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1 Introduction

The Malliavin calculus has been recently applied to numerical computations of
price sensitivities in continuous financial markets, cf. [4], [5]. In this paper we
deal with Asian options in a market model with jumps, and present formulas for
the computation of Greeks using a particular version of the Malliavin calculus
on Poisson space. The family of jump processes we consider includes sums
of independent Poisson processes with arbitrary jump sizes. In the jump case
there exist two main approaches to the Malliavin calculus, relying either on
finite difference gradients [6], [8], or on differential operators [1], [2]. Finite
difference gradients are not appropriate in our context which requires a chain
rule of derivation. We choose to use a version of the operator introduced in [2], [3]
because it has the derivation property and its adjoint coincides with the Poisson
stochastic integral, which provides a natural way to make explicit computations



of weights. We will essentially consider an asset price with dynamics given under
the risk-neutral probability by

dSt = Tt(Nt)Stdt + O't(Nt—)St— (,BNt_ dNt - Z/Chf)7 (11)

where (N¢)¢cr, is a standard Poisson process with constant intensity A, (8x)ren
is a discrete-time stochastic process independent of (IN;);er, , and r;(N;) denotes
the interest rate. For example (x)ren can be a Markov chain taking values in a
finite set {b1,...,bq}. If (Bk)ken is an i.i.d. sequence of random variables with
distribution P(Bx = b;) = ps, i = 1,...,d, k € N, it is well known that we have
the identity in law

BN, dNy = bidN} + - + badN},
where N', ..., N% are independent Poisson processes with intensities
(/\i)i:l,...,d = (pi)\)izl,...,d;

and v = /\2?21 b;p;. Hence ﬁNf,— dN; can be used to model a finite sum of
Poisson processes with arbitrary jump sizes and intensities.

The gradient used in this paper acts only on the Poisson component (IV;):er.,
of this process, described by its jump times (T} )r>1. Given an element w of the
Cameron-Martin space H and a smooth functional F' = f(T4,...,T),) of the
Poisson process, let

k=n
DyF ==Y wr,0pf(Th, ..., Tn),
k=1

cf. [9]. The interest in the operator D is that it admits a closable adjoint ¢
which coincides with the compensated Poisson stochastic integral on adapted
processes. The L? domain of D,, does not contain the value N7 at time T of
the Poisson process (cf. [10] for an extension of D in distribution sense to such
functionals), and this excludes in particular European claims of the form f(N7)
from this analysis. Nevertheless, functionals of the form

T
/ F(t, Ny)dt (1.2)
0
do belong to the domain of D provided that F(¢,k) € Dom (D), k € N, due
to the smoothing effect of the integral. In particular it turns out that when

S¢ = FC(t, N,) is the solution of (1.1) and ( is the value of a parameter (initial
condition x, interest rate r, or volatility o), D,, can be applied to differentiate

the value
T
f / SS du
0
of an Asian option.

Using an integration by parts formula for the gradient D we will compute the



following Greeks for Asians options in discontinuous markets governed by a
Poisson process:

oC 0*C oC oC
Delta = s Gamma = ek Rho = B Vega = P

(7]

ie. C(Q) is the value of an Asian option with price process (Stc)teRJr, with
respectively ¢ = x,r,0. When f is not differentiable, no analytic expression is
in general available for such derivatives.

We proceed as follows. Section 2 contains preliminaries on the Malliavin
calculus on Poisson space and on the differentiability of functionals of the form
(1.2). In Section 3 we present the integration by parts formula which is the
main tool to compute the Greeks (i.e. derivatives with respect to () using a
random variable called a weight. The market models are presented in Section 4
and explicit computations are carried out for price processes of the form (1.1).
In Section 5 we consider the Delta of a binary Asian option, i.e. f = 1{x o,
and the Gamma of a standard Asian option, with numerical simulations. These
simulations show that the Malliavin approach applied to Asian options in the
case of a market driven by a Poisson process is more efficient than the finite
difference method. In Section 7 we consider several settings to which our method
can be extended.

where

C=E

2 Malliavin Calculus on Poisson space

Let (N;)ier, be a standard Poisson process with intensity A on a probability
space (2, F, P) and let N; = N; —\t denote the associated compensated process.
Let H denote the Cameron-Martin space

H:{/O.wtdt : weL2(R+)}.

