Distribution-valued iterated gradient and chaotic decompositions of Poisson jump times functionals

Nicolas Privault

Département de Mathématiques, Université de La Rochelle Avenue Michel Crépeau, 17042 La Rochelle Cedex 1, France e-mail: nprivaul@univ-lr.fr

Abstract

We define a class of distributions on Poisson space which allows to iterate a modification of the gradient of [1]. As an application we obtain, with relatively short calculations, a formula for the chaos expansion of functionals of jump times of the Poisson process.

Key words: Poisson process, stochastic analysis, chaotic decompositions. *Mathematics Subject Classification*. 60J75, 60H05.

1 Introduction

Let $(N_t)_{t\in\mathbb{R}_+}$ be a standard Poisson process with jump times $(T_k)_{k\geq 1}$, and $T_0=0$. The underlying probability space is denoted by (Ω, \mathcal{F}, P) , so that $L^2(\Omega, \mathcal{F}, P)$ is the space of square-integrable functionals of $(N_t)_{t\in\mathbb{R}_+}$. Any $F\in L^2(\Omega, \mathcal{F}, P)$ can be expanded into the series

$$F = \mathbb{E}[F] + \sum_{n=1}^{\infty} \frac{1}{n!} I_n(f_n)$$
(1)

where $I_n(f_n)$ is the iterated stochastic integral

$$I_n(f_n) = n! \int_0^\infty \int_0^{t_n} \cdots \int_0^{t_2} f_n(t_1, \dots, t_n) d(N_{t_1} - t_1) \cdots d(N_{t_n} - t_n)$$

of the symmetric function $f_n \in L^2(\mathbb{R}^{\circ n}_+)$ (stochastic integrals are taken in the Itô sense, thus diagonal terms have no influence in the above expression), with the isometry

$$\langle I_n(f_n), I_m(g_m) \rangle_{L^2(\Omega)} = n! \mathbf{1}_{\{n=m\}} \langle f_n, g_m \rangle_{L^2(\mathbb{R}_+, dt)^{\circ n}}, \quad f_n \in L^2(\mathbb{R}_+, dt)^{\circ n}, \quad g_m \in L^2(\mathbb{R}_+, dt)^{\circ m}.$$

If f_n is not symmetric we let $I_n(f_n) = I_n(\tilde{f}_n)$, where \tilde{f}_n denotes the symmetrization of f_n in n variables, hence (1) can be written as

$$F = \mathbb{E}[F] + \sum_{n=1}^{\infty} I_n(f_n \mathbf{1}_{\Delta_n})$$

where

$$\Delta_n = \{(t_1, \dots, t_n) \in \mathbb{R}^n_+ : 0 \le t_1 < \dots < t_n\}.$$

Let $D:L^2(\Omega)\longrightarrow L^2(\Omega\times\mathbb{R}_+)$ denote the linear unbounded operator defined on multiple stochastic integrals as

$$D_t I_n(f_n) = n I_{n-1}(f_n(*,t)), \quad a.e. \ t \in \mathbb{R}_+.$$

The formula of Y. Ito [3] (Relations (7.4) and (7.5), pp. 26-27), allows in principle to compute f_n as

$$f_n(t_1,\ldots,t_n) = \mathbb{E}[D_{t_1}\cdots D_{t_n}F], \quad a.e. \ t_1,\ldots,t_n \in \mathbb{R}_+.$$

Given the probabilistic interpretation of D as a finite difference operator (cf. [3] and [6]), we have for $F = f(T_1, \ldots, T_d)$:

$$D_t F = \sum_{k=1}^{k=d} \mathbf{1}_{]T_{k-1}, T_k]}(t) (f(T_1, \dots, T_{k-1}, t, T_k, \dots, T_{d-1}) - f(T_1, \dots, T_d)), \quad t \in \mathbb{R}_+,$$

thus $D_{t_1} \cdots D_{t_n} F$ is well defined and explicit computations can be carried out but may be complicated due to the recursive application of a finite difference operator, cf. [4]. See [8] for an elementary approach using only orthogonal expansions in Charlier polynomials.

On the other hand, the gradient \tilde{D} of [1] (see also [2]), defined as

$$\tilde{D}_t = -\sum_{k=1}^{k=d} \mathbf{1}_{[0,T_k]}(t) \partial_k f(T_1, \dots, T_d),$$

has some properties in common with D, namely its adapted projection coincides with that of D, and in particular we have

$$\mathbb{E}[D_t F] = \mathbb{E}[\tilde{D}_t F], \quad t \in \mathbb{R}_+.$$

Since the operator \tilde{D} has the derivation property it is easier to manipulate than the finite difference operator D in recursive computations. Its disadvantage is that it can not be iterated in L^2 due to the non-differentiability of $\mathbf{1}_{[0,T_k]}(t)$ in T_k , thus an expression such as $\mathbb{E}[\tilde{D}_{t_1}\cdots\tilde{D}_{t_n}F]$ makes a priori no sense, moreover $\mathbb{E}[\tilde{D}_{t_1}\cdots\tilde{D}_{t_n}F]$ may differ from $\mathbb{E}[D_{t_1}\cdots D_{t_n}F]$ for $n \geq 2$ (see Relations (13) and (14) below).

In [7] the combined use of D^n and \tilde{D} in L^2 sense has led to the computation of the expansion of the jump time T_d , $d \geq 1$. A direct calculation using only the operator D can be found in [5], concerning a Poisson process on a bounded interval.

In this paper we show that the gradient \tilde{D} can be iterated in a precise sense of distributions on Poisson space, to be introduced in Sect. 3. For example we have for $(t_1, \ldots, t_n) \in \Delta_n$:

$$\tilde{D}_{t_1} \cdots \tilde{D}_{t_n} f(T_d) = (-1)^n f^{(n)}(T_d) \mathbf{1}_{[0,T_d]} (t_1 \vee \cdots \vee t_n)
+ (-1)^n \mathbf{1}_{\{0 \leq t_1, \dots, t_{n-1} < t_n\}} \sum_{j=1}^{n-1} f^{(n-j)}(t_n) \delta_{t_n}^{(j-1)}(T_d),$$

where $\delta_{t_n}(T_d)$ is a generalized functional, i.e. the composition of the Dirac distribution δ_{t_n} at t_n with the jump time T_d , cf. Prop. 3, $f^{(n)}$ denotes the *n*-th derivative of the function $f \in \mathcal{C}_b^{\infty}(\mathbb{R}_+)$, and $t_1 \vee \cdots \vee t_n = \max(t_1, \ldots, t_n)$. Moreover we obtain the equality

$$\mathbb{E}[D_{t_1} \cdots D_{t_n} F \mid \mathcal{F}_a] = \mathbb{E}[\tilde{D}_{t_1} \cdots \tilde{D}_{t_n} F \mid \mathcal{F}_a], \quad 0 \le a < t_1 < \cdots < t_n, \ n \ge 2,$$

where we make sense of the conditional expectation $\mathbb{E}[\tilde{D}_{t_1}\cdots\tilde{D}_{t_n}F\mid \mathcal{F}_a]$ using the pairing $\langle\cdot,\cdot\rangle$ between distributions and test functions. This implies

$$f_n(t_1,\ldots,t_n) = \mathbb{E}[\tilde{D}_{t_1}\cdots\tilde{D}_{t_n}F], \quad 0 < t_1 < \cdots < t_n.$$

This gives an expression for the decomposition of $f(T_1, \ldots, T_n)$, $f \in \mathcal{C}_b^{\infty}(\Delta_d)$, with relatively short computations, cf. Prop. 6, for example

$$f(T_d) = \sum_{n=0}^{\infty} I_n(h_n \mathbf{1}_{\Delta_n}),$$

with

$$h_n(t_1,\ldots,t_n) = \mathbb{E}[\tilde{D}_{t_1}\cdots\tilde{D}_{t_n}f(T_d)]$$

$$= (-1)^n \int_{t_n}^{\infty} f^{(n)}(t) p_{d-1}(t) dt + (-1)^n \sum_{j=1}^{j=n-1} (-1)^{j-1} f^{(n-j)}(t_n) p_{d-1}^{(j-1)}(t_n),$$

$$0 < t_1 < \dots < t_n, \text{ where } p_{d-1}(t) = \frac{t^{d-1}}{(d-1)!} e^{-t}, t \in \mathbb{R}_+, d \ge 1.$$

2 Integration by parts

In this section we review the definition of the three main gradient operators on Poisson space, and present an elementary derivation of integration by parts formulas. All \mathcal{C}^{∞} functions on Δ_d are extended by continuity to the closure of Δ_d .

