i.e. there exists a

square-integrable adapted process (ϕt)t∈R+ such that

[M,M ]t = t+

∫ t

0
ϕsdMs, t ∈ R+.

Proof. Since ([M,M ]t − t)t∈R+ is a martingale, the predictable representation property

shows the existence of a square-integrable adapted process (ϕt)t∈R+ such that

[M,M ]t − t =

∫ t

0
ϕsdMs, t ∈ R+.

□

In particular,

a) the Brownian motion (Bt)t∈R+ satisfies the structure equation (4.11) with ϕt = 0,

since the quadratic variation of (Bt)t∈R+ is [B,B]t = t, t ∈ R+. Informally we have

∆Bt = ±
√
∆t with equal probabilities 1/2.

b) The compensated Poisson martingale (Mt)t∈R+ = λ(Nt − t/λ2)t∈R+ , where (Nt)t∈R+ is

a standard Poisson process with intensity 1/λ2 satisfies the structure equation (4.11)

with ϕt = λ ∈ R, t ∈ R+, since

[M,M ]t = λ2Nt = t+ λMt, t ∈ R+.

In this case, ∆Mt ∈ {0, λ} with respective probabilities 1− λ−2∆t and λ−2∆t.

The Azéma martingales correspond to ϕt = βMt, β ∈ [−2, 0), and provide other examples

of processes having the chaos representation property, but whose increments are not inde-

pendent, cf. Emery [É90]. Note that not all normal martingales satisfy a structure equation

and have the predictable representation property. For instance the compensated compound

Poisson martingale does not satisfy a structure equation and does not have the predictable

representation property.

4.4 Itô’s formula

We consider a normal martingale (Mt)t∈R+ which satisfies the structure equation

d[M,M ]t = dt+ ϕtdMt.

Such an equation is satisfied in particular if (Mt)t∈R+ has the predictable representation

property, cf. Proposition 4.3.6.

The following is a statement of Itô’s formula for normal martingales, cf. Emery [É90],

Proposition 2, p. 70.
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Proposition 4.4.1. Assume that ϕ ∈ L∞
ad(R+ × Ω). Let (Xt)t∈R+ be a process given by

Xt = X0 +

∫ t

0
usdMs +

∫ t

0
vsds, (4.14)

where (us)s∈R+ , (vs)s∈R+ are adapted processes in L2
ad([0, t]× Ω) for all t > 0. We have for

f ∈ C1,2(R+ × R):

f(t,Xt)− f(0, X0) =

∫ t

0

f(s,Xs− + ϕsus)− f(s,Xs−)

ϕs
dMs (4.15)

+

∫ t

0

f(s,Xs + ϕsus)− f(s,Xs)− ϕsus
∂f

∂x
(s,Xs)

ϕ2
s

ds

+

∫ t

0

∂f

∂x
(s,Xs)vsds+

∫ t

0

∂f

∂s
(s,Xs)ds.

If ϕs = 0, the terms
f(Xs− + ϕsus)− f(Xs−)

ϕs

and
f(Xs + ϕsus)− f(Xs)− ϕsusf

′(Xs)

ϕ2
s

have to be replaced by their respective limits usf
′(Xs−) and

1
2u

2
sf

′′(Xs−) as ϕs → 0.

Examples

i) For the d-dimensional Brownian motion (Bt)t∈R+ , ϕ = 0 and the Itô formula reads

f(Bt) = f(B0) +

∫ t

0
⟨∇f(Bs), dBs⟩H +

1

2

∫ t

0
∆f(Bs)ds,

for all C2 functions f , hence

Ttf(x) = IEx[f(Bt)]

= IEx

[
f(x) +

∫ t

0
⟨∇f(Bs), dBs⟩H +

1

2

∫ t

0
∆f(Bs)ds

]
= IEx

[
f(x) +

1

2

∫ t

0
∆f(Bs)ds

]
= f(x) +

1

2

∫ t

0
IEx [∆f(Bs)] ds

= f(x) +
1

2

∫ t

0
Ts∆f(x)ds.

hence (Bt)t∈R+ has generator
1

2
∆.
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ii) For the compensated Poisson process (Nt − t)t∈R+ we have ϕs = 1, s ∈ R+, hence

f(Nt − t) = f(0) +

∫ t

0
(f(1 +Ns− − s)− f(Ns− − s))d(Ns − s)

+

∫ t

0
(f(1 +Ns − s)− f(Ns − s)− f ′(Ns − s))ds.