Let S denote the set of smooth functionals of the form
F:f(Tl?"')Tn)7 fecg(Rn)’ n21?
and let

Z/[{ZG{MU Gi,...,G, €S, ul,...,uneH}.
=1

Given w € H, let D denote the gradient operator

k=d
Dwf(Tla e 7Td) = - ZwTkakf(Tla e 7Td)-
k=1



Given u € U a process of the form

u:ZGiui7 GiES, UZ‘EH,
i=1
we also define .
D,F =Y G;D,F.
i=1

This definition extends to u € L*(Q, H) with the bound
|DuF| § CF||11HL2(R+)7 a.s.,

where @ denotes the time derivative of u(t,w) and CF is a random variable
depending on F' € §. The following proposition is well-known, cf. e.g. [2], [9],
[10].

Proposition 1 a) The operator D is closable and admits an adjoint & such that
ED,F]=E[F(u)], uvel, FeS.

b) We have for F € Dom (D) and u € Dom (8) such that uF € Dom (9):
T ~
S(uF) = F / idN, — Dy F. (2.1)
0

¢) Moreover, § coincides with the compensated Poisson stochastic integral on the
adapted processes in L*(Q; H):

o(u) = /00 1y dNy.
0
The domain of the closed extension of D is denoted by Dom (D). Given
F:Ry xNxQ—>R
we define the partial finite difference operator Vj as
ViF(t, k)= F(t,k)— F(t,k —1).

The following propositions provide general derivation rules for the quantities
fOT F(t, N;)dt and fOT F(t, Ny)dN;, which appear in the solutions of stochastic
differential equations such as (1.1).

Proposition 2 Let w € H and assume that F(t,k) € Dom (D), t € Ry, k € N.
We have
T T T
Dw/ F(t,N,)dt = / w, Vi F(t, Ny)dN, +/ (D F(t, Ny)dt.
0 0 0



Proof. We have

T Te 1 AT
Dw/ F(t,Nt)dt:DwZ/ F(t,k)dt
0 k>0 TeAT

Ty AT
= =Y wnlpn(T)(F(T,1-1) = F(T},1) + Z/ (Do F](t, k)dt
>1 k>0 TeAT

T T
/ thkF(t,Nt)dNt+/ [Dy F)(t, Ny )dt.
0 0
O

Proposition 3 Let w € H and assume that F(t,k) € Dom (D), t € R, and
F(-, k) € CL([0,T]) a.s., k € N. Then

T T T
Dw/ F(t, Nt)dNt == *\/ wtﬁlF(t, Nt)dNt + / [DwF}(LNt)dNt,
0 0 0

where 01 denotes the derivative of F(t, k) with respect to its first variable t.
Proof. We have

Dy Y jo.7(Te) F(Ty, k)

T
Dw/ F(t, N,)dN,
0

k=1
0o k=n
= D, ; F(Ti,k) = lim Dy § F(Ty, k)

= =Y wpdF(Ti, k) + > _[DyF)(Th, k)
k=1 k=1

T T
= —/ wtalF(t,Nt)dNt +/ [DwF](t,Nt)dNt
0 0
(I

The following corollary is a consequence of Prop. 2 and Prop. 3.

Corollary 1 Let w,v € H and assume that F(t,k) € Dom (D), t € R, and
F(-,k) € CL([0,T]), k € N. Then

T T
Dva / _F‘(t7 Nt)dt = —/ Ut(thkF(t, Nt) + U)t81VkF(t7 Nt))dNt
0 0
T
+/ U.Jt[DUVkF](t,Nt)dNt
0

T
+/ e Vi [Doy F (¢, Ni)dNy
0

T
+/ [Dy Dy V1 F](t, Ny)dt.
0



Proof. From Prop. 2 we have

T T T
DyD., / F(t,N)dt = D, / W,V F(t, N))dN; + D, / (D F)(t, N))dt,
0 0 0
and the terms in the above summand are computed from Prop. 2 and Prop. 3
respectively. O

The next corollary is stated for deterministic F'(¢, k) only for the sake of simplic-
ity. The case of a random F'(¢, k) can also be treated using Prop. 2 and Prop. 3
although with longer calculations.

Corollary 2 Assume that F(t, k) does not depend on Poisson jump times, i.e.
[D,Fl(t,k)=0, teR;, keN, weH,

and that F(-,k) € C2([0,T]) a.s., k € N. We have for all w € C2([0,T]) and

u,v € H:

T T
DuD'qu / F(t, Nt)dt = / Ut(@t’lj)t + UtTIJt)VkF(t, Nt)dNt
0 0

T T
+/ ut(2vtwt+wti)t)81VkF(t,Nt)dNt+/ uvw 02V L F (t, Ny )d Ny,
0 0

where Wy denotes the second derivative of wy with respect to t.