Definition 1 Let $a \geq 0$. Let $S_d(\Omega \times [a, \infty[^l)$ denote the test function space

$$\mathcal{S}_d(\Omega \times [a, \infty[^l]) = \{h_1 \otimes \cdots \otimes h_l \otimes f(T_1, \dots, T_d) : f \in \mathcal{C}_b^{\infty}(\Delta_d), h_1, \dots, h_l \in \mathcal{C}_b([a, \infty[)]\},$$
with $\mathcal{S}_d(\Omega) = \mathcal{S}_d(\Omega \times \mathbb{R}^0_+)$ for $l = 0$.

We recall that if $f \in L^2(\Delta_d, e^{-t_d}dt_1 \cdots dt_d)$ then

$$\mathbb{E}[f(T_1,\ldots,T_d)] = \int_0^\infty e^{-t_d} \int_0^{t_d} \cdots \int_0^{t_2} f(t_1,\ldots,t_d) dt_1 \cdots dt_d,$$

which follows e.g. from the fact that $(\tau_n)_{n\geq 1} = (T_n - T_{n-1})_{n\geq 1}$ is a family of independent exponential random variables.

2.1 Intrinsic gradient

The intrinsic gradient \hat{D} on Poisson space is defined on $\mathcal{S}_d(\Omega)$ as

$$\hat{D}_t F = \sum_{k=1}^{k=d} \mathbf{1}_{\{T_k\}}(t) \partial_k f(T_1, \dots, T_d), \quad dN_t - a.e.,$$

with $F = f(T_1, ..., T_d)$, $f \in \mathcal{C}_b^{\infty}(\Delta_d)$, where $\partial_k f$ represents the partial derivative of f with respect to its k-th variable, $1 \le k \le d$.

Lemma 1 Let $F \in \mathcal{S}_d(\Omega)$ and $h \in \mathcal{C}_b^1(\mathbb{R}_+)$ with h(0) = 0. We have the integration by parts formula

$$\mathbb{E}[\langle \hat{D}F, h \rangle_{L^2(\mathbb{R}_+, dN_t)}] = \mathbb{E}\left[FU_{h'}^d\right] = -\mathbb{E}\left[F\int_0^\infty h'(t)d(N_t - t)\right]. \tag{2}$$

where $U_{h'}^d = -\left(\sum_{k=1}^{k=d} h'(T_k) - \int_0^{T_d} h'(t)dt\right) \in \mathcal{S}_d(\Omega)$.

Proof. We have by integration by parts on Δ_d :

$$\begin{split} &\mathbb{E}[\langle \hat{D}F, h \rangle_{L^{2}(\mathbb{R}_{+}, dN_{t})}] = \sum_{k=1}^{k=d} \int_{0}^{\infty} \int_{0}^{t_{d}} \cdots \int_{0}^{t_{2}} e^{-t_{d}} h(t_{k}) \partial_{k} f(t_{1}, \dots, t_{d}) dt_{1} \cdots dt_{d} \\ &= \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} \cdots \int_{0}^{t_{2}} h(t_{1}) \partial_{1} f(t_{1}, \dots, t_{d}) dt_{1} \cdots dt_{d} \\ &+ \sum_{k=2}^{k=d} \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} \cdots \int_{0}^{t_{k+1}} h(t_{k}) \frac{\partial}{\partial t_{k}} \int_{0}^{t_{k}} \cdots \int_{0}^{t_{2}} f(t_{1}, \dots, t_{d}) dt_{1} \cdots dt_{d} \\ &- \sum_{k=2}^{k=d} \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} \cdots \int_{0}^{t_{2}} h'(t_{1}) \int_{0}^{t_{k}} \int_{0}^{t_{k-2}} \cdots \int_{0}^{t_{2}} f(t_{1}, \dots, t_{k-2}, t_{k}, t_{k}, \dots, t_{d}) dt_{1} \cdot d\hat{t}_{k-1} \cdot dt_{d} \\ &= - \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} \cdots \int_{0}^{t_{2}} h'(t_{1}) f(t_{1}, \dots, t_{d}) dt_{1} \cdots dt_{d} \\ &+ \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} \cdots \int_{0}^{t_{2}} h(t_{2}) f(t_{2}, t_{2}, \dots, t_{d}) dt_{2} \cdots dt_{d} \\ &- \sum_{k=2}^{k=d} \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} \cdots \int_{0}^{t_{k+1}} h'(t_{k}) \int_{0}^{t_{k}} \cdots \int_{0}^{t_{2}} f(t_{1}, \dots, t_{d}) dt_{1} \cdots dt_{d} \\ &+ \int_{0}^{\infty} e^{-t_{d}} h(t_{d}) \int_{0}^{t_{d}} \cdots \int_{0}^{t_{2}} h(t_{k+1}) \int_{0}^{t_{k+1}} \int_{0}^{t_{k}} f(t_{1}, \dots, t_{k-1}, t_{k+1}, t_{k+1}, t_{k+1}, \dots, t_{d}) dt_{1} \cdot d\hat{t}_{k} \cdot dt_{d} \\ &+ \sum_{k=2}^{k=d} \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} \cdot \int_{0}^{t_{k+1}} h(t_{k}) \int_{0}^{t_{k}} \int_{0}^{t_{k+1}} \int_{0}^{t_{k+1}} \int_{0}^{t_{k}} f(t_{1}, \dots, t_{d}) dt_{1} \cdot dt_{d} \\ &- \sum_{k=1}^{k=d} \int_{0}^{\infty} e^{-t_{d}} \int_{0}^{t_{d}} \cdots \int_{0}^{t_{k+1}} h'(t_{k}) \int_{0}^{t_{k}} \cdots \int_{0}^{t_{2}} f(t_{1}, \dots, t_{d}) dt_{1} \cdots dt_{d} \\ &+ \int_{0}^{\infty} e^{-t_{d}} h(t_{d}) \int_{0}^{t_{d}} \cdots \int_{0}^{t_{k+1}} h'(t_{k}) \int_{0}^{t_{k}} \cdots \int_{0}^{t_{2}} f(t_{1}, \dots, t_{d}) dt_{1} \cdots dt_{d} \\ &= - \mathbb{E} \left[F\left(\sum_{k=1}^{k=d} h'(T_{k}) - \int_{0}^{T_{d}} h'(t) dt \right) \right], \end{split}$$

where $d\hat{t}_k$ denotes the absence of dt_k . Concerning the second part of the equality it suffices to notice that if k > d,

$$\mathbb{E}[Fh'(T_k)] = \int_0^\infty e^{-t_k} h'(t_k) \int_0^{t_k} \cdots \int_0^{t_d} \cdots \int_0^{t_2} f(t_1, \dots, t_d) dt_1 \cdots dt_k$$
$$= \int_0^\infty e^{-t_k} h(t_k) \int_0^{t_k} \cdots \int_0^{t_d} \cdots \int_0^{t_2} f(t_1, \dots, t_d) dt_1 \cdots dt_k$$

$$-\int_0^\infty e^{-t_{k-1}} h(t_{k-1}) \int_0^{t_{k-1}} \cdots \int_0^{t_d} \cdots \int_0^{t_2} f(t_1, \dots, t_d) dt_1 \cdots dt_{k-1}$$

$$= \mathbb{E}[F(h(T_k) - h(T_{k-1}))] = \mathbb{E}\left[F \int_{T_{k-1}}^{T_k} h'(t) dt\right].$$

Relation (2) implies immediately for $F, G \in \mathcal{S}_d(\Omega)$:

$$\mathbb{E}[\langle \hat{D}F, hG \rangle_{L^{2}(\mathbb{R}_{+}, dN_{t})}] = \mathbb{E}\left[\langle \hat{D}(FG), h \rangle_{L^{2}(\mathbb{R}_{+}, dN_{t})} - F\langle \hat{D}G, h \rangle_{L^{2}(\mathbb{R}_{+}, dN_{t})}\right] \\
= \mathbb{E}\left[F(GU_{h'}^{d} - \langle h, \hat{D}G \rangle_{L^{2}(\mathbb{R}_{+}, dN_{t})})\right] \\
= -\mathbb{E}\left[F\left(G\int_{0}^{\infty} h'(t)d(N_{t} - t) + \langle h, \hat{D}G \rangle_{L^{2}(\mathbb{R}_{+}, dN_{t})}\right)\right].$$

