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Abstract

We define a class of distributions on Poisson space which allows to iterate a
modification of the gradient of [1]. As an application we obtain, with relatively
short calculations, a formula for the chaos expansion of functionals of jump
times of the Poisson process.
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1 Introduction

Let (Vi)ier, be a standard Poisson process with jump times (7})>1, and Ty = 0. The
underlying probability space is denoted by (2, F, P), so that L*(, F, P) is the space
of square-integrable functionals of (N;)ier,. Any F' € L*(Q, F, P) can be expanded

into the series -
1
n=1 :

where I,,(f,,) is the iterated stochastic integral
&8} tn t2
L(fn) :n!/ / / falts, .. tn)d(Ny, —t1) -+~ d(Ny, — t,)
o Jo 0

of the symmetric function f, € L*(R3") (stochastic integrals are taken in the Itd sense,

thus diagonal terms have no influence in the above expression), with the isometry

<In(fn>> Im(gm)>L2(Q) - nll{n:m} <fn;gm>L2(R+,dt)°"7 fn € L2(R+7 dt)ona Im € L2(R+7 dt)om'
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If f, is not symmetric we let I,(f,) = I.(fn), where f, denotes the symmetrization

of f, in n variables, hence (1) can be written as

F=E[F)+ Y L(fula,)

where

An:{(tl,...,tn)GRi P 0<t < <tyl

Let D : L*(Q) — L*(Q x R,) denote the linear unbounded operator defined on

multiple stochastic integrals as
DL, (fn) = nlp1(fu(x,t)), a.e. t€R,.

The formula of Y. Ito [3] (Relations (7.4) and (7.5), pp. 26-27), allows in principle to

compute f, as
fn(tly ce ,tn) = ]E[Dt1 tee DtnF]a a.ce. t17 ce ,tn S R+.

Given the probabilistic interpretation of D as a finite difference operator (cf. [3] and
6]), we have for F' = f(T1,...,Ty):

k=d

DF =Y Ly gy (f(Th,. o Teer, t, Tos o Tum) = f(Th, -, Ta), tERY,
k=1

thus Dy, --- Dy F' is well defined and explicit computations can be carried out but
may be complicated due to the recursive application of a finite difference operator, cf.
[4]. See [8] for an elementary approach using only orthogonal expansions in Charlier
polynomials.

On the other hand, the gradient D of [1] (see also [2]), defined as

k=d

Dy ==Y 1oz t)ouf(Ty, ... . Ty,

k=1
has some properties in common with D, namely its adapted projection coincides with

that of D, and in particular we have
E[D,F] = E[D,F], teR,.
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Since the operator D has the derivation property it is easier to manipulate than the
finite difference operator D in recursive computations. Its disadvantage is that it
can not be iterated in L? due to the non-differentiability of 1y 7,(¢) in T}, thus an
expression such as E[D;, - - - D, F] makes a priori no sense, moreover E[Dy, - - - D, F]
may differ from E[D;, --- Dy F| for n > 2 (see Relations (13) and (14) below).

In [7] the combined use of D™ and D in L? sense has led to the computation
of the expansion of the jump time Ty, d > 1. A direct calculation using only the
operator D can be found in [5], concerning a Poisson process on a bounded interval.

In this paper we show that the gradient D can be iterated in a precise sense
of distributions on Poisson space, to be introduced in Sect. 3. For example we have

for (t1,...,t,) € Ay
Dy -+ Dy f(Ta) = (=1)"f" (Tt V-~ V1)

n—1
(1) " Lostyntn <ty DS ()80 (T0),
j=1

where ¢&;, (T}) is a generalized functional, i.e. the composition of the Dirac distribution
8, at t, with the jump time T}, cf. Prop. 3, f denotes the n-th derivative of the
function f € C;°(Ry), and t; V --- V t, = max(ty,...,t,). Moreover we obtain the

equality
E[Dy, -+ Dy F | Fo] =E[Dy, --- Dy F | Fa], 0<a<t;<--<ty, n>2

where we make sense of the conditional expectation E[Dy, --- D, F | F,] using the

pairing (-, -) between distributions and test functions. This implies
fn(tlw'wtn):E[Dtl"'btnFL O<ty <+ <ty

This gives an expression for the decomposition of f(T1,...,T,), f € C;°(A4), with

relatively short computations, cf. Prop. 6, for example
f(Ty) = Zln<hn1An)=
n=0
with

ho(ty, ... tn) = E[Dy, --- Dy, f(T))]



—1)" /twf("><t>pd1<t>dt+<—1>“ (—1) L F D (1)) (1),

tdl

(@—11°

0<ty<-- <ty where pg_1(t) = et teR,,d>1.