Proof. We use the expression

T T
Dva / F(t, Nt)dt = */ ’Ut(’U:)thF(t, Nt) + wt81VkF(t, Nt))dNt
0 0

obtained from Cor. 1, and apply Prop. 3. O

3 Computations of Greeks

We present the integration by parts formula which follows from a classical Malli-
avin calculus argument applied to the derivation operator D, and is essential to
the computation of Greeks. Let (a,b) be an open interval of R.

Proposition 4 Let (FC)CG(a,b) and (GC)CG(a,b), be two families of random func-
tionals, continuously differentiable in Dom (D) in the parameter ¢ € (a,b). Let
(wt)eefo,m) be a process satisfying

D,FS#0, a.s. on {(‘9<FC #0}, (€ (a,b),
and such that wGSO;F¢/D,,F¢ is continuous in ¢ in Dom (8§). We have

S
%E [Gf(FY)] = E {f(FC)é (GngiDC)] + E[0:GCf(FO)], (3.1)

for any function f such that f(F¢) € L*(Q), ¢ € (a,b).



Proof. Assuming that f € C;°(R), we have

SB[GSSF)] =BG (F6) O] + B[0GS ()
0. F¢

D, F¢

- E {GC Dwf(FC)} + E[0.GC f(F)]

O F¢
Dy, F¢

E [f(FC)é (wGC )] + E [0:GC f(F°)].

The extension to square-integrable f can be obtained from the same argument
as in p. 400 of [5], using the bound

'8]3 [GSfu(FS)] — E {f(FC) (5 <G<w OcFe > +a<G<>”

a¢ D, F¢
O F¢
S R S ] ] (S P I
w L2(Q)
and an approximating sequence (fy,)nen of smooth functions. O
Using (2.1), the weight § (wGC gii:() can be computed using Poisson stochastic
integrals:
O F¢ ocFs (T - O FS
¢ ¢ — < i _ ¢ Y¢
5(’UJG DwFC) = G DwFC/O wtht DU, <G DwFC>
ocF¢ [T D0 F¢
— <Y ; _ ¢ 2w
= @G DwFC /0 wtht G DwFC
O F*¢ O F*¢
DD F¢— = D,G¢
+G (DwF<)2 w w DwFC U}G .

First derivatives

In particular, first derivatives such as the Delta, Rho and Vega can be computed
from

0

T —— |

with, from (2.1):

OcF¢ oFs [T D0 F¢ OcF¢
) = dN; — DDy FS. 2
<waFC) DwFC/O Wl = Tp ke +(DwFC)Q (3:2)

Second derivatives

Assume that w € C2([0,7]). Concerning second derivatives we have

H? 0
GBI = LB [F)(EEw)] (3.3)



= FE {f(FC)(jCé(G%)] +E[f(F)6 (6(G°w)Gw)],
with G¢ = %, and from (2.1):

§ (6(Gw)G w) = G§(G w) / ! iy dNy — Doy (GS5(GCw))
0

T
= G5(Gw) / W dN; — 8(GSw) Dy G¢
0

T
—G°D,, <G< / u‘;tht—DwGC>
0
T ) 2
— (Gf/ wtht—chﬂ)
0
T ~ T
~-G¢ <DwGC / wid Ny + G€ / wtﬂ}tht—DwaG<>
0 0
acF< [T 9. ¢ DuocFe\
- b dN; + ——— D,y D, F¢ — —225—
/Owt t+(DwFC)2 wDw Do FC

F¢ F¢ D, 0, F¢ T -
O¢ ((_ ¢ 2DwaFC+w6<>/ W d N,
0

Dy F¢ (D F¥) Dy F¢

ocF [T DDy FS ¢ DDy F¢
+DwF< A Wi d Ny — 4DW7F< + 2Dw8<F 7( wF<)2
¢ DuDy Dy F (DD FS)?

(Do F¢)? (Do )

+0cF — 20 F¢

Delta in the linear case

This is a first derivative with F* = xF. Then 0,F* = F and the weight for the
Delta is

9, F* 1( F (T - F
== b dN; — 14+ —— D, D,F | . 4
() (D [ savi-ve o, ) 6.0

Gamma in the linear case

This is a second derivative, with F'* = xF. The weight associated to the Gamma
is computed via (3.3) with

. 0 FT F o . 1 F
“=p. o ™ &Y T T EDE
ie. Delt
Gamma = ——— 2 + E[f(F%)d (6(G"w)G*w)), (3.5)

xT



2
. L F ot F
T _ F T
2D Ia 1-— D D F ‘/O wtht+mA wtwtht
)D’IJF (DU)DwF) DwaF
F -2
+((F) <DF>> S )

with w € C2([0,7]). In the next section, these general formulas are specialized
to the model described by (1.1).