2.2 Damped gradient

Let $r(s,t) = -s \vee t$ denote the Green function associated to the Laplacian \mathcal{L} on \mathbb{R}_+ :

$$\mathcal{L}f = -f'', \quad f \in \mathcal{C}_c^{\infty}(]0, \infty[),$$

i.e. we have, with g = -f'':

$$\int_0^\infty r(s,t)g(t)dt = -\int_0^s \int_0^t g(u)dudt, \quad s \in \mathbb{R}_+.$$

Definition 2 Given $F \in S_d(\Omega)$, $F = f(T_1, ..., T_d)$, we let

$$r^{(1)}(s,t) = \frac{\partial}{\partial s} r(s,t) = -\mathbf{1}_{]-\infty,s]}(t), \quad s,t \in \mathbb{R}_+,$$

and

$$\tilde{D}_t F = \int_0^\infty r^{(1)}(s,t) \hat{D}_s F dN_s.$$

We have

$$\tilde{D}_t F = \sum_{k=1}^{k=d} r^{(1)}(T_k, t) \partial_k f(T_1, \dots, T_d) = -\sum_{k=1}^{k=d} \mathbf{1}_{[0, T_k]}(t) \partial_k f(T_1, \dots, T_d).$$

In fact \tilde{D} is (up to a minor modification) the gradient introduced in [1]. This presentation of \tilde{D} using the Green function r(s,t) is motivated by [9].

Proposition 1 We have for $F \in \mathcal{S}_d(\Omega)$ and $h \in \mathcal{C}_c(\mathbb{R}_+)$:

$$\mathbb{E}[\langle \tilde{D}F, h \rangle_{L^2(\mathbb{R}_+, dt)}] = \mathbb{E}\left[FU_h^d\right] = \mathbb{E}\left[F\int_0^\infty h(t)d(N_t - t)\right],\tag{3}$$

where $U_h^d = \sum_{k=1}^{k=d} h(T_k) - \int_0^{T_d} h(t) dt$.

Proof. We have

$$\mathbb{E}\left[\langle \tilde{D}F, h \rangle_{L^{2}(\mathbb{R}_{+}, dt)}\right] = \mathbb{E}\left[\int_{0}^{\infty} \int_{0}^{\infty} r^{(1)}(s, t) \hat{D}_{s}Fh(t) dN_{s} dt\right]$$

$$= -\mathbb{E}\left[\left\langle \hat{D}F, \int_{0}^{\cdot} h(t) dt \right\rangle_{L^{2}(\mathbb{R}_{+}, dN_{t})}\right] = \mathbb{E}\left[F \int_{0}^{\infty} h(t) d(N_{t} - t).\right]$$

Relation (3) also implies that for $F, G \in \mathcal{S}_d(\Omega)$,

$$\mathbb{E}[\langle \tilde{D}F, hG \rangle_{L^{2}(\mathbb{R}_{+}, dt)}] = \mathbb{E}\left[\langle \tilde{D}(FG), h \rangle_{L^{2}(\mathbb{R}_{+}, dt)} - F \langle \tilde{D}G, h \rangle_{L^{2}(\mathbb{R}_{+}, dt)}\right] \\
= \mathbb{E}\left[F(GU_{h}^{d} - \langle h, \tilde{D}G \rangle_{L^{2}(\mathbb{R}_{+}, dt)})\right] \\
= \mathbb{E}\left[F\left(G\int_{0}^{\infty} h(t)d(N_{t} - t) - \langle h, \tilde{D}G \rangle_{L^{2}(\mathbb{R}_{+}, dt)}\right)\right].$$

2.3 Finite difference gradient

For completeness we mention the gradient D which is associated to the Fock space structure, and whose properties have been discussed in the introduction.

3 Distribution-valued gradient

For $n \geq 2$ and $F \in \mathcal{S}_d(\Omega)$ we let $dN_{t_1} \otimes \cdots \otimes dN_{t_n} - a.e.$:

$$\hat{D}_{t_1,\dots,t_n}^n F = \sum_{1 \le j_1,\dots,j_n \le d} \mathbf{1}_{\{T_{j_1}\}}(t_1) \cdots \mathbf{1}_{\{T_{j_n}\}}(t_n) \partial_{j_1} \cdots \partial_{j_n} f(T_1,\dots,T_d).$$

This is not the *n*-th iteration of \hat{D} , in fact we have

$$\|\hat{D}^n F\|_{L^2(\mathbb{R}_+,dN_t)^{\otimes n}}^2 = \sum_{1 \leq j_1,\dots,j_n \leq d} (\partial_{j_1} \cdots \partial_{j_n} f(T_1,\dots,T_d))^2.$$

Definition 3 Let $a \in \mathbb{R}_+$ and $l \in \mathbb{N}$.

i) We denote by $S'_d(\Omega \times [a, \infty[^l])$ the space of continuous linear forms (distributions) on $S_d(\Omega \times [a, \infty[^l])$, i.e. $F \in S'_d(\Omega \times [a, \infty[^l])$ if there exists $k \geq 0$ and C > 0 such that

$$|\langle F, h_1 \otimes \cdots \otimes h_l \otimes G \rangle| \leq C \sum_{i=0}^{i=k} ||h_1 \otimes \cdots \otimes h_l||_{\infty} ||\hat{D}^i G||_{L^{\infty}(\Omega, L^2(\mathbb{R}_+, dN_t)^{\otimes i})},$$

$$G \in \mathcal{S}_d(\Omega \times \mathbb{R}^l_+), \ h_1, \dots, h_l \in \mathcal{C}_c([a, \infty[).$$

ii) A sequence $(F_n)_{n\in\mathbb{N}}\subset \mathcal{S}'_d(\Omega\times[a,\infty[^l))$ is said to converge in $\mathcal{S}'_d(\Omega\times[a,\infty[^l))$ if the sequence $(\langle F_n,G\rangle)_{n\in\mathbb{N}}$ converges to $\langle F,G\rangle$ for all $G\in\mathcal{S}_d(\Omega\times[a,\infty[^l))$.

The notation $\langle \cdot, \cdot \rangle$ will be used to denote the pairing between $\mathcal{S}_d(\Omega \times [a, \infty[^l)]$ and $\mathcal{S}'_d(\Omega \times [a, \infty[^l)]$, for all values of $l \in \mathbb{N}$. Every $F \in \mathcal{S}_d(\Omega \times [a, \infty[^l)])$ is identified to an element of $\mathcal{S}'_d(\Omega \times [a, \infty[^l])$ by letting

$$\langle F, G \rangle = \int_{\Omega} \langle F(\omega, \cdot), G(\omega, \cdot) \rangle_{L^{2}([a, \infty[, dt)^{\otimes l}} P(d\omega), \quad G \in \mathcal{S}_{d}(\Omega \times [a, \infty[^{l}).$$

The closability property in L^2 of the operator \tilde{D} is a well-known statement which extends to distributions in $\mathcal{S}'_d(\Omega \times [a, \infty[^l).$

Proposition 2 Let $(F_n)_{n\in\mathbb{N}}\subset \mathcal{S}_d(\Omega\times[a,\infty[^l))$ such that

- i) $(F_n)_{n\in\mathbb{N}}$ converges to 0 in $\mathcal{S}'_d(\Omega\times[a,\infty[^l),$
- ii) $(\tilde{D}F_n)_{n\in\mathbb{N}}$ converges in $\mathcal{S}'_d(\Omega\times[a,\infty[^{l+1}).$

Then $(\tilde{D}F_n)_{n\in\mathbb{N}}$ converges to 0 in $\mathcal{S}'_d(\Omega\times[a,\infty[^{l+1}).$

Proof. For l = 0 this is a direct consequence of the integration by parts formula (4), which shows that

$$\langle \tilde{D}F_n, hG \rangle = \mathbb{E}[F_n(GU_h^d - \langle \tilde{D}G, h \rangle_{L^2(\mathbb{R}_+, dt)})], \quad h \in \mathcal{C}_c([a, \infty[), G \in \mathcal{S}_d(\Omega), d))$$

with $GU_h^d - \langle \tilde{D}G, h \rangle_{L^2(\mathbb{R}_+, dt)} \in \mathcal{S}_d(\Omega)$. The generalization to $l \geq 1$ is straightforward.

This proposition justifies the following extension of \tilde{D} to generalized functionals.