2 Integration by parts

In this section we review the definition of the three main gradient operators on Poisson
space, and present an elementary derivation of integration by parts formulas. All C*°

functions on A, are extended by continuity to the closure of A,.

Definition 1 Let a > 0. Let Sy(Q x [a, 0o[') denote the test function space
Sd(QX[CL,OO[l> = {h1®®hl®f(Tl77Td) : f ECZ?O(Ad)J hl?"'7hl ECb([a,OOD},
with Sg(Q) = Sa(Q x RY) for 1 =0.

We recall that if f € L*(Ag, e7dt, - - - dty) then

E[f(Th,...,T; / / /ftl,... Dty dta,

which follows e.g. from the fact that (7,,)n>1 = (T, — T—1)n>1 is a family of indepen-

dent exponential random variables.

2.1 Intrinsic gradient

The intrinsic gradient D on Poisson space is defined on Sy(€) as

k=d

D,F =Y LggO)ouf(Th, ..., Ts), dN,—ae.,
k=1

with F' = f(T\,...,Ty), f € C;°(A4), where Oy f represents the partial derivative of f
with respect to its k-th variable, 1 < k < d.

Lemma 1 Let F' € 84(Q) and h € C}(Ry) with h(0) = 0. We have the integration

by parts formula

~

BDF W, ans] =B [FUS] = - |F [“w@ai-0]. @
where Ut = — ( k= () — [ h’(t)dt) € S4(9).
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Proof. We have by integration by parts on Ay:

E[<EF,h>L2<R+,dNt>]zi/om/otd,,./otz e Nh(t)Onf (L1, ... ta)dty - dtg
0o tq to
/ e—td/ / h(t)Oy f(ty, ... ta)dty -+~ dtg
o tet1
-I—Z/O /0 /o h(ty @tk/ / f(ty, ... tg)dty---dtg

k=d . tht1 ko flk—2 t2 ~
/ / / h(ty) / / . / ftr, o thay by tey ooy tg)dly - dtg_q - dtg
= J0 o Jo 0 0
/ / / W)t ta)dts - dty
0 0 0
+/ / / h(ta) f(ta, ta, ... tg)dty---dty
0 0
k=d tk+1
Z/ / / tk/ / Fltr, .. ta)dty - dtg
k=2
_|_/ _tdh td / / f t1,...,1 dtl d
0
k=d—1

- dity, - dty

it tht1 - to
/ h(tk-‘rl) / / : / f(tla '7tk—17tk+17tk+1a '7td>dt1
0 0 0 0

+2::000 /0

oo g1 tk fte—2 t2
/ / / h(tk)/ / / f(t1,  to, ti, te, ., ta)dty - dig
— Jo o Jo o Jo 0
h=d oo t;m
_ Z/ tk/ /ftl,... Dty - dty
— Jo 0 0
+ / e h(ty) / Yty - - - dty
0

/ Ft ot
/ (

F (Z W(T}) — ' t)dt)] ,

where di; denotes the absence of dty.

Concerning the second part of the equality it

suffices to notice that if k& > d,

/ e "/ (t, / / /ftl,..., Ydty - - - dty,
:/ tkhtk/ / /thtl,... dty - dty

E[FN(Ty)] =



_/ et 1/ / / ftr, .. ta)dty -+ dtg—y
0
F/ R (t)dt | .

Ty

= E[F(M(Tk) = h(Ti-1))] = E

O
Relation (2) implies immediately for F, G € S;():
E[(DF, hG>L2(R+,dNt)] — ]E [< (FG) h>L2 R+ dNt) <ﬁG, h>L2(R+,dNt):|
— E|F(GU}; — (b, DG) g2z any)
= —E |iF (G/ h/(t)d<Nt — t) + <h, DG)LQ(R+,dNt)>:| .
0

2.2 Damped gradient
Let 7(s,t) = —s V t denote the Green function associated to the Laplacian £ on R,

ﬁf: _f//7 fecgo(]()’OODa

i.e. we have, with ¢ = —f":

/0°°< // u)dudt, s €R,.