4 Market model

In this section we make explicit computations for an underlying asset price given
under the risk-neutral probability by the linear equation

dS; = r¢(N¢)Sdt + o1 (Ny-) S th— dNy — vdt), (4.1)

whose solution can be written under the form F(t, N¢). For simplicity the ran-
dom dependence on [, will not be mentioned as it plays no role in the integration
by parts since f, is independent of (Ny);cr, . As noted in the introduction we

may consider as a particular case d independent Poisson processes N!,..., N¢
with intensities Ar,..., A g, A = A1 + -+ + Ay, and a sequence (Bj)ren of i.i.d.
random variables with values in by, ..., b4, and distribution
P, = b;) = As =1,...,d, keN
= — i=1,....d, .
A+t A

In this case we have the identity in law:
bidN} + -+ + badN{ = Bn,_dNy,
and (4.1) can be written as

d
dS; = r¢(N¢)Sdt + Sy— 01 (N ) Z bi(dNti — Aidt), (4.2)
i=1

with v = 2?21 b;A\;, i.e. we are in a market driven by a sum of independent
Poisson processes with arbitrary jump sizes. Coming back to the general case
we write (4.1) as

dSt = O[t(Nt)Stdt+ O-t(Nt*)StfﬂNtf dNt, S() =x,

where
ar(k) = ry(k) —voy(k), keN.



The next result is an application of Prop. 2 to the solution of (4.1) which can
be written as

St = }7(7,L7 Nt)a
with
. i=k
F(t, k) = welo @M= TT(1 4 807, (i — 1)).
=1

A differentiability hypothesis is required on o.

Proposition 5 Assume that o.(k) € CL(Ry) and 14 Byo.(k) > 0, for all k € N.
We have

T T T t
Dw/ Sydu = / wtat(Ntf)StfﬁNt_ dNt—|—/ St/ wsVias(Ng)dsdt
0 0 0 0
S Ns-) dN,dt. 4.3
/ ! / 1+ 5N as(N, )BNF (43)

ka(t, k) = ,Bk_lchk (k - 1)F(t, k— 1),
moreover Oy F(t, k) = ay(k)F (¢, k), hence

Proof. We have

57, 1UT ]-)
14 Bi—io1, z—l)

Bi—167, (i — 1)
1+ ﬁi—lo'Tq; (’L — 1)’

DyF(t,k) = F(t,k)D, /as ds+Fth

F(t,k) /0 0 ion(No)ds + F(t.) i
i=1

and
t
DWFI(,N) = F(t,Ny) / w, Vs (N,)ds
0
¢ o5(Ny-)
+F(t, N, / A _dNj.
( t) 0 1+,6NS_0'S(N57)6N5
We conclude using Prop. 2. (|

The second and third derivatives are obtained as applications of Cor. 1 and
Cor. 2 in the following proposition.

Proposition 6 Let w € C1([0,T]). Assume that oy does not depend on k and
that o is constant. We have

T T
Dwa/ Sudu = —/ wt(u')tUSf + wto'atst*)BNt, dNt (44)
0 0
Assuming further that o does not depend on t and w € C2([0,T)), we have:

T T
D,D,D, Sydu = / WO (wf + 3awy + w4 a2wt2) Si- BN, dNy.
0 0 )
(4.5)

10



Again, the hypothesis of the above proposition are stated only to simplify the
calculations of the Greeks:

Delta in the linear case

The corresponding weight is obtained from (3.4) and (4.3), (4.4) and is equal to:

1 fOT Stdt fOT wtht 1 f;;T Stdt J}T Wy ('lj]t +awt) St*/BNt_dNt
ey T T 2
2o \ [ w,S,- By, dN, ( T w,S,- B, dNt>

Note that unlike in the Brownian case ([4]), the weight is not a function of

(57, Jy Sudu).