Definition 4 Let $a \in \mathbb{R}_+$. We let $\mathbb{D}_l([a,\infty[)$ denote the subspace of $F \in \mathcal{S}'_d(\Omega \times [a,\infty[^l])$ such that

- i) there exists $(F_n)_{n\in\mathbb{N}}\subset \mathcal{S}_d(\Omega\times[a,\infty[^l))$ that converges to F in $\mathcal{S}'_d(\Omega\times[a,\infty[^l),$
- ii) $(\tilde{D}F_n)_{n\in\mathbb{N}}$ converges in $\mathcal{S}'_d(\Omega\times[a,\infty[^{l+1}).$

Given F as above we define $\tilde{D}F$ as the limit in $\mathcal{S}'_d(\Omega \times [a,\infty[^{l+1})])$

$$\tilde{D}F = \lim_{n \to \infty} \tilde{D}F_n, \quad F \in \mathbb{D}_l([a, \infty[) \subset \mathcal{S}'_d(\Omega \times [a, \infty[^l])))$$

4 Iterated gradient in distribution sense

We let for $n \geq 2$:

$$r^{(n)}(T_k, t) = \partial_1^n r(T_k, t) = -\delta_t^{(n-2)}(T_k),$$

in distribution sense, i.e. $r^{(n)}(T_k,t)$ belongs to $\mathcal{S}'_d(\Omega)$ with for $k=1,\ldots,d$, and $f\in\mathcal{C}^\infty_b(\Delta_d)$:

$$\langle r^{(n)}(T_{k},t), f(T_{1},\ldots,T_{d}) \rangle$$

$$= (-1)^{n+1} \mathbf{1}_{\{k < d\}} \int_{0}^{\infty} e^{-s_{d}} \int_{0}^{s_{d}} \cdots \int_{0}^{s_{k+2}} \left(\frac{\partial^{n-2}}{\partial s_{k}^{n-2}} \int_{0}^{s_{k}} \cdots \int_{0}^{s_{2}} f(s_{1},\ldots,s_{d}) ds_{1} \cdots ds_{k-1} \right)_{|s_{k}=t} ds_{k+1} \cdots ds_{d}$$

$$+ (-1)^{n+1} \mathbf{1}_{\{k=d\}} \frac{\partial^{n-2}}{\partial t^{n-2}} \int_{0}^{t} \int_{0}^{s_{d-1}} \cdots \int_{0}^{s_{2}} e^{-t} f(s_{1},\ldots,s_{d-1},t) ds_{1} \cdots ds_{d-1},$$

and for n = 1:

$$\langle r^{(1)}(T_k, t), f(T_1, \dots, T_d) \rangle = -\int_0^\infty \int_0^{s_d} \dots \int_0^{s_2} e^{-s_d} \mathbf{1}_{[t, \infty[}(s_k) f(s_1, \dots, s_d) ds_1 \dots ds_d]$$

Let $\phi \in \mathcal{C}_c^{\infty}([-1,1])$, $\phi \geq 0$, such that $\int_{-1}^1 \phi(t)dt = 1$, and let

$$\phi_{\varepsilon}(t) = \varepsilon^{-1}\phi(\varepsilon^{-1}t), \quad t \in \mathbb{R}, \quad \varepsilon > 0.$$

Let $\phi_{\varepsilon} * r^{(n)}(T_k, t)$, $n \geq 1$, denote the convolution of ϕ_{ε} with $r^{(n)}(T_k, t)$ in the first variable, i.e. for n = 1:

$$\phi_{\varepsilon} * r^{(1)}(T_k, t) = -\int_{-\infty}^{\infty} \phi_{\varepsilon}(u) \mathbf{1}_{]-\infty, T_k - u]}(t) du = -\int_{-\infty}^{\infty} \phi_{\varepsilon}(u + T_k) \mathbf{1}_{]-\infty, u]}(t) du, \quad s, t \in \mathbb{R}_+,$$

and for n > 2, $l \in \mathbb{N}$:

$$\phi_{\varepsilon}^{(l)} * r^{(n)}(T_k, t) = \phi_{\varepsilon} * r^{(n+l)}(T_k, t) = -\phi_{\varepsilon}^{(n+l-2)}(T_k - t),$$

which converges in $\mathcal{S}'_d(\Omega)$ to $r^{(n+l)}(T_k, t)$ if $n+l \geq 1$ (i.e. to $-\delta_t^{(n+l-2)}(T_k)$ if $n+l \geq 2$), $k = 1, \ldots, d$. Let $t_1 \vee \cdots \vee t_n = \max(t_1, \ldots, t_n), t_1, \ldots, t_n \in \mathbb{R}_+$.

Proposition 3 Let $k \geq 1$ and $f \in C_b^{\infty}(\mathbb{R}_+)$. Then for all $n \geq 1$, $\tilde{D}_{t_1} \cdots \tilde{D}_{t_n} f(T_k) \in \mathbb{D}_0(\mathbb{R}_+)$ for a.a. $(t_1, \ldots, t_n) \in \mathbb{R}_+^n$, and

$$\tilde{D}_{t_1} \cdots \tilde{D}_{t_n} f(T_k) = (-1)^n f^{(n)}(T_k) \mathbf{1}_{[0,T_k]} (t_1 \vee \cdots \vee t_n)
+ (-1)^n \sum_{j=1}^{n-1} \mathbf{1}_{\{t_1 \vee \cdots \vee t_j < t_{j+1} \vee \cdots \vee t_n\}} f^{(n-j)}(t_{j+1} \vee \cdots \vee t_n) \delta_{t_{j+1} \vee \cdots \vee t_n}^{(j-1)}(T_k).$$
(5)

Proof. For n = 1 this is the definition of \tilde{D} . We proceed by induction, assuming that $\tilde{D}_{t_3} \cdots \tilde{D}_{t_{n+1}} f(T_k) \in \mathbb{D}_0(\mathbb{R}_+)$ for some $n \geq 1$, and

$$\tilde{D}_{t_2} \cdots \tilde{D}_{t_{n+1}} f(T_k) = (-1)^n f^{(n)}(T_k) \mathbf{1}_{[0,T_k]} (t_2 \vee \cdots \vee t_{n+1})$$

$$+ (-1)^n \sum_{j=1}^{n-1} \mathbf{1}_{\{t_2 \vee \cdots \vee t_{j+1} < t_{j+2} \vee \cdots \vee t_{n+1}\}} f^{(n-j)}(t_{j+2} \vee \cdots \vee t_{n+1}) \delta_{t_{j+2} \vee \cdots \vee t_{n+1}}^{(j-1)}(T_k).$$

Let for $\varepsilon > 0$. We define a smooth approximation of $\tilde{D}_{t_2} \cdots \tilde{D}_{t_{n+1}} f(T_k)$ by letting

$$F_{\varepsilon}(t_{2},\ldots,t_{n+1}) = (-1)^{n} f^{(n)}(T_{k}) \phi_{\varepsilon} * r^{(1)}(T_{k},t_{2} \vee \cdots \vee t_{n+1})$$

$$+ (-1)^{n} \sum_{j=1}^{n-1} \mathbf{1}_{\{t_{2}\vee\cdots\vee t_{j+1}\leq t_{j+2}\vee\cdots\vee t_{n+1}\}} f^{(n-j)}(t_{j+2}\vee\cdots\vee t_{n+1}) \phi_{\varepsilon} * r^{(j+1)}(T_{k},t_{j+2}\vee\cdots\vee t_{n+1}).$$