Definition 2 Given F € S§4(0), F = f(T1,...,Ty), we let

0
rW(s,t) = —r(s,t) = 10 q(t), s,t€Ry,
Os ’
and
D,F = / rM (s, t)D,FdN;.
0
We have
) k=d
DyF =Y (T, )opf(Th, ..., T, Z o0 (OO f(Th, ..., Ty).
k=1

In fact D is (up to a minor modification) the gradient introduced in [1]. This presen-

tation of D using the Green function (s, t) is motivated by [9].



Proposition 1 We have for F € §4(§2) and h € C.(Ry):
0

where Ut = Y124 h(Ty) — [ h(t)dt.

Proof. We have

1) (DF,h>L2(R+7dt)] = E[ / / r(l)(s,t)f)th(t)stdt]
0 0

= -E <f)F, / h(t)dt> —E {F / h(t)d(N, — t)}
0 L2(Ry ,dN,) 0
U
Relation (3) also implies that for F, G € S4(€2),
E[(DF.hG)ize.an) = E[{D(FG) Wi, ay — F{DG, R rage, | (4)

= R |F(GUZ - (h, DG)LQ(R+,dt))]

= E|F (G/OOO h(t)d(N; —t) — (h, DG)LQ(Mdt))} .

2.3 Finite difference gradient

For completeness we mention the gradient D which is associated to the Fock space

structure, and whose properties have been discussed in the introduction.