This formula can actually be recovered by elementary calculus. Hence the generator

of the compensated Poisson process is

Lf(x) = f(x+ 1)− f(x)− f ′(x).

We will use the following multidimensional version of the change of variable formula.

Proposition 4.4.2. Let (Xt)t∈R+ be a Rn-valued process satisfying

dXt = Ytdt+ ZtdMt, X0 > 0,

where (Yt)t∈R+ and (Zt)t∈R+ are predictable square-integrable Rn-valued processes. For any

function R+ × Rn ∋ (t, x) → ft(x) in C2
b (R+ × Rn;R) we have

ft(Xt) = f0(X0) +

∫ t

0
Lsfs(Xs)dMs +

∫ t

0
Usfs(Xs)ds+

∫ t

0

∂fs
∂s

(Xs)ds, (4.16)

where

Lsfs(Xs) = is⟨Zs,∇fs(Xs)⟩+
js
ϕs

(fs(Xs− + ϕsZs−)− fs(Xs−)),

and

Usfs(Xs) = ⟨Ys,∇fs(Xs)⟩

+α2
s

(
1

2
is⟨∇∇fs(Xs), Zs ⊗ Zs⟩

+
js
ϕ2
s

(fs(Xs− + ϕsZs−)− fs(Xs−)− ϕs⟨Zs,∇fs(Xs)⟩)
)
,

with the convention 0/0 = 0.

From Itô’s formula we have for any stopping time τ and C2 function u, under suitable

integrability conditions:

IEx[u(Bτ )] = u(x) + IEx

[∫ τ

0
u(Bs)dBs

]
+

1

2
IEx

[∫ τ

0
∆u(Bs)ds

]
= u(x) + IEx

[∫ ∞

0
1{s≤τ}u(Bs)dBs

]
+

1

2
IEx

[∫ τ

0
∆u(Bs)ds

]
= u(x) +

1

2
IEx

[∫ τ

0
∆u(Bs)ds

]
, (4.17)
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which is called Dynkin’s formula, cf. Dynkin [Dyn65], Theorem 5.1. Let now

σ : R+ × Rn → Rd ⊗ Rn

and

b : R+ × Rn → R

satisfy the global Lipschitz condition

∥σ(t, x)− σ(t, y)∥2 + ∥b(t, x)− b(t, y)∥2 ≤ K2∥x− y∥2, t ∈ R+, x, y ∈ Rn.

Then there exists a unique strong solution to the stochastic differential equation

Xt = X0 +

∫ t

0
σ(s,Xs)dBs +

∫ t

0
b(s,Xs)ds,

and (Xt)t∈R+ is a Markov process with generator

L =
1

2

n∑
i,j=1

ai,j(t, x)
∂2

∂xi∂xj
+

n∑
i=1

bi(t, x)
∂

∂xi
,

where a = σTσ.

4.5 Killed Brownian motion

The transition operator for the Brownian motion (BD
t )t∈[0,τ∂D] killed on ∂D is defined as

qDt (x,A) = Px(B
D
t ∈ A, τ∂D > t),

where

τ∂D = inf{t > 0 : Bt ∈ ∂D}

is the first hitting time of ∂D by (Bt)t∈R+ . By the strong Markov property we have

Px(Bt ∈ A) = Px(Bt ∈ A, t < τ∂D) + Px(Bt ∈ A, t ≥ τ∂D)

= qDt (x,A) + Px(Bt ∈ A, t ≥ τ∂D)

= qDt (x,A) + IEx[1{Bt∈A}1{t≥τ∂D}]

= qDt (x,A) + IEx[IE[1{Bt∈A}1{t≥τ∂D} | Fτ∂D ]]

= qDt (x,A) + IEx[1{t≥τ∂D} IE[1{Bt∈A}1{t≥τ∂D} | Fτ∂D ]]

= qDt (x,A) + IEx[1{t≥τ∂D} IE[1{Bt−τ∂D
∈A} | B0 = x]x=Bτ∂D

]