Then $F_{\varepsilon}(t_2,\ldots,t_{n+1}) \in \mathcal{S}_d(\Omega)$ and

$$\tilde{D}_{t_1} F_{\varepsilon}(t_2, \dots, t_{n+1}) = (-1)^{n+1} \mathbf{1}_{[0, T_k]}(t_1) \phi_{\varepsilon} * r^{(1)}(T_k, t_2 \vee \dots \vee t_{n+1}) f^{(n+1)}(T_k)
+ (-1)^{n+1} \mathbf{1}_{[0, T_k]}(t_1) f^{(n)}(T_k) \phi_{\varepsilon}' * r^{(1)}(T_k, t_2 \vee \dots \vee t_{n+1})$$

$$+(-1)^{n+1}\mathbf{1}_{[0,T_{k}]}(t_{1})\sum_{j=1}^{n-1}\mathbf{1}_{\{t_{2}\vee\cdots\vee t_{j+1}< t_{j+2}\vee\cdots\vee t_{n+1}\}}f^{(n-j)}(t_{j+2}\vee\cdots\vee t_{n+1})$$

$$\times\phi'_{\varepsilon}*r^{(j+1)}(T_{k},t_{j+2}\vee\cdots\vee t_{n+1})$$

$$=(-1)^{n+1}\mathbf{1}_{[0,T_{k}]}(t_{1})\phi_{\varepsilon}*r^{(1)}(T_{k},t_{2}\vee\cdots\vee t_{n+1})f^{(n+1)}(T_{k})$$

$$+(-1)^{n+1}\mathbf{1}_{[0,T_{k}]}(t_{1})f^{(n)}(T_{k})\phi_{\varepsilon}*r^{(2)}(T_{k},t_{2}\vee\cdots\vee t_{n+1})$$

$$+(-1)^{n+1}\mathbf{1}_{[0,T_{k}]}(t_{1})\sum_{j=2}^{n}\mathbf{1}_{\{t_{2}\vee\cdots\vee t_{j}< t_{j+1}\vee\cdots\vee t_{n+1}\}}f^{(n+1-j)}(t_{j+1}\vee\cdots\vee t_{n+1})$$

$$\times\phi_{\varepsilon}*r^{(j+1)}(T_{k},t_{j+1}\vee\cdots\vee t_{n+1})$$

$$=(-1)^{n+1}\mathbf{1}_{[0,T_{k}]}(t_{1})\sum_{j=1}^{n}\mathbf{1}_{\{t_{2}\vee\cdots\vee t_{j}< t_{j+1}\vee\cdots\vee t_{n+1}\}}f^{(n+1-j)}(t_{j+1}\vee\cdots\vee t_{n+1})$$

$$+(-1)^{n+1}\mathbf{1}_{[0,T_{k}]}(t_{1})\sum_{j=1}^{n}\mathbf{1}_{\{t_{2}\vee\cdots\vee t_{j}< t_{j+1}\vee\cdots\vee t_{n+1}\}}f^{(n+1-j)}(t_{j+1}\vee\cdots\vee t_{n+1})$$

$$\times\phi_{\varepsilon}*r^{(j+1)}(T_{k},t_{j+1}\vee\cdots\vee t_{n+1}),$$

where we used the relation $\phi'_{\varepsilon} * r^{(j+1)} = \phi_{\varepsilon} * r^{(j+2)}$. As $\varepsilon \to 0$, $\tilde{D}_{t_1} F_{\varepsilon}(t_2, \dots, t_{n+1})$ converges in $\mathcal{S}'_d(\Omega)$ to

$$(-1)^{n+1} f^{(n+1)}(T_k) \mathbf{1}_{[0,T_k]}(t_1 \vee \cdots \vee t_{n+1})$$

$$+ (-1)^{n+1} \sum_{j=1}^n \mathbf{1}_{\{t_1 \vee \cdots \vee t_j < t_{j+1} \vee \cdots \vee t_{n+1}\}} f^{(n+1-j)}(t_{j+1} \vee \cdots \vee t_{n+1}) r^{(j+1)}(T_k, t_{j+1} \vee \cdots \vee t_{n+1}).$$

In particular, for $n \geq 2$:

$$\tilde{D}_{t_1}\cdots\tilde{D}_{t_n}T_k=(-1)^{n+1}\mathbf{1}_{\{0< t_1,\dots,t_{n-1}< t_n\}}r^{(n)}(T_k,t_n)=(-1)^n\mathbf{1}_{\{0< t_1,\dots,t_{n-1}< t_n\}}\delta_{t_n}^{(n-2)}(T_k).$$

We note that since $f \in \mathcal{C}_b^{\infty}(\mathbb{R}_+)$, there exists C > 0 such that

$$|\langle \tilde{D}_{t_1} \cdots \tilde{D}_{t_n} f(T_k), h_1 \otimes \cdots \otimes h_l \otimes G \rangle| \leq C \sum_{i=0}^{i=n} ||h_1 \otimes \cdots \otimes h_l||_{\infty} ||\hat{D}^i G||_{L^{\infty}(\Omega, L^2(\mathbb{R}_+, dN_t)^{\otimes i})},$$

 $dt_1 \cdots dt_n - a.e.$, for all $G \in \mathcal{S}_d(\Omega)$ and $h_1, \dots, h_l \in \mathcal{C}_c(\mathbb{R}_+)$. Hence $\tilde{D}^n f(T_k) \in \mathbb{D}_n(\mathbb{R}_+) \subset \mathcal{S}'_d(\Omega \times \mathbb{R}^n_+)$, and (5) can be written as

$$\tilde{D}_{t_1} \cdots \tilde{D}_{t_n} f(T_k) = (-1)^n \sum_{j=0}^{j=n} \mathbf{1}_{\{t_1 \vee \dots \vee t_j < t_{j+1} \vee \dots \vee t_n\}} f^{(n-j)}(T_{k,j}) (-r^{(j+1)}(T_k, t_{j+1} \vee \dots \vee t_n))$$

with $t_0 = 0$ and

$$T_{k,j} = \begin{cases} T_k & \text{if } j = 0, \\ t_{j+1} \lor \dots \lor t_n & \text{if } j \ge 1, \end{cases}$$

i.e. if $0 \le t_1 < \dots < t_n$:

$$\tilde{D}_{t_1} \cdots \tilde{D}_{t_n} f(T_k) = (-1)^n \sum_{j=0}^{j=n} f^{(n-j)}(T_{k,j}) (-r^{(j+1)}(T_k, t_n)).$$

In case $t_1 > \cdots > t_n$ and $F = f(T_1, \ldots, T_d)$ with $f \in \mathcal{C}_b^{\infty}(\Delta_n)$, it is shown in [10] that

$$\tilde{D}_{t_1}\cdots\tilde{D}_{t_n}F=(-1)^n\sum_{1\leq j_1,\ldots,j_n\leq d}\mathbf{1}_{[0,T_{j_1}]}(t_1)\cdots\mathbf{1}_{[0,T_{j_n}]}(t_n)\partial_{j_1}\cdots\partial_{j_n}f(T_1,\ldots,T_d).$$

Given $j_1, ..., j_n \in \{1, ..., d\}$ and $i \in \{1, ..., d\}$, let

$$a_i(j_1, \dots, j_n) = \text{Card}\{l \in \{1, \dots n\} : j_l = i\},\$$

$$c_i(j_1,\ldots,j_n) = \max\{l: j_l = i\}.$$

With this notation we obtain the following formula, in which the indices j_1, \ldots, j_n are omitted in $a_i(j_1, \ldots, j_n)$ and $c_i(j_1, \ldots, j_n)$.

Theorem 1 Let $F = f(T_1, ..., T_d)$, with $f \in \mathcal{C}_b^{\infty}(\Delta_d)$. We have $\tilde{D}^n F \in \mathbb{D}_n(\mathbb{R}_+)$ for all $n \geq 0$, and:

$$\tilde{D}_{t_{1}} \cdots \tilde{D}_{t_{n}} F = (-1)^{n} \sum_{1 \leq j_{1}, \dots, j_{n} \leq d} \sum_{0 \leq i_{1} \leq (a_{1}-1) \vee 0} \cdots \sum_{0 \leq i_{d} \leq (a_{d}-1) \vee 0} (6)$$

$$\partial_{1}^{a_{1}-i_{1}} \cdots \partial_{d}^{a_{d}-i_{d}} f(T_{1,i_{1}}, \dots, T_{d,i_{d}}) \prod_{\substack{l=1 \ a_{l} \neq 0}}^{l=d} (-r^{(1+i_{l})}(T_{l}, t_{c_{l}})),$$

 $(t_1,\ldots,t_n)\in\Delta_n,\ n\geq 2,\ where$

$$T_{l,i_l} = \begin{cases} T_l & \text{if } i_l = 0, \\ t_{c_l} & \text{if } i_l \ge 1. \end{cases}$$

Proof. Let $\tilde{D}_{t,k}$ denote the partial gradient with respect to the k-th variable, i.e.

$$\tilde{D}_{t,k}f(T_1,\ldots,T_d) = -\mathbf{1}_{[0,T_k]}(t)\partial_k f(T_1,\ldots,T_d), \quad 1 \le k \le d.$$