Gamma in the linear case
The corresponding weight is given by (3.5) and (3.6), with from (4.3)-(4.5):
0 (6(G*w)G"w) = (4.6)

2
1 fOT Sydt fOT iy d N 1 fOT Sidt fOT wy (g + awy) Sp- B, ANy

252 T 2
220\ [ weSy- B, dN; (Jo wiSe-Bn, AN,

fOT Stdt fOT ’ldeNf 1 I fOT Stdt IOT Wi (wt +O[’U}t) St—BNt7 dNt
o T 2
220 [} weS;- B, dN, o ( T w,8,- BNFdNt)

(Jy Suat) :

T
+ 3 / ’LUtI'l')tht
220 (f; wesi-By,_dN) 7"
T 2 T
(fo Stdt) 2(Jy we (e + awy) S B, dN)?
> 2
20 fo wiSi- B, ANy (fOT tht—ﬁNt,dNt>

I we (@7 + 3wy + wi, + a*w?) Si- B, dN,
o ( S wieSy B, dNt) ’
- /T s I we (i + qw;) S B, ;th |
0 o (Jo wiSi-Bx,_dNy)

11



Vega

The Vega of an Asian option with payoff f(F?) = f (fOT Sudu> is given by (3.2)

and N
a,F"—/TSt EA—W dt,
0 =1+ 0Bk
hence from Prop. 2:

Br—1

- dNu7
1+o0Br-1 e

T Nu_
DwBUFU:/ WS- | v, (1+0) Y
0 k=1

with Dy F?, Dy Dy F given by (4.3), (4.4).
Rho
The Rho of an Asian option with payoff f (fOT Sudu) is given by (3.2) and
T T
3TFT = / tStdt, DwaTFr = O'/ ttht—dNt7
0 0

with D, F?, DDy, F° given by (4.3), (4.4).

5 Numerical simulations

We present simulations for the Delta and the Gamma of Asian options, succes-
sively the Delta of a binary Asian option with strike price K:

1 T
1k oo 7/ SEdt ),
[K,00] T o t

and the Gamma of a standard Asian option:

1 [T N
Cz)=e"TE </ Sfdt—K)
T 0

We consider a simplified model with constant parameters ¢ and r, first with a
fixed jump size, and then with multiple random jump sizes independent from
(N¢)tcr, . In the case of constant interest rate and volatility, the price of the
underlying asset is given by

Cx)=e"TE

=Ny
St:xeat H (]~+Jﬁi71) :f(xat7Nt)a te [OuT]u
i=1

12



with f(z,t, k) = ze Hl 1 ®(140B;_1). Prop. 4 can be applied to F* = fOT S, dt,
with

T T
Do [ St = o [ wis, by, dN
0 0
k::NT i=k—1

o Z wTkﬁk 1 H 1+Jﬁz 1 osz7 (51)
= i=1

T T
Dwa / Stdt = —O'/ Wt (’U)t + Oéwt) St*BN,,_ dNt (52)
0 0 )
k=Nrp i=k—1
= -0 Z wr, Be—1"* (W, + awr,) H (1+0Bi-1)
k=1 =1
and

T T
DwaDw Stdt = 0'/ Wi (U)? + 30zwtu')t + wtﬂ}t + QQU}?) St—ﬁNt7 dNt
0 0

k=Nr
= x0 Z wry, Br— 10T (w%k + 3awr, W, + wr, W, + azw%k)
k=1
i=k—
X H 1 -+ O—BZ 1 (53)
i=1

if w € C2([0,7)). The finite difference method gives Delta as

C(z+e) —C(x—e).
2e

Delta =

For the Malliavin approach we take w; = sin(n¢/T") (so that fOT wdt = 0), and
T =500, 2 = 10, K = 15000, a = 0.009, 0 = 0.01, A = 1, and € = 0.001.

13



The following graphs allow to compare both methods on several sample sizes.
We start with the case of a fixed jump size § = 1.

T T
| Malliavin formula i
i Finite differences -------

0.25 k&

0.1 1 -

0.05 |- -

0 1 1 1 1 1 1 1 1 1
(o] 100000 200000 300000 400000 500000

Figure 1 - 500000 simulations for Delta with K = 15000 and 5 =1

The same simulation is presented with a larger sample size:

0.26 T T T

T
Malliavin formula
Finite differences -------

0.24 -
0.22 —

0.2 \ A
LT
i

i,
\ Y s

P
1

o

0.18

0.16 | 4

0.12 - -

0.1

1 1 1 1 1
o) 500000 1x10E6 1.5x10E6 2x10E6 2.5x10E6 3x10E6

Figure 2 - 3 x 10° simulations for Delta with K = 15000 and 8 = 1

In the next simulation we increase the value of K to K = 28000.