= qDt (x,A) + IEx[Tt−τ∂D1A(B
D
τ∂D

)1{t≥τ∂D}],

hence

qDt (x,A) = Px(Bt ∈ A)− IEx[Tt−τ∂D1A(B
D
τ∂D

)1{t≥τ∂D}],

and the killed process has transition the densities

pDt (x, y) := pt(x, y)− IEx[pt−τ∂D(B
D
τ∂D

, y)1{t≥τ∂D}], x, y ∈ D, t > 0. (4.18)
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The Green function is defined as

gD(x, y) =

∫ ∞

0
pDt (x, y)dt,

and the associated Green potential is

GDµ(x) =

∫ ∞

0
gD(x, y)µ(dy),

with

GDf(x) = IE

[∫ τ∂D

0
f(Bt)dt

]
.

When D = Rn we have τ∂D = ∞ a.s. hence GRn = G.

Theorem 4.5.1. The function gD is symmetric and continuous on D2, and x 7→ gD(x, y)

is harmonic on D \ {y}, y ∈ D.

Proof. The function GD1A defined as

GD1A(x) =

∫
Rn

gD(x, y)1A(y)dy = IEx

[∫ τ∂D

0
1A(Bt)dt

]
has the mean value property in D \ Ā for all bounded domains A in Rn, and the property

extends to gD. □

From (4.18), the associated λ-potential kernel is given by

gλ(x, y) =

∫ ∞

0
e−λtpt(x, y)dt = gλD(x, y) +

∫
gλ(z, y)hλD(x, dz), (4.19)

where

gλD(x, y) :=

∫ ∞

0
e−λtqDt (x, y)dt,

and

hλD(x,A) = IEx[e
−λτ∂D1{BD

τ∂D
∈A}1{τ∂D<∞}].

5 Probabilistic interpretations

5.1 Harmonicity

We start by two simple examples on the connection between harmonic functions and stochas-

tic calculus. First, we show that Proposition 2.2.2, i.e. the fact that harmonic functions

satisfy the mean-value property, can be recovered using stochastic calculus. Let

τr = inf{t ∈ R+ : Bt ∈ S(y, r)}

denote the first exit time of (Bt)t∈R+ from the open ball B(y, r).
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Due to the symmetry of Brownian motion, Bτ is uniformly distributed on S(x, r) hence

IEx[u(Bτ )] =

∫
S(x,r)

u(y)σr
y(dy).

On the other hand, from Dynkin’s formula (4.17) we have

IEx[u(Bτr)] = u(x) +
1

2
IEx

[∫ τr

0
∆u(Bs)ds

]
.

Hence the condition ∆u = 0 implies the mean value property

u(x) =

∫
S(x,r)

u(y)σr
y(dy), (5.1)

and similarly the condition ∆u ≤ 0 implies

u(x) ≥
∫
S(x,r)

u(y)σr
y(dy). (5.2)

From Remark 3, page 134 of Dynkin [Dyn65], for all n ≥ 1 we have

1

2
∆u(x) = lim

n→∞

IEx[u(Bτ1/n)]− u(x)

IEx[τ1/n]
, (5.3)

which shows conversely that (5.1), resp. (5.2), implies ∆u ≤ 0, resp ∆u = 0, which recovers

Proposition 2.2.2.

Next we recover the superharmonicity property of the potential

R0f(x) =

∫ ∞

0
Ttf(x)dt (5.4)

= IEx

[∫ ∞

0
f(Bt)dt

]
=

∫ ∞

0

∫
Rn

f(y)pt(x, y)dtdy

=
n− 2

2

∫
Rn

hx(y)f(y)dy, x ∈ Rn.

Proposition 5.1.1. Let f be a non-negative function on Rn. Then the potential R0f given

in (5.4) is a superharmonic function provided it is C2 on Rn.