Then $\tilde{D}_{t,k}$ and $\tilde{D}_{s,l}$, are commuting operators, $1 \leq k < l \leq d$, and for $0 < t_1 < \cdots < t_l$,

$$\tilde{D}_{t_1,k}\cdots\tilde{D}_{t_l,k}F=(\tilde{D}_{t_l,k})^lF.$$

Consequently,

$$\tilde{D}_{t_1}\cdots\tilde{D}_{t_n}F = \sum_{1\leq j_1,\dots,j_n\leq d} \tilde{D}_{t_1,j_1}\cdots\tilde{D}_{t_n,j_n}F = \sum_{1\leq j_1,\dots,j_n\leq d} (\tilde{D}_{t_{c_1},1})^{a_1}\cdots(\tilde{D}_{t_{c_d},d})^{a_d}F.$$

It remains to apply Prop. 3 under the form

$$(\tilde{D}_{t_{c_l},l})^{a_l}F = (-1)^{a_l} \sum_{0 \le i_l \le (a_l-1) \lor 0} \partial_l^{a_l-i_l} f(T_1,\ldots,T_{l-1},T_{l,i_l},T_{l+1},\ldots,T_d) (-r^{(i_l+1)}(T_l,t_{c_l})),$$

if $a_l \geq 1$, and

$$(\tilde{D}_{t_{c_l},l})^{a_l}F = (-1)^{a_l} \sum_{0 \le i_l \le (a_l-1) \lor 0} \partial_l^{a_l-i_l} f(T_1,\ldots,T_{l-1},T_{l,i_l},T_{l+1},\ldots,T_d)$$

if
$$a_l = 0$$
.

5 Equality of adapted projections in distribution sense

We recall that the adjoint of D extends the compensated Poisson stochastic integral, cf. [3], Th. 6.9, p. 23, i.e. for all adapted square-integrable process $u \in L^2(\Omega \times \mathbb{R}_+)$ we have

$$\mathbb{E}[\langle DF, u \rangle_{L^2(\mathbb{R}_+, dt)}] = \mathbb{E}\left[F \int_0^\infty u(t)d(N_t - t)\right]. \tag{7}$$

Since the adapted projections of \tilde{D} and D coincide, cf. [7], Prop. 20:

$$\mathbb{E}[\tilde{D}_t F \mid \mathcal{F}_a] = \mathbb{E}[D_t F \mid \mathcal{F}_a], \quad 0 < a < t, \tag{8}$$

the same property hold for \tilde{D} :

$$\mathbb{E}[\langle \tilde{D}F, u \rangle_{L^2(\mathbb{R}_+, dt)}] = \mathbb{E}\left[F \int_0^\infty u(t)d(N_t - t)\right].$$

We now show that Relation (8) can be extended in distribution sense to \tilde{D}^n and D^n , $n \geq 2$. The next proposition will be interpreted in terms of generalized conditional expectations as

$$\mathbb{E}[\tilde{D}_{t_1}\cdots\tilde{D}_{t_n}F\mid \mathcal{F}_a] = \mathbb{E}[D_{t_1}\cdots D_{t_n}F\mid \mathcal{F}_a], \quad (t_1,\ldots,t_n) \in \Delta_n \cap [a,\infty[^n].$$

Proposition 4 Let $F \in \mathcal{S}_d(\Omega)$ and $G \in \mathcal{S}_d(\Omega)$ be \mathcal{F}_a -measurable. We have

$$\langle G\tilde{D}_{t_1}\cdots\tilde{D}_{t_n}F,1\rangle = \mathbb{E}[GD_{t_1}\cdots D_{t_n}F], \quad (t_1,\ldots,t_n)\in\Delta_n\cap[a,\infty[^n].$$
 (9)

Proof. The proposition holds for n=1. We assume that it holds for some $n \geq 1$. Let $F_{\varepsilon}(t_2,\ldots,t_{n+1})$ denote the regularization of $\tilde{D}_{t_2}\cdots \tilde{D}_{t_{n+1}}F$ constructed as in the proof of Prop. 3:

$$F_{\varepsilon}(t_{2},\ldots,t_{n+1}) = (-1)^{n} \sum_{1 \leq j_{1},\ldots,j_{n} \leq d} \sum_{0 \leq i_{1} \leq (a_{1}-1) \vee 0} \cdots \sum_{0 \leq i_{d} \leq (a_{d}-1) \vee 0} \partial_{1}^{a_{1}-i_{1}} \cdots \partial_{d}^{a_{d}-i_{d}} f(T_{1,i_{1}},\ldots,T_{d,i_{d}}) \prod_{\substack{l=1\\a_{l} \neq 0}}^{l=d} (-\phi^{\varepsilon} * r^{(1+i_{l})}(T_{l},t_{1+c_{l}})).$$

Let $f_{n+1} \in \mathcal{C}_c^{\infty}(\Delta_{n+1} \cap [a, \infty[^{n+1}))$. Since G is \mathcal{F}_a measurable we have $\tilde{D}_{t_1}G = 0$, $t_1 > a$, hence from Prop. 1:

$$\mathbb{E}\left[\int_{a}^{t_{2}} \tilde{D}_{t_{1}} F_{\varepsilon}(t_{2}, \dots, t_{n+1}) f_{n+1}(t_{1}, \dots, t_{n+1}) dt_{1} G\right] \\
= \mathbb{E}\left[\int_{a}^{t_{2}} \tilde{D}_{t_{1}} (GF_{\varepsilon}(t_{2}, \dots, t_{n+1})) f_{n+1}(t_{1}, \dots, t_{n+1}) dt_{1}\right] \\
= \mathbb{E}\left[GF_{\varepsilon}(t_{2}, \dots, t_{n+1}) \left(\sum_{k=1}^{k=d} f_{n+1}(T_{k}, t_{2}, \dots, t_{n+1}) - \int_{0}^{T_{d}} f_{n+1}(t, t_{2}, \dots, t_{n+1}) dt\right)\right],$$

and

$$\begin{split} &= \lim_{\varepsilon \to 0} \left\langle \int_{a}^{\infty} \int_{a}^{t_{n+1}} f_{n+1} G \right\rangle \\ &= \lim_{\varepsilon \to 0} \left\langle \int_{a}^{\infty} \int_{a}^{t_{n+1}} \cdots \int_{a}^{t_{2}} \tilde{D}_{t_{1}} F_{\varepsilon}(t_{2}, \dots, t_{n+1}) f_{n+1}(t_{1}, \dots, t_{n+1}) dt_{1} \cdots dt_{n+1}, G \right\rangle \\ &= \lim_{\varepsilon \to 0} \mathbb{E} \left[\int_{a}^{\infty} \int_{a}^{t_{n+1}} \cdots \int_{a}^{t_{2}} \tilde{D}_{t_{1}} F_{\varepsilon}(t_{2}, \dots, t_{n+1}) f_{n+1}(t_{1}, \dots, t_{n+1}) dt_{1} \cdots dt_{n+1} G \right] \\ &= \lim_{\varepsilon \to 0} \mathbb{E} \left[G \int_{a}^{\infty} \int_{a}^{t_{n+1}} \cdots \int_{a}^{t_{3}} F_{\varepsilon}(t_{2}, \dots, t_{n+1}) \left(\sum_{k=1}^{t_{2}} f_{n+1}(T_{k}, t_{2}, \dots, t_{n+1}) - \int_{0}^{T_{d}} f_{n+1}(t, t_{2}, \dots, t_{n+1}) dt \right) dt_{2} \cdots dt_{n+1} \right] \\ &= \mathbb{E} \left[G \int_{a}^{\infty} \int_{a}^{t_{n+1}} \cdots \int_{a}^{t_{3}} \left(\sum_{k=1}^{t_{2}} f_{n+1}(T_{k}, t_{2}, \dots, t_{n+1}) - \int_{0}^{T_{d}} f_{n+1}(t_{1}, t_{2}, \dots, t_{n+1}) dt_{1} \right) \tilde{D}_{t_{2}} \cdots \tilde{D}_{t_{n+1}} F dt_{2} \cdots dt_{n+1} \right] \end{split}$$

$$= \mathbb{E}\left[G\int_{a}^{\infty} \int_{a}^{t_{n+1}} \cdots \int_{a}^{t_{3}} \left(\sum_{k=1}^{k=d} f_{n+1}(T_{k}, t_{2}, \dots, t_{n+1}) - \int_{0}^{T_{d}} f_{n+1}(t_{1}, t_{2}, \dots, t_{n+1}) dt_{1}\right) D_{t_{2}} \cdots D_{t_{n+1}} F dt_{2} \cdots dt_{n+1}\right],$$

where on the last step we used the induction hypothesis with $a = t_2$. This is possible because the functional $\sum_{k=1}^{k=d} f_{n+1}(T_k, t_2, \ldots, t_{n+1}) - \int_0^{T_d} f_{n+1}(t_1, t_2, \ldots, t_{n+1}) dt_1$ is \mathcal{F}_{t_2} -measurable since it depends on T_k only when $T_k \leq t_2$, $1 \leq k \leq d$, due to the fact that $f_{n+1} \in \mathcal{C}_c^{\infty}(\Delta_{n+1})$.