3 Distribution-valued gradient
For n > 2 and F € §,;(2) we let dN;, ® - -+ ® dNy, — a.e.:

Dy o F= Y Lgt) gy (t)05, - 05, f(Th, .. Ta).

~~~~~
1=g1,gn=d

This is not the n-th iteration of ﬁ, in fact we have

1D FlBagaer = S (D 05, F(T1, o T

1§j17"'7.jn§d

Definition 3 Let a € Ry andl € N.



i) We denote by S4(2 X [a,00[') the space of continuous linear forms (distributions)

on Sg(Q x [a,00["), ie. F € S4(Q x [a,00l') if there exists k > 0 and C > 0

such that
i=k
|<_F7 hl R R® hl X G>| S CZ th R ® hl||ooHDZGHLOO(Q,L%]RJF,dNt)@i)7
=0

G e Sd(Q X R:_), hl, . ,hl € CC([a,oo[).

i) A sequence (Fy,)nen C S5(Q X [a, 0o[') is said to converge in Si(2 x [a, ool!) if the
sequence ({F,, G))nen converges to (F,G) for all G € Sg(Q x [a, o0o!).

The notation (-,-) will be used to denote the pairing between S;(2 x [a, oo[') and
S/ (Q x [a,00['), for all values of I € N. Every F € §;(2 x [a,oo[!) is identified to an
element of (2 X [a, co[') by letting

<F, G> = /Q<F(w, -), G(w, ')>L2([a,oo[,dt)®lp(dw)> G e Sd(Q X [CL, OO[Z)

The closability property in L? of the operator D is a well-known statement which

extends to distributions in S}(Q x [a, oo[).
Proposition 2 Let (F,)nen C Sa(Q x [a,00[') such that
i) (F)nen converges to 0 in 84 (2 x [a, oo['),
ii) (DF,)pen converges in S4( x [a, co[1).

Then (DFy,)pen converges to 0 in S4(€2 x [a, oo[*1).

Proof. For [ = 0 this is a direct consequence of the integration by parts formula (4),

which shows that
(DF,, hG) = E[E,(GU — (DG, h) 2k, an))], h € Cel[a, 0]), G € S4(),

with GU{ — (DG, h) 2(®, ar) € Sa(€). The generalization to [ > 1 is straightforward.
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This proposition justifies the following extension of D to generalized functionals.

Definition 4 Let a € R.. We let Dy([a,00]) denote the subspace of F' € S (€
la, 00[') such that

i) there exists (Fy)nen C Sa(2 % [a,00[') that converges to F in Sy(Q x [a, oo[!),
ii) (DF,)pen converges in S4(2 x [a, co[1).
Given F as above we define DF as the limit in S4(Q x [a, co['+1)

DF = lim DF,, F € D([a,o00]) C S4( x [a,c0]!).

4 Iterated gradient in distribution sense

We let for n > 2:
P (Ty, t) = O (Ti, t) = 6" 2(T}),

in distribution sense, i.e. 7™ (T}, t) belongs to S}(Q) with for & = 1,...,d, and
feCr(Ag):

(r <”><Tk, ),f(Tl,..

1 Sk+2
= n+ 1{k<d}/ / /
an 2 Sk
( n—2 / / f St1ye v d81 dSk_1> dsk+1"'d8d
Osy o

+<_1)n+11{k=d}m /0 \/0 ce /0 €_tf(81, ey Sd—1, t)dsl s de_l,

and for n = 1:

<T(1)(Tk>t)af(T1>--w / / / d]-[too Sk)f(sb---,sd)dsl---dsd.

Let ¢ € C°([—1,1]), ¢ > 0, such that fjl o(t)dt =1, and let

o.(t) =e'p(e™'t), teR, e>0.



Let ¢, % v (T, t), n > 1, denote the convolution of ¢. with r™ (T}, t) in the first

variable, i.e. for n = 1:

GoxrV) (T, t) / P= (1) 1) o0 1~ (1) due / e (u+Th) Yooy (B)du, s, t € Ry,
and forn > 2,1 € N:
oW % r (T t) = ¢ % r™H(Th 1) = —p"T=2(T), — 1),

which converges in S}(2) to r" ) (T}, ) if n+1 > 1 (i.e. to —5§"+l_2) (Ty) if n+1>2),
k= 17...,d. Let tl\/"'\/tn:maX(tl,...,tn), t1,...,1p €R+.

Proposition 3 Let k > 1 and f € C°(R,). Then for alln > 1, Dy, --- Dy, f(T}) €
Do(Ry) for a.a. (t1,...,t,) € R}, and

Dy, -+ Dy, f(Ti) = (=1)"f "™ (T)Lpmy(t V -+ V 1)

n—1

n n—j 1)
_1) Z 1{t1V"'th<tj+1\/"'\/tn}f( ])(thrl V- )6(JJ+1\/ Vin (Tk) (5)

Proof.  For n = 1 this is the definition of D. We proceed by induction, assuming
that Dy, --- Dy, f(Tx) € Do(Ry) for some n > 1, and