Proof. For all r > 0, using the strong Markov property (3.3) we have

g(x) = IEx

[∫ τr

0
f(Bt)dt

]
+ IEx

[∫ ∞

τr

f(Bt)dt

]
= IEx

[∫ τr

0
f(Bt)dt

]
+ IEx

[
E

[∫ ∞

τr

f(Bt)dt
∣∣∣Bτr

]]
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= IEx

[∫ τr

0
f(Bt)dt

]
+ IEx[g(Bτr)]

≥ IEx[g(Bτr)]

=

∫
S(x,r)

g(y)σr
x(dy),

which shows that g is ∆-superharmonic from Proposition 2.2.2. □

Other non-negative superharmonic functionals can also be constructed by convolution, i.e.

if f is ∆-superharmonic and g is non-negative and sufficiently integrable, then

x 7→
∫
Rn

g(y)f(x− y)dy

is non-negative and ∆-superharmonic.

We now turn to an example in discrete time, with the notation of (3.4). Here a function f

is called harmonic when (I − P )f = 0, and superharmonic if (I − P )f ≥ 0.

Proposition 5.1.2. A function f is superharmonic if and only if the sequence (f(Xn))n∈N
is a supermartingale.

Proof. We have

IE[f(Xm) | Fn] = IE[f(Xm−n) | X0 = x]x=Xn

= Pm−nf(Xn)

≤ f(Xn).

□

5.2 Dirichlet problem

In this section we revisit the Dirichlet problem using probabilistic tools.

Theorem 5.2.1. Consider an open domain in Rn and f a function on Rn, and assume

that the Dirichlet problem 
∆u = 0, x ∈ D,

u(x) = f(x), x ∈ ∂D,

has a C2 solution u. Then we have

u(x) = IEx[f(Bτ∂D)], x ∈ D̄,

where

τ∂D = inf{t > 0 : Bt ∈ ∂D}

is the first hitting time of ∂D by (Bt)t∈R+.
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Proof. For all r > 0 such that B(x, r) ⊂ D we have

u(x) = IEx[f(Bτ∂D)]

= IEx[IE[f(Bτ∂D) | Bτr ]]

= IEx[u(Bτr)]

=

∫
S(x,r)

u(y)σr
x(dy), x ∈ D̄,

hence u has the mean value property, thus ∆u = 0 Proposition 2.2.2. □
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Figure 5.1: Sample paths of a two-dimensional Brownian motion.

5.3 Poisson equation

In the next theorem we show that the resolvent

Rλf(x) = IEx

[∫ ∞

0
e−λtf(Bt)dt

]
=

∫ ∞

0
e−λtTtf(x)dt, x ∈ Rn,

solves the Poisson equation. This is consistent with the fact that Rλ = (λI − ∆/2)−1, cf.

Relation (3.2) in Theorem 3.2.1.

Theorem 5.3.1. Let λ > 0 and f a non-negative function on Rn, and assume that the

Poisson equation
1

2
∆u(x)− λu(x) = −f(x), x ∈ Rn, (5.5)
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has a C2
b solution u. Then we have

u(x) = IEx

[∫ ∞

0
e−λtf(Bt)dt

]
, x ∈ Rn.

Proof. By Itô’s formula we have:

e−λtu(Bt) = u(B0) +

∫ t

0
e−λs⟨∇f(Bs), dBs⟩+

1

2

∫ t

0
e−λs∆u(Bs)ds− λ

∫ t

0
e−λsu(Bs)ds

= u(B0) +

∫ t

0
e−λs⟨∇f(Bs), dBs⟩ −

1

2

∫ t

0
e−λsf(Bs)ds,

hence

e−λt IEx[u(Bt)] = u(x)− 1

2
IEx

[∫ t

0
e−λsf(Bs)ds

]
,

and letting t tend to infinity we get

0 = u(x)− 1

2
IEx

[∫ ∞

0
e−λsf(Bs)ds

]
.

□

When λ = 0 a similar result holds adding a boundary condition on a smooth domain D.

Theorem 5.3.2. Let f a non-negative function on Rn, and assume that the Poisson equa-

tion 
1

2
∆u(x) = −f(x), x ∈ D,

u(x) = 0, x ∈ ∂D,

(5.6)

has a C2
b solution u. Then we have

u(x) = IEx

[∫ τ∂D

0
f(Bt)dt

]
, x ∈ D.

Proof. Similarly to the proof of Theorem 5.3.1 we have

u(Bt) = u(B0) +

∫ t

0
⟨∇f(Bs), dBs⟩+

1

2

∫ t

0
∆u(Bs)ds

= u(B0) +

∫ t

0
⟨∇f(Bs), dBs⟩ −

∫ t

0
f(Bs)ds,

hence

0 = IEx[u(Bτ∂D)] = u(x)− IEx

[∫ τ∂D

0
f(Bs)ds

]
.