The proof of Prop. 1 also shows that

$$\mathbb{E}\left[G\left(\sum_{k=1}^{k=d} f_{n+1}(T_k, t_2, \dots, t_{n+1}) - \int_0^{T_d} f_{n+1}(t_1, t_2, \dots, t_{n+1})dt_1\right) D_{t_2} \cdots D_{t_{n+1}}F\right] \\
= \mathbb{E}\left[G\left(\sum_{k=1}^{k=\infty} f_{n+1}(T_k, t_2, \dots, t_{n+1}) - \int_0^{\infty} f_{n+1}(t, t_2, \dots, t_{n+1})dt\right) D_{t_2} \cdots D_{t_{n+1}}F\right] \\
= \mathbb{E}\left[G\int_a^{t_2} f_{n+1}(t_1, t_2, \dots, t_{n+1})d(N_{t_1} - t_1)D_{t_2} \cdots D_{t_{n+1}}F\right] \\
= \mathbb{E}\left[G\int_a^{t_2} f_{n+1}(t_1, \dots, t_{n+1})D_{t_1} \cdots D_{t_{n+1}}Fdt_1\right],$$

where on the last line we used the duality (7) between D and the Poisson compensated integral on the adapted processes. Hence

$$\langle \tilde{D}^{n+1}F, \mathbf{1}_{\Delta_{n+1}}f_{n+1}G \rangle$$

$$= \mathbb{E} \left[G \int_{a}^{\infty} \int_{a}^{t_{n+1}} \cdots \int_{a}^{t_{2}} f_{n+1}(t_{1}, \dots, t_{n+1}) D_{t_{1}} \cdots D_{t_{n+1}}F dt_{1} \cdots dt_{n+1} \right].$$

This shows the almost-sure equality

$$\langle G\tilde{D}_{t_1}\cdots\tilde{D}_{t_n}F,1\rangle = \mathbb{E}[GD_{t_1}\cdots D_{t_n}F], \quad \text{a.e. } (t_1,\ldots,t_n)\in\Delta_n\cap[a,\infty[^n,t_n]]$$

which becomes an equality for all $(t_1, \ldots, t_n) \in \Delta_n \cap [a, \infty[^n \text{ since } (t_1, \ldots, t_n) \mapsto \langle G\tilde{D}_{t_1} \cdots \tilde{D}_{t_n} F, 1 \rangle$ and $(t_1, \ldots, t_n) \mapsto \mathbb{E}[GD_{t_1} \cdots D_{t_n} F]$ are clearly continuous functions on Δ_n when $F, G \in \mathcal{S}_d(\Omega)$.

Note that Relation (9) does not hold if $(t_1, \ldots, t_n) \notin \Delta_n$, see Relation (14) below.

6 Chaos expansions of jump times functionals

Our result is stated for smooth functions $f(T_1, ..., T_d)$ of a finite number of jump times. We start with the simple case of $f(T_d)$. For $n \in \mathbb{Z}$ and $t \in \mathbb{R}_+$, let

$$p_n(t) = P(N_t = n) = \frac{t^n}{n!}e^{-t} = e^{-t} \int_0^t \int_0^{s_{n-1}} \cdots \int_0^{s_2} ds_1 \cdots ds_{n-1},$$

if $n \geq 0$, and $p_n(t) = P(N_t = n) = 0$ if n < 0, i.e. $p_{n-1} : \mathbb{R}_+ \to \mathbb{R}_+$, $n \geq 1$, is the density function of T_n , and

$$p_n^{(k)}(t) = \frac{\partial^k}{\partial t^k} p_n(t) = (-\Delta)^k p_n(t) = (-1)^k \frac{p_n(t)}{t^k} C_k^t(n),$$

where Δ is the finite difference operator $\Delta f(n) = f(n) - f(n-1)$ and C_k^t is the Charlier polynomial of order $k \in \mathbb{N}$ and parameter $t \in \mathbb{R}_+$.

Proposition 5 The decomposition

$$f(T_d) = \sum_{n=0}^{\infty} I_n(h_n \mathbf{1}_{\Delta_n}),$$

is given for $(t_1, \ldots, t_n) \in \Delta_n$ as:

$$h_n(t_1,\ldots,t_n) = (-1)^n \int_{t_n}^{\infty} f^{(n)}(t) p_{d-1}(t) dt + (-1)^n \sum_{j=1}^{j=n-1} (-1)^{j-1} f^{(n-j)}(t_n) p_{d-1}^{(j-1)}(t_n).$$

Proof. From Relation (9) of Prop. 4 and Relation (5) of Prop. 3 we have

$$h_{n}(t_{1},...,t_{n}) = \mathbb{E}[D_{t_{1}}\cdots D_{t_{n}}f(T_{d})] = \langle \tilde{D}_{t_{1}}\cdots \tilde{D}_{t_{n}}f(T_{d}), 1 \rangle$$

$$= (-1)^{n} \left\langle f^{(n)}(T_{d})\mathbf{1}_{[0,T_{d}]}(t_{n}) + \sum_{j=1}^{n-1} f^{(n-j)}(t_{n})\delta_{t_{n}}^{(j-1)}(T_{d}), 1 \right\rangle$$

$$= (-1)^{n} \int_{0}^{\infty} \mathbf{1}_{[t_{n},\infty[}(s_{d})e^{-s_{d}}f^{(n)}(s_{d}) \int_{0}^{s_{d}}\cdots \int_{0}^{s_{2}} ds_{1}\cdots ds_{d}$$

$$+ (-1)^{n} \sum_{j=1}^{n-1} f^{(n-j)}(t_{n}) \int_{0}^{\infty} e^{-s_{d}} \int_{0}^{s_{d}}\cdots \int_{0}^{s_{2}} ds_{1}\cdots ds_{d-1}\delta_{t_{n}}^{(j-1)}(ds_{d})$$

$$= (-1)^{n} \int_{t_{n}}^{\infty} e^{-s_{d}}f^{(n)}(s_{d}) \frac{s_{d}^{d-1}}{(d-1)!} ds_{d}$$

$$+ (-1)^{n} \sum_{j=1}^{n-1} f^{(n-j)}(t_{n}) \int_{0}^{\infty} e^{-s_{d}} \frac{s_{d}^{d-1}}{(d-1)!} \delta_{t_{n}}^{(j-1)}(ds_{d})$$

$$= (-1)^{n} \int_{t_{n}}^{\infty} f^{(n)}(t)p_{d-1}(t)dt + (-1)^{n} \sum_{j=1}^{j=n-1} (-1)^{j-1} f^{(n-j)}(t_{n}) p_{d-1}^{(j-1)}(t_{n}).$$

By induction this gives for l = 0, ..., n - 1:

$$h_n(t_1,\ldots,t_n) = (-1)^{n+l} \int_{t_n}^{\infty} f^{(n-l)}(t) p_{d-1}^{(l)}(t) dt + (-1)^n \sum_{j=l+1}^{j=n-1} (-1)^{j-1} f^{(n-j)}(t_n) p_{d-1}^{(j-1)}(t_n),$$

and in particular for l = n - 1:

$$h_n(t_1,\ldots,t_n) = -\int_{t_n}^{\infty} f'(s)p_{d-1}^{(n-1)}(s)ds = f(t_n)p_{d-1}^{(n-1)}(t_n) + \int_{t_n}^{\infty} f(s)p_{d-1}^{(n)}(s)ds,$$

hence

$$f(T_d) = \sum_{n \ge 0} \frac{1}{n!} I_n \left(f(t_1 \lor \dots \lor t_n) p_{d-1}^{(n-1)}(t_1 \lor \dots \lor t_n) + \int_{t_1 \lor \dots \lor t_n}^{\infty} f(s) p_{d-1}^{(n)}(s) ds \right),$$
(10)

with the convention $t_1 \vee t_0 = 0$. In order to treat the case of d variables we recall the notation

$$a_i(j_1, \dots, j_n) = \text{Card}\{l : j_l = i\}, \text{ and } c_i(j_1, \dots, j_n) = \max\{l : j_l = i\}.$$