Dy, -+ Dtn+1 f(Tx) = (_1)nf(n)(Tk)1[O,Tk](t2 Voo Vi)

n—1

i 1)
_1)n Z l{tzv“'\/thrl<tj+2\/"'\/tn+l}f(n ])(tj+2 VeV tn+1)5tj+2\/ Vint1 (Tk)
j=1

Let for & > 0. We define a smooth approximation of Dy, - -- D, ., f(T}) by letting

Fu(ty, .- tng1) = (1) fUT) G 57N (Tt V-V )

n—1

1)” Z 1{t2V--~th+1<t,7'+2V"~th+1}f(n_j) (tj+2 VeV tn+1)¢z—: * T(j+1) (Tk7 tj+2 VeV tn—i—l)'
j=1

Then F.(tg, ..., tyr1) € Sg(€2) and
Dy Felta, ... top1) = (=1)" ™1 (t)de % 7D (Thyta V- - -V ty) fOTD(Th)

H(=1)" M gy (8) fON (D) v (Thoy ta V- V )
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n—1

+(=1)" M 1 7 (1) Z Litavevtyor<tyuovevtn b f " (Eiaa Voo V )
j=1

ng; * T(j+1)(Tk,tj+2 VARV tn+1)
= (=)™ 15 (t) ¢ x 7D (Th,ta Voo V) fOT(TR)
H(=D)™ o g () U (T) e 5 7P (Tiyta Vo -V )

=D o (0) D Liavevty<tyorvevin oy S T (g Ve Vo)
=2

X¢€ * T’(j+1)(Tk,tj+1 VeV tn+1)
= (=1)" ™ 1jomy(t1)de % D (Thta V- Vb f (T

+(_1)n+11[0,Tk](t1) Z 1{t2V-~-th<tj+1\/~-\/tn+1}f(n+1_j) (tj-i-l V.-V tn-i—l)
j=1

X¢a * T(j+1)(Tk7 tj-i-l VeV tn-i—l)a

where we used the relation ¢, * rUt) = ¢ % rU+2 As ¢ — 0, Dy, F.(t, ... o)

converges in S;(Q2) to
(—1)tt flnt) (Te) Loz (t1 V-V tnya)

+(=1)"*H Z 1{t1V~~th<tj+1\/--~\/tn+1}f(n+1_j)(tj—f—l Ve Vo) rUT(T, tiy1 V- Vi)
=1

O

In particular, for n > 2:
Dy, Dy, T = (= 1) M ozt <ty™™ (Tintn) = (1) " Lozttt i (L)

We note that since f € C;°(R,), there exists C' > 0 such that

(Do -+ Dy, f(Ti); @ @@ G) < CY Il @ @ lulloo|| D'Gll oo 0,12 o)
i=0

dty---dt, — a.e., for all G € S4() and hy,...,h € C.(Ry). Hence D”f(Tk) €

D,(Ry) C Si(2 x R%), and (5) can be written as

=n

Dtl e Btnf(Tk) = (_1)” 1{t1\/~"\/tj<tj+1\/'"\/tn}f(n7j) (Tk,j)(_r(j+1) (Tka t]'+1\/‘ : \/tn))
Jj=

.

=]
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with tg = 0 and

T if j =0,
kd ti VooV, ifj>1,

ie if0<t; < - <ty

j=n

Dt1 e Dtnf(Tk) = (_l)n f(n_j) (Tk,j)(_r(j+1) (Tk’a tn))

J

Il
=)

Incasety > --->t, and F' = f(Ty,...,Ty) with f € C;°(A,,), it is shown in [10] that

Dy Dy F=(=1)" Z Lo, (t1) -+~ Lo (620 -~ 05 (T, Ta).

1<j1,esjn=<d

Given ji,...,jn € {1,...,d} and i € {1,...,d}, let

ai(ji,---,Jn) = Card{l € {1,...n} : j =i},

¢i(J1y -y dn) = max{l : j; = i}.

With this notation we obtain the following formula, in which the indices jy, ..., j, are

omitted in a;(j1,...,7n) and ¢;(J1, .., Jn)-

Theorem 1 Let F = f(Ty,...,Ty), with f € C°(Ag). We have D"F € D, (R.) for
alln >0, and:

Dy D, F = (=1)" Z Z Z (6)
1<j1,jn<d 0<i1<(a1—1)V0  0<ig<(ag—1)V0
l=d
A O T (T, -5 Tasy) H (=rH0(T, t)),
al;él(]

(t1,...,tn) € Ay, n > 2, where

(T oifi =0,
ﬂ”_{QZUQEL

Proof. Let Dt,k denote the partial gradient with respect to the k-th variable, i.e.

Dinf(Th,. .., Ty) = =1z (0 f(Th, ..., Ty), 1<k<d.
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Then l~)t7k and Ds,l, are commuting operators, 1 < k <l <d,andfor0 <t; <--- <t
-Dtl,k e Dtl,kF — (Dtl’k)lF.
Consequently,

Dtl e DtnF = Z Dt1,j1 . Etn,jnF — Z (btc1,1>al - (Dtcd,d)adF‘

1<, <d 1<j1,.jn<d

It remains to apply Prop. 3 under the form

(D, )"F = (~1)% S 0T Ty Tt T Tigs - T (—r D (T ),

0<i;<(a;—1)V0

if a; > 1, and

(Dtc“l)alF = (_1>al Z alal_ilf(Th'"77}*17ﬂ,i177}+17"'7Td)

0<i;<(a;—1)VO0

ifal:O. ]

5 Equality of adapted projections in distribution
sense

We recall that the adjoint of D extends the compensated Poisson stochastic integral,
cf. [3], Th. 6.9, p. 23, i.e. for all adapted square-integrable process u € L*(Q x R,)