We easily check that the boundary condition u(x) = 0 is satisfied on x ∈ ∂D since τ∂D = 0

a.s. given that B0 ∈ ∂D. □
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Figure 5.2: Sample paths of a three-dimensional Brownian motion.

The probabilistic interpretation of the solution of the Poisson equation can also be formu-

lated in terms of a Brownian motion killed at the boundary ∂D.

Proposition 5.3.3. The solution u of (5.6) is given by

u(x) = GDf(x) =

∫
Rn

gD(x, y)f(y)dy

where gD and GDf are the Green function and the associated Green potential of Brownian

motion killed on ∂D.

Proof. We need to show that the function gD is the fundamental solution of the Poisson

equation, i.e.

IEx

[∫ τ∂D

0
1A(Bt)dt

]
= IEx

[∫ τ∂D

0
1A(B

D
t )dt

]
= IEx

[∫ τ∂D

0
1{BD

t ∈A}dt

]
= IEx

[∫ ∞

0
1{BD

t ∈A}dt

]
=

∫ ∞

0
Px(B

D
t ∈ A)dt

=

∫ ∞

0
qDt (x,A)dt

=

∫ ∞

0

∫
A
pDt (x, y)dydt

= GD1A(x)

=

∫
Rn

gD(x, y)1A(y)dy,
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hence

u(x) = IEx

[∫ τ∂D

0
f(BD

t )dt

]
= GDf(x) =

∫
Rn

gD(x, y)f(y)dy.

□

Using the λ-potential kernel gλ we get the following expression for the solution of (5.6).

Proposition 5.3.4. The solution u of (5.5) can be represented as

u(x) =

∫ ∞

0
e−λt

∫
Rn

qDt (x, y)f(y)dydt

+

∫
Rn

f(y)

∫
Rn

gλ(z, y) IEx[e
−λτ∂D1{BD

τ∂D
∈dz}1{τ∂D<∞}]dy.

Proof. From (4.19) we have

u(x) = Rλf(x)

=

∫
Rn

gλ(x, y)f(y)dy

=

∫
Rn

gλD(x, y)f(y)dy +

∫
Rn

f(y)

∫
Rn

gλ(z, y)hλD(x, dz)dy

=

∫ ∞

0
e−λt

∫
Rn

qDt (x, y)f(y)dydt

+

∫
Rn

f(y)

∫
Rn

gλ(z, y) IEx[e
−λτ∂D1{BD

τ∂D
∈dz}1{τ∂D<∞}]dy.

□

In discrete time, the potential kernel of P is defined as

G =
∞∑
n=0

Pn,

and satisfies

Gf(x) = IEx

[ ∞∑
n=0

f(Xn)

]
,

i.e.

G1A(x) =
∞∑
n=0

Px({Xn ∈ A}).

The Poisson equation with second member f is here the equation

(I − P )u = f.

Let

τD = inf{n ≥ 1 : Xn ∈ D}
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denote the hitting time of D ⊂ E. Then the function

u(x) := IEx

[
τD∑
k=1

f(Xk)

]
, x ∈ E,

solves the Poisson equation
(I − P )u(x) = f(x), x ∈ E,

u(x) = 0, x ∈ D.

5.4 Cauchy problem

This section presents a version of the Feynman-Kac formula. Consider the PDE
∂u

∂t
(t, x) =

1

2
∆u(t, x)− V (x)u(t, x)

u(0, x) = f(x).

(5.7)

Proposition 5.4.1. Assume that f, V ∈ Cb(Rn) and V is non-negative. Then the solution

of (5.7) is given by

u(t, x) = IEx

[
exp

(
−
∫ t

0
V (Bs)ds

)
f(Bt)

]
, t ∈ R+, x ∈ Rn.

Proof. Let

T̃tf(x) = IEx

[
exp

(
−
∫ t

0
V (Bs)ds

)
f(Bt)

]
, t ∈ R+, x ∈ Rn.