Proposition 6 Let $f \in C_b^{\infty}(\Delta_d)$. We have

$$f(T_1,\ldots,T_d)=\sum_{n=0}^{\infty}I_n(h_n\mathbf{1}_{\Delta_n}),$$

with

$$h(t_{1},...,t_{n}) = (-1)^{n} \sum_{1 \leq j_{1},...,j_{n} \leq d} \sum_{0 \leq i_{1} \leq (a_{1}-1)\vee 0} \cdots \sum_{0 \leq i_{d} \leq (a_{d}-1)\vee 0} \int_{0}^{\infty} \int_{0}^{s_{d}} \cdots \int_{0}^{s_{2}} e^{-s_{d}} \partial_{1}^{a_{1}-i_{1}} \cdots \partial_{d}^{a_{d}-i_{d}} f(s_{1,i_{1}},...,s_{d,i_{d}}) \prod_{\substack{l=1\\a_{l} \neq 0}}^{l=d} (-r^{(1+i_{l})}(ds_{l},t_{c_{l}})),$$

$$(11)$$

where $r^{(1)}(ds,t) = \mathbf{1}_{[t,\infty[}(s)ds, \text{ and }$

$$s_{l,i_l} = \begin{cases} s_l & \text{if } i_l = 0, \\ t_{c_l} & \text{if } i_l \ge 1, \quad l = 1, \dots, d. \end{cases}$$

Proof. We apply Th. 1 and Relation (9) of Prop. 4.

This expression can be made more explicit by evaluation of the action of $r^{(1+i_l)}(ds_{j_l}, t_{c_l})$, either as an indicator function or as a derivative in t_{c_l} . However this will not be done here in order to keep formula (11) to a reasonable size.

In [8], another expression (different from (11)) has been obtained using elementary orthogonal decompositions in Charlier polynomials. Let $n_1, \ldots, n_l \in \mathbb{N}$ with $1 \leq n_1 < \cdots < n_l$, and let $f \in \mathcal{C}_b^d(\Delta_l)$. As a convention, if $k_1 \geq 0, \ldots, k_d \geq 0$ satisfy $k_1 + \cdots + k_d = n$, we let for $(t_1, \ldots, t_n) \in \Delta_n$:

$$(t_1^1,\ldots,t_{k_1}^1,t_1^2,\ldots,t_{k_2}^2,\ldots,t_1^d,\ldots,t_{k_d}^d)=(t_1,\ldots,t_n),$$

with $t_{k_i}^i = 0$ if $k_i = 0$, and $(t_1^i, t_0^i) = ()$. We have

$$f(T_{n_1},\ldots,T_{n_l}) = \sum_{n=0}^{\infty} I_n(\mathbf{1}_{\Delta_n}h_n),$$

where

$$h_n(t_1, \dots, t_n) = (12)$$

$$(-1)^l \sum_{k_1 + \dots + k_l = n} \int_{t_{k_l}^l}^{\infty} \dots \int_{t_{k_i}^l}^{t_1^{i+1}} \dots \int_{t_{k_1}^l}^{t_1^2} \partial_1 \dots \partial_l f(s_1, \dots, s_l) K_{s_1, \dots, s_l}^{k_1, \dots, k_l} ds_1 \dots ds_l,$$

with, for $0 \le s_1 \le \cdots \le s_l$ and $k_1 \ge 0, \ldots, k_l \ge 0$:

$$K_{s_1,\dots,s_l}^{k_1,\dots,k_l} = \sum_{\substack{m_1 \ge n_1,\dots,m_l \ge n_l \\ m_1 \le \dots \le m_l}} p_{m_1-m_0}^{(k_1)}(s_1 - s_0) \cdots p_{m_l-m_{l-1}}^{(k_l)}(s_l - s_{l-1}), \quad m_0 = 0, \ s_0 = 0,$$

cf. Th. 1 of [8]. For l = 1, i.e. for $f(T_d)$, $n_1 = d$, we have

$$K_s^k = \sum_{m=d}^{\infty} p_m^{(k)}(s) = \frac{\partial^{k-1}}{\partial s^{k-1}} \sum_{m=d}^{\infty} p_m^{(1)}(s) = \frac{\partial^{k-1}}{\partial s^{k-1}} \sum_{m=d}^{\infty} p_{m-1}(s) - p_m(s) = p_{d-1}^{(k-1)}(s)$$

hence

$$h_n(t_1,\ldots,t_n) = -\int_{t_n}^{\infty} f'(s) p_{d-1}^{(n-1)}(s) ds,$$

which coincides with (10).

Remarks

- i) All expressions obtained above for $f(T_1, \ldots, T_d)$, $f \in \mathcal{C}_b^{\infty}(\Delta_d)$, extend to $f \in L^2(\Delta_d, e^{-s_d}ds_1 \cdots ds_d)$, i.e. to square-integrable $f(T_1, \ldots, T_d)$, by repeated integrations by parts.
- ii) Chaotic decompositions on the Poisson space on the compact interval [0,1] as in [4] or [5] can be obtained by considering the functional $f(1 \wedge T_1, \ldots, 1 \wedge T_d)$ instead of $f(T_1, \ldots, T_d)$.
- iii) If $t_1 > \cdots > t_n$ then Relation (9) does not hold, for example we have

$$\tilde{D}_{t_1} \cdots \tilde{D}_{t_n} f(T_d) = (-1)^n \mathbf{1}_{[0,T_d]} (t_1) f^{(n)}(T_d),$$

and

$$\mathbb{E}[\tilde{D}_{t_1}\cdots\tilde{D}_{t_n}f(T_d)] = (-1)^n \mathbb{E}[\mathbf{1}_{[0,T_d]}(t_1)f^{(n)}(T_d)] = (-1)^n \int_{t_1}^{\infty} f^{(n)}(s)p_{d-1}(s)ds,$$
(13)

which differs (if $n \geq 2$) from

$$\mathbb{E}[D_{t_1} \cdots D_{t_n} f(T_d)] = -\int_{t_1}^{\infty} f'(s) p_{d-1}^{(n-1)}(s) ds.$$
 (14)

References

- [1] E. Carlen and É. Pardoux. Differential calculus and integration by parts on Poisson space. In S. Albeverio, Ph. Blanchard, and D. Testard, editors, *Stochastics, Algebra and Analysis in Classical and Quantum Dynamics (Marseille, 1988)*, volume 59 of *Math. Appl.*, pages 63–73. Kluwer Acad. Publ., Dordrecht, 1990.
- [2] R.J. Elliott and A.H. Tsoi. Integration by parts for Poisson processes. *J. Multivariate Anal.*, 44(2):179–190, 1993.
- [3] Y. Ito. Generalized Poisson functionals. Probab. Theory Related Fields, 77:1–28, 1988.
- [4] J. León, J.L. Solé, and J. Vives. The chaos decomposition of functionals of the jump times for the Poisson process over a compact time interval. In *Stochastic models (Guanajuato, 1998)*, pages 269–282. Soc. Mat. Mexicana, México, 1998. (Preprint 19/1998, september 1998, Universitat Autònoma de Barcelona).
- [5] J. León and C. Tudor. The chaos decomposition of the jump times for the Poisson process over a compact time interval. In L.G. Gorostiza, J.A. León, and J.A. López-Mimbela, editors, IV Simposio de Probabilidad y Procesos Estocásticos, volume 12 of Aportaciones Matemáticas, pages 137–146, Guanajuato, 1996. Sociedad Matemática Mexicana.

- [6] D. Nualart and J. Vives. Anticipative calculus for the Poisson process based on the Fock space. In *Séminaire de Probabilités XXIV*, volume 1426 of *Lecture Notes in Math.*, pages 154–165. Springer, Berlin, 1990.
- [7] N. Privault. Chaotic and variational calculus in discrete and continuous time for the Poisson process. *Stochastics and Stochastics Reports*, 51:83–109, 1994.
- [8] N. Privault. Multiple stochastic integral expansions of arbitrary Poisson jump times functionals. *Statist. Probab. Lett.*, 43:179–188, 1999.
- [9] N. Privault. Connection, parallel transport, curvature and energy identities on spaces of configurations. C. R. Acad. Sci. Paris Sér. I Math., 330(10):899–904, 2000.
- [10] N. Privault. Extended covariance identities and inequalities. *Statist. Probab. Lett.*, 55:247–255, 2001.