we have .
BlDF )] =E |F [~ u(tia(i o). 7)
Since the adapted projections of D and D coincide, cf. [7], Prop. 20:
E[D,F | F,] =E[D,F | F,], 0<a<t, (8)
the same property hold for D:

E[(DF, u) 2, an] = E [F /Ooou(t)d(Nt — t)] :

We now show that Relation (8) can be extended in distribution sense to D™ and D",
n > 2. The next proposition will be interpreted in terms of generalized conditional

expectations as
E[Dy, ---D; F | Fo] =E[Dy, --- Dy F | Fal, (t1,....tn) € Ay N [a, c0[™
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Proposition 4 Let F € §;(R2) and G € §4(Q2) be F,-measurable. We have

(GDy, -+ Dy F,1) =E[GDy, --- D F],  (t1,...,tn) € A, N [a, c0[™ (9)
Proof.  The proposition holds for n = 1. We assume that it holds for some n > 1.
Let F.(ta,...,t,y1) denote the regularization of Z~?t2 e Dtn . F' constructed as in the
proof of Prop. 3:

F.(ty, ... ,ths1) = (=1)" Z Z Z

1<j1,0dn<d 0<i1<(a1-1)V0  0<ig<(ag—1)VO
l=d

8?1_“ T a;d—idf(Tl,im e 7Td,id) H (_¢E * T(H_il)(Tlv t1+01))'
al;élO
Let foi1 € C°(AngrNla, co[*™). Since G is F, measurable we have D, G = 0, t; > a,

hence from Prop. 1:

to N
E [/ Dy, Fo(to, .. tngr) fosa(t, - - ,tn+1)dt1G}

to N
= K [/ Dy (GF:(ta, ..., tht1)) frasa(te, ... 7tn+1)dt1:|
k=d

Ty
E GFE(tQ, P ;tn-i-l) <Z fn—i—l(Tk‘;tQa ce 7tn+1> — / fn+1(t, tQ, e ,tn+1)dt>] s
0

k=1

and

<Dn+1F 1An+l fn+1G

n+1
= 21_1>1(1)</ / /Dt1 t27-"7tn+1)fn+1(t1,-"7tn+1)dt1"'dtn+17G>

n+1
= ll_I}(l)E [/ / / Dy, F. t27*-'7tn+1)fn+l(t17'**atn+1)dt1"'dtn+1G:|

n+1 3
= hmE[ / / / F.(to, ... th1)
e—0 a

Ty

<Z For1(Tiota, oo tor) — | fasa(tito, ... ,tn+1)dt> dty - --dth]

o[ [f

k=
(Z fn—i-l Tk, tQ, Ce 7tn+1) — fn+1(t1; tg, Ce ,tn+1)dt1> Dt2 s Dtn+1th2 s dtn+1]
k

0
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el [
(Z Foit(Tstay oo tgr) —

where on the last step we used the induction hypothesis with a = t5. This is possible
because the functional Z],Z‘f foo1 (T, tay ooy tngr) — OTd for1(ti,te, . oo typr)dty is Fpy-
measurable since it depends on T} only when T, < 5, 1 < k < d, due to the fact that

fn+1 S CSO(AH-H)
The proof of Prop. 1 also shows that

k=d
G (Z Jot1(Tsto, o tnga) —
=1

B k=00 o0
= E|G (Z For1(Tista, -y tos) —/ fn+1(t,t2,...,tn+1)dt) Dy, Dy, F
L k=1 0

Ty

for1(t, te, ... ,tnﬂ)dtl) Dy, -+ Dy, Fdty---dtpy ]|,

Ty

for1(ty, to, ... ,tn+1)dt1> Dy, -+ Dy, F

t2

- E G fn+1(t1, tg, e n+1)d(Nt1 - t1>Dt2 Dtn+1F1

- E G/ fn+1 tl;"'7tn+1)Dt1 "'Dtn+1th1:| y

where on the last line we used the duality (7) between D and the Poisson compensated

integral on the adapted processes. Hence

(D™ F 1a,,, funiG)

n+1
|: / / / fn+1 tl, e ,tn+1)Dt1 s Dthrletl s dtn—i—l

This shows the almost-sure equality

<G-Dt1 N 'DtnF, 1> = E[GDtl c 'Dt F], a.e. (tl, Ce 7tn) S An N [a,oo[",

n

which becomes an equality for all (¢1,...,t,) € A, N [a,00[” since (t1,...,t,) +—
(GDy, --- Dy, F,1) and (t1,...,t,) — E[GD,, --- D, F] are clearly continuous func-
tions on A,, when F, G € S4(Q2). O

Note that Relation (9) does not hold if (¢y,...,t,) ¢ A,, see Relation (14) below.
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6 Chaos expansions of jump times functionals

Our result is stated for smooth functions f(T},...,T,) of a finite number of jump

times. We start with the snnple case of f(Ty). Forn € Z and t € R, let

pu(t) = P(N, = n) = // / dsy - dsn_1,