We have

T̃t+sf(x) = IEx

[
exp

(
−
∫ t+s

0
V (Bu)du

)
f(Bt+s)

]
= IEx

[
exp

(
−
∫ t

0
V (Bu)du

)
exp

(
−
∫ t+s

t
V (Bu)du

)
f(Bt+s)

]
= IEx

[
E

[
exp

(
−
∫ t+s

0
V (Bu)du

)
f(Bt+s)

∣∣∣Ft

]]
= IEx

[
exp

(
−
∫ t

0
V (Bu)du

)
E

[
exp

(
−
∫ t+s

t
V (Bu)du

)
f(Bt+s)

∣∣∣Ft

]]
= IEx

[
exp

(
−
∫ t

0
V (Bu)du

)
E

[
exp

(
−
∫ s

0
V (Bu)du

)
f(Bs)

∣∣∣B0 = x

]
x=Bt

]

= IEx

[
exp

(
−
∫ t

0
V (Bu)du

)
T̃sf(Bt)

]
= T̃tT̃sf(x),
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hence (T̃t)t∈R+ has the semigroup property. Next we have

T̃tf(x)− f(x)

t
=

1

t

(
IEx

[
exp

(
−
∫ t

0
V (Bu)du

)
f(Bt)

]
− f(x)

)
=

1

t
(IEx[f(Bt)]− f(x)) +

1

t
IEx

[
exp

(
−
∫ t

0
V (Bu)du

)
f(Bt)

]
+ o(t),

hence
dT̃t

dt
|t=0 =

1

2
∆− V

and

∂u

∂t
(t, x) =

dT̃t

dt
(t, x)f(x)

=
dT̃t

dt
|t=0T̃tf(x)

=

(
1

2
∆− V (x)

)
T̃tf(x)

=
1

2
∆u(t, x)− V (x)u(t, x).

□

Moreover this yields∫
Rn

f(y)pt(x, y)dy = f(x) +
1

2

∫ t

0

∫
Rn

∆xf(y)ps(x, y)dyds

= f(x) +
1

2

∫ t

0

∫
Rn

f(y)∆xps(x, y)dyds,

for all sufficiently regular functions f on Rn, hence after differentiation with respect to t,

∂pt
∂t

(x, y) =
1

2
∆xpt(x, y). (5.8)

From (5.8) we recover the harmonicity of hy on Rn \ {y}:

∆xhy(x) = ∆x

∫ ∞

0
pt(x, y)dt

=

∫ ∞

0
∆xpt(x, y)dt

= 2

∫ ∞

0

∂pt
∂t

(x, y)dt

= 2 lim
t→∞

pt(x, y)− 2 lim
t→0

pt(x, y)

= 0,

50



provided x ̸= y. The backward Kolmogorov partial differential equation
−∂u

∂t
(t, x) =

1

2
∆u(t, x)− V (x)u(t, x),

u(T, x) = f(x),

(5.9)

can be similarly solved as

u(t, x) = IEx

[
exp

(
−
∫ T

t
V (Bs)ds

)
f(BT )

∣∣∣Bt = x

]
, t ∈ R+, x ∈ Rn.

Indeed we have

exp

(
−
∫ t

0
V (Bs)ds

)
u(t, Bt)

= exp

(
−
∫ t

0
V (Bs)ds

)
IEx

[
exp

(
−
∫ T

t
V (Bs)ds

)
f(BT )

∣∣∣Bt

]
= exp

(
−
∫ t

0
V (Bs)ds

)
IEx

[
exp

(
−
∫ T

t
V (Bs)ds

)
f(BT )

∣∣∣Ft

]
= IEx

[
exp

(
−
∫ T

0
V (Bs)ds

)
f(BT )

∣∣∣Ft

]
,

t ∈ R+, x ∈ Rn, which is a martingale by construction. Applying Itô’s formula to this

process we get

exp

(
−
∫ t

0
V (Bs)ds

)
u(t, Bt) = u(0, B0) +

∫ t

0
exp

(
−
∫ s

0
V (Bτ )dτ

)
⟨∇xu(s,Bs), dBs⟩

+
1

2

∫ t

0
exp

(
−
∫ s

0
V (Bτ )dτ

)
∆xu(s,Bs)ds

−
∫ t

0
V (Bs) exp

(
−
∫ s

0
V (Bτ )dτ

)
u(s,Bs)ds

+

∫ t

0
exp

(
−
∫ s

0
V (Bτ )dτ

)
∂u

∂s
u(s,Bs)ds.