14



0.0035 T

T
Malliavin formula

Finite differences -------

0.003

T

0.0025

0.002

‘
0.0015

0.001

0.0005

1 1 1 1
0 5x10E6 10x10E6 15x10E6 20x10E6 25x10E6

Figure 3 - 25 x 10° simulations for Delta with K = 28000 and 3 = 1

Next we present two simulations of Delta in models with multiple random
jump sizes, for K=2500.

T
[ Malliavin formula
° Finite differences -------

0.04 -

W‘ 7 s e |
P e

0.03

0.02

e
1

0 1 1 1 1
0o 5x10E6 10x10E6 15x10E6 20x10E6 25x10E6

Figure 4 - 25 x 105 simulations for Delta with jump sizes in {—1,2}
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0.035 T . . '
Malliavin formula
Finite differences -------

0.03 -

0.025 -

0.01 -

0.005 - -

1 1 1 1
0 5x10E6 10x10E6 15x10E6 20x10E6 25x10E6

Figure 5 - 25 x 105 simulations for Delta with jump sizes in {—2.5,—1.5,1,2.2, 3}

For the Gamma, the finite difference are computed via

Cx+e)—20(x)+C(x —¢)
€2 '

Gamma =

The Malliavin method uses (3.3) and (4.6). We take w; = sin(7t/T), and the
values T' = 100, z = 10, K = 30, r = 0.009, ¢ = 0.01, ¢ = 0.001, and a fixed
jump size § = 1.

1 T T T T T T

—T T
Malliavin formula

Finite differences -------

1 1 1 1
(0] 100000 200000 300000 400000 500000

Figure 6 - 500000 simulations for Gamma
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T
Malliavin formula

Finite differences -------

0.4 .
0.2 —
o ‘ ‘ ‘ ‘ ‘
0 500000 1x10E6 1.5x10E6 2x10E6 2.5x10E6 3x10E6
Figure 7 - 3 x 10% simulations for Gamma
1 T T T 7
Malliavin formula
Finite differences -------
0.8 -

1 1 1 1 1
0 5x10E6 10x10E6 15x10E6 20x10E6 25x10E6 30x10E6

Figure 8 - 30 x 10° simulations for Gamma
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6 Conclusion

The simulation graphs show a faster and better convergence of the Greeks
obtained from the Malliavin method on Poisson space for Asian options in a
market with jumps, when compared to the finite difference approximations.
When performing simulations, the Malliavin method turned out to be more
efficient for out-of-the-money options.

7 Extensions

In this section we consider two more general settings which can be treated by
the above method. We first consider a model with state-dependent coefficients
given by a nonlinear equation of the form

dSt = at(St)dt + O—t(St_)BNtf dNt, So =x, (71)

since S; does have an expression in terms of the jump times and the flow
associated to dxy = ay(x¢)dt. In this model and the following, the

computations of fOT Sidt and its derivatives are still possible recursively
(although more complicated) using the general results of Section 3. More
precisely we have on {N; = k}:

St = ®Tk,t (STk )7

and
STk = (1 + Bk—lng (STk—l)(I)Tk—lka (Skal))ékalka: (Squ)v

where @, ; is the flow defined by
dIt = ozt(xt)dt,
i.e.

t
O, 4(r) =2 —|—/ ay(zy)du, x5 = z.

Secondly, although this paper focuses on the Poisson case an independent
diffusion term can be introduced in the driving stochastic differential equation
as in the complete market model of [7]:

dSy = 11Sidt + 1Sy (14p,—0ydBi + ¢1(Bn,_ AN — vidt)), t € Ry,

where ¢ : R, — R is a deterministic bounded functions satisfying
l+oiBN, ¢t >0,1 € Ry, and (Bt)ter, is a Brownian motion independent of
(Ni)ter, - In this case S; still has an explicit form in terms of jump times:

t t 2 gt
St = SOGXP </ 031{¢s:0}dB8+/ (’rs—gbsyso-s)ds_a?s/ 1{¢.§—0}d$)
0 0 0
k=N,
x H (1+o7,Br—101,), teR,.
k=1
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In this way one can use either the method of [5] to perturb the Brownian
component, or our method to deal with the Poisson part. Note however that
the Poisson and Brownian components should mutually exclude each other (as

a result of the presence of (¢;)¢cr), otherwise Dy, fOT S;dt will contain
Brownian indefinite stochastic integrals evaluated at Poisson jump times,
which will not belong to the domain of D,,,.
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