if n > 0, and p,(t) = P(N;, = n) =0ifn <0,ie p,_1: Ry - Ry, n>1,is the
density function of T},, and
o pn
pO0) = Zen) = (-2, = (-0t )
where A is the finite difference operator Af(n) = f(n) — f(n — 1) and C} is the
Charlier polynomial of order £ € N and parameter t € R,.

Proposition 5 The decomposition

= I(hala,),
n=0
is given for (t1,...,t,) € A, as:
]:nfl
halty, .. t) = / FO () par(t)dt + (—1)" FO D ()PS0 ().

=1

.

Proof.  From Relation (9) of Prop. 4 and Relation (5) of Prop. 3 we have

hn(tla-"atn EDh Dtnf(Td)] =< Dtl Dtnf(Td)al >

_ <f(n OTd +an 7) ] 1)(Td>71>

o0 Sd 52
= / 1[tnoo[ sq)e Sdf( )(Sd)/ / dsy - - dsy
0
Zf(" 7) / / / dsy -+ dsg_ 15 (dsd)

— (-1 / s 0 (s@ﬁdsd

n—1 ) '
Y7 [ e o s
7=1

(d—1)"
j=n—1

- / PO par (it + (~1)" 3 (1D (1, )50 8.
7j=1
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By induction this gives for [ =0,...,n — 1:

j=n—1

ha(ty, - tn) = (1) / FOD @Y O dt+(=1)m 3 (=1 D ()8 (1),
tn j=l+1
and in particular for [ =n — 1:
Bt ot / £ (s)ds = Fta)pe ) + [ F)p8, (s)ds,
tn

hence

1 n— > n

J(T) =3 — (f(m Ve VP (B VeV ) + / f<s>p§>1<s>d3> |
n>0 s t1V---Viy,

(10)

with the convention t; V tg = 0. In order to treat the case of d variables we recall the

notation
ai(.jh‘"ajn) :Card{l : jl 22}7 and ci(jl?"'7.jn) :ma‘X{l :jl :7’}

Proposition 6 Let f € C;°(Ay). We have

(T, ..., Ty Z[ (hpla,)
with

ity ty) = (D)"Y oo > (11)

1<51,..0n<d  0<i1<(a1—1)VO0 0<ig<(aq—1)VvO
l=d

/ / / _Sdaal i, aad de(sl i1y Sd Zd) H( T(H_il)(dsl? tCl))’

aﬁéO

where 1M (ds, t) = 1, oo((s)ds, and

opp— 51 Zle:()a
b te ifiy>1, 1=1,....d

Proof. We apply Th. 1 and Relation (9) of Prop. 4. O

17



This expression can be made more explicit by evaluation of the action of 7-(1+%) (dsj,, te,),
either as an indicator function or as a derivative in ¢,,. However this will not be done
here in order to keep formula (11) to a reasonable size.

In [8], another expression (different from (11)) has been obtained using elemen-
tary orthogonal decompositions in Charlier polynomials. Let nq,...,n; € N with
1<n <---<mn,andlet feCHA;). As a convention, if k; > 0,...,k; > 0 satisfy
ki+ -+ kg =n, we let for (¢1,...,t,) € Ay

(B tp tl ety ot ) = (B, ),

with ¢, = 0if k; =0, and (t{,%}) = (). We have

FTos o To) = > L(la,h),
n=0
where

hn(ty, ... tn) (12)

i+1
tl

2
( / / : 61 s 8lf(51, NN )Kflj_””kldsl dsl,

.l
ki+4-+k=

with, for 0 < s <---<syand k; >0,...,k > 0:

Kiyeonsky 2 : (k1) (k) _ _
Ksl,...,sl - Py — mo(sl - 80) te 'pml—ml_1<sl - Sl—l)v mo = 07 S0 = 07
mi2>ng,...,mp>n;
my<--<my

cf. Th. 1 of [8]. For [ =1, i.e. for f(Ty), ny = d, we have

akloo

Zp s 1219 gt 2 Pt (8) — pnls) = P (s)

hence
h (t17"'7 / f p&nll) ) S,

which coincides with (10).

Remarks
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i) All expressions obtained above for f(7T1,...,Ty), f € C°(Aq), extend to f €
L2(Ag, e %4dsy - - - dsg), i.e. to square-integrable f(Ty,...,Ty), by repeated inte-
grations by parts.

ii) Chaotic decompositions on the Poisson space on the compact interval [0, 1] as
in [4] or [5] can be obtained by considering the functional f(1 ATy,..., 1A Ty)
instead of f(T1,...,Ty).

iii) If ¢; > -+ > t,, then Relation (9) does not hold, for example we have

Dy, -+ Dy, f(T) = (—1)" Lo (t2) f ") (To),

and
B{D - D F(T)] = (=1L ()1 (T = (<1 [ 1 pucs(s)s
(13)
which differs (if n > 2) from
E[Dy, --- Dy, f( / f'(s pd . ) s. (14)
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