The martingale property shows that the absolutely continuous finite variation terms vanish

(see e.g. Cor. 1, p. 64 of Protter [Pro90]), hence

1

2
∆xu(s,Bs)− V (Bs)u(s,Bs) +

∂u

∂s
(s,Bs) = 0, s ∈ R+.

5.5 Martin boundary

Our aim is now to provide a probabilistic interpretation of the Martin boundary in discrete

time. Namely we use the Martin boundary theory to study the way a Markov chain with

transition operator P leaves the space E, in particular when E is a union

E =
∞⋃
n=0

En,
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of transient sets En, n ∈ N. We assume that E is a metric space with distance δ such that

the Cauchy completion of E coincides with its Alexandrov compactification (E, x̂).

For simplicity we will assume that the transition operator P is self-adjoint with respect to

a reference measure m. Let now G denote the potential

Gf(x) =

∞∑
n=0

Pnf(x), x ∈ E.

with kernel g(·, ·), i.e.

Gf(x) =

∫
E
f(y)g(x, y)m(dy), x ∈ E,

for a given reference measure m. Fix x0 ∈ E1. For f in the space Cc(E) of compactly

supported function on E, define the kernel

kx0(x, z) =
g(x, z)

g(x, x0)
, x, z ∈ E,

and the operator

Kx0f(x) =
Gf(x)

g(x, x0)
=

∫
E
kx0(x, z)f(z)m(dz), x ∈ E.

Consider a sequence (fn)n∈N dense in Cc(E) and the metric defined by

d(x, y) :=
∞∑
n=1

ζn|Kx0fn(x)−Kx0fn(y)|,

where (ζn)n∈N is a sequence of non-negative numbers such that

∞∑
n=1

ζn∥Kx0fn∥∞ < ∞.

The Martin space Ê for X started with distribution rm is constructed as the Cauchy com-

pletion of (E, δ + d). Then Kx0f , f ∈ Cc(E), can be extended by continuity to Ê since for

all ε > 0 there exists n ∈ N such that for all x, y ∈ E,

|Kx0f(x)−Kx0f(y)|
≤ |Kx0f(x)−Kx0fn(x)|+ |Kx0fn(x)−Kx0fn(y)|+ |Kx0fn(y)−Kx0f(y)|
≤ ε+ ζnd(x, y),

and, from Proposition 2.3 of Revuz [Rev75], the sequence (Kx0fn)n∈N is dense in {Kx0f :

f ∈ Cc(E)}.

If x ∈ ∆E, a sequence (xn)n∈N ⊂ E converges to x if and only if it converges to x̂ for the

metric δ and (Kx0f(xn))n∈N converges to Kx0f(x) for every f ∈ Cc(E).

Theorem 5.5.1. ([Rev75]) The sequence (Xn)n∈N converges Px0-a.s. in Ê and the law of

X∞ under Px0 is carried by ∆E.
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[MR92] Z.M. Ma and M. Röckner. Introduction to the theory of (nonsymmetric) Dirichlet forms.
Universitext. Springer-Verlag, Berlin, 1992.

[Pro90] Ph. Protter. Stochastic integration and differential equations. A new approach. Springer-
Verlag, Berlin, 1990.

[PS78] S.C. Port and C.J. Stone. Brownian motion and classical potential theory. Academic Press,
1978.

[Rev75] D. Revuz. Markov chains. North Holland, 1975.

53


	Introduction
	Analytic potential theory
	Electrostatic interpretation
	Harmonic functions
	Representation of a function on E from its values on E
	Poisson formula
	Potentials and balayage
	Martin boundary

	Markov processes
	Markov property
	Transition kernels and semigroups
	Hitting times
	Dirichlet forms

	Stochastic calculus
	Brownian motion and the Poisson process
	Stochastic integration
	Quadratic variation
	Itô's formula
	Killed Brownian motion

	Probabilistic interpretations
	Harmonicity
	Dirichlet problem
	Poisson equation
	Cauchy problem
	Martin boundary


